Classification

k-nearest neighbor classifier
Naïve Bayes
Logistic Regression
Support Vector Machines
NEAREST NEIGHBOR CLASSIFICATION
Illustrating Classification Task

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>
Instance-Based Classifiers

Set of Stored Cases

<table>
<thead>
<tr>
<th>Atr1</th>
<th>………</th>
<th>AtrN</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

<table>
<thead>
<tr>
<th>Atr1</th>
<th>………</th>
<th>AtrN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instance Based Classifiers

- Examples:
 - **Rote-learner**
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

 - **Nearest neighbor classifier**
 - Uses k “closest” points (nearest neighbors) for performing classification
Nearest Neighbor Classifiers

- Basic idea:
 - “If it walks like a duck, quacks like a duck, then it’s probably a duck”
Nearest-Neighbor Classifiers

- Requires three things
 - The set of *stored records*
 - *Distance Metric* to compute distance between records
 - The value of \(k \), the number of nearest neighbors to retrieve

- To classify an unknown record:
 1. **Compute distance** to other training records
 2. Identify \(k \) nearest neighbors
 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Definition of Nearest Neighbor

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x
1 nearest-neighbor

Voronoi Diagram defines the classification boundary

The area takes the class of the green point
Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance
 \[d(p, q) = \sqrt{\sum_i (p_i - q_i)^2} \]
- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, \(w = 1/d^2 \)
Nearest Neighbor Classification…

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes
Nearest Neighbor Classification…

• Scaling issues
 • Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 • Example:
 • height of a person may vary from 1.5m to 1.8m
 • weight of a person may vary from 90lb to 300lb
 • income of a person may vary from $10K to $1M
Nearest Neighbor Classification…

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
\[d = 1.4142\]

\[
\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]
\[d = 1.4142\]

- Solution: Normalize the vectors to unit length
Nearest neighbor Classification…

• k-NN classifiers are **lazy learners**
 • It does not build models explicitly
 • Unlike **eager learners** such as decision trees

• Classifying unknown records are relatively expensive
 • Naïve algorithm: O(n)
 • Need for structures to retrieve nearest neighbors fast.
 • The **Nearest Neighbor Search** problem.
Nearest Neighbor Search

- Two-dimensional \textit{kd-trees}
 - A data structure for answering nearest neighbor queries in \mathbb{R}^2

- \textit{kd-tree} construction algorithm
 - Select the x or y dimension (alternating between the two)
 - Partition the space into two with a line passing from the median point
 - Repeat recursively in the two partitions as long as there are enough points
Nearest Neighbor Search

2-dimensional kd-trees
Nearest Neighbor Search

2-dimensional \(kd \)-trees
Nearest Neighbor Search

2-dimensional kd-trees

region(u) – all the black points in the subtree of u
Nearest Neighbor Search

2-dimensional \(\text{kd-trees} \)

- A binary tree:
 - Size \(\mathcal{O}(n) \)
 - Depth \(\mathcal{O}(\log n) \)
 - Construction time \(\mathcal{O}(n \log n) \)
 - Query time: worst case \(\mathcal{O}(n) \), but for many cases \(\mathcal{O}(\log n) \)

Generalizes to \(d \) dimensions

- Example of Binary Space Partitioning
SUPPORT VECTOR MACHINES
Support Vector Machines

- Find a linear hyperplane (decision boundary) that will separate the data
Support Vector Machines

- One Possible Solution
Support Vector Machines

- Another possible solution
Support Vector Machines

- Other possible solutions
Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?
Support Vector Machines

- Find hyperplane maximizes the margin => B1 is better than B2
Support Vector Machines

\[\tilde{w} \cdot \tilde{x} + b = 0 \]
\[\tilde{w} \cdot \tilde{x} + b = -1 \]
\[\tilde{w} \cdot \tilde{x} + b = +1 \]

\[
\begin{align*}
\text{Margin} &= \frac{2}{\| \tilde{w} \|} \\
\end{align*}
\]

\[
\begin{cases}
1 & \text{if } \tilde{w} \cdot \tilde{x} + b \geq 1 \\
-1 & \text{if } \tilde{w} \cdot \tilde{x} + b \leq -1
\end{cases}
\]
Support Vector Machines

- We want to maximize: \(\text{Margin} = \frac{2}{\| \vec{w} \|^2} \)

- Which is equivalent to minimizing: \(L(w) = \frac{\| \vec{w} \|^2}{2} \)

- But subjected to the following constraints:

 \[
 \vec{w} \cdot \vec{x}_i + b \geq 1 \text{ if } y_i = 1 \\
 \vec{w} \cdot \vec{x}_i + b \leq -1 \text{ if } y_i = -1
 \]

