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Abstract

Traditional recommender systems aim to satisfy indi-
vidual users by providing them with recommendations
that match their preferences. Such recommender sys-
tems don’t take into consideration how the number of
users recommended to use a particular item affects the
users’ experience. For example, a highly-recommended
restaurant may match the preferences of many users.
However, increasing its popularity via recommendations
may make the experience unsatisfactory due to high vol-
ume of customers, long lines and inevitably slow ser-
vice. In this paper, we develop a new recommendation-
system paradigm that we call collective recommenda-
tions. Collective recommendations take into considera-
tion not only the user preferences, but also the effect of
the popularity of a venue to the overall user experience.
We formally define the algorithmic problems motivated
by collective recommendations and develop an algorith-
mic framework for solving them effectively. Our exper-
iments with real data demonstrate the effectiveness of
our methods in practice.

Nobody goes there any more. It’s too crowded

— Yogi Berra

1 Introduction

Traditional recommender systems [1] try to satisfy users
by providing recommendations that match the users’ in-
dividual preferences. Such recommender systems make
the implicit assumption that the resulting experience is
individual (e.g., watching a movie, or reading a book),
and thus the satisfaction derived for the user is fully
captured by her preferences. This assumption disre-
gards the fact that, often, even though the preferences
are individual, the resulting experience may depend on
the collective behavior of the users. For example, when
recommending physical locations, even though each user
may act according to their individual preferences, the re-
sult is a crowd, and inevitably the experience becomes a
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collective one [14]. In such cases it is important for the
recommender system to take into account the effect of
the recommendations and the subsequent users’ actions
on the collective satisfaction of the users.

As a concrete example, consider the case of restau-
rant recommendations in sites such as Yelp. Recom-
mending to users to go to a popular restaurant may
match the users’ preferences, but at the same time it
may result in long lines, poor quality of service, and ul-
timately user dissatisfaction. On the other hand, when
recommending activities to people (e.g., sport activi-
ties), it is important for the recommender system to
take into account that the experience may be subpar,
unless there is a critical mass of participants that have
joined the activity. Even for product recommendations,
the collective behavior may have an adverse or rein-
forcing effect on the user experience. For example, for
clothing or gadgets, users often look for a sweet spot in
the popularity of the products; something that is fash-
ionable (popular), but at the same time not mainstream
and ordinary.

In this paper, we introduce a new recommendation
paradigm, which we call collective recommendations.
Collective recommendations take into account both
the individual user preferences, and the effect of the
collective behavior to the overall user experience. Our
recommendations aim to optimize both these aspects
that contribute to the user satisfaction.

In our problem formulation, we view recommenda-
tions as an assignment (mapping) A of users to items.
Our goal is is to maximize the collective user satisfac-
tion, C(A), that is defined as a weighted function of two
terms: (a) a term that measures the alignment of the
recommendations to the user preferences, denoted by
P(A), and (b) a term that evaluates the effect of the
assignment (collective behavior) on the quality of the
item, denoted by Q(A). Our goal is to find the assign-
ment A that maximizes the collective satisfaction:

C(A) = λP(A) + (1− λ)Q(A).

We call this problem the CollectiveRecs problem.
In principle, P(A) and Q(A) can be any function of

the preferences and the user assignment. By selecting
the appropriate P(A) and Q(A) functions, our formula-
tion can capture many different problem instances. In



this paper, we investigate the realistic scenario where
P(A) is a linear function of the user preferences, and
Q(A) is a function of the popularity of the items.

Technically, we show that in the general case the
CollectiveRecs problem is NP-hard. For the func-
tion P(A) we consider, we show that there is a class of
Q(A) functions for which the CollectiveRecs prob-
lem can be solved optimally in polynomial time.

We also show that if there exist polynomial-time al-
gorithms for maximizing P(A) andQ(A) independently,
(i.e., solving the CollectiveRecs problem for λ = 1
and λ = 0), then we can find an assignment that is an
1
2 -approximation to the optimal assignment for Col-
lectiveRecs for any value of λ. This is a result that
holds independently of the choice of P(A) and Q(A)
functions. We apply this result in order to design an
1
2 -approximation algorithm for the functions we con-
sider. We also design efficient and effective heuristics
that work reasonably well in practice.

