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Abstract The polarization of society over controversial social issues has been the
subject of study in social sciences for decades (Isenberg in J Personal Soc Psy-
chol 50(6):1141–1151, 1986, Sunstein in J Polit Philos 10(2):175–195, 2002). The
widespread usage of online social networks and social media, and the tendency of
people to connect and interact with like-minded individuals has only intensified the
phenomenon of polarization (Bakshy et al. in Science 348(6239):1130–1132, 2015).
In this paper, we consider the problem of measuring and reducing polarization of
opinions in a social network. Using a standard opinion formation model (Friedkin
and Johnsen in J Math Soc 15(3–4):193–206, 1990), we define the polarization index,
which, given a network and the opinions of the individuals in the network, it quanti-
fies the polarization observed in the network. Our measure captures the tendency of
opinions to concentrate in network communities, creating echo-chambers. Given this
numeric measure of polarization, we then consider the problem of reducing polariza-
tion in the network by convincing individuals (e.g., through education, exposure to
diverse viewpoints, or incentives) to adopt a more neutral stand towards controver-
sial issues. We formally define the ModerateInternal and ModerateExpressed
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problems, and we prove that both our problems are NP-hard. By exploiting the linear-
algebraic characteristics of the opinion formation model we design polynomial-time
algorithms for both problems. Our experiments with real-world datasets demonstrate
the validity of our metric, and the efficiency and the effectiveness of our algorithms
in practice.

Keywords Polarization · Social networks · Opinion formation · Moderation

1 Introduction

In the past decades, online social networks and social media have emerged as the
primary vehicle for the public discourse. Today, discussions take place primarily on
Facebook and Twitter, where information and viewpoints are exchanged, and opinions
are shaped. In this newworld, users have easy access to information, but also to a public
podium and a broad audience for their opinions.

Empowering ordinary users to express and share their opinions online seems like a
step towardsmaking individualsmore open to different ideas, cultures, and viewpoints,
and thus making societies overall more democratic and diverse. Nevertheless, it has
been observed that the easy and uninhibited access to information and expression often
leads to the opposite effect. Users tend to create connections with like-minded indi-
viduals, and create echo-chambers and filter bubbles that reinforce their existing opin-
ions (Bakshy et al. 2015; Bessi et al. 2016). In such cases, instead of smoothing the dif-
ferences, online social networks reinforce them, thus leading to increased polarization.

Online polarization has been observed over a variety of issues and topics, ranging
from frivolous (the dress controversy1) to decisive and consequential (the increasing
divide in US politics2). Polarization separates individuals into sides that have little or
no communication with and understanding of each other, and has a corrosive and detri-
mental effect to the functioning of communities, societies, and democracies. It is thus
of critical importance to devisemechanisms for reducing polarization. This is typically
achieved by raising awareness and educating individuals about the different sides of an
issue, with the goal of moderating extreme opinions and reaching a common ground.
This is an arduous and costly process that may span a generation to yield results.

In this paper, we take an algorithmic approach to the problem of measuring and
reducing polarization. In order to measure polarization, we consider a popular opinion
formation model (Friedkin and Johnsen 1990). In this model, opinions are modeled as
real numbers ranging from−1 to 1, depending on the viewpoint of the user. Each user u
has an internal opinion su that is given as input and it is fixed, and an expressed opinion
zu that depends on their own internal opinion and the expressed opinions in their social
network. Using a random walk interpretation of the opinion formation model, we can
interpret zu as the expected opinion that node u will reach when taking a random walk
in the social network. High value of zu implies that the user is surrounded mostly
by single-minded individuals with extreme opinions, while low value implies that

1 https://en.wikipedia.org/wiki/The_dress.
2 http://www.people-press.org/2014/06/12/political-polarization-in-the-american-public/.
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the social network of u adopts moderate and diverse opinions. We view the absolute
value |zu | as a measure of the degree of the polarization of user u. Given the vector
of expressed opinions z for the whole network, the length of the opinion vector ‖z‖2
captures the degree of polarization in the network. We refer to ‖z‖2 as the polarization
index π(z) of the network.

