
Facet Discovery for Structured Web Search:
A Query-log Mining Approach

Jeffrey Pound
∗

University of Waterloo
Waterloo, Canada

jpound@cs.uwaterloo.ca

Stelios Paparizos
Microsoft Research

Mountain View, CA, USA
steliosp@microsoft.com

Panayiotis Tsaparas
Microsoft Research

Mountain View, CA, USA
panats@microsoft.com

ABSTRACT
In recent years, there has been a strong trend of incorporating re-
sults from structured data sources into keyword-based web search
systems such as Google or Amazon. When presenting structured
data, facets are a powerful tool for navigating, refining, and group-
ing the results. For a given structured data source, a fundamental
problem in supporting faceted search is finding an ordered selection
of attributes and values that will populate the facets. This creates
two sets of challenges: First, because of the limited screen real-
estate, it is important that the top few facets best match the antic-
ipated user intent. Second, the huge scale of available data to en-
gines like Google or Amazon demands an automated unsupervised
solution.

In this paper, we model the user faceted-search behavior using
the intersection of web query logs with existing structured data.
Since web queries are formulated as free-text queries, a challenge
in our approach is the inherent ambiguity in mapping keywords to
the different possible attributes of a given entity type. We present
an automated solution that elicits user preferences on attributes
and values, employing different disambiguation techniques ranging
from simple keyword matching, to more sophisticated probabilistic
models. We demonstrate experimentally the scalability of our solu-
tion by running it on hundreds of categories of diverse entity types,
and a large query log. We also present an evaluation of the quality
of our results based on a user-study with Mechanical Turk.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data Min-
ing

General Terms
Algorithms, Experimentation, Human Factors

1. INTRODUCTION
In recent years, search engines like Google or Bing have evolved

to include in their results information from structured data sources
∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

along with text documents. Furthermore, there are specialized search
verticals like Amazon that rely on an even greater variety of struc-
tured data sources for their results. Such engines provide traditional
keyword search capability to their users. However, users are often
interested in exploring a structured collection of data rather than
query for a specific item. For example, a user who is looking to
buy a new digital camera is likely interested in browsing through
a consideration set of products that meets her requirements, rather
than directly target a specific model. Creating such a consideration
set through a keyword search interface is a process that requires suf-
ficient domain knowledge from the user, and several iterations over
large amounts of data. Furthermore, this process does not make use
of the rich meta-data associated with structured data, which can be
used to facilitate the exploration of the user.

One common interaction paradigm that utilizes structured infor-
mation is faceted search. Faceted search provides a more user-
friendly visual alternative to keywords for the user to explore the
structured results. Facets can be thought of as summarized data
axes that allow the users to pivot on the information shown, and
create a different or more restrictive consideration set. If we ab-
stract the structured data as typed entities, facets correspond to at-
tributes and values of such entities. A facet system consists of an
ordered list of facet attributes, and an ordered list of values for each
attribute. For example, for a user looking for digital cameras, ex-
posing popular attributes such as brand, or megapixel resolution as
facets, enables them to quickly zoom into the appropriate subset of
products by selecting the values of interest. Similar examples ex-
ist for other types of structured data, such as auto search, or house
search.

It is clear that the user experience for structured web search can
benefit from facets. However for an engine to support facets effec-
tively it needs to address two groups of challenges. (a) Given the
limited screen real estate and the large number of possible facets to
consider, we need select the top-k most important facets, where k is
usually a small number. Facet importance in this case can be mea-
sured by the utility of a facet towards a user’s anticipated action like
a pivot or refinement. Since an entity-type can have over one hun-
dred attributes, the challenge becomes finding the few most impor-
tant attributes, and attribute values with the maximum anticipated
utility. (b) There is a huge number of structured data sources cur-
rently available to engines like Google or Amazon. If we abstract
the data as de-normalized entity-type tables, there are thousands
of such tables to consider. So any solution that finds important at-
tributes from these tables must be fully automated otherwise it will
not scale appropriately.

The best method to learn the utility of attributes for users would
be to consume user-produced signals. Such an ideal signal would
be produced if all possible attributes for all possible entity-type ta-

bles are shown and then the system observes and records which
ones are being selected by an extensive user study. Unfortunately,
this is not feasible due to the scale of data and the number of
required users for statistical significance. Instead, common prac-
tice [10, 12] has been to show attributes selected manually by ex-
perts with values populated from sampling the results. It is debat-
able how well a domain expert can match the average user intent,
but regardless, the scale of structured data available to web engines
makes it impossible to go this route with consistently good quality
across all tables. As a result, existing approaches [4, 24] rely on au-
tomatically learning facets from the structured data. However, such
approaches do not capture the true user intent since they focus on
the structured data without incorporating user signals.

In this work we use web query logs intersected with the struc-
tured data to model the facet utility. Our intuition is that query logs
act as a proxy for the exploration process of the users when nav-
igating through a structured domain. We assume that users issue
queries to refine or alter their results into an appropriate consider-
ation set in a similar manner they would have used facets if there
were available. The attributes that appear frequently in the query
logs are the ones that users would use to narrow down their search,
and thus they are appropriate for facets. The values of these at-
tributes that appear frequently in the queries and are good values
to populate the facets. This formulation has the advantage that it
can lead to a scalable automated solution that captures the real user
needs better than the opinion of an expert or the just the statistics of
the structured data. Additionally, it adapts to the needs and prefer-
ences of the users as they change over time. It is worth mentioning
that trying to match the user intent for attribute importance has been
studied in the past, see [9, 23], with the application domain being ei-
ther attribute ranking or product visibility. Although the high-level
principle is similar, the underlying models and corresponding solu-
tions are different from those for discovering the facet utility, as we
present in this paper.

Using the web query logs to find frequently queried values and
attributes would be trivial if the attribute-value pairs were clearly
specified in the queries as in SQL statements. However, although
the data is structured, web queries are free-text keywords. Finding
the frequent attributes poses two hard challenges due to the inher-
ent ambiguity of translating the keywords to attribute-value pairs:
(a) Mapping the query to the appropriate structured source – e.g.,
map the keyword apple to either mp3 players, computers, or fruit;
(b) identifying and disambiguating the occurrence of attributes in
the query amongst attributes of the same entity-type – e.g., for the
table televisions, disambiguate for the keyword 30inch between the
diagonal screen size, the television height, and the television width;
or for the table watches, map the keyword gold to the color or the
material of a watch.

In this paper, we assume that the first problem, understanding
if a query targets a source of structured data and which source in
particular, has been addressed from existing literature, such as [15,
21, 27, 29]. We use the existing work to find the appropriate target
data source. We focus on the second problem, disambiguating be-
tween attributes within an entity-type domain. Using appropriate
disambiguation, we learn the most suitable facet attributes and val-
ues. Furthermore, we also discuss how data statistics can be used
to help with the disambiguation process by being tolerant to data
noise and imperfections, and also which data statistics indicate po-
tentially good facets.

Our contributions are summarized as follows: (i) We formulate
the problem of query-log based facet attribute and value selection,
presented in Section 2. (ii) We introduce different attribute-value
identification and disambiguation techniques in Section 3, which

we extend for computing facet values, including query-dependent
ones, in Section 4. (iii) We explore the effect of appropriate data
statistics in facet selection, presented in Section 5. And (iv), we
perform a detailed experimental study on a large scale data set
with a thorough evaluation on the quality of the results from real
users, presented in Section 6, where we discuss the qualitative dif-
ference between our techniques as well as show our best approach
outperforming state-of-the-industry systems. We conclude with a
discussion of related work in Section 7 and some final thoughts in
Section 8.

2. PRELIMINARIES
In this section we formulate our problem, and provide the neces-

sary definitions for the remainder of the paper.

2.1 Problem Formulation
We assume that structured data are organized as a collection of

tables T = {T1, T2, . . . , Tτ}1. A table T is a set of related entities
defined over a set of attributes, T.A = {T.A1, T.A2, . . . , T.Aα}.
We use T.A.V to denote the domain of the attribute T.A. We omit
the prefix T and use A, whenever the table is unambiguous.

