DATA MINING
LECTURE 6
Min-Hashing, Locality Sensitive Hashing
Clustering
MIN-HASHING
AND
LOCALITY SENSITIVE HASHING

Thanks to:
Rajaraman and Ullman, “Mining Massive Datasets”
Evimaria Terzi, slides for Data Mining Course.
Motivating problem

• Find **duplicate** and **near-duplicate** documents from a web crawl.

• If we wanted exact duplicates we could do this by hashing
 • We will see how to adapt this technique for **near duplicate** documents
Main issues

• What is the right representation of the document when we check for similarity?
 • E.g., representing a document as a set of characters will not do (why?)

• When we have billions of documents, keeping the full text in memory is not an option.
 • We need to find a shorter representation

• How do we do pairwise comparisons of billions of documents?
 • If exact match was the issue it would be ok, can we replicate this idea?
The Big Picture

Docu-ment → **Shingling** → **Minhash-ing** → **Locality-sensitive Hashing**

- **The set of strings of length k that appear in the document**
- **Signatures**: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity.
Shingling

- Shingle: a sequence of k contiguous characters

<table>
<thead>
<tr>
<th>Set of Shingles</th>
<th>Hash function (Rabin’s fingerprints)</th>
<th>Set of 64-bit integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>a rose is</td>
<td>1111</td>
<td>1111</td>
</tr>
<tr>
<td>rose is a</td>
<td>2222</td>
<td>2222</td>
</tr>
<tr>
<td>rose is a</td>
<td>3333</td>
<td>3333</td>
</tr>
<tr>
<td>ose is a r</td>
<td>4444</td>
<td>4444</td>
</tr>
<tr>
<td>se is a ro</td>
<td>5555</td>
<td>5555</td>
</tr>
<tr>
<td>e is a ros</td>
<td>6666</td>
<td>6666</td>
</tr>
<tr>
<td>is a rose</td>
<td>7777</td>
<td>7777</td>
</tr>
<tr>
<td>is a rose</td>
<td>8888</td>
<td>8888</td>
</tr>
<tr>
<td>is a rose</td>
<td>9999</td>
<td>9999</td>
</tr>
<tr>
<td>s a rose i</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>a rose is</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Data Model: Sets

- **Document**: A document is represented as a set of shingles (more accurately, hashes of shingles).

- **Document similarity**: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - $\text{Sim} (C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$.

- Applicable to any kind of sets.
 - E.g., similar customers or items.
Signatures

- **Key idea**: “hash” each set S to a small signature $\text{Sig}(S)$, such that:

 1. $\text{Sig}(S)$ is **small enough** that we can fit a signature in main memory for each set.
 2. $\text{Sim}(S_1, S_2)$ is (almost) the **same** as the “similarity” of $\text{Sig}(S_1)$ and $\text{Sig}(S_2)$. (signature preserves similarity).

- **Warning**: This method can produce **false negatives**, and **false positives** (if an additional check is not made).
 - **False negatives**: Similar items deemed as non-similar
 - **False positives**: Non-similar items deemed as similar
From Sets to Boolean Matrices

• **Represent the data as a boolean matrix** M
 • **Rows** = the universe of all possible set elements
 • In our case, shingle fingerprints take values in $[0\ldots2^{64}-1]$
 • **Columns** = the sets
 • In our case, documents, sets of shingle fingerprints
 • $M(r,S) = 1$ in row r and column S if and only if r is a member of S.

• **Typical matrix is sparse.**
 • We do not really materialize the matrix
Minhashing

- Pick a random permutation of the rows (the universe U).

- Define “hash” function for set S
 - $h(S) =$ the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - $h(S) =$ the index of the first element of S in the permuted order.

