
Online Social Networks and 
Media  

Network Measurements 

 



Measuring Networks 

• Degree distributions and power-laws 

• Clustering Coefficient 

• Small world phenomena 

• Components 

• Motifs 

• Homophily 

 



The basic random graph model 

• The measurements on real networks are usually 
compared against those on “random networks” 

 

• The basic Gn,p (Erdös-Renyi) random graph model: 

– n : the number of vertices 

– 0 ≤ p ≤ 1 

– for each pair (i,j), generate the edge (i,j) independently 
with probability p 

– Expected degree of a node: z = np 

 



Degree distributions 

• Problem: find the probability distribution that best fits the 
observed data 
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frequency 

k 

fk 

fk = fraction of nodes with degree k 
   = probability of a randomly 
       selected node to have degree k 



Power-law distributions 

• The degree distributions of most real-life networks follow a power law 
 
 

• Right-skewed/Heavy-tail distribution 
– there is a non-negligible fraction of nodes that has very high degree (hubs) 
– scale-free: no characteristic scale, average is not informative 

 
• In stark contrast with the random graph model! 

– Poisson degree distribution, z=np 
 
 
 

– highly concentrated around the mean 
– the probability of very high degree nodes is exponentially small 

p(k) = Ck-α 
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Power-law signature 

• Power-law distribution gives a line in the log-log plot 

 

 

 

 

 

 

 

• α : power-law exponent (typically 2 ≤ α ≤ 3) 

degree 

frequency 

log degree 

log frequency α 

log p(k) = -α logk + logC 



Examples 

 

Taken from [Newman 2003] 



A random graph example 

  



Exponential distribution 

• Observed in some technological or collaboration 
networks 

 

• Identified by a line in the log-linear plot 

p(k) = λe-λk 

log p(k) = - λk + log λ 

degree 

log frequency λ 



Measuring power-laws 

• How do we create these plots? How do we measure the power-law 
exponent? 
 

• Collect a set of measurements: 
– E.g., the degree of each page, the number of appearances of each word in a 

document, the size of solar flares(continuous) 

 
• Create a value histogram 

– For discrete values, number of times each value appears 
– For continuous values (but also for discrete): 

• Break the range of values into bins of equal width  
• Sum the count of values in the bin  
• Represent the bin by the mean (median) value 

 
• Plot the histogram in log-log scale 

– Bin representatives vs Value in the bin 



Discrete Counts 
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Measuring power laws 

Simple binning  produces a noisy plot 



Logarithmic binning 

• Exponential binning 
– Create bins that grow exponentially in size 

– In each bin divide the sum of counts by the bin length 
(number of observations per bin unit) 

Still some noise at the tail 



Cumulative distribution 

• Compute the cumulative distribution 
– P[X≥x]: fraction (or number) of observations that 

have value at least x 

– It also follows a power-law with exponent α-1 
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Pareto distribution 

• A random variable follows a Pareto 
distribution if 

 

 

• Power law distribution with exponent α=1+β 

 

 

  βxC'xXP  minxx 



Zipf plot 

• There is another easy way to see the power-
law, by doing the Zipf plot 

– Order the values in decreasing order 

– Plot the values against their rank in log-log scale 

• i.e., for the r-th value xr, plot the point (log(r),log(xr)) 

– If there is a power-law you should see something 
like a straight line 



Zipf’s Law 

• A random variable X follows Zipf’s law if the r-th largest 
value xr satisfies 
 

• Same as Pareto distribution 
 
 

• X follows a power-law distribution with α=1+1/γ 
 

• Named after Zipf, who studied the distribution of 
words in English language and found Zipf law with 
exponent 1 
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Zipf vs Pareto 
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Computing the exponent 

• Maximum likelihood estimation 

– Assume that the set of data observations x are 
produced by a power-law distribution with some 
exponent α 

• Exact law: 𝑝 𝑥 =  
𝛼−1

𝑥𝑚𝑖𝑛

𝑥

𝑥𝑚𝑖𝑛

−𝛼
 

– Find the exponent that maximizes the probability 
P(α|x) 
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Collective Statistics (M. Newman 2003) 

 



Power Laws - Recap 

• A (continuous) random variable X follows a power-
law distribution if it has density function  
 
 

• A (continuous) random variable X follows a Pareto 
distribution if it has cumulative function 
 
 

• A (discrete) random variable X follows Zipf’s law if 
the frequency of the r-th largest value satisfies 
 

αCxp(x) 

  βCxxXP 
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power-law with α=1+β 

power-law with α=1+1/γ 



Average/Expected degree 

• For power-law distributed degree  
– if α ≥ 2, it is a constant  

𝐸 𝑋 =  
𝛼 − 1

𝛼 − 2
𝑥𝑚𝑖𝑛 

– if α < 2, it diverges  
• The expected value goes to infinity as the size of the 

network grows 

• The fact that α ≥ 2 for most real networks 
guarantees a constant average degree as the 
graph grows 



Maximum degree 

• For random graphs, the maximum degree is 
highly concentrated around the average 
degree z 

• For power law graphs 

 

 