Given a table T we define a facet system F = ⟨F1, ..., Fk⟩ for
table T as an ordered list of k facets, where k is is the facet budget.
A facet Fi = {Ai, ⟨Ai.v1, ..., Ai.vmi⟩} consists of an attribute Ai

and an ordered list of mi values, where mi is the value budget for
attribute Ai. For the following we use AF (or F .A) to denote the
set of attributes of F , and A.VF to denote the set of values for
attribute A ∈ AF in facet system F . We say that a facet system
supports an attribute A if A ∈ AF , and we define the attribute-
support function as follows:

ASUP(F , A) =

{
1, if F supports A
0, otherwise (1)

We also say that a facet attribute Af ∈ AF supports value v if
v ∈ Af .VF , and we define the attribute-value support function as
follows:

VSUP(Af , v) =

{
1, if Af supports v
0, otherwise (2)

A facet system is exposed through the user interface, and it en-
ables the user to navigate through the data in the table T by select-
ing values for the different attributes. The design and analysis of
faceted user interfaces is an active research area in the HCI com-
munity [12]. In any faceted search system, the facet selection is
paramount to the success of the system. The order of facets is also
important since it determines how the facets will be displayed, with
more important facets being displayed more prominently. The goal
is to maximize the user engagement and satisfaction, and the i-th
facet corresponds to the i-th best attribute for this task. A simi-
lar reasoning applies also to the ordering of the facet values within
a facet. However, for a selected facet attribute there is usually a
greater flexibility in the presentation of values (drop-down menus,
slider bars, text boxes) making the value selection and ordering less
critical. We thus consider the facet attribute ordering problem and
the facet attribute value ordering problem separately, with the for-
mer being more important than the latter.

In this work we are interested in constructing a facet system
using web search queries. We assume that we have a query log
Q = {q1, ..., qn}, consisting of queries posed to a generic web
1The organization of data into tables is purely conceptual and orthogonal to the under-
lying storage layer: the data can be physically stored in XML files, relational tables,
retrieved from remote web services, etc. Our assumption is that a mapping between
the storage layer and the “schema” of table collection T has been defined.

search engine. For each query qi we also have a weight wi denot-
ing the importance of the query, e.g., the number of times that the
query appears in the query log.

Although queries are posed to the search engine, it is common
that users make queries that are targeted to structured data. For ex-
ample, the query “canon powershot” can be interpreted as targeting
a table with structured data about digital cameras. For a given table
T let QT ⊆ Q denote the subset of queries that target table T . We
will drop the subscript T whenever the table is unambiguous. We
assume that each query q ∈ QT specifies a set of attribute-value
pairs AVq = {AVi} of the form AVi = (Ai, Ai.vj). For ex-
ample, the query “canon powershot” specifies the value canon for
attribute “brand”, and the value powershot for attribute “product
line”. We can thus map the query q =“canon powershot” to the set
Aq ={(brand,canon),(product line,powershot)}. We use Aq and
Vq to denote the set of attributes and values specified in the query.
Figure 1(a) depicts graphically an example. Note that we only as-
sume that such a mapping exists; obtaining it from the web log is a
challenging problem as we elaborate below.

We now define the attribute utility of a facet system F . For the
definition we make use of the attribute support function defined in
Equation 1.

DEFINITION 1 (ATTRIBUTE UTILITY). Given a facet system
F , and a query q, we define the attribute utility of F for q as

Ua(F , q) =
∑

A∈Aq

ASUP(F , A)

the number of attributes in Aq supported by F . The attribute utility
of F for query log Q is defined as

Ua(F ,Q) =
∑
q∈Q

wqUa(F , q)

We can similarly define the attribute-value utility of a facet at-
tribute Af , using the attribute-value support function defined in
Equation 2.

DEFINITION 2 (ATTRIBUTE-VALUE UTILITY). Given a facet
attribute Af and a query q, we define the attribute-value utility of
Af for q as

Uv(Af , q) =
∑

(A,v)∈AVq :A=Af

VSUP(Af , v)

the number of values in AVq supported by Af . The attribute-value
utility of Af for query log Q is defined as

Uv(Af ,Q) =
∑
q∈Q

wqUv(Af , q)

As we have already argued, queries act as a proxy for the explo-
ration process of the users over the structured data. Users include in
their queries attributes over which they want to dissect the table. A
good faceted system should anticipate the information need of the
user and select attributes (and values) that maximize the utility to
the users. We thus have the following definition of the query-based
facet selection problems.

PROBLEM 1 (QUERY-BASED FACET ATTRIBUTE SELECTION).
Given a table T , and a query log QT over the table T , create an
ordering L(T.A) of the attributes T.A such that for any k ≥ 1,
a facet system F with attribute set F .A = Lk(T.A), the top-k
attributes according to ordering L, has maximum attribute utility
Ua(F ,QT) over all facet systems with attribute set of size k.

PROBLEM 2 (QUERY-BASED FACET VALUE SELECTION).
Given a table T , an attribute A ∈ T.A, and a query log QT over
the table T , create an ordering L(A.V) of the values in A.V such
that for any m ≥ 1, a facet system F that contains A with attribute
value set A.VF = Lm(A.V), the top-m attributes according to
ordering L, has maximum attribute-value utility Uv(A,QT) over
all facet systems that contain A with attribute-value set of size m.

If we are given the mapping AVq from queries to attribute value
pairs, as in Figure 1(a) then the facet selection problems we defined
above are easy to solve. This is the case for example with struc-
tured query logs (e.g. SQL), where the user specifies explicitly the
attributes and values they are interested in. Then, it is straightfor-
ward to see that the optimal solution for Problem 1 is to order the
attributes according to their popularity in the query log. The popu-
larity FQ(Ai) of attribute Ai over query log Q is computed as

FQ(Ai) =
∑
q∈Q

∑
(Ai,v)∈AVq

wq (3)

The popularity FQ(Ai) is thus the number of attribute-value pairs
in Q that contain attribute Ai weighted by the weight of the query
in which they appear.

Similarly, the optimal solution for Problem 2 is to order the val-
ues within attribute Ai according to their popularity in the query
log. The popularity of a value vj of attribute Ai is computed as

FQ(Ai.vj) =
∑
q∈Q

∑
(Ai,vj)∈AVq

wq

the number of attribute value pairs in the query log, where Ai is the
attribute and vj is the value.

Unfortunately, in the case of web query logs this mapping is not
given to us and we need to discover it from the data. We elaborate
on this challenge in the following section.

2.2 Mapping Web Queries to Structured Data
In order to extract attribute value pairs from the queries in the

unstructured web query log, we need to address two issues: (a) for
every table T , identify the queries in Q that target table T , i.e., de-
termine the set QT , and (b) identify and disambiguate the attribute
occurrences in the queries. As previously discussed, in this paper
we focus on the latter problem.

Given a query q ∈ QT we now need to identify the occurrences
of the attributes in T.A in the query q. We assume a tagging pro-
cess TAGGER that performs this task. Define a token to be a string,
and let Lq denote the set of all tokens in q consisting of one or
more contiguous words. The TAGGER produces all tokens t ∈ Lq ,
and matches them with attributes in T.A, producing attribute-token
pairs, AT = (A, t). For a categorical attribute Ac ∈ T.A, the
TAGGER outputs an attribute-token pair AT = (Ac, t), if the token
t appears in Ac.V . Approximate, or synonymous matching is also
possible as an extension of the same process, although discussing it
in detail is outside the scope of this paper. For a numerical attribute
An with unit u (e.g., inches, Kg, or x zoom), the TAGGER produces
an attribute-token pair AT = (An, t) for every token t that consists
of a number followed by a unit u. For example, the tagger output
for the query “5x nikon” over the Digital Cameras table is {(digital
zoom, “5x”), (optical zoom, “5x”), (brand, “nikon”)}.

For a query q we use AT q = {(A, t)} ⊆ T.A × Lq to denote
the set of attribute-token pairs output by the TAGGER . Note that
attribute-token pairs are different from attribute-value pairs, since
a token may not be a value in the table T . This is the case with
synonyms and approximate matches, as well as with numeric at-
tributes: in the query "32 inch lcd TV" the token “32 inch” will

(a) Queries to discrete attribute-value pairs (b) Queries to attribute-value pairs through tagged tokens

Figure 1: Query to Attribute-Value Pairs Mappings

Figure 2: Fraction of tokens mapped to varying numbers of at-
tributes.

map to both height and diagonal screen size in the Television table,
even if there are no TVs with an exact value of 32 inches for height
or diagonal.

Given the query log Q the TAGGER outputs a set of attribute-
token pairs AT Q. It would appear that our job is now done, since
we can compute the popularity of attributes and values as before,
simply by interchanging tokens with values, and attribute-value
pairs with attribute-token pairs. However, this is not the case due
to ambiguity in the token interpretation. The domains of attributes
in a table often overlap, and as a result a token t can map to more
than one attribute. For example, in the query "32 inch lcd TV", the
token “32 inch” is potentially mapped to diagonal, width, height,
and depth attributes, since all these attributes are numeric with the
same unit; similarly in the query “camera with 3x zoom”, “3x” can
be either optical or digital zoom. Such confusion is not limited to
just numeric attributes. For example in the query “gold watch”, the
token “gold” can specify either the material, or the color attribute;
similarly for “leather dress shoes” the token “leather” can map to
either the top shoe material or the shoe sole. There are many such
examples that appear in the web queries. We computed the num-
ber of attributes of the same table that a token matches on average,
over all queries. As we can see from Figure 2, approximately half
the tokens are confused over at least two or more attributes. So
ambiguity is a real problem that needs to be addressed.