- Use k (e.g., $k = 100$) independent random permutations to create a signature.
Example of minhash signatures

- Input matrix

<table>
<thead>
<tr>
<th></th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example of minhash signatures

- Input matrix

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2 1 3 1
Example of minhash signatures

- Input matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>G</th>
<th>F</th>
<th>A</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Example of minhash signatures

- **Input matrix**

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Signature matrix**

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>h_2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>h_3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Sig(S)** = vector of hash values
 - e.g., $\text{Sig}(S_2) = [2,1,1]$
- **Sig(S,i)** = value of the i-th hash function for set S
 - E.g., $\text{Sig}(S_2,3) = 1$
Hash function Property

\[\Pr(h(S_1) = h(S_2)) = \text{Sim}(S_1, S_2) \]

- where the probability is over all choices of permutations.

Why?
- The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1, and this row belongs to the intersection.
Example

- Universe: \(U = \{A, B, C, D, E, F, G\} \)
- \(X = \{A, B, F, G\} \)
- \(Y = \{A, E, F, G\} \)

- Union = \(\{A, B, E, F, G\} \)
- Intersection = \(\{A, F, G\} \)

Rows C, D could be anywhere they do not affect the probability
Example

• Universe: \(U = \{A, B, C, D, E, F, G\} \)
• \(X = \{A, B, F, G\} \)
• \(Y = \{A, E, F, G\} \)

• Union = \(\{A, B, E, F, G\} \)
• Intersection = \(\{A, F, G\} \)

The * rows belong to the union
Example

- Universe: $U = \{A, B, C, D, E, F, G\}$
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

- Union = $\{A, B, E, F, G\}$
- Intersection = $\{A, F, G\}$

The question is what is the value of the first * element.
Example

- **Universe**: $U = \{A, B, C, D, E, F, G\}$
- **$X = \{A, B, F, G\}$**
- **$Y = \{A, E, F, G\}$**

- **Union** = $\{A, B, E, F, G\}$
- **Intersection** = $\{A, F, G\}$

If it belongs to the intersection then $h(X) = h(Y)$

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

If it belongs to the intersection then $h(X) = h(Y)$
Example

- Universe: $U = \{A, B, C, D, E, F, G\}$
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$\Pr(h(X) = h(Y)) = \frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|} = \frac{3}{5} = \text{Sim}(X, Y)$$

- Union = $\{A, B, E, F, G\}$
- Intersection = $\{A, F, G\}$
Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix

S_1 S_2 S_3 S_4

1 2 1 2

2 1 3 1

3 1 3 1

Zero similarity is preserved
High similarity is well approximated

- With multiple signatures we get a good approximation

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1, S_2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_1, S_3)</td>
<td>$3/5$</td>
<td>$2/3$</td>
</tr>
<tr>
<td>(S_1, S_4)</td>
<td>$1/7$</td>
<td>0</td>
</tr>
<tr>
<td>(S_2, S_3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_2, S_4)</td>
<td>$3/4$</td>
<td>1</td>
</tr>
<tr>
<td>(S_3, S_4)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1…billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order? 😞
Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
 - The value of the hash function is the position of the row in the new order (permutation).
 - Each set is represented by the smallest hash value among the elements in the set

- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
 - Min-wise independent hash functions
Algorithm – One set, one hash function

Computing $\text{Sig}(S,i)$ for a single column S and single hash function h_i

For each row r

compute $h_i(r)$

if column S that has 1 in row r

if $h_i(r)$ is a smaller value than $\text{Sig}(S,i)$ then

$\text{Sig}(S,i) = h_i(r)$;

$\text{Sig}(S,i)$ will become the smallest value of $h_i(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_i(r)$ gives the min index for the i-th permutation
Algorithm – All sets, \(k \) hash functions

Pick \(k=100 \) hash functions \((h_1,\ldots,h_k)\)

\[
\text{for each row } r \\
\quad \text{for each hash function } h_i \\
\quad \quad \text{compute } h_i(r) \\
\quad \text{for each column } S \text{ that has } 1 \text{ in row } r \\
\quad \quad \text{if } h_i(r) \text{ is a smaller value than } \text{Sig}(S,i) \text{ then} \\
\quad \quad \quad \text{Sig}(S,i) = h_i(r); \\
\]

