
Online Social Networks and 
Media 

Network models 



What is a network model? 

• Informally, a network model is a process (radomized 
or deterministic) for generating a graph 

• Models of static graphs 

– input: a set of parameters Π, and the size of the graph n 

– output: a graph G(Π,n)  

• Models of evolving graphs 

– input: a set of parameters Π, and an initial graph G0 

– output: a graph Gt for each time t 



Families of random graphs 

• A deterministic model D defines a single graph for 
each value of n (or t) 

 

• A randomized model R defines a probability space 
‹Gn,P› where Gn is the set of all graphs of size n, and 
P a probability distribution over the set Gn (similarly 
for t) 

– we call this a family of random graphs R, or a random 
graph R 



Why do we care? 

• Creating models for real-life graphs is 
important for several reasons 

– Create data for simulations of processes on 
networks 

– Identify the underlying mechanisms that govern 
the network generation 

– Predict the evolution of networks 



Erdös-Renyi Random graphs 

Paul Erdös (1913-1996) 



Erdös-Renyi Random Graphs 

• The Gn,p model 

– input: the number of vertices n, and a parameter 
p, 0 ≤ p ≤ 1 

– process: for each pair (i,j), generate the edge (i,j) 
independently with probability p 

 

• Related, but not identical: The Gn,m model 

– process: select m edges uniformly at random 



Graph properties 

• A property P holds almost surely (a.s.) (or for almost every 
graph), if 

 

 

• Evolution of the graph: which properties hold as the 
probability p increases? 
– different from the evolving graphs over time that we saw before 

 

• Threshold phenomena: Many properties appear suddenly. 
That is, there exist a probability pc such that for p<pc the 
property does not hold a.s. and for p>pc the property holds 
a.s. 
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The giant component 

• Let z=np be the average degree 

• If z < 1, then almost surely, the largest 
component has size at most O(ln n) 

• if z > 1, then almost surely, the largest 
component has size Θ(n). The second largest 
component has size O(ln n) 

• if z =ω(ln n), then the graph is almost surely 
connected. 



The phase transition 

• When z=1, there is a phase transition 

– The largest component is O(n2/3) 

– The sizes of the components follow a power-law 
distribution. 



Random graphs degree distributions 

• The degree distribution follows a binomial 

 

 

• Assuming z=np is fixed, as n→∞, B(n,k,p) is 
approximated by a Poisson distribution 

 

 

• Highly concentrated around the mean, with a tail 
that drops exponentially 
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Other properties 

• Clustering coefficient 

– C = z/n 

 

• Diameter (maximum path) 

– L = log n / log z 



Phase transitions 

• Phase transitions (a.k.a. Threshold Phenomena, Critical 
phenomena) are observed in a variety of natural or human 
processes, and they have been studied extensively by Physicists and 
Mathematicians 
– Also, in popular science: “The tipping point” 

• Examples 
– Water becoming ice 
– Percolation 
– Giant components in graphs 

• In all of these examples, the transition from one state to another 
(e.g., from water to ice) happens almost instantaneously when a 
parameter crosses a threshold 

• At the threshold value we have critical phenomena, and the 
appearance of Power Laws 
– There is no characteristic scale.  

 



Percolation on a square lattice 

• Each cell is occupied with probability p 

 

 

 

 

 

 

• What is the mean cluster size? 



Critical phenomena and power laws 

• For p < pc mean size is independent of the lattice size 
• For p > pc mean size diverges (proportional to the lattice size - 

percolation) 
• For p = pc we obtain a power law distribution on the cluster 

sizes 

pc = 0.5927462… 



Self Organized Criticality 

• Consider a dynamical system where trees appear in randomly at a 
constant rate, and fires strike cells randomly 

 

 

 

 

 

 

 

 

• The system eventually stabilizes at the critical point, resulting in power-
law distribution of cluster (and fire) sizes 



The idea behind self-organized criticality (more 
or less) 

• There are two contradicting processes 
– e.g., planting process and fire process 

• For some choice of parameters the system stabilizes 
to a state that no process is a clear winner 
– results in power-law distributions 

• The parameters may be tunable so as to improve the 
chances of the process to survive 
– e.g., customer’s buying propensity, and product quality. 