• Rough argument: solve nP[X≥k]=1 

1)1/(α
max nk 



The 80/20 rule 

• Top-heavy: Small fraction of values collect 
most of distribution mass 

• This phenomenon becomes 
more extreme when 𝛼 < 2 

• 1% of values has 99% of mass 
 

• E.g. name distribution 



The effect of exponent 

𝜶 = 𝟏. 𝟗 

𝜶 = 𝟑. 𝟏 𝜶 = 𝟐. 𝟓 

As the exponent 
increases the probability 
of observing an extreme 
value decreases 



Generating power-law values 

• A simple trick to generate values that follow a 
power-law distribution: 

– Generate values 𝑟 uniformly at random within the 
interval [0,1] 

– Transform the values using the equation 

𝑥 = 𝑥𝑚𝑖𝑛 1 − 𝑟 −1/(𝛼−1) 

– Generates values distributed according to power-
law with exponent 𝛼 

 



Clustering (Transitivity) coefficient 

• Measures the density of triangles (local 
clusters) in the graph 

• Two different ways to measure it: 

 

 

 

• The ratio of the means 
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Example 
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Clustering (Transitivity) coefficient 

• Clustering coefficient for node i 

 

 

 

 

 

• The mean of the ratios 
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Example 

 
 
 
 
 
 
 
 

• The two clustering coefficients give different 
measures  

• C(2) increases with nodes with low degree 
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Collective Statistics (M. Newman 2003) 

 



Clustering coefficient for random graphs 

• The probability of two of your neighbors also being neighbors 
is p, independent of local structure 
– clustering coefficient C = p 

– when the average degree z=np is constant C =O(1/n) 



Small worlds 

• Millgram’s experiment: Letters were handed out to people in 
Nebraska to be sent to a target in Boston 

• People were instructed to pass on the letters to someone they 
knew on first-name basis 

• The letters that reached the destination followed paths of 
length around 6 

• Six degrees of separation: (play of John Guare) 
 

• Also:  
– The Kevin Bacon game 
– The Erdös number 

 
• Small world project: 

http://smallworld.columbia.edu/index.html 



Measuring the small world phenomenon 

• dij = shortest path between i and j 
 

• Diameter: 
 

• Characteristic path length: 
 
 

• Harmonic mean 
 
 
 

• Also, distribution of all shortest paths 
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Problem if no path between two nodes 



Collective Statistics (M. Newman 2003) 

 



Small worlds in real networks 

• For all real networks there are (on average) short paths 
between nodes of the network. 
– Largest path found in the IMDB actor network: 7 

 
• Is this interesting? 

– Random graphs also have small diameter (d=logn/loglogn 
when z=ω(logn)) 

 
• Short paths are not surprising and should be combined 

with other properties 
– ease of navigation 
– high clustering coefficient 

 
 



Connected components 

• For undirected graphs, the size and 
distribution of the connected components 

– is there a giant component? 

– Most known real undirected networks have a 
giant component 

 

• For directed graphs, the size and distribution 
of strongly and weakly connected components 

 

 



Connected components – definitions  

• Weakly connected components (WCC) 
– Set of nodes such that from any node can go to any node via an undirected path 

• Strongly connected components (SCC) 
– Set of nodes such that from any node can go to any node via a directed path. 
– IN: Nodes that can reach the SCC (but not in the SCC) 
– OUT: Nodes reachable by the SCC (but not in the SCC) 

SCC 

WCC 



The bow-tie structure of the Web 

 

The largest weakly connected component contains  90% of the nodes 



SCC and WCC distribution 

• The SCC and WCC sizes follows a power law 
distribution 

– the second largest SCC is significantly smaller 



Another bow-tie 

 Who lends to whom 



Web Cores 

• Cores: Small complete bipartite 
graphs (of size 3x3, 4x3, 4x4) 
– Similar to the triangles for  

undirected graphs 

• Found more frequently than 
expected on the Web graph 

• Correspond to communities of 
enthusiasts (e.g., fans of japanese 
rock bands) 



Motifs 

• Most networks have the same characteristics 
with respect to global measurements 

– can we say something about the local structure of 
the networks? 

 

• Motifs: Find small subgraphs that over-
represented in the network 



Example 

• Motifs of size 3 in a directed graph 



Finding interesting motifs 

• Sample a part of the graph of size S 

• Count the frequency of the motifs of interest 

• Compare against the frequency of the motif in 
a random graph with the same number of 
nodes and the same degree distribution 



Generating a random graph 

• Find edges (i,j) and (x,y) such that edges (i,y) 
and (x,j) do not exist, and swap them 

– repeat for a large enough number of times 

i j 

x 
y 

G 

i j 
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y 

G-swapped 
degrees of i,j,x,y 
are preserved 



The feed-forward loop 

• Over-represented in gene-regulation networks 

– a signal delay mechanism X 

Y Z 

Milo et al. 2002 



Homophily 

• Love of the same: People tend to have friends with 
common interests 
– Students separated by race and age 



Measuring homophily 

• Friendships in elementary school 

 

 

 

 

 

• The connections of people with the same 
interests should be higher than on a random 
experiment 
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