In practice this means selecting the hash function parameters

Compute \(h_i(r) \) only once for all sets
Example

<table>
<thead>
<tr>
<th>x</th>
<th>Row</th>
<th>S1</th>
<th>S2</th>
<th>h(x)</th>
<th>g(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

h(x) = x + 1 mod 5

g(x) = 2x + 3 mod 5

<table>
<thead>
<tr>
<th>h(0)</th>
<th>g(0)</th>
<th>h(1)</th>
<th>g(1)</th>
<th>h(2)</th>
<th>g(2)</th>
<th>h(3)</th>
<th>g(3)</th>
<th>h(4)</th>
<th>g(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sig1 | **Sig2**
---|---|---|---|---|---|---|---|---|---|
1 | - | 1 | 2 | 3 | 0 | 1 | 2 | 2 | 0 | 0 |

<table>
<thead>
<tr>
<th>h(Row)</th>
<th>Row</th>
<th>S1</th>
<th>S2</th>
<th>g(Row)</th>
<th>Row</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>C</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>D</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

h(0) = 1

g(0) = 3

h(1) = 2

g(1) = 0

h(2) = 3

g(2) = 2

h(3) = 4

g(3) = 4

h(4) = 0

g(4) = 1
Implementation

• Often, data is given by column, not row.
 • E.g., columns = documents, rows = shingles.
• If so, sort matrix once so it is by row.
• And **always** compute $h_i(r)$ only once for each row.
Finding similar pairs

- Problem: Find all pairs of documents with similarity at least $t = 0.8$
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is \textit{quadratic} in the number of columns.
- \textbf{Example}: 10^6 columns implies 5×10^{11} column-comparisons.
- At 1 microsecond/comparison: 6 days.
Locality-Sensitive Hashing

• What we want: a function $f(X,Y)$ that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
 • Easy to test by hashing the signatures.
 • Similar sets are more likely to have the same signature.
 • Likely to produce many false negatives.
 • Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
 • Reduce the probability for false negatives.
Signature matrix reminder

\[\text{Prob}(\text{Sig}(S, i) = \text{Sig}(S', i)) = \text{sim}(S, S') \]

Sig(S':i)

Sig(S,i)

hash function i

n hash functions

signature for set S

signature for set S'

Matrix \(M \)
Partition into Bands – (1)

• Divide the signature matrix \(\text{Sig} \) into \(b \) bands of \(r \) rows.
 • Each band is a mini-signature with \(r \) hash functions.
Partitioning into bands

\[n = b^*r \] hash functions

\(b \) bands

\(b \) mini-signatures

Matrix \(\text{Sig} \)

One signature

\(r \) rows per band
Partition into Bands – (2)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
Columns 2 and 6 are (almost certainly) identical.

Columns 6 and 7 are surely different.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Hash Table

Matrix M

r rows

b bands
Partition into Bands – (3)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- **Candidate** column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.
Analysis of LSH – What We Want

Probability of sharing a bucket

No chance if $s < t$

Probability = 1 if $s > t$

t

Similarity s of two sets
What One Band of One Row Gives You

Remember:
probability of equal hash-values = similarity

Single hash signature

\[\text{Prob}(\text{Sig}(S,i) == \text{Sig}(S',i)) = \text{sim}(S, S') \]
What b Bands of r Rows Gives You

Probability of sharing a bucket

$\text{Similarity } s \text{ of two sets}$

$t \sim (1/b)^{1/r}$

At least one band identical

No bands identical

$1 - (1 - s^r)^b$

Some row of a band unequal

All rows of a band are equal
Example: \(b = 20; \ r = 5 \)

<table>
<thead>
<tr>
<th>(s)</th>
<th>(1-(1-s^r)^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

Figure 3.7: The S-curve
Suppose S_1, S_2 are **80% Similar**

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.