 

• Could we apply this idea to graphs? 



Random graphs and real life 

• A beautiful and elegant theory studied 
exhaustively 

 

• Random graphs had been used as idealized 
network models 

 

• Unfortunately, they don’t capture reality… 



Departing from the ER model 

• We need models that better capture the 
characteristics of real graphs 

– degree sequences 

– clustering coefficient 

– short paths 



Graphs with given degree sequences 

• The configuration model 

– input: the degree sequence [d1,d2,…,dn] 

– process: 

• Create di copies of node i 

• Take a random matching (pairing) of the copies 
– self-loops and multiple edges are allowed 

 

• Uniform distribution over the graphs with the 
given degree sequence 



Example 

• Suppose that the degree sequence is 

 

• Create multiple copies of the nodes 

 

 

• Pair the nodes uniformly at random 

• Generate the resulting network 

4 1 3 2 



Other properties 

• The giant component phase transition for this model 
happens when 
 
 
 

• The clustering coefficient is given by 
 
 
 

• The diameter is logarithmic 
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pk: fraction of nodes with degree k 



Power-law graphs 

• The critical value for the exponent α is 

 

 

• The clustering coefficient is   

 

 

• When α<7/3 the clustering coefficient 
increases with n 
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Graphs with given expected degree 
sequences 

• Input: the degree sequence [d1, d2, … ,dn] 

•           m = total number of edges 

 

• Process: generate edge (i,j) with probability 
didj/m 

– preserves the expected degrees 

– easier to analyze 



However… 

• The problem is that these models are too 
contrived 

 

• It would be more interesting if the network 
structure emerged as a side product of a 
stochastic process rather than fixing its 
properties in advance. 



Preferential Attachment in Networks 

• First considered by [Price 65] as a model for citation 
networks (directed) 

– each new paper is generated with m citations (mean) 

– new papers cite previous papers with probability 
proportional to their indegree (citations) 

– what about papers without any citations? 
• each paper is considered to have a “default” a citations 

• probability of citing a paper with degree k, proportional to k+a 

 

• Power law with exponent α = 2+a/m 



Practical Issues 

• The model is equivalent to the following: 
– With probability m/(m+a) link to a node with 

probability proportional to the degree. 
– With probability a/(m+a) link to a node selected 

uniformly at random. 

• How do we select a node with probability 
proportional to the degree? 
– Select a node and pick on of the nodes it points to. 
– In practice: 

• Maintain a list with the endpoints of all the edges seen so 
far, and select a node from this list uniformly at random 

• Append the list each time new edges are created. 



Barabasi-Albert model 

• The BA model (undirected graph) 
– input: some initial subgraph G0, and m the number of 

edges per new node 

– the process:  
• nodes arrive one at the time 

• each node connects to m other nodes selecting them with 
probability proportional to their degree 

• if [d1,…,dt] is the degree sequence at time t, the node t+1 links to 
node i with probability 

 

 

• Results in power-law with exponent α = 3 
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The mathematicians point of view 
[Bollobas-Riordan] 

• Self loops and multiple edges are allowed 

• For the single edge problem: 
– At time t, a new vertex v, connects to an existing vertex u with 

probability 

 

– it creates a self-loop with probability 

 

 

• If m edges, then they are inserted sequentially, as if 
inserting m nodes  
– the problem reduces to studying the single edge problem. 

1-2t

du
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The Linearized Chord Diagram (LCD) model 

• Consider 2n nodes labeled {1,2,…,2n} placed 
on a line in order.  



Linearized Chord Diagram 

• Generate a random matching of the nodes.  