Estimating attribute popularity in the presence of ambiguity be-
comes problematic. Our data no longer looks like Figure 1(a), but
instead like Figure 1(b). Computing the attribute popularity over
attribute-token pairs using Equation 3 will lead to misleading re-
sults: TV height will be deemed equally important to TV diagonal,
and camera digital zoom the same as optical zoom. In order to

obtain correct estimates for the true popularity of an attribute, we
need to disambiguate the ambiguous tokens.

Let t̃ denote a token in a query q. We say that token t̃ is am-
biguous for a table T , if there are at least two attribute-token pairs
(Ai, t̃) involving t̃. We use At̃ to denote the set of candidate at-
tributes to which the token t̃ is mapped. Our goal is to disambiguate
between the attributes in At̃. We do this by estimating the proba-
bility of an attribute given the ambiguous token. We thus have the
following problem definition.

PROBLEM 3 (ATTRIBUTE DISAMBIGUATION). Given a table
T , a query log Q over T , and an ambiguous token t̃ ∈ LQ that
maps to the set of attributes At̃ ⊆ T.A, compute the disambigua-
tion probability distribution P (A|t̃) over the set of candidate at-
tributes A ∈ At̃.

Given P (A|t̃) we now have a measure of likelihood for the map-
ping of token t̃ to attribute A. We can use this probability to per-
form either hard or soft disambiguation. In hard disambiguation,
we map token t̃ to the most likely attribute

At̃ = arg max
A∈At̃

P (A|t̃)

In hard disambiguation our data will take the form of Figure 1(a),
and we can apply directly Equation 3 to estimate the attribute popu-
larity. In soft disambiguation, we modify Equation 3 such that each
occurrence of attribute A with the ambiguous token t̃ is weighted
by the probability P (A|t̃). We thus have

F̃Q(Ai) =
∑
q∈Q

∑
(Ai,t)∈AT q

wqP (Ai|t) (4)

We have that P (A|t) = 1 in the case token t maps unambiguously
to attribute A.

3. ATTRIBUTE DISAMBIGUATION
In this section we describe four different approaches for attribute

disambiguation. The first three rely on the principle that the best
solution is the one that better explains the attribute-token pairs we
observe. If we assume that the attributes in the table are generat-
ing queries and tokens, we identify the attribute that is most likely
to have generated the tokens we are observing. The three differ-
ent algorithms differ in the granularity at which they try to explain
the data, becoming progressively more complex. The last approach
relies on user feedback to disambiguate between different interpre-
tations of a token.

3.1 Token-level Disambiguation
The first algorithm we consider treats each token independently

and tries to find the attribute that is most likely to have generated
this specific token. Let t̃ denote an ambiguous token and let At̃ the
set of candidate attributes for t̃. We want to estimate P (A|t̃) for all
A ∈ At̃. Using Bayes rule we have

P (A|t̃) = P (t̃|A)P (A)∑
Ai∈At̃

P (t̃|Ai)P (Ai)

We will estimate the right-hand side using the data in T . Assuming
that all attributes are equally likely in the table, then P (A|t̃) is pro-
portional to PT (t̃|A), the probability that the token t̃ is generated
from the distribution of A in the table. We have that

PT (t̃|Ai) =
|T (A, t̃)|

|A|

where T (A, t̃) denotes the set of entries in the table where the at-
tribute A takes the value t̃, and |A| is the number of table entries
with some value for attribute A. Numeric attributes are similarly
described using histogram estimations that are better suited than
discrete counts to the continuous nature of numbers.

Therefore, according to this algorithm, the most likely attribute is
the one that is most likely to have generated token t̃. Note that this
is also the attribute who’s value distribution can encode token t̃ with
the fewest number of bits, i.e., the one that reduces the uncertainty
the most for t̃.

3.2 Cluster-level Disambiguation
The token-level disambiguation approach considers the probabil-

ity of each token mapping to a candidate attribute independent of
the rest. A natural extension to this model is to consider the am-
biguity among a cluster of tokens confused with the same set of
attributes. In this cluster-based approach, we aggregate over all to-
kens in the query-log to find clusters of ambiguous attribute-token
pairs. We then resolve which attributes in the cluster are better can-
didates to model the distribution of confused tokens over the full
cluster.

Consider the bi-partite graph formed by the set of attribute-token
pairs in AT Q (e.g., see Figure 3 (a)). Each time a token is mapped
to a set of attributes, it supports the ambiguity of these attributes.
For example, if the token “8x” is mapped to both digital zoom and
optical zoom, it supports the ambiguity of these two attributes. If
the token “2x” is mapped to digital zoom, optical zoom, and model
it supports the ambiguity of all three of these attributes. By aggre-
gating over all tokens in the query log, we can find the groups of
attributes most commonly confused. In particular, if we consider
the set of all tokens that form a bi-clique with a set of attributes,
then these attributes are all pairwise ambiguous over the same set
of tokens, and the support for the ambiguity of this cluster is propor-
tional to the number of tokens in the bi-clique. It is these strongly
supported bi-cliques that we aim to find.

To find clusters of ambiguous attributes, we first construct an at-
tribute ambiguity graph on a per table basis. For a table T, consider
a graph G = (V,E,w) where there exists a vertex va ∈ V for
every attribute a ∈ T .A. We create an edge e = ⟨vA1 , vA2⟩ be-
tween two vertices vA1 and vA2 if some token in the query log is
mapped to both A1 and A2 over all interpretations of queries. The
weight function w(e) assigns a weight to the edge e proportional
to the number of tokens confused between (the attributes denoted
by) vA1 and vA2 . We then enumerate all cliques in the attribute
ambiguity graph, with the support being the minimum edge weight
in the clique. For example, in Figure 3 (b), the support of the 2-
clique containing digital zoom and optical zoom is ten, while the

Figure 3: (a) a bi-partite token-attribute graph and (b) the resulting
attribute ambiguity graph.

support of the 3-clique containing digital zoom, optical zoom, and
model is two. While clique enumeration is in general NP-hard, the
attribute ambiguity graph for a given table is relatively small and
approximation algorithms can be used to improve performance if
necessary. Note however that this is an offline process and ambigu-
ous clusters need only be computed once.

After identifying the clusters of ambiguous attributes, we want to
compute how likely each attribute is to model the set of confused
tokens. We do this by computing the KL-divergence (Kullback-
Leibler divergence) between the value distribution of the attribute
and the set of confused tokens. Let C = (AC , LC) denote a
attribute-token cluster discovered by our algorithm. We compute
the disambiguation probability of an attribute A ∈ AC given the
cluster C as follows.

P (A|C) =
KL(A||C)∑

Ai∈C KL(Ai||C)

where the KL-divergence between two distributions P and Q is
defined as follows.

KL(P ||Q) =
∑
x

p(x) log
p(x)

q(x)

For every ambiguous attribute-token pair (A, t̃) ∈ LC , we set the
disambiguation probability P (A|t̃) = P (A|C).

The intuition in this kind of disambiguation is that the attribute
which forms a better model for the query token distribution is more
likely to be the correct attribute users had in mind when formulat-
ing these queries. For example, if a collection of tokens around
measurements are confused among television height and diagonal,
we would expect to find the distribution of values in the diagonal
attribute to be a better model for the set of confused query tokens.

As an example, consider Figure 3. There are eight tokens with
the same connectivity of the token labeled “8x”, two tokens with
the same connectivity as “2x”, and five tokens with the same con-
nectivity as “Pix.” The ambiguous attribute clusters correspond to
the 2-clique {“Digital Zoom”, “Optical Zoom”} with support 10,
the 2-clique {“Product Name”, “Model”} with support five, and
lastly the 3-clique {“Digital Zoom”, “Optical Zoom”, “Model”}
with a support of two. The 3-clique will be used to disambiguate
among tokens confused with all three attributes, while the sub-clique
will be used to disambiguate between tokens confused among only
those two attributes. We may also find the remaining two 2-cliques
{“Digital Zoom”, “Model”} and {“Optical Zoom”, “Model”} how-
ever in our implementation we are not concerned with these as
there are no token that confuse “Model” with one of the other at-
tributes and not the third (i.e., all tokens confused with model and

optical zoom are also confused with digital zoom, and all tokens
confused with model and digital zoom are also confused with op-
tical zoom). This means that there are no tokens in our query-log
confused among only two of the three attributes.