- Probability S_1, S_2 identical in one particular band:
 \[(0.8)^5 = 0.328.\]

- Probability S_1, S_2 are not similar in any of the 20 bands:
 \[(1 - 0.328)^{20} = 0.00035\]

 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

- Probability S_1, S_2 are similar in at least one of the 20 bands:
 \[1 - 0.00035 = 0.999\]
Suppose S_1, S_2 Only 40% Similar

- Probability S_1, S_2 identical in any one particular band:

 $$(0.4)^5 = 0.01 .$$

- Probability S_1, S_2 identical in at least 1 of 20 bands:

 $\leq 20 \times 0.01 = 0.2 .$

- But false positives much lower for similarities $\ll 40\%$.
LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- **Optional**: In another pass through data, check that the remaining candidate pairs really represent similar sets.
Locality-sensitive hashing (LSH)

- **Big Picture**: Construct hash functions $h: \mathbb{R}^d \rightarrow U$ such that for any pair of points p, q, for distance function D we have:
 - If $D(p, q) \leq r$, then $\Pr[h(p) = h(q)] \geq \alpha$ is high
 - If $D(p, q) \geq cr$, then $\Pr[h(p) = h(q)] \leq \beta$ is small
- Then, we can find close pairs by hashing

- LSH is a general framework: for a given distance function D we need to find the right h
 - h is (r, cr, α, β)-sensitive
LSH for Cosine Distance

• For cosine distance, there is a technique analogous to minhashing for generating a $(d_1, d_2, (1-d_1/180), (1-d_2/180))$-sensitive family for any d_1 and d_2.

• Called *random hyperplanes*.
Random Hyperplanes

- Pick a random vector v, which determines a hash function h_v with two buckets.
- $h_v(x) = +1$ if $v \cdot x > 0$; $= -1$ if $v \cdot x < 0$.
- LS-family $H =$ set of all functions derived from any vector.
- Claim: $\text{Prob}[h(x)=h(y)] = 1 - (\text{angle between } x \text{ and } y \text{ divided by } 180)$.
Proof of Claim

Look in the plane of \(x\) and \(y\).

Hyperplanes for which \(h(x) = h(y)\)

Hyperplanes (normal to \(v\)) for which \(h(x) \neq h(y)\)

\[\text{Prob[Red case]} = \frac{\theta}{180}\]
Signatures for Cosine Distance

• Pick some number of vectors, and hash your data for each vector.
• The result is a signature (sketch) of +1’s and −1’s that can be used for LSH like the minhash signatures for Jaccard distance.
Simplification

• We need not pick from among all possible vectors \mathbf{v} to form a component of a sketch.
• It suffices to consider only vectors \mathbf{v} consisting of $+1$ and -1 components.
CLUSTERING
What is a Clustering?

• In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups.

Intra-cluster distances are minimized

Inter-cluster distances are maximized
Applications of Cluster Analysis

Understanding
- Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations.

Summarization
- Reduce the size of large data sets.

Discovered Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Discovered Clusters</th>
<th>Industry Group</th>
</tr>
</thead>
</table>

Clustering precipitation in Australia
Early applications of cluster analysis

- John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London
Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Two Clusters

Four Clusters
Types of Clusterings

- A clustering is a set of clusters

- Important distinction between hierarchical and partitional sets of clusters

- Partitional Clustering
 - A division data objects into subsets (clusters) such that each data object is in exactly one subset

- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree
Partitional Clustering

Original Points

A Partitional Clustering
Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram
Other types of clustering

- **Exclusive (or non-overlapping) versus non-exclusive (or overlapping)**
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Points that belong to multiple classes, or ‘border’ points

- **Fuzzy (or soft) versus non-fuzzy (or hard)**
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights usually must sum to 1 (often interpreted as probabilities)

- **Partial versus complete**
 - In some cases, we only want to cluster some of the data
Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters
Types of Clusters: Center-Based

- **Center-based**
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the “center” of a cluster, than to the center of any other cluster.
 - The center of a cluster is often a centroid, the minimizer of distances from all the points in the cluster, or a medoid, the most “representative” point of a cluster.