Our experimental evaluation with real data coming
from Yelp1, demonstrate the efficacy and the efficiency
of our algorithms for our problem. More specifically, we
demonstrate that our algorithms consistently make rec-
ommendations that lead to high collective satisfaction,
which cannot be achieved by algorithms that take into
consideration only the user preferences.

Contributions: Our contributions in this work can be
summarized as follows:

• We introduce the novel concept of collective recom-
mendations, which take into account both the user
preferences, and the quality of an item as a result of
the recommendations to the users.

• We formally define the CollectiveRecs problem
that aims to maximize the collective satisfaction of
the users. We prove that it is in general NP-hard,
but under certain conditions it can be approximated
within a factor of 1

2 . We identify classes of functions
for which the CollectiveRecs problem can be
solved optimally.

• Guided by the theoretical analysis, we design ap-
proximation algorithms for the general Collec-
tiveRecs problem, as well as efficient heuristics.

• We experiment with real review data from Yelp,
and we demonstrate the efficiency and the ef-
ficacy of our algorithms. We also make our
code available at: cs-people.bu.edu/behzad/

collective-recs.tar.gz.

Roadmap: The rest of the paper is organized as fol-
lows. After reviewing the related work in Section 2,
we describe our model in Section 3 and our algorithmic

1http://www.yelp.com/dataset challenge

problem in Section 4. We provide the algorithmic frame-
work for solving CollectiveRecs in Section 5 and give
a thorough experimental evaluation in Section 6. We
conclude the paper in Section 7.

2 Related work

Recommender systems have been studied extensively
in the past decades, both in research and in practice.
In [5, 16, 1] there is a survey of the different techniques
and applications. These techniques aim at identifying
the best item to recommend to a user, without taking
into account the effect of the recommendation to the
overall experience in the system. There is also substan-
tial work on location recommendations (e.g., see [23]),
an application which we also consider, but it is mainly
focused on adding spatial constraints in the recommen-
dations, and implementing them efficiently. Our work
builds on top of such recommender systems in order to
improve the collective experience of the users.

The work most closely related to ours is the work
on activity recommendations, where the social utility of
the formed group is also considered [11, 7, 18]. This can
be thought of a special case of our formulation where
the Q() function depends on the social network of the
participants. Our formulation is more general, and we
study a different class of quality functions Q(). Also,
in [21, 22], they consider the problem of recommending
questions in a discussion forum for Massive Open Online
Courses (MOOCs), where they aim to maximize the
expertise and minimize the load of the experts. We note
that in that setting the goal is to minimize the load of a
user, rather than maximize the quality, that is, the load
has always a negative effect on the user. Furthermore,
that paper considers a specific load function that makes
the problem tractable.

The notion of collective experience appears in the
case where we want to recommend an item to a group of
users, in which case we need to aggregate the different
preferences in order to satisfy all users as well as
possible [8, 15, 3, 11, 7, 6, 20]. In this case, only one
item is recommended to a group of users, and the overall
quality of the item for the group is a function of only
the preferences of the users. The interactions between
users are also taken into account in the case of social
recommendations, where we use the social network of
the users to determine their preferences (see [17] for
a survey). In this case the social network provides
additional information for determining the preference
of the users for the items, but it does not determine the
quality of the item.

Our work is also related to the problem of contex-
tual recommendations (see [2] for a survey in the field),
where information additional to the preferences of the



user is used to determine the best recommendation.
Typically, this information relates to previous actions
of the user, such as a query posted by the user, or to
environmental variables, such as time or location. None
of these works considers the collective user experience
as part of the context.

There are different techniques for finding and as-
signment of items to users under load constraints. For
example, in [9], they consider the problem of finding
the best assignment of papers to reviewers under hard
load constraints. This is different from our framework,
where we assume that the load affects the quality of the
recommendation. Our problem is also related to facility-
location problems where the cost of opening a facility
depends on the final load [12]. However, the problem
considered in this case is a minimization problem, that
cannot be directly mapped to our problem. Finally, our
problem is related to the welfare maximization prob-
lem [4], where we want to find an assignment of items
to buyers such that the overall utility of the buyers is
maximized. In our case the buyers are the items, and
the utility function is defined over subsets of items, as
the sum of the user preferences plus a function of the
size of the subset. The work in this area focuses mostly
on submodular functions [19], and online variations of
the problem [10].

3 The model

In this section, we define the fundamental concepts we
will use throughout the paper and define the necessary
notation.