3.3 Query-log-level Disambiguation
We now present an approach that considers the tokens in the full

query log, and estimates the probability P (A|t̃) for ambiguous to-
kens t̃, such that the likelihood of the full observed query log is
maximized.

Let Q be a query log over table T . Let LQ denote the set of all
tokens generated by the TAGGER that appear in the attribute-token
pairs AT Q. Each token t is assigned a weight

wt =
∑
q∈Q

∑
(Ai,t)∈AT q

wq,

the total weight of queries in which token t appears. For simplicity
we can consider wt to be the frequency of the token t in AT Q.

We assume that the tokens in LQ were generated according to a
generative model, which generates tokens as follows: an attribute
Ai is selected with probability P (Ai), and then a token t is drawn
from the data distribution PT (t|Ai). Thus token t is generated with
probability

P (t) =
∑

Ai∈T.A

PT (t|Ai)P (Ai)

The probability of observing the full set of tokens LQ is

P (LQ) =
∏
t∈Q

P (t)wt

The generative model we described has α parameters πi = P (Ai),
one for each attribute Ai in table T . Parameter πi is the probabil-
ity that attribute Ai is activated for the generation of a token, and
we have that

∑α
i=1 πi = 1. Let π denote the vector of parameters

π1, ..., πα. We perform Maximum Likelihood Estimation of π, and
we look for the value of π that maximizes the probability that we
observe the tokens in LQ. Using log-likelihood notation we want
to minimize

L(LQ) = − logP (LQ) = −
∑
t∈Q

wt logP (t)

We use an iterative EM algorithm for finding the Maximum Like-
lihood Estimate for π. The algorithm initializes the values of the
parameters πi to an arbitrary distribution, in our implementation
uniform. Then it alternates between the following two steps.

In the E-step given an estimation for the parameters π, for each
attribute-token pair (Ai, tj) in LQ we compute the posterior prob-
ability of the attribute Ai given token tj

P (Ai|tj) =
P (tj |Ai)πi∑

Aℓ∈AT .A P (tj |Aℓ)πℓ
(5)

In the M-step, we can now estimate new values for the parame-
ters in π as follows

πi =
∑

(Ai,t)∈AT Q

P (Ai|t)P (t) =
wt

W

∑
(Ai,t)∈AT Q

P (Ai|t) (6)

where W =
∑

t∈LQ
wt is the total weight of all tokens.

We repeat these two steps until the algorithm converges. Given
that the optimization function is convex we know that it will reach
a global maximum. After the algorithm has converged, for an am-
biguous token t̃ we can now compute P (A|t̃) using Equation 5.

The Maximum Likelihood Estimation of the probabilities P (Ai)
finds a set of values that best explains the full query log we observe.
Intuitively what this means is that when observing a token t, even
though attribute A1 may have the highest probability P (t|A1), the
token t may be attributed to another attribute A2 since this is overall
more likely to occur in the log. For example, consider a query
log for queries the television table, and let Linch denote the set of
all tokens of the form number followed by the unit “inch”. If the
overall distribution of these tokens agrees better with the attribute
“diagonal” than “height” then for a token like “32 inch” in Linch

the attribute “diagonal” will have higher probability P (A|t) even
though the value is more likely in the “height” attribute. This agrees
well with our intuition that “32 inch” is more likely to refer to the
diagonal rather than the height, since it is typical for users to query
for diagonal when querying for televisions. The iterative algorithm
captures nicely this intuition of a typical query.

3.4 Clicks-based Disambiguation
The ambiguity problem is essentially an intent issue. Given an

ambiguous token, and multiple interpretations of the token in the
data table we have no indication which interpretation was intended
by the user. A strong indication of intent in an online environment
is clicks. A query-click log QC = {(q1, p1), ..., (qn, pn)} over a
table T is a set of query-entity pairs, where q is a query posed in
a commercial search engine, and p is an entity in table T that was
shown to the user as a result of the query and the user chose to click
on it to obtain further information about it. Such query-click logs
are judiciously collected by commerce search engines and reveal a
great amount of information for the behavior of the users.

An entity p is an entry in table T . We represent it as a set of
attribute-value pairs p = {(Ai, Ai.vj)} for every attribute Ai in ta-
ble T . Given a query-click pair (q, p), we make the assumption that
the user who posed the query intended to access an entity with the
attributes of clicked p. Since we now have an indication for the in-
tent of the user, the disambiguation problem becomes significantly
easier to tackle. Given an ambiguous token t̃ that maps to attributes
At̃ = {Ai1 , ..., Aik} we disambiguate by selecting from entity p
the attribute A∗ ∈ At̃ that has value A∗.v that best matches token
t̃.

The notion of a match depends on the type of token that we con-
sider. In the case of categorical tokens we require that A∗.v = t̃. In
such cases we have that P (A∗|t̃) = 1, since we assume complete
certainty in our mapping. If there is more than one attribute that
match token t̃ then we assume that t̃ maps to all of them, and we
assign equal probability to all. It is worth noting that, although pos-
sible, this event is not very probable. In our experiments, we did
not observe any case where multiple categorical attributes match
on the same token for the same clicked entity.

In the case of numerical tokens, we map token t̃ to the attribute
A∗ that has the closest value, i.e., it minimizes the difference |t̃ −
A∗.v|. we compute the disambiguation probability as

P (A∗|t̃) = exp(−|t̃−A∗.v|)∑
A∈At̃

exp(−|t̃−A∗.v|)

favoring the attributes with smallest distance.
Clicks has been used extensively in web search for eliciting the

preferences of users [2, 6, 16, 21, 30]. It is well known that they
contain a very strong signal for the intent of the user, but they also
come with different caveats, such as presentation bias (users click
only on what they are shown), ranking bias (users tend to click on
the top positions), and noise. We discuss some of these issues in
the experimental section.

4. FACET VALUE SELECTION
Equally important to finding important facets, is the problem

of finding important values to populate the facets. We apply the
same philosophy for values as we do for facets; popular values in
a query log will be strong facet values that are important to users.
In the following section, we discuss two types of facet value selec-
tion: category-dependent facet value selection, and dynamic query-
dependent facet value selection.

4.1 Category-dependent Value Selection
The core problem of identifying to which facet a value belongs

deals with the same ambiguity challenge discussed in Section 3.
We apply the token-disambiguation approach to compute proba-
bilistic frequency counts of values per facet attribute. Thus, for
each table, we have a category-dependent set of facet values which
can be displayed without a query or other context beyond the table
category. Figure 4 shows an example for the golf clubs table. These
values are popular golf club brands.

More formally, we score a value for a given attribute by the prob-
ability that the value actually represents the attribute. Let A denote
an attribute, v denote a value and Av the set of mapped attributes
for v. We want to estimate P (A|v) for all values v found in the
query-log. Using Bayes rule we have

P (A|v) = P (v|A)P (A)∑
Ai∈Av

P (v|Ai)P (Ai)

Following the token-disambiguation scheme, we estimate the right-
hand side using the data in the table T . Since we assume that all
attributes are equally likely in the table, P (A|v) is proportional
to PT (v|A), the probability that the value v is generated from the
distribution of A in the table. It follows that

PT (v|Ai) =
|T (A, v)|

|A|

where T (A, v) denotes the set of entries in the table where the at-
tribute A takes the value v, and |A| is the number of table entries
with some value for attribute A. The popularity of the value for a
query log Q is then estimated by the following.

FQ(A.v) =
∑
q∈Q

∑
(A,v)∈AVq

wqP (A|v)

4.2 Query-dependent Value Selection
Given a query, in the form of an annotated keyword query or

a facet selection, it is desirable to update the values of facets to
reflect the context given by the query. For example, consider a
faceted search engine which includes “brand”, “model,” and “golf
club type” among its facets for the golf club table. The category-
dependent values would include popular brands, popular models
(from different brands), and the most popular club types. If a user
has submitted the query “odyssey golf clubs”, then any model at-
tribute values occurring in the model facet that are not from the
brand “Odyssey” are irrelevant. This could be particularly confus-
ing to a user if they had chosen “Odyssey” as a facet selection from
the “brand” facet. A subsequent selection of the model facet for a
model corresponding to a different brand would produce an empty
result. This is a clear motivation for conditional, query-dependent
facet values.

Pre-computing conditional values however, is an expensive task
for large data sets, since we need to consider all pairwise values
in the table. Furthermore, even after this expensive computation,
supporting the retrieval of such information for real-time search is
a non-negligible investment. This is a significant effort to support

updating facet values in response to searches. The alternative is
to support the expensive run-time computation of conditional facet
values, which can have an overall impact on response time.

