Online Social Networks and
Media

Navigation in a small world



Small world phenomena

* Small worlds: networks with short paths

Stanley Milgram (1933-1984): “The
man who shocked the world”

Obedience to authority (1963)

Small world experiment (1967)




Small world experiment

Letters were handed out to people in Nebraska to be
sent to a target in Boston

People were instructed to pass on the letters to someone
they knew on first-name basis

The letters that reached the destination followed paths
of length around 6

Six degrees of separation: (play of John Guare)

The chains progress from the starting
position (Omaha) to the target area

(Boston) with each remove. Diagram ¥ ==

shows the number of miles from the .

target area, with the distance of each -

remove averaged over completed -

and uncompleted chains. %‘
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Milgram’s experiment revisited

 What did Milgram’s experiment show?

— (a) There are short paths in large networks that
connect individuals

— (b) People are able to find these short paths using
a simple, greedy, decentralized algorithm



A simple explanation

* |f everyone had different friends, number of
people reachable increases exponentially with
the size of the path

__. . () . . your friends

SO00Q0000000Q00O000OODO0OOYL friends of your friends

(a) Pure exponential growth produces a small world



Simple explanation does not work

* As we have seen friendships tend to form triangles, so
the previous assumption is not true.

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

* How can we have both many triangles and short paths?



Small worlds

* We can construct graphs with short paths

— E.g., the Watts-Strogatz model

(a) A set of nodes arranged in a ring. (b) A ring augmented with random long-
range links.



Small worlds

 Same idea to different graphs




Explanation

e Assume that we add k random links from
every node.

* Looking at the graph formed by the random
links it is unlikely that we have many common
neighbors

— Therefore, we have almost exponential growth of
the reachable nodes.



Navigation in a small world

* Kleinberg: Many random graphs contain short
paths, but how can we find them in a

way?

* |In Milgram’s experiment every recipient acted
without knowledge of the global structure of
the social graph, using only

— information about geography
— their own social connections



Kleinberg’s navigation model

e Assume a graph similar (but not the samel) to

that of Watts-Strogatz
— There is some underlying “geography”: ring, grid,
hierarchy
» Defines the local contacts of a node
* Enables to navigate towards a node
— There are also shortcuts added between nodes

* The long-range contacts of a node

* Similar to WS model — creates short paths



Kleinberg’s navigational model

* Given a source node s, and a navigation target t we
want to reach, we assume

— No centralized coordination
 Each node makes decisions on their own

— Each node knows the “geography” of the graph
* They can always move closer to the target node

— Nodes make decisions based only on their own contacts
(local and long-range)

* They do not have access to other nodes’ contacts

— No flooding is allowed
* A node cannot send the message to all of her friends.

— Greedy (myopic) decisions
* Always move to the node that is closest to the target.



Example

Figure 20.15: In myopic search, the current message-holder chooses the contact that lies
closest to the target (as measured on the ring), and it forwards the message to this contact.



Long-range contacts

* If long-range contacts are created uniformly at
random they do not help in navigation/search.

— Proven theoretically

* We create contacts with probability that
decreases with the distance to the endpoint
P(x = y)~d(x,y)™1
— : clustering exponent
— When g =0, uniform selection

— When g > 0, nodes are more likely to connect closer to
them (follows also intuitively)



Clustering exponent
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(a) A small elustering exponent (b) A large clustering exponent




Clustering exponent

* The right (clustering) exponent g depends on the geography:
— q=1foral-dimensional ring, g = 2 for a 2-dimensional grid.

* This exponent is the only one for which greedy search follows
“short” (polylogarithmic length) paths
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Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent g. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent ¢ = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].



Theoretical results

* Proven for an underlying grid:

— If the underlylng topology is a 2-dimensional grid, and the clustering
exponentis g = 2, then the search time is O(log? n). If ¢ # 2, then
the search time is O(nc) for some c > 0.

 Exact same theorem for q = 1 for the ring.

— If the underlylng topology is a 1-dimensional ring, and the clustering
exponentis g = 1, then the search time is O(log? n). If ¢ # 1, then
the search time is O(nc) for some c > 0.

e Extends to any dimension d

— We obtain 0(log? n) search time when g=d, the exponent is equal to
the dimension of the underlying graph



Proof Intuition

* The algorithm has the same probability to link
to any scale of resolution

number of nodes is
2

proportional to d

probability of linking to

each is proportional to d'2

Figure 20.7: The concentric scales of resolution around a particular node.