Given this numeric measure of polarization, we are interested in algorithms for
reducing polarization in the network. We assume that we can reduce polarization
by convincing people (through education or other means) to adopt a more moderate
opinion. Given a budget value k, we want to find the best set of k individuals in the
network, such that convincing them to moderate their opinions (in our model, set
their opinion value to zero) will minimize the polarization index of the network. We
consider two variants of this problem: the ModerateInternal problem, and the
ModerateExpressed problem. In the ModerateInternal problem we moderate
the internal opinion of the users, that is, for each user u in the selected set we set su = 0.
This is the case where through education we expose users to the viewpoint of the other
side, and lead them to adopt a moderate viewpoint. In the ModerateExpressed
problem we moderate the expressed opinion of the users, that is, for each user u in the
selected set we set zu = 0. This is a case where we give incentives to users to adopt a
moderate public opinion, and propagate a balanced viewpoint.

From the computational point of view, we prove that both problems are NP-hard.
We propose algorithms that exploit the properties of the opinion formationmodel so as
to efficiently construct the solution set, as well as efficient heuristics. We experiment
on real datasets and we demonstrate the effectiveness of our algorithms in decreasing
polarization.

In summary, in this paper we make the following contributions:

• We define a novel polarization index for quantifying polarization in a network,
based on the opinions of users under a popular opinion formation model (Friedkin
and Johnsen 1990). Our measure takes into account both the existing opinions of
the users, and the network structure. To the best of our knowledge we are the first
to use this model to measure polarization.

• We define two novel problems,ModerateInternal andModerateExpressed
for reducing polarization in a network. We show that both problems are NP-hard,
and propose efficient algorithms for solving them. Our algorithms exploit a linear-
algebraic view of the opinion-formation model we adopt.

• We experiment on real data, including a Twitter network from 2016 US Elections.
We demonstrate that our polarization index is successful in capturing polarization,
and that our algorithms are effective in reducing polarization.

The remaining of the paper is structured as follows. In Sect. 2 we review related
work on measuring and reducing polarization, opinion formation models, and opinion
mining. In Sect. 3 we define the polarization index, and provide intuition for our defi-
nition. In Sect. 4 we define and study theModerateInternal problem, and in Sect. 5
theModerateExpressed problem. Section 6 presents the experimental evaluation of
our metric and our algorithms, and Sect. 7 concludes the paper. “Appendix A” contains
the full proof for the NP-hardness of the ModerateInternal problem.
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2 Related work

Although, to the best of our knowledge, we are the first to introduce and study the
ModerateExpressed and the ModerateInternal problems, our work is related
to recent work on polarization and the study and application of opinion formation
models.

Filter bubbles andechochambers.While socialmedia have thepotential to expose indi-
viduals tomore diverse viewpoints, they can also limit exposure to attitude-challenging
information, which leads to a radicalization of attitudes and false perceptions about
events. This has led to theories about the effects of “echo-chambers” (Bakshy et al.
2015; Bessi et al. 2016; Garrett 2009), where users are only exposed to information
by like-minded individuals, and “filter bubbles” (Bakshy et al. 2015; Pariser 2011),
where algorithms only present personalized content that agreeswith the user’s attitude.
Recent lines of work (Garrett 2009) have investigated the strength of echo chambers
and filter bubbles, and found that opinion-challenging information reduces the likeli-
hood of a news story’s exposure.

Quantifying and reducing polarization. The phenomenon of polarization has been the
subject of study in social sciences for decades (Isenberg 1986; Sunstein 2002). There
has been a lot of work on measures for quantifying the polarization observed in online
social networks and social media (Akoglu 2014; Conover et al. 2011; Garimella et al.
2016; Guerra et al. 2013; Amelkin et al. 2015; Dandekar et al. 2013) and model its
emergence (Dandekar et al. 2013; Vicario et al. 2016). The main characteristic of
those works is that the measures proposed are based on the structural characteristics
of the underlying graph and they do not consider the existing opinions, or an opinion
formation model, when quantifying polarization. Vicario et al. (2017) study polar-
ization while incorporating opinion dynamics, assuming a variation of the Bounded
Confidence Model (BCM). This variation of the model, has the limitation that it can
only converge in states where opinions form clusters of a single value. The closest to
our definition is the notion of tension for measuring polarization (Bindel et al. 2015;
Dandekar et al. 2013), which focuses on pairwise disagreements of opinions over the
edges of the network. Themetric does not consider the overall distribution of opinions,
and it does not work as well in the presence of echo-chambers in the network, where
like-minded individuals only interact with each other.