Users, items and preferences: Throughout, we will
consider a set I of m items and a population of users
U with |U | = n. In addition to the regular items in
I, we also assume that there is an extra item �, which
intuitively corresponds to “null” item which is of no
interest or value to the users. We always assume that
� ∈ I. We use the “null” item to model the case where
the system does not produce a recommendation for some
user.

We assume that every user i has a preference score
for every item j, which we denote by p(i, j); the higher
the value of p(i, j) the more user i likes item j. We
assume that p(i, �) = 0.

Assignment of users to items: An assignment A
maps every user to exactly one of the items in I
(including the � item which represents no assignment
for the user). That is, for every user i ∈ U , A(i) ∈ I.

Collective satisfaction: Given an assignment A, the
collective satisfaction, denoted by C(A), is a weighted
function of two terms: (a) a term that measures
the alignment of the recommendations to the user

preferences, denoted by P(A), and (b) a term that
evaluates the effect of the assignment on the quality
of the item as experienced by the users assigned to it,
denoted by Q(A). Thus,

C(A) = λP(A) + (1− λ)Q(A).

where 0 ≤ λ ≤ 1. Depending on the importance that
one wants to place on individual preferences or quality
of service one can tune the C(A) function by changing
the value of λ.

While many of the results we discuss in the paper
are general and do not depend on the specific forms of
these functions, we work here with the following specific
preference and quality functions.

Preference function: Given an assignment A, we
use P(A) to denote the function that evaluates the
satisfaction of the users from assignment A based on
their preferences. We call this function the preference
satisfaction (or simply preference) function. A simple
way to define P is as a linear function of the individual
user preferences:

P(A) =
∑
i∈U

p(i, A(i)).

Quality function: Here we assume that the quality
of service that users receive depends on the item they
are assigned to, but also on how many other people are
assigned to the same item. Let qj(x) be the quality of
service that item j can deliver to any of its users when
x users are assigned to it. Then, the overall quality of
an assignment A is:

Q(A) =
∑
i∈U

qA(i)

(
`A(i)

)
=
∑
j∈I

`Aj qj
(
`Aj
)
.

In the above equation, we use `Aj to denote the popular-
ity, i.e., the number of users assigned to item j under
assignment A. When A is clear from the context we
simply use `j instead of `Aj .

Throughout we assume that q�(x) is 0 for every
integer x. The form of the quality function qj(x)
depends on the type, the nature and the capacity of the
different items. In our case, the quality functions qj can
be any function of the popularity of item j. Different
functions can be used to model different scenarios. We
discuss the choice of the quality function in detail in
Section 6.

4 The CollectiveRecs problem

In this section, we define our problem, prove that it is
NP-hard and also demonstrate some general approxima-
bility results, which we will exploit when designing our
algorithms in the next section.



4.1 Problem definition Given the above defini-
tions, we define the CollectiveRecs problem as the
problem of finding the assignment A such that the col-
lective satisfaction of the user base is maximized. For-
mally, this problem is defined as follows:

Problem 1. (CollectiveRecs) Given n users, m
items, and user preferences p, find an assignment A
such that

C(A) = λP(A) + (1− λ)Q(A)

is maximized.

Although the definition of the CollectiveRecs
problem assumes that every user is assigned to one item,
we can extend it to find assignments where every user
is assigned to a multiple items. In this case, we assume
that the user picks one of the recommended items
uniformly at random and we measure the expected
collective user satisfaction.

4.2 Complexity results First, we show here that
in the general case, the CollectiveRecs problem is
NP-hard.

Theorem 4.1. The quality-maximization problem is
NP-hard.

The proof of this theorem is provided in the Supplemen-
tary material.

Although the CollectiveRecs problem is NP-
hard in general, there is a large class of instances that
can be solved in polynomial time. This is summarized
in the following theorem, the proof of which is given in
the Supplementary material.

Theorem 4.2. The CollectiveRecs problem can be
solved optimally when the quality function qj for every
item j ∈ I is concave and decreasing.

4.3 Approximability results In this section, we
discuss a general approximation result for the Collec-
tiveRecs problem. The result is stated in the following
theorem, the proof of which is given in the Supplemen-
tary material.

Lemma 4.1. If the instances of the CollectiveRecs
problem for λ = 0 and λ = 1 can be solved optimally in
polynomial time, then there exists an 1

2 -approximation
algorithm for the CollectiveRecs problem for any
value of λ ∈ (0, 1).

