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NETWORKS 



Diffusion in Networks 

How new behaviors,  practices, opinions and technologies 
spread from person to person through a social network as 
people influence their friends to adopt new ideas 

Information effect: choices made by others can provide indirect 
information about what they know 
 
Old studies: 

 Adoption of hybrid seed corn among farmers in Iowa 
 Adoption of tetracycline by physicians in US 

Basic observations: 
 Characteristics of early adopters 
 Decisions made in the context of social structure 



Diffusion in Networks 

Direct-benefit Effect: there are direct payoffs from copying the decisions 
of others 
 
Spread of technologies such as the phone, email, etc 
 
 
Common principles: 
Complexity of people to understand and implement 
Observability, so that people can become aware that others are using it 
Trialability, so that people can mitigate its risks by adopting it gradually and 
incrementally 
Compatibility with the social system that is entering (homophily?) 



Modeling Diffusion through a Network 

An individual level model of direct-benefit effects in networks due to S. Morris 

The benefits of adopting a new behavior increase as more and more of the 
social network neighbors adopt it 

A Coordination Game 
Two players (nodes), u and w linked by an edge 
Two possible behaviors (strategies): A and B 
 

 If both u and w adapt A, get payoff a > 0 
 If both u and w adapt B, get payoff b > 0 
 If opposite behaviors, than each get a payoff 0 



Modeling Diffusion through a Network 

u plays a copy of the game with each of its neighbors, its payoff is the sum of the payoffs 
in the games played on each edge   

Say some of its neighbors adopt A and some B, what should u do 
to maximize its payoff? 

Threshold q = b/(a+b) for preferring A 
(at least q of the neighbors follow A) 



Modeling Diffusion through a Network: Cascading 

Behavior 

Two obvious equilibria, which ones? 

Suppose that initially everyone is using B as a default behavior 
A small set of “initial adopters” decide to use A 

When will this result in everyone eventually switching to A? 
If this does not happen, what causes the spread of A to stop? 

Observation: strictly progressive sequence of switches from  A to B 



Modeling Diffusion through a Network: Cascading 

Behavior 

a = 3, b = 2, q = 2/5 

Step 1 

Step 2 

Chain reaction 



Modeling Diffusion through a Network: Cascading 

Behavior 
a = 3, b = 2, q = 2/5 

Step 3 



Modeling Diffusion through a Network: Cascading 

Behavior 

Chain reaction of switches to A -> a cascade of  adoptions of A 

1. Consider a set of initial adopters who start with a new behavior A, while 
every other node starts with behavior B.  

2. Nodes then repeatedly evaluate the decision to switch from B to A using 
a threshold of q. 

3. If the resulting cascade of adoptions of A eventually causes every node 
to switch from B to A, then we say that the set of initial adopters causes 
a complete cascade at threshold q. 



Modeling Diffusion through a Network: Cascading 

Behavior and “Viral Marketing” 

Tightly-knit communities in the network can work to hinder 
the spread of an innovation 
(examples, age groups and life-styles in social networking sites, Mac users, 
political opinions) 
 
 

Strategies  
 Improve the quality of A (increase the payoff a) 
 Convince a small number of key people to switch to A 



Cascades and Clusters 

A cluster of density p is a set of nodes such that each node in the set has at 
least a p fraction of its neighbors in the set 

Ok, but it does not imply that any two nodes in the same cluster necessarily have 
much in common 

The union of any two cluster of density p is also a cluster of density p 



Cascades and Clusters 



Cascades and Clusters 

Claim: Consider a set of initial adopters of behavior A, with a threshold 
of q for nodes in the remaining network to adopt behavior A. 
 
(i) (clusters as obstacles to cascades)  
If the remaining network contains a cluster of density greater than 1 − q, 

then the set of initial adopters will not cause a complete cascade. 
 
(ii) (clusters are the only obstacles to cascades)  
Whenever a set of initial adopters does not cause a complete cascade 

with threshold q, the remaining network must contain a cluster of 
density greater than 1 − q. 