Linearized Chord Diagram 

• Starting from left to right identify all endpoints until the first 
right endpoint. This is node 1. Then identify all endpoints until 
the second right endpoint to obtain node 2, and so on. 



Linearized Chord Diagram 

• Uniform distribution over matchings gives uniform 
distribution over all graphs in the preferential attachment 
model 

 



Linearized Chord Diagram 

• Create a random matching with 2(n+1) nodes by adding to a matching 
with 2n nodes a new cord with the right endpoint being in the rightmost 
position and the left being placed uniformly 

 

 



Linearized Chord Diagram 

• A new right endpoint creates a new graph node 

 



Linearized Chord Diagram 

• The left endpoint may be placed within any of the 
existing “supernodes” 

 



Linearized Chord Diagram 

• The number of free positions within a supernode is equal to 
the number of pairing nodes it contains 

• This is also equal to the degree 
 



Linearized Chord Diagram 

• For example, the probability that the black graph 
node links to the blue node is 4/11 

– di = 4,      t = 6,       di/(2t-1) = 4/11 

 



Preferential attachment graphs 

• Expected diameter 

– if m = 1, the diameter is Θ(log n) 

– if m > 1, the diameter is Θ(log n/loglog n) 

 

• Expected clustering coefficient 
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Weaknesses of the BA model 

• Technical issues: 
– It is not directed (not good as a model for the Web) and when directed it gives 

acyclic graphs 
– It focuses mainly on the (in-) degree and does not take into account other 

parameters (out-degree distribution, components, clustering coefficient) 
– It correlates age with degree which is not always the case 

 
• Academic issues 

– the model rediscovers the wheel 
– preferential attachment is not the answer to every power-law 
– what does “scale-free” mean exactly? 

 

• Yet, it was a breakthrough in the network research, that popularized the 
area 



Variations of the BA model 

• Many variations have been considered some 
in order to address the problems with the 
vanilla BA model 

– edge rewiring, appearance and disappearance 

– fitness parameters 

– variable mean degree 

– non-linear preferential attachment 

• surprisingly, only linear preferential attachment yields 
power-law graphs 

 



Empirical observations for the Web graph 

 

• Such subgraphs are highly unlikely in random graphs 

• They are also unlikely in the BA model 

• Can we create a model that will have high concentration of 
small cliques? 

a K3,2 clique 

 In a large scale experimental study by  
   Kumar et al, they observed that the  
   Web contains a large number of  
   small bipartite cliques (cores) 

 the topical structure of the Web 
 



Copying model 

• Input: 
– the out-degree d (constant) of each node 

– a parameter α 

• The process: 
– Nodes arrive one at the time 

– A new node selects uniformly one of the existing nodes as 
a prototype 

– The new node creates d outgoing links. For the ith link 
• with probability α it copies the i-th link of the prototype node 

• with probability 1- α it selects the target of the link uniformly at 
random 

 



An example 

• d = 3 



Copying model properties 

• Power law degree distribution with exponent 
β = (2-α)/(1- α) 

• Number of bipartite cliques of size i x d is ne-i 

 

• The model has also found applications in 
biological networks 

– copying mechanism in gene mutations 

 



Other graph models 

• Cooper Frieze model 
– multiple parameters that allow for adding vertices, 

edges, preferential attachment, uniform linking 

 

• Directed graphs [Bollobas et al] 
– allow for preferential selection of both the source 

and the destination 

– allow for edges from both new and old vertices 



Small world Phenomena 

• So far we focused on obtaining graphs with 
power-law distributions on the degrees. What 
about other properties? 

– Clustering coefficient: real-life networks tend to 
have high clustering coefficient 

– Short paths: real-life networks are “small worlds” 

• this property is easy to generate 

– Can we combine these two properties? 



Clustering Coefficient 

• How can you create a graph with high 
clustering coefficient? 