Given the negative effects of polarization and fragmentation on the well-being
and the well-functioning of societies there has been work that focuses on methods
for decreasing polarization. Such studies focus on proposing mechanisms that will
expose online social-media users to content that is not necessarily aligned with their
prior beliefs. The work in this direction can be split into work that focuses on (a) how
to present information to users and (b) who to approach with the new information.
In terms of (a) there has been work focusing on user studies as well as the design
of the appropriate interfaces that predispose users positively towards diverse ideas
presented to them (Munson and Resnick 2010; Munson et al. 2013; Vydiswaran et al.
2015). Clearly, our work is complementary to the above as we focus on the algorithmic
aspects of decreasing polarity.
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In terms of who to approach, the recent work by Garimella et al. (2017) considers
the introduction of edges that will reduce the observed polarization in a social net-
work. Although this work is related to ours, it focuses on graph-theoretic measures
of polarization and does not take into consideration the opinions of individuals. Fur-
thermore, it considers the addition of links, rather than the moderation of opinions.
Therefore, both our model and our problem are different from that in Garimella et al.
(2017).
Opinionmining. In ourworkweassume thatwe are givenuser opinions as input, andwe
focus onusing these opinions tomeasure andmoderate polarization. In our experiments
we assume that opinions can be inferred by the actions of the users (membership in
known communities, or following specific accounts). In networks where we have
information about the attributes of the users, or the content they contribute, it may be
possible to obtain more fine-grained and nuanced opinion values by applying opinion
mining and sentiment analysis techniques (Liu 2012). Opinion mining deals with the
inference of the semantics of a given text. Concept-based techniques have come to
prominence recently (Cambria et al. 2015, 2016), along with new neural network
approaches, using deep neural networks (Poria et al. 2016; Chen et al. 2016). Our
framework for measuring and moderating polarization can be extended to include an
opinion mining algorithm as the first step of the pipeline.
Influence and opinion maximization. At a high level, our work is also related to the
line of work on influence and opinion maximization (Kempe et al. 2003; Gionis et al.
2013). In these works the goal is to select a set of individuals that will adopt a product
or an opinion so as to maximize the overall adoption in the network. The closest
to our work is the work of Gionis et al. (2013), where the goal is to find a set of
individuals who will change their opinion (internal or expressed), such that the sum
of expressed opinions is maximized. Both works assume the same opinion-formation
model. However, our goal is different: rather than maximizing the positive expressed
opinion we aim at minimizing the polarization index. The difference in the objectives
results in differences in the problem properties and the algorithmic techniques that
need to be developed.

3 The polarization index

In this section, we define the polarization index we will use in the paper, and we
provide the necessary background for understanding and analyzing our metric.

Throughout the paper, we consider a social graph G = (V, E) with n nodes and
m edges. Each edge (i, j) is associated with a weight wi j ≥ 0, which expresses
the strength of the connection between i and j , and the influence they exert to each
other.

We adopt the opinion-formation model of Friedkin and Johnsen (1990), which
assumes that every person i in the network has a persistent internal opinion si , and an
expressed opinion zi which depends both on their internal opinion si and the expressed
opinions of their neighbours. More precisely, the expressed opinion of node i is com-
puted as the weighted average of their internal opinion and the expressed opinions of
the neighbours of i , N (i), in G:

123



Measuring and moderating opinion polarization in social networks 1485

zi = wi i si + ∑
j∈N (i) wi j z j

wi i + ∑
j∈N (i) wi j

, (1)

where wi i denotes the importance that node i places on their own opinion. It has
been shown that if every person i iteratively updates their expressed opinion, then the
expressed opinions converge to a unique opinion vector z.

In our setting, opinions can be both positive and negative. Thus, we assume that
they take values in the interval [−1, 1], where -1 reflects a negative opinion, and 1 a
positive one, while 0 corresponds to a neutral position.