Theorem 4.3. There exists a polynomial-time 1
2 -

approximation algorithm for the CollectiveRecs
problem.

Proof. According to Lemma 4.1, it is enough to show
that the CollectiveRecs problem for λ = 0 and for
λ = 1 can be solved optimally in polynomial time. We
prove that these two algorithms exist below.

A polynomial-time algorithm for λ = 1: In this in-
stance we ignore the quality of service of the assign-
ment and we only focus on maximizing the preferences
of users, P(A). This instance of the CollectiveRecs
problem can be solved efficiently in time linear to the
size of the input, i.e., O(nm). This optimal solution is
obtained by assigning each user to the items she prefers
the most.

A polynomial-time algorithm for λ = 0: In this
case, the goal is to maximize the quality of service
that users receive. Formally, we seek to maximize
Q(A) =

∑
j∈I `jqj(`j).

This instance of the CollectiveRecs problem
(i.e., when λ = 0) can also be solved in polynomial
time using dynamic programming. For this, let us define
Q(i, j) to denote the maximum quality one can achieve
by assigning i individuals only to the first j items. Now
Q(i, j) can be expressed recursively as follows:
(4.1)

Q(i, j) = max
x=0,...,min{i,τ}

{Q(i− x, j − 1) + xqj(x)} ,

where τ is an upper bound any item can have (e.g., an
upper bound on the number of customers a restaurant
can facilitate). In the worst case, τ = O(n), but in
practice τ � n. The corner cases for the dynamic
programming are: Q(i, 0) = 0 for every i ∈ U and
Q(0, j) = 0 for every j ∈ I. The above dynamic-
programming algorithm solves the CollectiveRecs
problem optimally when λ = 0 in time O(nmτ).

An upper bound : An upper-bound for the Collec-
tiveRecs problem with paramter λ can be computed
by solving the problem once for λ = 0 and once for
λ = 1, and combining the obtained objective values.
Clearly, this does not yield a feasible solution since the
optimal assignments for λ = 0 and λ = 1 may not agree.

As a consequence we have the following:

Corollary 4.1. If there is an α0-approximation (resp.
α1-approximation) algorithm for the CollectiveRecs
problem with λ = 0 (resp. λ = 1), with α1, α0 < 1, then
there is an 1

2×min{α1, α2}-approximation algorithm for
the CollectiveRecs problem for any λ ∈ (0, 1).

5 Algorithms

In this section, we discuss algorithms for the general
CollectiveRecs problem.

The Pref-Only algorithm: This algorithm simply
assigns every user i to his most-preferred item. That
is, A(i) = arg maxj∈I p(i, j).



This algorithm is optimal when λ = 1 and when
there is no capacity constraint τ , which corresponds
to the ultimate upper bound on the number of users
that can be assigned to a single item. In this case, the
running time of this algorithm is simply O(nm).

In practice, it is reasonable to impose an upper
bound to every item (e.g., say that no more than τ
people can go to a restaurant). In the presence of
such a bound the Pref-Only algorithm needs to solve
a maximum-weight matching problem, on the bipartite
graph that has as nodes users and items and there are
weighted edges with weight p(i, j) between every user i
and item j. This problem can be solved in polynomial
time using the Hungarian algorithm in time O

(
n3
)
,

assuming that n = max{n,m}.
We can solve the same problem more efficiently by

greedily picking the user-item pair (i, j) with the highest
p(i, j) value such that i has not yet been matched
and the number of users assigned to j are less than
τ . This algorithm is an 1

2 -approximation algorithm to
the maximum-weight matching problem [13] and runs
in time O(nm log(nm)).

The DP+Matching algorithm: The DP+Matching algo-
rithm is a two-step algorithm. In the first step, it uses
a dynamic-programming algorithm for finding the opti-
mal number of users that need to be assigned to each
item. This step optimizes only the quality of service
that the items can offer to the people they are assigned
to them. The dynamic-programming routine we use is
the one described by recursion (4.1) in the proof of The-
orem 4.3. The output of this step is a number xj as-
sociated with each item j. This number corresponds to
the number of users that the algorithm should assign to
this item in the end of its execution. As we discussed in
the proof of Theorem 4.3, the running time of this step
of the algorithm is O(nmτ), where in theory τ = O(n),
but in practice is a small constant.