Cascades and Clusters 

Proof of  (i) (clusters as obstacles to cascades)  

Proof by contradiction 
Let v be the first node in the cluster that adopts A 



Cascades and Clusters 

Proof of  (ii) (clusters are the only obstacles to cascades)  

Let S be the set of nodes using B at the end of the process 
Show that S is a cluster of density > 1 - q 



Diffusion, Thresholds and the Role of Weak 
Ties 

A crucial difference between learning a new idea and actually deciding to accept it  



Diffusion, Thresholds and the Role of Weak 
Ties 

Relation to weak ties and local bridges 

q = 1/2 

Bridges convey awareness 
but weak at transmitting 
costly to adopt behaviors 



Extensions of the Basic Cascade Model: 
Heterogeneous Thresholds 

Each person values behaviors A and B differently: 
 

 If both u and w adapt A, u gets a payoff au > 0 
and w a payoff  aw > 0 
 If both u and w adapt B, u gets a payoff bu > 0 
and w a payoff  bw > 0 
 If opposite behaviors, than each gets a payoff 0 

Each node u has its own personal threshold qu≥ bu /(au+ bu) 



Extensions of the Basic Cascade Model: 
Heterogeneous Thresholds 

Not just the power of influential people, but also the extent to which they have 
access to easily influenceable people 
 
What about the role of clusters? 
A blocking cluster in the network is a set of nodes for which each node u has more 
that 1 – qu fraction of its friends also in the set. 



Knowledge, Thresholds and Collective Action: 
Collective Action and Pluralistic Ignorance 

A collective action problem: an activity produces benefits only if 
enough people participate 
 
 
Pluralistic ignorance: a situation in which people have wildly 
erroneous estimates about the prevalence of certain opinions in the 
population at large 



Knowledge, Thresholds and Collective Action:  
A model for the effect of knowledge on collective actions 

 Each person has a personal threshold which encodes her willingness to 
participate 
 A threshold of k means that she will participate if at least k people in total 
(including herself) will participate 
 Each person in the network knows the thresholds of her neighbors in the 
network 

 w will never join, since 
there are only 3 people 
 v 
 u 

 Is it safe for u to join?  
 Is it safe for u to join? 
(common knowledge)  



Knowledge, Thresholds and Collective Action:  
Common Knowledge and Social Institutions 

 Not just transmit a message, but also make the listeners or 
readers aware that many others have gotten the message as 
well 

 
 Social networks do not simply allow or interaction and flow 
of information, but these processes in turn allow individuals to 
base decisions on what other knows and on how they expect 
others to behave as a result 



The Cascade Capacity 

Given a network, what is the largest threshold at which any “small” set of 
initial adopters can cause a complete cascade? 
 
Cascade capacity of the network 

Infinite network in which each node has a finite number of neighbors 
Small means finite set of nodes 



The Cascade Capacity: Cascades on Infinite 
Networks 

 Initially, a finite set S of nodes has behavior A and all others adopt B 
 
 Time runs forwards in steps, t = 1, 2, 3, … 

 
 In each step t, each node other than those in S uses the decision rule with 
threshold q to decide whether to adopt behavior A or B 

 
 The set S causes a complete cascade if, starting from S as the early adopters of A, 
every node in the network eventually switched permanently to A.  

The cascade capacity of the network is the largest value of 
the threshold q for which some finite set of early adopters 
can cause a complete cascade. 



The Cascade Capacity: Cascades on Infinite 
Networks 

An infinite path 

An infinite grid 

An intrinsic property of the network 
Even if A better, for q strictly between 3/8 and ½, A cannot win 

Spreads if ≤ 1/2 

Spreads if ≤ 3/8 



The Cascade Capacity: Cascades on Infinite 
Networks 

How large can a cascade capacity be? 

At least 1/2, but is there any network with a higher cascade capacity? 
 
Will mean that an inferior technology can displace a superior one, even when the 
inferior technology starts at only a small set of initial adopters. 