In the absence of any polarization all users would express a neutral opinion, i.e.,
zi = 0 for all i ∈ V . The absolute value of the opinion of a user |zi | captures how
extreme the user opinion is. We quantify polarization in the network by measuring
how far we are from the state of complete neutrality. Wemeasure this by looking at the
length of the vector z under the L2

2 norm. To make the value of our metric independent
of the size of the network, we normalize by the number of nodes in the graph. More
formally, we have the following definition.

Definition 1 (Polarization index) Given a network G = (V, E), a vector of internal
opinions s defined over the nodes of the network, and the resulting vector of expressed

opinions z, we define the polarization index π(z) as: π(z) = ‖z‖2
n .

We now give some additional background and intuition behind our metric. First, an
equivalent way of obtaining the expressed opinion vector z from the internal opinion
vector s is the following (Bindel et al. 2015): if L is the Laplacian matrix of graph
G = (V, E), and I is the identity matrix, then z = (L + I)−1 s. We will refer to the
matrix Q = (L + I)−1 as the fundamental matrix.

Second, there is a direct connection between the opinion formation model, and
random walks with absorbing nodes, as it is shown in Gionis et al. (2013). More
specifically, given the graph G = (V, E), with n vertices, and weights wi j for the
edges (i, j) ∈ E , we construct the augmented graph H = (V ∪ X, E ∪ R) as follows.
For each vertex vi ∈ V , we add a new vertex xi in X . We also add a directed edge
(vi , xi ) in R, with weightwi i . The node xi corresponds to the internal opinion of node
vi .

Now consider a randomwalk on graph H that starts from a vertex v ∈ V . The nodes
in X are absorbing. That is, when reaching these nodes, the random walk terminates.
For each absorbing node xi and non-absorbing node v j , we can compute the probability
P(xi | v j ), that the random walk that started from v j terminates at node xi . It was
shown in Gionis et al. (2013) that Q( j, i) = P(xi | v j ), that is, the j-th row of the
matrix Q is a probability distribution over all nodes in X . Therefore, we have that

z j =
n∑

i=1

P(xi | v j )si .

We can think of the probability P(xi | v j ) as the probability that node v j adopts
the opinion of node vi . This probability depends on the structure of the graph: the
more the paths that connect v j with node vi , the higher the probability P(xi | v j ).
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(a) (b) (c)

Fig. 1 Three examples of graphs for the polarization index. a G1: Random graph. b G2: Echo chamber
graph. c G3: Community structure with random opinion assignment

The probability is also affected by the weights wi j and wi i since they determine the
probability that a specific edge is followed. For example, high wi i weight means that
the user is more likely to be absorbed in her own opinion node than follow a path in
the graph to some other node. The expressed opinion z j of node v j is the expected
value of the internal opinion of the node at the point of absorption.

The implications of this connection are the following. For a specific node v j , the
value |z j | is minimized if node v j has equal probability to reach positive and negative
opinions, that is, it has a balanced view of the opinions in the network. On the other
hand, if the user is trapped in a filter-bubble of like-minded friends, all with extreme
opinions, the value of |z j | will be high. The polarization index becomes high if we
have echo chambers in the network, that is, we have communities in the graph, that
are homogeneous with respect to their internal opinions.

To illustrate this point, consider the three graphs shown in Fig. 1. The graph G1 in
Fig. 1a consists of 20 nodes, 10 with opinion −1, and 10 with opinion +1, that are
randomly interconnected. The graphs in Fig. 1b, c are the same and they consist of two
densely connected subgraphs of size 10 that are sparsely interconnected. In Fig. 1b, the
opinions are alignedwith the communities in the graph: the nodes in the left community
have opinion −1 (blue round nodes), while the nodes in the right community have
opinion +1 (red square nodes). In Fig. 1c, the opinions are randomly assigned.