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)
Support Vector Machines

- What if the problem is not linearly separable?
Support Vector Machines

- What if the problem is not linearly separable?
Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:
 \[
 L(w) = \frac{\|w\|^2}{2} + C \sum_{i=1}^{N} \xi_i
 \]
 - Subject to:
 \[
 \begin{align*}
 w \cdot x_i + b & \geq 1 - \xi_i \quad \text{if} \ y_i = 1 \\
 w \cdot x_i + b & \leq -1 + \xi_i \quad \text{if} \ y_i = -1
 \end{align*}
 \]
Nonlinear Support Vector Machines

- What if decision boundary is not linear?
Nonlinear Support Vector Machines

- Transform data into higher dimensional space

Use the Kernel Trick
LOGISTIC REGRESSION
Classification via regression

- Instead of predicting the class of an record we want to predict the probability of the class given the record.
- The problem of predicting continuous values is called regression problem.
- General approach: find a continuous function that models the continuous points.
Example: Linear regression

• Given a dataset of the form \{\((x_1, y_1), \ldots, (x_n, y_n) \)\} find a linear function that given the vector \(x_i \) predicts the \(y_i \) value as \(y_i' = w^T x_i \)

 • Find a vector of weights \(w \) that minimizes the sum of square errors
 \[
 \sum_i (y_i' - y_i)^2
 \]

 • Several techniques for solving the problem.
Classification via regression

• Assume a linear classification boundary

For the positive class the bigger the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the positive class

• Define $P(C_+|x)$ as an increasing function of $w \cdot x$

For the negative class the smaller the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the negative class

• Define $P(C_-|x)$ as a decreasing function of $w \cdot x$
Logistic Regression

The **logistic function**

\[f(t) = \frac{1}{1 + e^{-t}} \]

\[P(C_+ | x) = \frac{1}{1 + e^{-w \cdot x}} \]

\[P(C_- | x) = \frac{e^{-w \cdot x}}{1 + e^{-w \cdot x}} \]

\[\log \frac{P(C_+ | x)}{P(C_- | x)} = w \cdot x \]

Linear regression on the log-odds ratio

Logistic Regression: Find the vector \(w \) that maximizes the probability of the observed data
Logistic Regression

• Produces a probability estimate for the class membership which is often very useful.
• The weights can be useful for understanding the feature importance.
• Works for relatively large datasets
• Fast to apply.
NAÏVE BAYES CLASSIFIER
Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: \(\Pr(A=a, C=c) \)
- Conditional probability: \(\Pr(C=c \mid A=a) \)
- Relationship between joint and conditional probability distributions

\[
\Pr(C, A) = \Pr(C \mid A) \times \Pr(A) = \Pr(A \mid C) \times \Pr(C)
\]

- Bayes Theorem:

\[
P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}
\]
Bayesian Classifiers

- Consider each attribute and class label as random variables

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Evade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Evade C
Event space: \{Yes, No\}
P(C) = (0.3, 0.7)

Refund A_1
Event space: \{Yes, No\}
P(A_1) = (0.3,0.7)

Martial Status A_2
Event space: \{Single, Married, Divorced\}
P(A_2) = (0.4,0.4,0.2)

Taxable Income A_3
Event space: \(\mathbb{R}\)
P(A_3) \sim \text{Normal}(\mu,\sigma)
Bayesian Classifiers

• Given a record X over attributes (A_1, A_2, \ldots, A_n)
 • E.g., $X = ('Yes', 'Single', 125K)$

• The goal is to predict class C
 • Specifically, we want to find the value c of C that maximizes $P(C=c| X)$
 • Maximum Aposteriori Probability estimate

• Can we estimate $P(C| X)$ directly from data?
 • This means that we estimate the probability for all possible values of the class variable.
Bayesian Classifiers

• Approach:
 • compute the posterior probability $P(C \mid A_1, A_2, \ldots, A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \ldots A_n) = \frac{P(A_1 A_2 \ldots A_n \mid C)P(C)}{P(A_1 A_2 \ldots A_n)}$$

• Choose value of C that maximizes $P(C \mid A_1, A_2, \ldots, A_n)$

• Equivalent to choosing value of C that maximizes $P(A_1, A_2, \ldots, A_n \mid C) \cdot P(C)$

• How to estimate $P(A_1, A_2, \ldots, A_n \mid C)$?
Naïve Bayes Classifier

• Assume independence among attributes A_i when class is given:

 \[P(A_1, A_2, ..., A_n | C) = P(A_1 | C) \cdot P(A_2 | C) \cdot ... \cdot P(A_n | C) \]

• We can estimate $P(A_i | C)$ for all values of A_i and C.