For our approach to query-dependent facets, we again turn to the
query log. We compute co-occurrence frequencies for all pairs of
values that co-occur in a query, over the entire log. We then validate
the co-occurring values against the database to ensure a non-zero
entity count in the result. This approach has a number of benefits.
First, it allows us to find the most popular values co-occurring with
a given selection condition. This benefits users by putting the most
relevant facet values at the top of the list for a given selection.

We define the conditional score of a value for a given attribute by
the probability that the value represents the attribute in a query that
co-occurs with a given attribute value pair. Let (Ac, Ac.vc) denote
a conditional attribute-value pair, A denote an attribute, v denote a
value and Av the set of mapped attributes for v. We want to esti-
mate P (A|v,Ac = Ac.vc) for all values v found in the query-log.
Since tokens are tagged independent of one another, this simplifies
to P (A|v) which we can compute as shown Section 4.1. The dif-
ference is in which queries are used from the log. Given a query
log Q and attribute-value pair AV = (Ac, Ac.vc), let QAV denote
the subset of queries {q | q ∈ Q ∧ (Ac, Ac.vc) ∈ AVq}. We can
then estimate the popularity of a value over all queries satisfying
the given condition.

FQ(A.v) =
∑

q∈Q(Ac,Ac.vc)

∑
(A,v)∈AVq

wqP (A|v)

Returning to our golf example, our category-dependent list has
the values “drivers” as the most popular value for “golf club type”.
But given the example query “odyssey golf clubs”, the most pop-
ular “golf club type” is “putter”.2 The other main advantage to
query log based discovery of conditional values is that it restricts
the space of pairwise values (to count and store) to only those val-
ues appearing in the log. This can significantly prune the space of
conditional counts, making pairwise co-occurrence statistics feasi-
ble with limited resources. An example of our conditional values
can be seen in Table 4 for the query “golf putters”. The values in the
query-dependant list are brands that are popular for their putters.

The last consideration for query-dependent facet values is the
case where there are multiple selection conditions specified in the
query. This may occur either as multiple recognized attribute val-
ues in a keyword query, or as multiple facet selections. Support-
ing n-way conditionals with exact information is impractical. The
data-driven approach suffers the combinatorial explosion of an al-
ready large data set, and the query log driven approach suffers from
the sparseness of queries. After filtering by multiple selection con-
ditions, the number of queries from which to compute popularity
frequencies becomes too small. For this scenario, we adopt a sim-
ple approach of intersecting value lists and aggregating popularity
counts by addition. This will find values relevant to multiple se-
lections, and score them proportionally to how relevant they are
to their respective conditional selections. Handling the case of
an empty intersection is more of a user interface design decision.
One could eliminate the facet entirely, or default to the category-
dependent values.

5. FACETS AND DATA STATISTICS
An additional challenge to the problem of attribute selection comes

from the web nature of our structured data. Real-world data is of-
ten noisy and incomplete, and we need to account for that when
2This is consistent with the Odyssey golf brand, which is well
known for putters.

Category: Golf Clubs Query: “golf putters”
Nike Odyssey
Ping Ping
TaylorMade Scotty Cameron

Figure 4: Example top-3 facet values for golf club brand.

selecting attributes to be exposed as facets. Furthermore, even in
the presence of clean data, some attributes are not appropriate for
being selected as facets since they are not helpful in the exploration
process of the user, because they have very little information con-
tent. For example, if almost all cameras have optical image stabi-
lization, exposing this feature gives little information to the user in
narrowing down their search. We thus need to eliminate noisy or
uninformative attributes from being considered as candidate facets.

The query logs can reveal which attributes in the table are popu-
lar among the users. However, just because an attribute is popular
does not necessarily mean that it is good to be used as a facet. In
this section we discuss how to use some signals from the data to
discover which attributes should be considered as candidates for
the facets.

Information Content: Recall that the goal of facets is to enable
the users to quickly zoom into a smaller subset of products that
are of interest to them. Therefore, in order for an attribute A to
be a good candidate for being a facet, it should have high informa-
tion content, that is, the knowledge of the value selection v for the
attribute A should give information about the tuples of interest to
the user. This property is naturally captured in the entropy of the
attribute A. For an attribute A defined over the domain A.V , the
entropy of A is defined as

H(A) = −
∑
v∈V

PA(v) logPA(v)

where PA(v) is the fraction of entries in the table where attribute
A takes value v, over the number of entries in the table where the
attribute A takes any value (i.e., is non-null).

Attributes with low entropy do not make good facets. For such
attributes the distribution of values is highly skewed, and the knowl-
edge of the value gives very little information for the subset of en-
tities of interest to the user. This is clear in the extreme example
when the entropy is zero, meaning that all entities take the same
value. In this case, the attribute is useless for navigation, since it
gives no information about which entities the user is interested in.
For example, the attribute “color” in the televisions table conveys
no useful information as a facet if all televisions are black.

An alternative interpretation of H(A) is that it captures the de-
crease in the uncertainty for the preference of the user for the en-
tities (rows) in table T . When no facet attribute has been selected,
any entity e ∈ E is equally likely to be of interest to the user,
therefore, if N is the number of entities in the table, each entity
has probability P (e) = 1/N . The uncertainty is captured in the
entropy of the random variable E, which in this case is maximum,
H(E) = logN . Now assume that the user is allowed to use at-
tribute A to zoom in on a smaller subset of entries. The uncertainty
for E decreased given the knowledge of the value in A is measured
as H(E)−H(E|A), where H(E|A) is the conditional entropy of
E given A. It is well known that H(E|A) = H(E,A) − H(A).
Since each entity is distinct from the rest, and assuming that A takes
a value for all entities, we have that H(E,A) = H(E) = logN .
Therefore, H(E|A) = H(E) − H(A). Thus the entropy H(A)
captures how much our uncertainty for the entities that the user is
interested will decrease when we have the knowledge for attribute

A. If H(A) = 0, then the knowledge of A gives no extra informa-
tion for E and thus it is redundant.

It follows naturally, that attributes with low entropy should not
be used as facets. We thus compute the entropy for all attributes and
we apply a threshold for eliminating attributes with low information
content, that is, H(A) < θH .

Sparsity: Real-world data is often noisy with missing or incom-
plete data. As a result there are often cases where some attributes
are only sparsely populated. If such an attribute is selected for
faceted navigation, then selecting any value will immediately dis-
card most of the entities since they do not have a values for the
sparse attribute. This could be ok if this corresponded to a rare
feature, in which case missing information corresponds to negative
information for the existence of the feature. However, it is often
the case that sparsity is due to noise in the data collection, in which
case, the entities that are eliminated are valid for the selected facet,
yet will never be visible to users. Furthermore, noisy attributes are
often likely to contain incorrect values, confusing the tagging pro-
cess of the queries and the corresponding probabilities.

Therefore, we exclude from the candidate attributes the ones that
are very sparse. The sparsity of attribute A is defined as

R(A) =
|T (A)|
|T |

where T (A) is the set of entries in which the attribute has a non-
null value, and |T | is the total number of entries in the table. We
use as candidate facets only the attributes that have R(A) ≥ θR.

6. EXPERIMENTAL EVALUATION
We abstract the structured data as sparse tables, each containing

entities of the same type. For our experiments we have 1164 such
tables that we crawled using the MSN shopping XML API3. The
tables correspond to products used to answer shopping queries and
are similar to the data used by sites like Amazon or Google Prod-
uct Search. We consider each category of products to be a table of
entities of the same type. The available range covers entities from
electronics like digital cameras or televisions to golf clubs and soft
goods like shoes and shirts. In total, there were around 10 mil-
lion structured distinct product entities occupying approximately
300GB on disk when stored in our database.

Besides the structured data collection, we also use a web query
log and a vertical click log. The web query log contains queries
posed on a major web search engine on a period of five months from
July 2009 to November 2009. The web queries are approximately
31 million distinct queries all in the English language. As query
weight we use the aggregated impressions count – each time a query
is asked it increments its impression count. We limit ourselves to
queries with at least 10 aggregated impressions to reduce noise in
the queries. The total aggregate impression weight of the log is
approximately 4.2 billion impressions. The average query length
is 3.42 words and 22.04 characters. The click log is available via
toolbar usage logs collected for users that have installed the browser
add-on Bing toolbar. It contains queries and clicks on Amazon
products over a period of one year from March 2009 to February
2010. Since our structured data set is in the shopping domain, we
were able to map the Amazon click log to our product entities using
unique identifier references like UPC and EIN codes. The format of
the log is query, entity-id and number of clicks as the query weight.
The total number of distinct queries is in the order of 2.2 million

3See http://shopping.msn.com/xml/v1/getresults.aspx?text=digital+cameras for for
a table of digital cameras and http://shopping.msn.com/xml/v1/getspecs.aspx?-
itemid=25236859 for an example of a camera entity with its attributes.

with average length of 3.67 and 24.1 characters. It is worth noting
that the click log is smaller although the period used is longer. This
is attributed to two reasons: there are more queries on a search
engine than on Amazon, and the toolbar, as an add-on, means that
it can only capture a fraction of the click activity since it is opt-in
only and many users do not install such add-ons. However both
logs provide very valuable information.