We compute the polarization index for all three graphs. In the first graph G1, edges
are created at random, and thus the graph has no community structure, and opinions
mix randomly in the network. Therefore, each node has more or less equal probability
to adopt a positive or negative opinion, resulting in a low polarization index of 0.03.
In the second graph G2, there is a clear echo chamber effect: positive nodes speak
mostly with positive nodes, and negative nodes speak mostly with negative nodes. As
a result the polarization index is high, 0.30. In the third graph G3, although there is
a clear community structure in the graph, the opinions are equally distributed in the
two communities. Therefore, although the nodes tend to communicate mostly with
the nodes within their community (the probability of adopting the opinion of a node
in a different community is small), both opinions are equally represented in each
community, resulting in a small polarization index of 0.03.

Given this measure of polarization in the network, our next goal is to minimize it
by convincing a small set of users users to adopt more neutral positions. We consider
two possible ways to achieve this. The first is to convince users, via education and
exposure to different viewpoints, to change their internal opinions. The second is by
giving incentives to users to express and propagate a neutral opinion. In both cases we
say that we moderate the opinions of the users. Depending on whether we moderate
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the internal or the expressed opinions of users we define the ModerateInternal
and theModerateExpressed problems respectively. We define and study these two
problems in the following sections.

4 Moderating internal opinions

In this sectionwe define theModerateInternal problem,we analyze its complexity,
and we design efficient and effective algorithms for solving it.

4.1 Problem definition

When moderating internal opinions, we seek a small set of nodes, Ts , whose internal
opinions would be set to zero, such that the polarization index is minimized. We use
π(z | Ts) to denote the polarization index after setting the internal opinions of the
nodes in Ts to zero. The formal problem definition is the following.

Problem 1 (ModerateInternal) Given a graph G = (V, E), a vector of internal opin-
ions s, and an integer k, identify a set Ts of k nodes such that changing the internal
opinions of the nodes in Ts to 0, minimizes the polarization index π(z | Ts).

4.2 Problem complexity

We prove the following Theorem for the hardness of the the ModerateInternal
problem.

Theorem 1 The ModerateInternal problem is NP-hard.

Proof We only give the intuition of the proof here. The full proof appears in the
“Appendix A”.

Our proof uses a reduction from the m-SubsetSum problem, where given a set of
N positive integer numbers v1, . . . , vN , a valuem, and a target value b, we ask if there
is a set of numbers B of size m, such that

∑
vi∈B vi = b.

Given an instance of them-SubsetSum problem,we construct an instance ofMod-
erateInternal as follows. The graph is a star with N + 1 nodes: we have a central
node u0, and a spoke node ui for each integer vi . For the center of the star (node u0) we
have thatw00 = t , for an appropriately selected value of t (we will discuss this below),
and s0 = −1. The weight of the edge (u0, ui ) from the center to node ui is w0i = vi ,
and the weight of node ui to its internal opinion is also wi i = vi . The opinion of all
spoke nodes is si = 1. We set k = N −m, and we ask for a set of nodes Ts , |Ts | = k,
such that, when setting si = 0 for ui ∈ Ts , π(z | Tz) = ‖z‖2 is minimized.

Assume that we have selected the set Ts , |Ts | = k. We can prove that

π(z | Ts) = N + 4

4
z20 + N − k

2
z0 + N − k

4
.
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Therefore, π(z | Ts) is determined by the expressed opinion of the center node z0. Let
R = V \Ts ∪{u0} denote the set of spoke nodes whose opinion was not set to 0. Using
the equations for the expressed opinions of the opinion formation model we can show
the following for the value of z0 (details in the “Appendix A”):

z0 =
∑

ui∈R vi − 2t

W + 2t
.

For the sake of the argument, assume for a moment that we achieve the minimum
π(z | Ts) for z0 = 0. Then clearly, we need to select a set of nodes in Ts , such that
for the nodes in R we have

∑
ui∈R vi = 2t . Setting t = b/2 we can prove that we

minimize π(z | Ts) if and only if there is a set of nodes R such that
∑

ui∈R vi = b,
which proves the reduction. However, the value z0 = 0 does not minimize π(z | Ts).
In the full proof, we determine the optimal value of z0, and the value of t that achieves
this optimal when there is a set of nodes R such that

∑
ui∈R vi = b, and thus complete

the reduction. ��
Furthermore, we observe thatπ(z | Ts) is notmonotonewith respect to Ts . That is, it

is not necessarily true that the more nodes we make neutral, the lower the polarization.
This can be seen by considering a simple graph consisting of two nodes, u and v, with
internal opinions−1 and 1 andwuu = wvu = wvv = 1. In this case π(z) = 2/9. If we
change the internal opinion of the negative node to neutral, then π(z) = 5/9. Thus,
making a node neutral, causes the polarization index to increase. This observation
implies that designing an algorithm for ModerateInternal is challenging.