Proof intuition

* The algorithm is able to replicate what happens in
the Milgram experiment

I I I I | logn scales, logn steps in
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expectation to change scale
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The chains progress from the starting
position (Omaha) to the target area
(Boston) with each remove. Diagram
shows the number of miles from the

target area, with the distance of each

remove averaged over completed

and uncompleted chains.
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Long range links in the real world

* |s it the case that people link to each other with
orobability P(x — y)~d(x,y) % ?
* Live Journal data

— Connections between friends
— Postal codes for locations




Linking by rank

* Link to the r-th closest neighbor with
probability P(x = y)~r~1

— In the case of uniform distribution, P(x — y)~d~?

distance d

rank ~d?

(a) w is the 70 closest node to v. (b) Rank-based friendship with uniform population den-
sity.



Live Journal measurements
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(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: Fast and West coasts

Figure 20.10: The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [277].)

e Replicated for other networks as well (FB)
* |sthere a mechanism that drives this behavior?



Other models

e Lattice captures geographic distance. How do we
capture social distance (e.g. occupation)?

* Hierarchical organization of groups
— distance h(i,j) = height of Least Common Ancestor




Other models

* Generate links between leaves with probability
P(x = y)~b~ ()

— b=2 the branching factor




Other models

Theorem: For a=1 there is a polylogarithimic search
algorithm. For a#1 there is no decentralized
algorithm with poly-log time

— note that a=1 and the exponential dependency results in
uniform probability of linking to the subtrees




Generalization

* Social Distance: size of the smaller group that contains two users
e P(x > y)~d?

ape

Figure 20.11: When nodes belong to multiple foci, we can define the social distance between
two nodes to be the smallest focus that contains both of them. In the fizure, the foci are
represented by ovals; the node labeled v belongs to five foci of sizes 2,3,5,7, and 9 (with the
largest focus containing all the nodes shown).



Doubling dimension

* A point set X has doubling dimension A if any
set of points in X that are covered by a ball of
radius r can be covered by 24 balls of radius r/2.

* Practically, for any point x, if N(x,r) is the
number of points within distance r of x, then
N(x,2r) = 2*N(x,71)

— According to what we have seen so far, to have

logarithmic search time we need to add random
links with probability P (1, v) =~ d(u, v)~*



Small worlds with nodes of different

periphery

Figure 20.13: The core-periphery structure of social networks.



Application: P2P search -- Symphony

Map the nodes and keys to the
ring
— Assign keys to the closest node

Link every node with its successor
and predecessor

Add k random links with
probability proportional to
1/(dlogn), where d is the distance
on thering

Lookup time O(log?n)
If k = logn lookup time O(logn)

Easy to insert and remove nodes
(Eerform periodical refreshes for
the links)



Proof of Kleinberg’s theorem

 We will consider the ring and clustering
exponentqg =1

(a) A set of nodes arranged in a ring. (b) A ring augmented with random long-
range links.



Proof of Kleinberg’s theorem

* Game plan:

— Break the path fromstot
into phases:
* In phase j we are at distance
(27,271 from t
— When transitioning between
phases we cut the remaining
distance from s to t in half

* There are logn phases

— Show that the expected
time spent in each phase is
O(logn)

— Total time: 0 (log®n)

> j+1

phase |

phase j-1

Figure 20.16: We analyze the progress of myopic search in phases. Phase j consists of the
portion of the search in which the message’s distance from the target is between 2/ and 2/+1
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distance at most d/2?

Figure 20.18: At any given point in time, the search is in some phase j, with the message
residing at a node v at distance d from the target. The phase will come to an end if ©’s long-
range contact lies at distance < d/2 from the target £, and so arguing that the probability
of this event is large provides a way to show that the phase will not last too long.



o
distance d

distance d/2 | distance d/2

there are d+1 nodes within distance
d/2 of t, and each has prob. at least
proportional to 1/(d log n)

Figure 20.19: Showing that, with reasonable probability, ©’s long-range contact lies within

half the distance to the target.



distanced
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Figure 20.20: The analysis for the one-dimensional ring can be carried over almost directly
to the two-dimensional grid. In two dimensions, with the message at a current distance d
from the target ¢, we again look at the set of nodes within distance d/2 of ¢, and argue that
the probability of entering this set in a single step is reasonably large.



distanceﬂ distance \f_n

It takes a long-time for the search to find
a long-range link into K, and crossing K
via local contacts is slow too.

Figure 20.21: To show that decentralized search strategies require large amounts of time
with exponent ¢ = 0, we argue that it is difficult for the search to cross the set of \/n nodes
closest to the target. Similar arguments hold for other exponents g < 1.