Given the number of users that should be assigned
to each item, the second step of the DP+Matching

algorithm actually solves a matching problem, where
the actual user preferences are taken into consideration.
In this step every user is assigned to one item and every
item has a hard constraint on the number of people it
can cater – item j can cater xj users, where xj is the
number reported by the dynamic-programming routine
of the first step. The goal of this step is to respect
these constraints and find an assignment that maximizes
P(A), subject to these constraints. As before, this step
can be done exactly using the Hungarian algorithm in
time O(n3), or approximately in time O(nm log(nm)).

We also consider a variant of DP+Matching, which
we call DP+Random. The DP+Random algorithm computes
the optimal number of users that need to be assigned

to each item similar to DP+Matching. However, in the
second step, it does not invoke a matching routine, but
rather does a random assignment of people to items
respecting the constraints on the number of people to be
assigned to each facility in time O(n). The DP+Random

algorithm acts as the opposite extreme of the Pref-Only
algorithm: While Pref-Only optimizes solely for the
preference function, disregarding the quality of the
assignment, DP+Random optimizes solely for the quality
function, disregarding the individual preferences.

Discussion: Given Lemma 4.1 and Theorem 4.3, we
have the following result.

Corollary 5.1. The algorithm that runs both
Pref-Only and DP+Matching (or DP+Random) and
takes the best of the two is an 1

2 -approximation al-
gorithm for the CollectiveRecs problem when
λ ∈ (0, 1).

The Greedy algorithm: Greedy constructs an assign-
ment A by assigning one user at a time. That is, at
every iteration t the algorithm makes the assignment of
a user to an item such that the collective satisfaction
C(At) from the partial assignment up to this iteration
is maximized. The greedy assignment can be imple-
mented efficiently by using a maxheap data structure.
More precisely, for every possible assignment of user i to
item j, we create an entry in the maxheap with a value
representing how much this assignment contributes to
the objective function. In each iteration, the algorithm
removes the top entry from the heap, and makes the
corresponding assignment if (a) the user is not assigned
before and (b) if number of assigned users to the item is
smaller than τ . After making the assignment, the algo-
rithm needs to update the value of those entries which
are associated with the item j – there are at most n such
entries. Given that there are m× n entries in the max-
heap, the cost of creating the heap is O(mn log(mn)).
Greedy may do up to m × n iterations, and in each it-
eration it may need to update the weight of n entries
which takes O(n log(n)). Thus the overall running time
of the Greedy is O(mn2 log(n)).

6 Experiments

In this section, we experimentally explore the efficacy of
our algorithms for the CollectiveRecsproblem using
a number real-world datasets which we describe next.
Our code is available at: cs-people.bu.edu/behzad/

collective-recs.tar.gz.

Datasets: For our experiments, we use the Yelp Aca-
demic Challenge data2 which contains the ratings and

2https://www.yelp.com/dataset challenge



Datasets n m
Missing entries # of ratings # of ratings

Avg. ratings
original completed per user per business

Charlotte 3, 679 1, 577 1.0% 42.3% 651.0 1, 518.8 3.85
Scottsdale 5, 116 1, 447 0.9% 41.9% 606.8 2, 145.4 3.87
Phoenix 9, 778 2, 901 0.4% 41.6% 1, 206.2 4, 065.8 3.93

Table 1: Statistics on the datasets.

reviews of customers on different businesses. More
precisely, we focus on the three cities for which the
dataset contains a large number of businesses and re-
views, namely Charlotte, Scottsdale and Phoenix,
and we use these subsets in our experiments. Through-
out, we view each customer as a user and each business
as an item. Also, the reported ratings correspond to the
preference of users for different items.

These datasets are extremely sparse as each cus-
tomer only rates and reviews a limited number of busi-
nesses. To improve the quality of our dataset, we use an
item-based nearest-neighbor collaborative filtering tech-
nique for matrix completion [1] which can be described
as follows. If a user i has no rating on item j, we first
find the top k = 3 similar items (using cosine similarity)
that are rated by user i. We compute the missing entry
as the weighted average of user i’s ratings for the neigh-
boring items, where weights are proportional to their
similarity with item j. For the entries that we cannot
fill, we replace the missing entry with value 0 to reflect
that the user has no interest in the item3.

Table 1 summarizes some insightful statistics about
our datasets. The first two columns show the number
of users and items respectively. The next two columns
report the percentage of missing entries before and after
running the matrix completion. Finally, the last three
columns report the number of available ratings per
user, the number of available ratings per item, and the
average rating respectively.