 

 

 

 

 

• High clustering coefficient but long paths 



Small-world Graphs 

• According to Watts [W99] 

– Large networks (n >> 1) 

– Sparse connectivity (avg degree z << n) 

– No central node (kmax << n) 

– Large clustering coefficient (larger than in random 
graphs of same size) 

– Short average paths (~log n, close to those of 
random graphs of the same size) 



The Caveman Model [W99] 

• The random graph 
– edges are generated completely at random 

– low avg. path length L ≤ logn/logz 

– low clustering coefficient C ~ z/n 

• The Caveman model 
– edges follow a structure 

– high avg. path length L ~ n/z 

– high clustering coefficient C ~ 1-O(1/z) 

 

 

• Can we interpolate between the two? 



Mixing order with randomness 

• Inspired by the work of Solmonoff and Rapoport 
– nodes that share neighbors should have higher probability to be connected 

• Generate an edge between i and j with probability proportional to Rij 

 
 
 

 
 
 
 
 

• When 𝛼 → ∞, edges are determined by common neighbors 
• When 𝛼 = 0 , edges are independent of common neighbors 
• For intermediate values we obtain a combination of order and 

randomness 
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Algorithm 

• Start with a ring 

• For i = 1 … n 

– Select a vertex j with probability proportional to Rij 
and generate an edge (i,j) 

• Repeat until z edges are added to each vertex 



Clustering coefficient – Avg path length 

small world graphs 



Watts and Strogatz model [WS98] 

• Start with a ring, where every node is connected to the next z 
nodes 

• With probability p, rewire every edge (or, add a shortcut) to a 
uniformly chosen destination. 
– Granovetter, “The strength of weak ties” 

order randomness 

p = 0 p = 1 0 < p < 1 



Clustering Coefficient – Characteristic Path 
Length 

log-scale in p 

When p = 0, C = 3(k-2)/4(k-1) ~ ¾ 
         L = n/k 

For small p, C ~ ¾ 
        L ~ logn 



Graph Theory Results 

• Graph theorist failed to be impressed. Most of 
these results were known. 



Optimized graphs 

• Suppose you are building an airline network, 
how would you set up the routes? 

• Optimization criteria 

– Minimize the cost of routes 

– Minimize the travel time of passengers 

• Distance travelled 

• Number of hops 

– Take city populations into account. 

 

 

Use 𝛿 to control the tradeoff between the two 



Experiment with US flights 



Evolution of graphs 

• So far we looked at the properties of graph 
snapshots. What if we have the history of a 
graph? 

– e.g., citation networks, internet graphs 



Measuring preferential attachment 

• Is it the case that the rich get richer? 
 

• Look at the network for an interval [t,t+dt] 
• For node i, present at time t, we compute 

 
 

– dki = increase in the degree 
– dk = number of edges added  

• Fraction of edges added to nodes of degree k 
 
 

• Cumulative: fraction of edges added to nodes of degree at 
most k 
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Measuring preferential attachment 

• We plot F(k) as a function of 
k. If preferential attachment 
exists we expect that F(k) ~ 
kb 

– actually, it has to be b ~ 1 

 

(a) citation network 

(b) Internet 

(c) scientific collaboration network 

(d) actor collaboration network 

Linear preferential attachment 

No preferential attachment 



Network models and temporal evolution 

• For most of the existing models it is assumed 
that 

– number of edges grows linearly with the number 
of nodes 

– the diameter grows at rate logn, or loglogn 

 

• What about real graphs? 

– Leskovec, Kleinberg, Faloutsos 2005 



Densification laws  

• In real-life networks the average degree 
increases! – networks become denser! 

α = densification exponent 

N(t) 

E(t) 

1.69 

N(t) 

E(t) 

1.18 
scientific 
citation network 

Internet 



More examples 

 

 

 

 

 

 

• The densification exponent 1≤α≤2 

– α = 1: linear growth – constant out degree 

– α = 2: quadratic growth - clique 

N(t) 

E(t) 

1.66 

N(t) 

E(t) 

1.15 

patent citation network movies affiliation network 



What about diameter? 