The Cascade Capacity: Cascades on Infinite 
Networks 

Claim: There is no network in which the cascade capacity 
exceeds 1/2 



The Cascade Capacity: Cascades on Infinite 
Networks 

Interface: the set of A-B edges 

Prove that in each step the size of the interface strictly decreases 
Why is this enough? 



The Cascade Capacity: Cascades on Infinite 
Networks 

At some step, a number of nodes decide to switch from B to A 

General Remark: In this simple model, a worse technology cannot displace a better 
and wide-spread one  



EPIDEMIC SPREAD 



Epidemics 

Understanding the spread of viruses and 
epidemics is of great interest to  
• Health officials 
• Sociologists 
• Mathematicians 
• Hollywood  

The underlying contact network clearly 
affects the spread of an epidemic 

Diffusion of  ideas and the spread of influence can also be modeled 
as epidemics 

Model epidemic spread as a random process on the graph and study 
its properties 
• Main question: will the epidemic take over most of the network? 



Branching Processes 

 A person transmits the disease to each people she meets independently with 
a probability p  
 Meets k people while she is contagious 

1. A person carrying a new disease enters a population, first wave of k 
people 

2. Second wave of k2 people 
3. Subsequent waves  

A contact network with k =3 
Tree (root, each node but the 
root, a single node in the level 
above it) 



Branching Processes 

Mild epidemic (low contagion probability) 

 If it ever reaches a 
wave where it infects no 
one, then it dies out 
 Or, it continues to 
infect people in every 
wave infinitely 

Aggressive epidemic (high contagion probability) 



Branching Processes: Basic Reproductive Number 

Basic Reproductive Number (R0): the expected number of new cases of the 
disease caused by a single individual 

Claim: (a) If R0 < 1, then with probability 1, the disease dies out after a finite 
number of waves. (b) If R0 > 1, then with probability greater than 0 the 
disease persists by infecting at least one person in each wave. 

R0 = pk 
 
(a) R0 < 1 -- Each infected person produces less than one new case in expectation 

Outbreak constantly trends downwards  
(b) R0 > 1 – trends upwards, and the disease persists with positive probability 

(when p < 1, the disease can get unlucky!) 
 

A “knife-edge” quality around the critical value of R0 = 1 



Branching process 

• Assumes no network structure, no triangles or 
shared neihgbors 



The SIR model 

• Each node may be in the following states 

– Susceptible: healthy but not immune 

– Infected: has the virus and can actively propagate it 

– Removed: (Immune or Dead) had the virus but it is no 
longer active 

• probability of an Infected node to infect a 
Susceptible neighbor 

 



The SIR process 

• Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected). 

• An infected node stays infected for 𝑡𝐼 steps. 
– Simplest case: 𝑡𝐼 = 1 

• At each of the  𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible 
neighbors 
– p: Infection probability 

• After 𝑡𝐼 steps the node is Removed 



 



SIR and the Branching process 

• The branching process is a special case where 
the graph is a tree (and the infected node is 
the root) 

• The basic reproductive number is not 
necessarily informative in the general case 



Percolation 

• Percolation: we have a network of “pipes” 
which can curry liquids, and they can be either 
open with probability p, or close with 
probability (1-p) 

– The pipes can be pathways within a material 

• If liquid enters the network from some nodes, 
does it reach most of the network? 

– The network percolates 



SIR and Percolation 

• There is a connection between SIR model and 
percolation 

• When a virus is transmitted from u to v, the edge (u,v) 
is activated with probability p 

• We can assume that all edge activations have 
happened in advance, and the input graph has only the 
active edges. 

• Which nodes will be infected? 
– The nodes reachable from the initial infected nodes 

• In this way we transformed the dynamic SIR process 
into a static one. 



Example 

 



The SIS model 

• Susceptible-Infected-Susceptible 

– Susceptible: healthy but not immune 

– Infected: has the virus and can actively propagate it 

• An Infected node infects a Susceptible neighbor 
with probability p 

• An Infected node becomes Susceptible again with 
probability q (or after 𝑡𝐼 steps) 

• Nodes alternate between Susceptible and 
Infected status 



Exampe 

 

 

 

 

 

 

• When no Infected nodes, virus dies out 

• Question: will the virus die out? 