Quality functions: While user preferences can be
extracted from their ratings, we still need to specify
the quality functions qj(x) associated with each item.
For our experiments, we try a wide range of quality
functions with different distinct behaviors which we
discuss below.

• Exp-Decay can be written as: qj(x) = e−αjx, where
αj is sampled uniformly from the interval [0, 0.1].

• Inc-Logistic is written as: qj(x) = 1/(1 +
eαj∗(µj−x)), where αj and µj are sampled uniformly
from intervals [0, 0.2] and [5, 30] respectively.

3An implementation of this matrix completion technique can
be found in the python package fancyimpute.

• Dec-Logistic can be expressed as: qj(x) = 1 −
1/(1+eαj∗(µj−x)), where αj and µj are sampled uni-
formly from intervals [0, 0.2] and [5, 30] respectively.

• Gaussian is essentially a scaled Gaussian curve and
can be expressed as: qj(x) = (e−(x−µj)

2

)/(2σ2
j ),

where µj and σj are sampled uniformly from the
interval [5, 30] and [3, 13] respectively.

• Concave-Squared can be expressed as: qj(x) =
max{0, −(x/αj − 1)2 + 1}, where αj is sampled
uniformly from the interval [5, 20].

• Convex-Squared is written as: qj(x) = min{1,
(x/αj − 1)2}, where αj is sampled uniformly from
interval [5, 20].

Although the choice for the parameters of each func-
tion may seem arbitrary, they are selected such that
we observe reasonable behaviors when the population is
between 0 and 40 as we set τ = 40 in our experiments.
Functions Exp-Decay and Dec-Logistic are strictly de-
creasing. These types of functions describe scenarios
where the fewer the people the higher the quality of ser-
vice (e.g., a car repair shop). The Exp-Decay assumes
an exponential drop in quality, while Dec-Logistic

models a steady decrease that becomes sharp when a
critical mass is reached. The Inc-Logistic models
the opposite effect. The function captures scenarios
where more participation improves the experience of
users (e.g., a marathon race). However, when a crit-
ical mass is reached, the additional crowd has a di-
minishing effect on quality. The Concave-Squared and
Gaussian are examples of unimodal functions. Such
functions occur in settings where users generally enjoy
sharing an experience with a group but when the group
size grows over a threshold the quality of service drops
due to over-population (e.g., a bar, or a concert venue).
The Convex-Squared captures the exact opposite trend,
where mid-size groups are not as desirable as small or
large groups. For instance, students in a small study
group with a tutor work nicely and have the tutor’s at-
tention. As the group grows the attention of the tutor
gets divided and the student satisfaction drops. How-
ever in a large group the students benefit from the abil-
ity to form smaller subgroups with students with similar
interests, and the experience improves. Finally, since



the user ratings take values between 0 and 5, we scale
each quality function by a factor of 5 to make preference
values and service qualities comparable.

Experimental results: Here, we evaluate all algo-
rithms for all previously mentioned datasets considering
the quality functions discussed above. To better eval-
uate our algorithms, we compare our results against a
theoretical upper bound which we compute as follows.
Let Ap and Aq be the optimal assignments for maximiz-
ing preferences and quality, computed using Pref-Only

and DP+Matching respectively. Then a natural upper
bound is given by P(Ap) + Q(Aq). We also compare
our results, against a random baselines which we refer
to as Random. The Random algorithm assigns each user
to an item selected uniformly at random.

Figure 1 illustrates the relative performance of the
algorithms for different quality functions and all three
datasets. More specifically, it highlights how much
of the obtained user satisfaction is due to preferences
(i.e., the dark shade) and how much is due to the
experienced quality (i.e., the light shade). The y-
axis shows the average collective satisfaction of users.
For this experiment, we set the value of λ to 0.5 so
that we put a balanced emphasis on the importance of
preferences and experienced qualities.