• Effective diameter: the interpolated value 
where 90% of node pairs are reachable 

hops 
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Diameter shrinks 

 

scientific 
citation network 

Internet 

patent citation network 
affiliation network 



Densification – Possible Explanation 

• Existing graph generation models do not capture the 
Densification Power Law and Shrinking diameters 

• Can we find a simple model of local behavior, which 
naturally leads to observed phenomena? 

 

• Two proposed models 

– Community Guided Attachment – obeys Densification 

– Forest Fire model – obeys Densification, Shrinking 
diameter (and Power Law degree distribution) 



Community structure 

• Let’s assume the 
community structure 

• One expects many 
within-group 
friendships and fewer 
cross-group ones  

 

• How hard is it to cross 
communities? 

Self-similar university  
community structure 

CS Math Drama Music 

Science Arts 

University 



• If the cross-community linking probability of nodes 
at tree-distance h is scale-free 

• We propose cross-community linking probability:  
 

 

    

   

  where: c ≥ 1 … the Difficulty constant 

           h … tree-distance 

Fundamental Assumption 



Densification Power Law 

• Theorem: The Community Guided Attachment leads 
to Densification Power Law with exponent 

 

 

 

 

• α … densification exponent 

• b … community structure branching factor 

• c … difficulty constant 



• Theorem: 

 

• Gives any non-integer Densification 
exponent 

• If c = 1: easy to cross communities 
– Then: α = 2, quadratic growth of edges – near 

clique 

• If c = b: hard to cross communities 
– Then: α = 1, linear growth of edges – constant 

out-degree 

Difficulty Constant 



Room for Improvement 

• Community Guided Attachment explains 
Densification Power Law 

• Issues: 

– Requires explicit Community structure 

– Does not obey Shrinking Diameters 

 

• The ”Forrest Fire” model 



“Forest Fire” model – Wish List 

• We want: 

– no explicit Community structure 

– Shrinking diameters 

– and: 

• “Rich get richer” attachment process, to get heavy-
tailed in-degrees 

• “Copying” model, to lead to communities 

• Community Guided Attachment, to produce 
Densification Power Law 



“Forest Fire” model – Intuition 

• How do authors identify references? 

1. Find first paper and cite it 

2. Follow a few citations, make citations 

3. Continue recursively 

4. From time to time use bibliographic tools (e.g. 
CiteSeer) and chase back-links 

 



“Forest Fire” model – Intuition 

• How do people make friends in a new 
environment? 

1. Find first a person and make friends 

2. From time to time get introduced to his friends 

3. Continue recursively 

 

 

• Forest Fire model imitates exactly this process 



“Forest Fire” – the Model 

• A node arrives 

• Randomly chooses an “ambassador” 

• Starts burning nodes (with probability p) and 
adds links to burned nodes 

• “Fire” spreads recursively 



Forest Fire in Action (1) 

• Forest Fire generates graphs that Densify 
and have Shrinking Diameter 

densification diameter 
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Forest Fire in Action (2) 

• Forest Fire also generates graphs with 
heavy-tailed degree distribution 

in-degree out-degree 

count vs. in-degree count vs. out-degree 



Forest Fire model – Justification 

• Densification Power Law: 
– Similar to Community Guided Attachment 

– The probability of linking decays exponentially 
with the distance – Densification Power Law 

• Power law out-degrees: 
– From time to time we get large fires 

• Power law in-degrees: 
– The fire is more likely to reach hubs 

 



Forest Fire model – Justification 

• Communities:  

– Newcomer copies neighbors’ links 

• Shrinking diameter 
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Assignment 

• In teams of 2 

• Pick a scale free or a small world model 

– Scale free: Preferential Attachment, Copying model 

– Small world: Caveman model, ring rewiring 

• Create different networks for different 
parameters 

• Use Gephi to visualize the graphs, plot degree 
distributions, and compute clustering coefficient 