For our experiments, we use the work described in [27] to map
queries to tables in our collection. We run the tool on our web
query log and kept only the interpretation to tables that are above
the threshold of θ = 1. Since a query can map to more than one
table, we took all the plausible tables and normalized their proba-
bilities to fractions summing to 1. Then we used each fraction to
map the query to the table while appropriately adjusting the query
weight. Thus we produced a subset of the query log for each table,
with each query having a weight that is the corresponding fraction
of its impressions multiplied by the normalized table probability.

We tested the various techniques we proposed in the paper and
we present the results below. The naming scheme is as follows:
DataProb is the probabilistic disambiguation from Section 3.1, Clus-
terProb the cluster-based approach from Section 3.2, Iterative is the
approach described in Section 3.3, and Clicks utilizes the click log
as described in Section 3.4.

In addition to these techniques, we implemented a simpler one,
shown as NoProb, that does not use any token based probabilities
for disambiguation. It computes the score using, for each query
mapped to a table T, all the plausible token-attribute pairs from the
table T while assigning to all of them equally the query weight
multiplied by the normalized table weight. NoProb is not blind
counting because it does consider the query weight and probabil-
ity from the interpretation algorithm [27] that we used in assigning
the queries to tables, thus we consider it a fair baseline. The main
difference with our proposed disambiguation techniques is that it
does not use an explicit probabilistic disambiguation on the possi-
ble token-attribute mappings within each table.

6.1 Relevance Judgments
To measure the effectiveness of our results we conducted an ex-

tensive study using Amazon Mechanical Turk4. Assessing the en-
tire dataset and all possible attributes would have been prohibitively
expensive. Instead we chose a diverse subset of our tables cover-
ing a variety of different areas representing as much as possible
the entire data spectrum. The tables used in our evaluation were
televisions, microwave ovens, cell phones, golf clubs, mp3 players,
shoes, laptop computers, printers, watches, video games, engage-
ment rings, digital cameras, skin cleansers, and camera bags and
cases.

We ran all our approaches on the full set of tables and produced
a set of facet attributes for each table and each algorithm. Then we
took the results for the evaluation tables and created a single pool of
attributes for judging by merging the results of all algorithms. We
posted Mechanical Turk HITs (Human Intelligence Tasks) to obtain
user judged relevance for the quality of attributes for search. Users
were asked to judge how important a given attribute was for search-
ing within a given category (with the example of faceted search
explained) on a three-point (one to three) scale. The scale items
were labeled “highly important”, “somewhat important”, and “not
important.”

Producing high quality judgments in a crowd-sourced environ-
ment like Mechanical Turk is a challenging problem on its own.
We employed a number of methods to ensure quality judgments.

4http://www.mturk.com

First, we created HITs of ten judgments, plus an additional judg-
ment used for spam detection. The additional judgment was drawn
from a pool of judgments we performed manually, and for which
we felt there was a clear “highly important” or “not important” an-
swer. The deviation of workers from our gold standard tasks was
often a clear indication of spam. However, to ensure fair judgment,
we manually inspected the results of any candidate spammer for
consistency. The average completion time of a worker was also
used as an aid in detecting unreliable workers. Lastly, each task
was repeated by nine unique workers. This allowed us to find ma-
jority decisions for roughly two-thirds of all attribute judgments.
For the remaining third without a majority, we took the average
score. The result is a single valuation of the importance of each
attribute.

Using these graded judgments we computed the normalized dis-
counted cumulative gain (NDCG) for the ranked output of each ap-
proach. Given a list of results L, DCG was computed using linear
gain and a logarithmic rank discount as follows.

DCG(L) =
k∑

i=1

rel(Li)

log2(i+ 1)

Where rel(Li) denotes the judged relevance of result Li. Let I de-
note the ideal result ordering (the list of all possible results ordered
by judged relevance), then NDCG is defined as follows.

NDCG(L) =
DCG(L)

DCG(I)

We report on various values of k, the number of attributes returned.
If a system returned less than k attributes it was penalized with a
relevance score of 0 for each missing value.

Validating Mturk Judgements: While we were confident in our
quality assurance techniques, we further validated the collection for
significant outliers, by manually judging five categories for which
we have personal knowledge of the domain through shopping ex-
perience. The table in Figure 5 shows the confusion matrix for the
judgments. Across the top are the Mechanical Turk judgments, and

judgements mturk
1 2 3

manual judgments
1 6 15 3
2 6 34 4
3 2 17 50

Figure 5: Confusion matrix between mturk and manual judgments.

on the left are the manual judgments. Entry (i, j) is the number of
times the manual judgment was i, and the Mechanical Turk was j.
We round averaged Mechanical Turk valuations to the nearest inte-
ger for this computation. We can see from this that the Mechanical
Turk workers often favor the “safe” middle valuation. The effect of
averaging judgements that do not reach a majority may also push
valuations to the middle. The manual judgments tend to distribute
more judgments to the “highly important” and “not important” val-
uations. Overall, we see exact agreement on 66% of judgments,
with opposing 1 vs 3 valuations on only 4%. The Mechanical Turk
valuations are therefore somewhat more coarse grained than our
careful manual evaluations, but are still similar in overall trend. We
have also run all of our experiments over the manual judgments and
found the results to be equivalent in terms of trend and rank order
of the systems. We omit these graphs for brevity.

6.2 Attribute Pre-selection with Data Filters
We start with an experiment that measures the effect of data

Figure 6: Attribute pre-selection using data filters.

statistics on the produced facets such as selectivity and entropy as
described in Section 5. The results are summarized in Figure 6.

The first step was to take all attributes for each table5 and per-
form a run on our two simpler algorithms, shown as NoProb-Full
and DataProb-Full in Figure 6. Surprisingly, DataProb-Full does
not improve much over NoProb-Full. In fact it actually performs
worse at higher values of k. Upon further investigation, this is un-
derstandable due to how certain attributes affect the computed prob-
abilities. For example, there is a attribute called ‘video input type’
on digital cameras where the value is almost always ‘digital cam-
era’. The probability P (t|A) for the token ‘digital camera’ was
very high, affecting the disambiguation process whenever it was
recognized in a query. As a result the DataProb-Full got skewed
in counting the proper attribute importance incorrectly. There were
other such attributes with similar characteristics that produced a
skewed behavior. We observed that such attributes had in common
certain data statistics such as low value entropy and low sparsity
across entities in a table.

We did a second run where we did not load attributes that ap-
pear in less than 10% (θR = 0.1) of the entities and have entropy
less than 0.1 (θH = 0.1). Using this data set we run again the
same two algorithms, shown as NoProb and DataProb in Figure 6.
The pre-selection step reduced noise in the data significantly and
also removed attributes that have little information content (low
entropy) and are not appropriate for facets. As a result the same
algorithm with the pre-selected data set perform much better. Fur-
thermore, now the actual data probabilities are more meaningful
and DataProb performs better than NoProb.

Entropy and sparsity can be seen as continuous discount values.
We saw in practice that using them as parameterized filters is easier
and produces good results. The specific values we used capture
the problems with our particular data set and might not be optimal
for all data sets. But the point we wish to make is that one has
to consider such data filters to pre-select good attribute candidates
in the mining algorithms. The full attribute set triggers bad results
even on the more complex algorithms. It is not shown here for
presentation simplicity. The remainder of the experimental section
uses the same pre-selected set of attributes for all our techniques.

6.3 Explicit Disambiguation
Using the above mentioned preselected attribute set we run all

our disambiguation algorithms. The results are shown in Figure 7.
The first observation is that ClusterProb and DataProb have sim-

ilar curves. Although ClusterProb seemed like a very good idea for
disambiguation by looking at token-attribute clusters across many
queries, we see that it does not improve things in practice. There
are a number of reasons why this happens. First, attributes encod-
5We exclude metadata and boolean attributes with values like ‘yes/no’, ‘true/false’

Figure 7: Token-attribute disambiguation comparison

ing exact numeric measurements do not always reflect the product
class to which they belong. Going back to our television example,
a ‘32 inch’ television may actually have a diagonal closer to 31 or
33 inches. In this situation, our ClusterProb approach may incor-
rectly reinforce the height attribute rather than the diagonal given
that many modern 50 inch televisions in the data set have a height
closer to this value. Also, this problem is exacerbated by the dis-
cretization of continuous domains for the KL-divergence computa-
tion. Lastly, KL-divergence is only well defined for distributions
that have non-zero probability over the entire domain of values,
meaning even attributes like depth are assigned a small probabil-
ity for values like 50 inches.