4 center-based clusters
Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters
Types of Clusters: Density-Based

- **Density-based**
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters
Types of Clusters: Conceptual Clusters

- **Shared Property or Conceptual Clusters**
 - Finds clusters that share some common property or represent a particular concept.

![2 Overlapping Circles](image-url)
Types of Clusters: Objective Function

- Clustering as an **optimization problem**
 - Finds clusters that minimize or maximize an **objective function**.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have **global** or **local** objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a **parameterized model**.
 - The **parameters** for the model are determined from the data, and they determine the clustering
 - E.g., **Mixture models** assume that the data is a ‘mixture' of a number of statistical distributions.
Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- DBSCAN
K-MEANS
K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is to minimize the sum of distances of the points to their respective centroid
K-means Clustering

- **Problem:** Given a set X of n points in a d-dimensional space and an integer K group the points into K clusters $C= \{C_1, C_2, \ldots, C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} dist(x, c)$$

is minimized, where c_i is the centroid of the points in cluster C_i.
K-means Clustering

• Most common definition is with euclidean distance, minimizing the **Sum of Squares Error (SSE)** function
 • Sometimes K-means is defined like that

• **Problem:** Given a set X of n points in a d-dimensional space and an integer K group the points into K clusters $C= \{C_1, C_2, \ldots, C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} (x - c_i)^2$$

is minimized, where c_i is the mean of the points in cluster C_i
Complexity of the k-means problem

- **NP-hard** if the dimensionality of the data is at least 2 ($d \geq 2$)
 - Finding the best solution in polynomial time is infeasible

- For $d=1$ the problem is solvable in polynomial time (how?)

- A simple iterative algorithm works quite well in practice
K-means Algorithm

- Also known as Lloyd’s algorithm.
- K-means is sometimes synonymous with this algorithm

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
K-means Algorithm – Initialization

• Initial centroids are often chosen randomly.
 • Clusters produced vary from one run to another.
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Importance of Choosing Initial Centroids

![Graph showing iterations of choosing initial centroids](Image)
Importance of Choosing Initial Centroids
Importance of Choosing Initial Centroids
Importance of Choosing Initial Centroids ...
Dealing with Initialization

- Do **multiple runs** and select the clustering with the smallest error

- Select original set of points by methods other than random. E.g., pick the most distant (from each other) points as cluster centers (**K-means++ algorithm**).
K-means Algorithm – Centroids

- The centroid depends on the distance function
 - The minimizer for the distance function
- ‘Closeness’ is measured by Euclidean distance (SSE), cosine similarity, correlation, etc.
- Centroid:
 - The mean of the points in the cluster for SSE, and cosine similarity
 - The median for Manhattan distance.

- Finding the centroid is not always easy
 - It can be an NP-hard problem for some distance functions
 - E.g., median form multiple dimensions
K-means Algorithm – Convergence

• K-means will converge for common similarity measures mentioned above.
 • Most of the convergence happens in the first few iterations.
 • Often the stopping condition is changed to ‘Until relatively few points change clusters’

• Complexity is $O(n \times K \times I \times d)$
 • $n =$ number of points, $K =$ number of clusters,
 $I =$ number of iterations, $d =$ dimensionality

• In general a fast and efficient algorithm
Limitations of K-means

- K-means has problems when clusters are of different
 - Sizes
 - Densities
 - Non-globular shapes

- K-means has problems when the data contains outliers.
Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)
Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)
Limitations of K-means: Non-globular Shapes
Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
Overcoming K-means Limitations

Original Points

K-means Clusters
Overcoming K-means Limitations

Original Points

K-means Clusters
Variations

- **K-medoids**: Similar problem definition as in K-means, but the centroid of the cluster is defined to be one of the points in the cluster (the medoid).

- **K-centers**: Similar problem definition as in K-means, but the goal now is to minimize the maximum diameter of the clusters (diameter of a cluster is maximum distance between any two points in the cluster).