• New point X is classified to class c if

 \[P(C = c | X) = P(C = c) \prod_i P(A_i | c) \]

 is maximum over all possible values of C.
How to Estimate Probabilities from Data?

• **Class Prior Probability:**
 \[P(C = c) = \frac{N_c}{N} \]
 e.g., \(P(C = \text{No}) = \frac{7}{10} \), \(P(C = \text{Yes}) = \frac{3}{10} \)

• **For discrete attributes:**
 \[P(A_i = a \mid C = c) = \frac{N_{a,c}}{N_c} \]
 where \(N_{a,c} \) is number of instances having attribute \(A_i = a \) and belongs to class \(c \)

 • **Examples:**
 \[
 P(\text{Status}=\text{Married} \mid \text{No}) = \frac{4}{7} \\
 P(\text{Refund}=\text{Yes} \mid \text{Yes}) = 0
 \]
How to Estimate Probabilities from Data?

- **For continuous attributes:**
 - **Discretize** the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - **Two-way split:** \((A < v)\) or \((A > v)\)
 - choose only one of the two splits as new attribute
- **Probability density estimation:**
 - Assume attribute follows a **normal distribution**
 - Use data to estimate parameters of distribution
 (i.e., **mean** \(\mu\) and **standard deviation** \(\sigma\))
 - Once probability distribution is known, we can use it to estimate the conditional probability \(P(A_i|c)\)
How to Estimate Probabilities from Data?

• Normal distribution:

\[P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma^2_{ij}}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma^2_{ij}}} \]

• One for each \((a_i, c_i)\) pair

• For \((\text{Income}, \text{Class}=\text{No})\):
 • If \text{Class}=\text{No}
 • sample mean = 110
 • sample variance = 2975

\[
P(\text{Income} = 120 \mid \text{No}) = \frac{1}{\sqrt{2\pi(54.54)}} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072
\]
Example of Naïve Bayes Classifier

Creating a Naïve Bayes Classifier, essentially means to compute **counts**:

Total number of records: \(N = 10 \)

Class No:
- Number of records: 7
- **Attribute Refund:**
 - Yes: 3
 - No: 4
- **Attribute Marital Status:**
 - Single: 2
 - Divorced: 1
 - Married: 4
- **Attribute Income:**
 - mean: 110
 - variance: 2975

Class Yes:
- Number of records: 3
- **Attribute Refund:**
 - Yes: 0
 - No: 3
- **Attribute Marital Status:**
 - Single: 2
 - Divorced: 1
 - Married: 0
- **Attribute Income:**
 - mean: 90
 - variance: 25
Example of Naïve Bayes Classifier

Given a Test Record:

\[X = (Refund = No, Married, Income = 120K) \]

naive Bayes Classifier:

- \[P(Refund=Yes|\text{No}) = \frac{3}{7} \]
- \[P(Refund=No|\text{No}) = \frac{4}{7} \]
- \[P(Refund=Yes|\text{Yes}) = 0 \]
- \[P(Refund=No|\text{Yes}) = 1 \]

- \[P(Marital \text{ Status}=Single|\text{No}) = \frac{2}{7} \]
- \[P(Marital \text{ Status}=Divorced|\text{No}) = \frac{1}{7} \]
- \[P(Marital \text{ Status}=Married|\text{No}) = \frac{4}{7} \]
- \[P(Marital \text{ Status}=Single|\text{Yes}) = \frac{2}{7} \]
- \[P(Marital \text{ Status}=Divorced|\text{Yes}) = \frac{1}{7} \]
- \[P(Marital \text{ Status}=Married|\text{Yes}) = 0 \]

For taxable income:

If class=\text{No}:
- sample mean=110
- sample variance=2975

If class=\text{Yes}:
- sample mean=90
- sample variance=25

\[P(\text{No}) = 0.3, \ P(\text{Yes}) = 0.7 \]

Since \[P(X|\text{No})P(\text{No}) > P(X|\text{Yes})P(\text{Yes}) \]
Therefore \[P(\text{No}|X) > P(\text{Yes}|X) \]
\[\Rightarrow \text{Class} = \text{No} \]
Naïve Bayes Classifier

• If one of the conditional probability is zero, then the entire expression becomes zero

• Probability estimation:

Original: \(P(A_i = a \mid C = c) = \frac{N_{ac}}{N_c} \)

Laplace: \(P(A_i = a \mid C = c) = \frac{N_{ac} + 1}{N_c + N_i} \)

m-estimate: \(P(A_i = a \mid C = c) = \frac{N_{ac} + mp}{N_c + m} \)

\(N_i \): number of attribute values for attribute \(A_i \)
\(p \): prior probability
\(m \): parameter
Example of Naïve Bayes Classifier