Iterative tries to detect correlations between data and queries and
it exploits the overall bias of users towards the correct attributes.
Intuitively, the reason it disambiguates the best is due to how users
enter queries. Although the system can be confused with multiple
interpretations, users actually know which attributes they are look-
ing for when they enter their values. When examined across the full
query log, the user behavior tends to match the intended attribute.
For example, although token ‘32 inch’ can be consider closer to a
TV height than diagonal screen size for many modern televisions,
users query much more frequently for diagonal size including other
values like ‘50inch’ or ‘55inch’. This creates a bias for inch tokens
towards the attribute diagonal, which Iterative applies to the ‘32
inch’ token. So diagonal size gets preferred over height even for
that particular value.

One surprise in the disambiguation methods is that Clicks do
more or less similarly to DataProb. At first, one would think that
clicks offer the perfect disambiguation method. A user click on
a particular entity id allows us to select only the attributes that
closely match that entity id disambiguating attributes almost per-
fectly. However, clicks have problems in the way they were pro-
duced that make them less than optimal for learning good facets.
First, a user can only click on results shown to them, so clicks in-
corporate the engine bias and do not represent the true popularity
of how many times all possible queries are asked. Hence some at-
tributes are under-represented in a click log due to the engine bias
of what results were shown. Second, there are far fewer queries
with clicked results than generally asked, meaning many categories
have very few queries. This means the mined facets do not have
much support and are somewhat erratic. Finally, the queries that
tend to trigger clicks are very specific queries looking for one or
few products, e.g. ‘canon eos 50d digital camera’. More general
category based queries are more likely to be followed by a refine-
ment since they return a large result set that users cannot easily
consider, e.g. ‘12 megapixel digital camera’. This creates a skew
of the importance learned towards attributes that act as unique keys.
However these attributes are not well suited for facets. If a user

Figure 8: Comparing with Amazon and Bing.

already knows the unique key they are looking for (like camera
model), they can simply select it from the results and do not need a
facet for it. Instead such attributes are better suited for entity snip-
pets, that is summarized views that help users differentiate amongst
entities.

6.4 Commercial Faceted Search
Commercial web engines are already supporting faceted search.

Although we do not know the technical details of industrial imple-
mentations, we felt the best way to test the real world effectiveness
of our solution is by comparing against state of the industry en-
gines. Since our data is shopping based, we considered Amazon
as the world’s most popular shopping engine. Furthermore, since
our data comes from the public MSN Shopping API, we consid-
ered Bing Shopping (redirects from MSN Shopping) as a shopping
engine that is using the same data set as our experiments. Both
Amazon and Bing Shopping show facets. To test them, we crawled
the attributes shown on Amazon and Bing for our test categories
and submitted them in the same pool of attributes that we labeled
with mturk judges. To remove any bias, we dropped any affiliation
information on the web site. Furthermore, we did not consider the
handful of generic shopping attributes shown on both Amazon and
Bing, like price or shipping options. Although very valuable facets
there is no need for an automated technique to discover them, as
such attributes can easily be added to all categories. Instead we lim-
ited our comparison to only category specific attributes from each
solution. The results are summarized in Figure 8.

Our best solution performs better than Amazon and significantly
better than Bing Shopping. For many categories Amazon shows
very few attributes and Bing shows even less. As a result, both
Amazon and Bing drop dramatically as the size k increases in our
experiments. It is important to note that Amazon does show up
to 12 category-dependent facets in some cases (e.g., watches) so
screen real-estate is not a limiting factor. For small values of k
(k ≤ 3) we still do better but the difference, particularly with Ama-
zon, is smaller. We are not familiar with the details of their facet
selection approach and so their techniques cannot be contrasted to
ours. However, since they are a popular site with lots of query traf-
fic and domain knowledge, we expect their facet selection to be of
the highest caliber. Having our best solution perform even better
than Amazon, demonstrates the true value of a pure query-based
automated solution and how well it approximates the desired facet
utility. Furthermore, it shows that our best method deals more than
adequately with ambiguity amongst attributes within each table.

6.5 Values
Our approach populates facets with the most popular values found

in the query-log. This is done in a query-independent way, by look-

Judgment Query-depndt Category-depndt Equivalent
Preferred 46.3% 23.96% 29.74%

Figure 9: Comparison of facet values for query-dependent vs.
category-dependent approach.

ing at all values for all attributes as described in Section 4. So for
every category, for the top facets we have computed the top values
in a category-dependent list. It would be very expensive to per-
form an NDCG experiment on values, as the potential judgements
needed to capture the value relevancy, in a statistically significant
way, is very large. Furthermore, given how we find the popular
values, we believe that the quality of those values will correlate
with the results of our disambiguation techniques and such NDCG
experiments would be moot. However, we wanted to validate the
benefit of showing the query-dependent conditional values, which
were computed off-line as described in Section 4.

We created a synthetic online experiment by generating queries
using the top values for the top facets for our test categories. For ex-
ample, using the brand for golf clubs, we generated ‘odyssey golf
clubs’ or ‘callaway golf clubs’ as test queries. For each query, we
judged the quality of the query-dependent conditional value list vs.
the category-dependent value list, for the top facets. The judgement
favored one or the other list for each facet, based on the relevance
of the values shown given the query. If the values seemed equally
relevant, they were judged to be equal. In many cases, the query
itself may dictate whether the values are correct or not based on
what is present in the data. For example, if the condition specifies
the brand “taylormade”, then a value specific to a “nike” product
is simply incorrect. Other times, results require specialized knowl-
edge of the domain, for example, that the brand “odyssey” is well
known for putters or that “callaway” is famous for drivers. The
results are summarized in Figure 9.

As expected, query-dependent values are preferred more than
category-dependent. However, at first look, it is surprising to see
the category-dependent gaining so much preference. This happens
because category-dependent attribute are quite often a super set of
the query-dependent ones. The nature of conditional computation
has smaller support thus eliminating some values. For example,
the conditional list may show values {mens, womens} while the
category-dependent list shows {mens, womens, juniors} which is
perceived as better or more complete. A solution to this to take
the cases where the query-dependent is a subset of the category-
dependent list, show the superset but force the conditional ones
to the top. We performed the same experiment after we applied
this simple heuristic and found out that only 1.98% of the queries
went to category-dependent whereas the query-dependent jumped
to 65.58%. There was no significant change in the equivalent cases,
as they are generally similar value sets with marginal order changes.

7. RELATED WORK
Our problem of discovering important facets in a query log is re-

lated to a number of active research areas, including faceted search,
attribute ordering, query understanding, and search over structured
data. In the following section we survey a sample of the relevant
work in these areas.

Faceted Search The problem of automatically discovering facets
(or facet hierarchies) from text has been studied in the past in [7, 8,
20, 28]. The principle challenges in this domain are in finding the
terms which can be used to describe (sub)categories, and in build-
ing the hierarchy of categories. This is in contrast to our setting,
where the actual facets have a direct correspondence to the struc-

tured data attributes. The process of extracting facets from text
often makes use of structured resources like WordNet6 [7, 28] or
semi-structured sources like Wikipedia7 [7], but only for catego-
rization and hierarchy extraction, rather than the extraction of at-
tributes. In these works, the facet selection is achieved by ranking
based on a navigation cost [8, 20], or by frequency-based metrics
[7].

Recently, there is also work on facet selection for structured
data [4, 18, 19, 24, 26], which looks for structured data attributes as
potential facets. Facet ranking is generally done by estimating the
user cost to identify a result when searching with the facets [4], or
by ordering the facets according to some property in the data, such
as the partitioning balance, cardinality, or attribute frequency [24].
This does not have the benefit of approximating the true user intent
as in our query-log based approach. The use of data properties how-
ever, is similar to our data filtering. In [19] facets are ranked based
on a history of user preference for documents. However the facet-
value pairs are given explicitly for each document so there are no
challenges in resolving ambiguity. In [18], a cost model driven by
user actions is approximated using user relevance judgements over
attributes. This is in contrast to our extraction of attribute relevance
from query-logs.