An eigenvalue point of view 

• If A is the adjacency matrix of the network, then the 
virus dies out if 

 

 

• Where 𝜆1 is the first eigenvalue of A 

 
p

q
Aλ1 



Multiple copies model 

• Each node may have multiple copies of the same 
virus 
– v: state vector : vi : number of virus copies at node i 

 

• At time t = 0, the state vector is initialized to v0 

• At time t, 
For each node i 

For each of the vi
t virus copies at node i 

 the copy is copied to a neighbor j with prob p 

 the copy dies with probability q 



Analysis 

• The expected state of the system at time t is given 
by 

 

• As t  ∞  

–   

• the probability that all copies die converges to 1 

–    

• the probability that all copies die converges to 1 

–   

• the probability that all copies die converges to a constant < 1 

 

   1tt  vIAv q1p

     0 then pqλ1q1p λif t
11  vAIA

     cvAIA  t
11  then pqλ1q1p λif

      t
11 v then pqAλ1Iq1pA λif



SIS and SIR 

 



Including time 

• Infection can only happen within the active 
window  

 

 

 

 

 

 

 

 

 

 



Concurency 

• Importance of concurrency – enables 
branching 

 



INFLUENCE MAXIMIZATION 



Maximizing spread 

• Suppose that instead of a virus we have an item 
(product, idea, video) that propagates through contact 
– Word of mouth propagation. 

 

• An advertiser is interested in maximizing the spread of 
the item in the network 
– The holy grail of “viral marketing” 

 

• Question: which nodes should we “infect” so that we 
maximize the spread? [KKT2003] 



Independent cascade model 

• Each node may be active (has the item) or 
inactive (does not have the item) 

• Time proceeds at discrete time-steps. At time 
t, every node v that became active in time t-1 
actives a non-active neighbor w with 
probability puw. If it fails, it does not try again 

 

• The same as the simple SIR model 



Influence maximization 

• Influence function: for a set of nodes A (target set) 
the influence s(A) is the expected number of active 
nodes at the end of the diffusion process if the item 
is originally placed in the nodes in A.  
 

• Influence maximization problem [KKT03]: Given an 
network, a diffusion model, and a value k, identify a 
set A of k nodes in the network that maximizes s(A). 
 

• The problem is NP-hard 



• What is a simple algorithm for selecting the set A? 
 

 
 
 
 
 
 

• Computing s(A): perform multiple simulations of the process 
and take the average. 

• How good is the solution of this algorithm compared to the 
optimal solution? 

A Greedy algorithm 

Greedy algorithm 
Start with an empty set A 
Proceed in k steps 

At each step add the node u to the set A the maximizes the 
increase in function s(A) 

• The node that activates the most additional nodes 



Approximation Algorithms 

• Suppose we have a (combinatorial) optimization 
problem, and X is an instance of the problem, 
OPT(X) is the value of the optimal solution for X, 
and ALG(X) is the value of the solution of an 
algorithm ALG for X 
– In our case: X = (G,k) is the input instance, OPT(X) is 

the spread S(A*) of the optimal solution, GREEDY(X) is 
the spread S(A) of the solution of the Greedy 
algorithm 

• ALG is a good approximation algorithm if the ratio 
of OPT and ALG is bounded. 
 