Given a Test Record:

\[X = (\text{Refund} = \text{No}, \text{Married}, \text{Income} = 120K) \]

naive Bayes Classifier:

\[
\begin{align*}
\text{P(Refund=Yes | No)} &= 4/9 \\
\text{P(Refund=No | No)} &= 5/9 \\
\text{P(Refund=Yes | Yes)} &= 1/5 \\
\text{P(Refund=No | Yes)} &= 4/5 \\
\text{P(Marital Status=Single | No)} &= 3/10 \\
\text{P(Marital Status=Divorced | No)} &= 2/10 \\
\text{P(Marital Status=Married | No)} &= 5/10 \\
\text{P(Marital Status=Single | Yes)} &= 3/6 \\
\text{P(Marital Status=Divorced | Yes)} &= 2/6 \\
\text{P(Marital Status=Married | Yes)} &= 1/6 \\
\end{align*}
\]

For taxable income:

If class=No: sample mean=110 \\
 sample variance=2975 \\
If class=Yes: sample mean=90 \\
 sample variance=25 \\

\[
\begin{align*}
\text{P(X|Class=No)} &= \text{P(Refund=No|Class=No)} \times \text{P(Married| Class=No)} \times \text{P(Income=120K| Class=No)} \\
&= 5/9 \times 5/10 \times 0.0072 \\
\text{P(X|Class=Yes)} &= \text{P(Refund=No| Class=Yes)} \times \text{P(Married| Class=Yes)} \times \text{P(Income=120K| Class=Yes)} \\
&= 4/5 \times 1/6 \times 1.2 \times 10^{-9} \\
\end{align*}
\]

\[
\begin{align*}
\text{P(No)} &= 0.7, \quad \text{P(Yes)} = 0.3 \\
\text{Since P(X|No)P(No) > P(X|Yes)P(Yes)} \\
\text{Therefore P(No|X) > P(Yes|X)} \\
\Rightarrow \text{Class} = \text{No}
\end{align*}
\]
Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
 - Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

\[
\log P(C|A) \sim \log P(A|C) + \log P(A) \\
= \sum_i \log(A_i|C) + \log P(A)
\]
Naïve Bayes for Text Classification

- Naïve Bayes is commonly used for text classification
- For a document $d = (t_1, \ldots, t_k)$

$$P(c|d) = P(c) \prod_{t_i \in d} P(t_i|c)$$

- $P(t_i|c) =$ Fraction of terms from all documents in c that are t_i.

- Easy to implement and works relatively well
- Limitation: Hard to incorporate additional features (beyond words).
TRAINMULTINOMIALNB(C, D)
 1 $V \leftarrow$ EXTRACTVOCABULARY(D)
 2 $N \leftarrow$ COUNTDOCS(D)
 3 for each $c \in C$
 4 do $N_c \leftarrow$ COUNTDOCSINCLASS(D, c)
 5 prior[c] \leftarrow N_c / N
 6 $text_c \leftarrow$ CONCATENATETEXTOFALLDOSCSINCLASS(D, c)
 7 for each $t \in V$
 8 do $T_{ct} \leftarrow$ COUNTTOKENSOFTERM(text$_c$, t)
 9 for each $t \in V$
 10 do condprob[t][c] \leftarrow $\frac{T_{ct} + 1}{\sum_{t'}(T_{ct'} + 1)}$
 11 return V, prior, cond prob

APPLYMULTINOMIALNB(C, V, prior, condprob, d)
 1 $W \leftarrow$ EXTRACTTOKENSFROMDOC(V, d)
 2 for each $c \in C$
 3 do score[c] \leftarrow log prior[c]
 4 for each $t \in W$
 5 do score[c] $+=$ log condprob[t][c]
 6 return arg max$_{c \in C}$ score[c]

Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.
Naïve Bayes (Summary)

- Robust to isolated noise points

- Handle missing values by ignoring the instance during probability estimate calculations

- Robust to irrelevant attributes

- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

- Naïve Bayes can produce a probability estimate, but it is usually a very biased one
 - Logistic Regression is better for obtaining probabilities.
Generative vs Discriminative models

- Naïve Bayes is a type of a generative model
 - Generative process:
 - First pick the category of the record
 - Then given the category, generate the attribute values from the distribution of the category
 - Conditional independence given C

- We use the training data to learn the distribution of the values in a class
Generative vs Discriminative models

- Logistic Regression and SVM are **discriminative** models
 - The goal is to find the boundary that discriminates between the two classes from the training data

- In order to classify the language of a document, you can
 - Either learn the two languages and find which is more likely to have generated the words you see
 - Or learn what differentiates the two languages.