We can observe a number of interesting trends
in Figure 1. First, we can observe that Greedy and
DP+Matching algorithms outperform the other algo-
rithms with a performance very close to the theoret-
ical upper-bound. Also, we can observe that both
DP+Matching and DP+Random algorithms (as expected)
are very effective in maximizing the experienced ser-
vice quality. Nevertheless, the significant difference be-
tween the two algorithms demonstrates that the sec-
ond step in the DP+Matching algorithm is quite effec-
tive. Finally, we can observe that the DP+Matching al-
gorithm outperforms the Greedy algorithm when the
quality function is of type Gaussian, Concave-Squared
or Convex-Squared. A common characteristic of these
functions is that they are not monotone. As a result, the
greedy algorithm is completely oblivious to the changes
in the service quality that arise with assigning users
to items. In case of monotone functions, we can ob-
serve that both Greedy and DP+Matching algorithm are
performing well except for the Inc-Logistic function
which is a monotone increasing function. When dealing
with such functions, the first step of the DP+Matching

algorithm decides to assign all users to a limited num-
ber of items since the more users assigned to an item,
the higher the quality. By limiting the number of items,
the DP+Matching algorithm fails to maximize the user
preferences as users may not be interested in this lim-
ited set. In fact, we can see that both DP+Random and
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(b) Scottsdale
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(c) Phoenix

Figure 1: Average collective satisfaction per user for
different algorithms (λ = 0.5).
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Figure 2: Average collective satisfaction per user for
different values of λ (Phoenix dataset).

DP+Matching achieve the same level of user preference.
Figure 2 shows how well algorithms perform for dif-

ferent values of λ. We present our results only for the
Phoenix dataset as the results for the other datasets
shows a similar trend. Also, we drop the Random and
DP+Random algorithms from the plot as their perfor-
mance was significantly worse than the rest of the algo-
rithms. The x-axis shows the different values of λ and
the y-axis shows the average collective satisfaction of
users. Note that λ = 1 implies that we only care about
maximizing user preferences which can be done opti-
mally using the Pref-Only algorithm which explains
why the performance of this algorithm increases with λ.
Nevertheless, it is always outperformed by the other two
algorithms (excluding the case of Inc-Logistic func-
tion). As before, we can observe that the performance
of Greedy and DP+Matching algorithms is close to the
theoretical upper bound with DP+Matching outperform-
ing the Greedy for unimodal functions. Finally, as ex-
plained earlier, the poor performance of DP+Matching

in the Inc-Logistic case is due to the fact that max-
imizing the service quality limits the flexibility of the
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Figure 3: Average collective satisfaction per user for
different number of items (Phoenix dataset, λ = 0.5).

algorithm in maximizing the user preference.
Finally, we study how well our algorithms perform

when the number of items in the dataset varies. To do
so, we use the Phoenix dataset and we randomly sample
a fixed number of items and solve the CollectiveRecs
problem on this subset. Figure 3 shows the average sat-
isfaction of users (y-axis) for different number of avail-
able items (x-axis). Note that we generally expect the
algorithms to perform better when more items are avail-
able, and we see this general trend in our informed (i.e.,
non-random) algorithms. As before, we can observe
that Greedy and DP+Matching algorithm’s performance
is close the theoretical upper bound. Note that in the
case of Convex-Squared function, the Greedy algorithm
has an unusual trend, which can be explained as follows.
Initially, when the number of items is small, Greedy is
forced to assign many users to items, and as a result
it passes the low point in the Convex-Squared curve,
achieving high satisfaction. As the number of avail-
able items increases, the Greedy acts myopically, and
it avoids assigning many users to an item to avoid the
drop in the service quality in the Convex-Squared func-



tion. As a result for medium-sized number of items the
satisfaction drops. When the number of items becomes
large (larger than 1000) the myopic approach pays off,
since small number of users per item results in higher
quality, causing an increasing trend.

7 Conclusions

In this paper we introduced collective recommendations,
where we recommend items to users taking into account
both the user preferences and the effect of the collective
behavior on the overall user experience. More specif-
ically, we formalized the CollectiveRecs problem,
which aims to find an assignment of users to items so
as maximize the collective satisfaction. Our problem
definition is general and views collective satisfaction as
the weighted sum of two terms: (a) a preference term
that measures the alignment of the assignment with the
user preferences and (b) a quality term that measures
the quality of the item as a function of the collective
behavior of the user-base. We proved that this problem
is in general NP-hard, but we identified a class of qual-
ity functions for which it can be solved in polynomial
time. We also demonstrated a technique for designing
bounded-factor approximation algorithms for the gen-
eral problem. In addition to that, we explored other
efficient heuristics that appear to work well in practice.
Our experiments with real data demonstrated the effi-
ciency and the efficacy of our algorithms in practice.
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