Attribute Ordering The problem of ordering or ranking at-
tributes of structured data repositories is a related problem to facet
discovery. The goals of attribute ordering problems however, often
differ to that of ranking facets. In [9, 17], the aim was to choose a
subset attributes that are most “useful” to display to a user when ren-
dering structured search results with limited screen space. Useful-
ness was formalized as the attributes most influential in the search
systems ranking function. A related problem is product visibility,
in which attributes are chosen that will distinguish one’s product
from others in the database. In [23] the product visibility problem
was approached by finding the k attributes that cause a product to
appear in the maximum number of results over a given query log.

The idea of using a query-log as a source of important attributes
has also be studied in previous work. Miah et al. proposed to com-
pute the frequency of the the attribute names in a query log as a sig-
nal of importance for the product visibility problem [23]. However,
they assume binary attributes, such that each attribute is essentially
an attribute/value pair in our data model (e.g., the attribute “four
door” describes the boolean property of a car having four doors
or not, as opposed to an attribute like “doors” having values two,
three, four, or five). This is different from our approach in that we
mine attribute instances from the query-log, and thus have to deal
with the ambiguity in mapping instances to their correct attributes.
Chaudhuri et al. have also used query-log mining to rank attributes
based on their probability of being correlated with a query, with the
intention of ranking structured results [5]. However, their work con-
sidered structured queries, and thus a structured query-log which
does not suffer from ambiguity in query tokens.

Query Understanding A number of recent works have looked
at query understanding using structured data [11, 22, 25, 27]. Be-
cause our approach rests on having query interpretations, this field
is particularly relevant. As part of our experiments we implemented
the work in [27] and benefit from it in finding plausible query in-
terpretations and assigning queries to tables. However, the facet
discovery problem poses more strenuous requirements than previ-
ous query understanding work in disambiguating amongst multiple
query to attribute mappings within the same table. In other words,
it is not enough to just find the plausible interpretations of a query

6http://wordnet.princeton.edu/
7http://en.wikipedia.org/

on a table. For facet discovery we have to actually be able to dis-
tinguish amongst them with high confidence. An approximation of
this effect is the results of NoProb vs. all the other disambigua-
tion techniques we discussed – NoProb can be viewed as just using
the interpretation score given by our implementation of [27]. As
such, our work is different and can be considered an extension to
previous work.

A related problem to query understanding is search over struc-
tured data, a field that has received a lot of attention in recent years.
Search over structured data is also the core motivation for our work
of supporting faceted search over structured collections. In this
context, each unique mapping of a keyword query into a structured
database represents an understanding of the query. Early work fo-
cused on how to assemble search results, with ranking based on can-
didate network size [3, 14], graph-based weight propagation [1], or
integrating IR style ranking functions [13]. However, no particular
effort has been made in this field to disambiguate among possible
mappings of query tokens to attributes.

8. CONCLUSIONS
Structured web search in the form of a unified ecosystem like

Google or Bing, or in the form of a specialized vertical like Ama-
zon can take advantage of rich meta-data to produce a better user
experience with the appropriate facets. An important problem in
this setting is that of selecting the attributes and values for the facet
system. Discovering facets must also deal with the scale of data
and the restricted screen real estate that only allows for the ones
best matching the anticipated user intent.

In this paper we proposed a model that exploits the intersec-
tion of web query logs and structured data to find the facet utility.
We showed a variety of techniques that dealt with disambiguating
amongst different overlapping attribute-value pairs per query. We
extended them to capture values and conditional values, that give a
dynamic query-dependent facet experience, and we also discussed
how data statistics play a role in producing better facets. Finally,
we showed experimentally that our approach is scalable, it works
well in practice, and even outperforms popular commercial systems
that offer facet functionality.

9. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,

P. Parag, and S. Sudarshan. Banks: browsing and keyword
searching in relational databases. In Proc. VLDB Conf.,
pages 1083–1086. VLDB Endowment, 2002.

[2] R. Agrawal, A. Halverson, K. Kenthapadi, N. Mishra, and
P. Tsaparas. Generating labels from clicks. In WSDM, pages
172–181, 2009.

[3] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system
for keyword-based search over relational databases. In Proc.
ICDE Conf., page 5, Washington, DC, USA, 2002. IEEE
Computer Society.

[4] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania.
Minimum-effort driven dynamic faceted search in structured
databases. In Proc. CIKM, pages 13–22, New York, NY,
USA, 2008. ACM.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for ranking of
database query results. ACM Trans. Database Syst.,
31(3):1134–1168, 2006.

[6] N. Craswell, O. Zoeter, M. J. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
WSDM, pages 87–94, 2008.

[7] W. Dakka and P. G. Ipeirotis. Automatic extraction of useful
facet hierarchies from text databases. In Proc. ICDE Conf.,
pages 466–475, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] W. Dakka, P. G. Ipeirotis, and K. R. Wood. Automatic
construction of multifaceted browsing interfaces. In Proc.
CIKM, pages 768–775, New York, NY, USA, 2005. ACM.

[9] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering
the attributes of query results. In Proc. SIGMOD Conf.,
pages 395–406, New York, NY, USA, 2006. ACM.

[10] P. Dmitriev, P. Serdyukov, and S. Chernov. Enterprise and
desktop search. In Proc. WWW Conf., pages 1345–1346,
April 2010.

[11] R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and
S. Vaithyanathan. Understanding queries in a search database
system. In Proc. PODS Symposium, pages 273–284, New
York, NY, USA, 2010. ACM.

[12] M. A. Hearst. Search User Interfaces. Cambridge University
Press, 2009.

[13] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
ir-style keyword search over relational databases. In Proc.
VLDB Conf., pages 850–861. VLDB Endowment, 2003.

[14] V. Hristidis and Y. Papakonstantinou. Discover: keyword
search in relational databases. In Proc. VLDB Conf., pages
670–681. VLDB Endowment, 2002.

[15] P. Ipeirotis and L. Gravano. Distributed search over the
hidden web: Hierarchical database sampling and selection.
In Proc. VLDB Conf., August 2002.

[16] T. Joachims and F. Radlinski. Search engines that learn from
implicit feedback. IEEE Computer, 40(8):34–40, 2007.

[17] N. Kapoor, G. Das, V. Hristidis, S. Sudarshan, and
G. Weikum. Star: A system for tuple and attribute ranking of
query answers. Proc. ICDE Conf., 0:1483–1484, 2007.

[18] A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor:
cost-driven exploration of faceted query results. In Proc.
Information and knowledge management, CIKM ’10, pages
719–728, New York, NY, USA, 2010. ACM.

[19] J. Koren, Y. Zhang, and X. Liu. Personalized interactive
faceted search. In Proc. WWW Conf., pages 477–486, New
York, NY, USA, 2008. ACM.

[20] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das.
Facetedpedia: dynamic generation of query-dependent
faceted interfaces for wikipedia. In Proc. WWW Conf., pages
651–660, New York, NY, USA, 2010. ACM.

[21] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from
regularized click graphs. In Proc. SIGIR Conf., pages
339–346, 2008.

[22] X. Li, Y.-Y. Wang, and A. Acero. Extracting Structured
Information from User Queries with Semi-supervised
Conditional Random Fields. In Proc. SIGIR Conf., pages
572–579, 2009.

[23] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out
in a crowd: Selecting attributes for maximum visibility. In
Proc. ICDE Conf., pages 356–365, Washington, DC, USA,
2008. IEEE Computer Society.

[24] E. Oren, R. Delbru, and S. Decker. Extending faceted
navigation for RDF data. The Semantic Web-ISWC 2006,
pages 559–572, 2006.

[25] S. Paparizos, A. Ntoulas, J. Shafer, and R. Agrawal.
Answering web queries using structured data sources. In
Proceedings of the 35th SIGMOD international conference

on Management of data, SIGMOD ’09, pages 1127–1130,
New York, NY, USA, 2009. ACM.

[26] S. Roy, H. Wang, U. Nambiar, G. Das, and M. Mohania.
Dynacet: Building dynamic faceted search systems over
databases. In Proc. ICDE Conf., pages 1463 –1466, 2009.

[27] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured
annotations of web queries. In Proc. SIGMOD Conf., June
2010.

[28] E. Stoica, M. A. Hearst, and M. Richardson. Automating
creation of hierarchical faceted metadata structures. In Proc.
Human Language Technology Conf. (NAACL HLT, 2007.

[29] A. Sugiura and O. Etzioni. Query routing for web search
engines: Architecture and experiments. In Proc. WWW Conf.,
April 2000.

[30] K. Wang, T. Walker, and Z. Zheng. Pskip: estimating
relevance ranking quality from web search clickthrough data.
In KDD, pages 1355–1364, 2009.