Approximation Ratio 

• For a maximization problem, the algorithm 
ALG is an 𝛼-approximation algorithm, for 
𝛼 < 1, if for all input instances X,  

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋  

 

• The solution of ALG(X) has value at least α% 
that of the optimal 

• α is the approximation ratio of the algorithm 
– Ideally we would like α to be a constant close to 1 

 



Approximation Ratio for Influence 
Maximization 

• The GREEDY algorithm has approximation 

ratio 𝛼 = 1 −
1

𝑒
 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X 

 



Proof of approximation ratio 

• The spread function s has two properties: 
 

• S is monotone: 
𝑆(𝐴) ≤ 𝑆 𝐵  if 𝐴 ⊆ 𝐵 

 
• S is submodular: 
𝑆 𝐴 ∪ 𝑥 − 𝑆 𝐴 ≥ 𝑆 𝐵 ∪ 𝑥 − 𝑆 𝐵   𝑖𝑓 𝐴 ⊆ 𝐵 

 
• The addition of node x to a set of nodes has greater 

effect (more activations) for a smaller set. 
– The diminishing returns property 



Optimizing submodular functions 

• Theorem: A greedy algorithm that optimizes a 
monotone and submodular function S, each 
time adding to the solution A, the node x that 
maximizes the gain 𝑆 𝐴 ∪ 𝑥 − 𝑠(𝐴)has 

approximation ratio 𝛼 =  1 −
1

𝑒
 

 

• The spread of the Greedy solution is at least 
63% that of the optimal 



Submodularity of influence 

• Why is S(A) submodular? 

– How do we deal with the fact that influence is defined 
as an expectation? 

 

• We will use the fact that probabilistic propagation 
on a fixed graph can be viewed as deterministic 
propagation over a randomized graph 

– Express S(A) as an expectation over the input graph 
rather than the choices of the algorithm 



Independent cascade model 

• Each edge (u,v) is considered only once, and it is 
“activated” with probability puv. 

• We can assume that all random choices have been made 
in advance  
– generate a sample subgraph of the input graph where edge (u,v) 

is included with probability puv 
– propagate the item deterministically on the input graph 
– the active nodes at the end of the process are the nodes 

reachable from the target set A 

• The influence function is obviously(?) submodular when 
propagation is deterministic 

• The linear combination of submodular functions is also a 
submodular function 



Linear threshold model  

• Again, each node may be active or inactive  
• Every directed edge (v,u) in the graph has a weight bvu, such 

that 

 𝑏𝑣𝑢
𝑣 is a neighbor of 𝑢

≤ 1 

 
• Each node u has a randomly generated threshold value Tu  

• Time proceeds in discrete time-steps. At time t  an inactive 
node u becomes active if 

 𝑏𝑣𝑢
𝑣 is an active neighbor of 𝑢

≥ 𝑇𝑢 

• Related to the game-theoretic model of adoption. 



Influence Maximization 

• KKT03 showed that in this case the influence 
S(A) is still a submodular function, using a 
similar technique 

– Assumes uniform random thresholds 

• The Greedy algorithm achieves a (1-1/e) 
approximation  



Proof idea 

• For each node 𝑢, pick one of the edges 
(𝑣, 𝑢) incoming to 𝑢 with probability 𝑏𝑣𝑢and 
make it live. With probability 1 −  𝑏𝑣𝑢 it picks 
no edge to make live 

• Claim: Given a set of seed nodes A, the following 
two distributions are the same: 
– The distribution over the set of activated nodes using 

the Linear Threshold model and seed set A  

– The distribution over the set of nodes of reachable 
nodes from A using live edges. 



Proof idea 

• Consider the special case of a DAG (Directed Acyclic Graph) 
– There is a topological ordering of the nodes 𝑣0, 𝑣1, … , 𝑣𝑛 such 

that edges go from left to right 

• Consider node 𝑣𝑖  in this ordering and assume that 𝑆𝑖 is the 
set of neighbors of 𝑣𝑖  that are active.  

• What is the probability that node 𝑣𝑖  becomes active in 
either of the two models? 
– In the Linear Threshold model the random threshold 𝜃𝑖 must be 

greater than  𝑏𝑢𝑖 ≥ 𝜃𝑖𝑢∈𝑆𝑖
 

– In the live-edge model we should pick one of the edges in 𝑆𝑖 

• This proof idea generalizes to general graphs 
– Note: if we know the thresholds in advance submodularity does 

not hold! 



Experiments 

 