4.3 Algorithms

In this section, we present our algorithms forModerateInternal. For the following,
we assume that the matrix Q has been pre-computed, and it is given as input to the
algorithm.

The BOMP algorithm: The Binary Orthogonal Matching Pursuit (BOMP) algorithm
is inspired by the connection of the ModerateInternal problem to the problem of
sparse approximation (Natarajan 1995). First, we establish this connection and then
we describe the BOMP algorithm.

Aswe have already discussed in Sect. 3, expressed opinion vector z can be computed
as z = Qs, where Q = (L + I)−1. Note that we have that Qs = QS1, where S is
the diagonal matrix with Si i = si , and 1 is the vector of all ones. For the rest of the
discussion we will use R = QS.

Now, let s′ denote the vector s after we set k of its entries to zero – these entries will
correspond to users whose internal opinions become neutral. Our goal is to find the
vector s′ that minimizes ‖Qs′‖2. Note that Qs′ = R1 − Rx, where x is a vector with
1’s at the positions of the selected nodes, and zeros everywhere else. Since R1 = z,
the original expressed opinion vector, our problem can be stated as follows: Find the
best binary vector x with k non-zero entries (i.e., ‖x‖0 = k) such that ‖z − Rx‖2
is minimized. This is the definition of the sparse approximation problem (Natarajan
1995), where we restrict the solution to binary vectors.
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Inspired by Lappas et al. (2012) we will approximate the solution to this problem
using a variation of a known algorithm from signal processing (Mallat 2008; Davis
et al. 1994) called nonnegative orthogonal matching pursuit (NNOMP). The NNOMP
algorithm is designed to find a sparse vector x (with no more than k non-zero entries)
with non-negative yet real coefficients which when multiplied with a matrix R is
minimizes ‖z − Rx‖2 for a target vector z.

In our problem, the vector x is a binary vector and thus x essentially selects a
subset of columns from R and uses their sum to approximate the target vector z. Our
algorithm, Binary Orthogonal Matching Pursuit (BOMP), is a variant of NNOMP and it
proceeds in iterations. At iteration t , BOMP starts with a vector xt−1 with (t−1) entries
of value 1. These entries correspond to the columns of the matrix R that have been
selected up to this iteration. Let ẑt−1 = Rxt−1 denote the approximation of the target
vector z constructed so far. The algorithm selects the column from R (not selected so
far) that has the largest dot-product with the residual z− ẑt−1 of the target vector. The
set of selected indexes is augmented with this new index to produce vector xt . The
algorithm terminates when we have selected k columns. The set of columns define the
set Ts of nodes whose internal opinions will be set to zero.

The computational complexity of the BOMP algorithm is O(kn2). In each of the
k iterations, the algorithm computes the dot-product of every candidate index to be
added to set of selected indices with the residual vector. This step is the most compu-
tationally expensive, requiring time O(n2). All the other steps require at most O(n)

time, resulting in O(kn2) complexity in total.

The GreedyInt algorithm: We also consider a greedy algorithm for the problem.
The algorithm builds the selected set of nodes Ts iteratively. It starts with an empty set
T 0
s , and at each step t it adds to the existing solution T

t−1
s the node vwhich,when added

to the solution, T t
s = T t−1

s ∪{v}, it causes the largest decrease π(z | T t−1
s )−π(z | T t

s )

in the objective function. We will denote this algorithm as GreedyInt.
TheGreedyInt algorithmcan be implemented efficiently by exploiting the obser-

vation that the effect of neutralizing a node in the graph in the expressed opinion z can
be computed by the subtraction of the corresponding column of the matrix R from z.
Therefore, for each candidate node v we need time O(n) to computeπ(z | T t−1

s ∪{v}),
resulting in complexity O(n2) for each iteration, and O(kn2) for the algorithm in total.

5 Moderating expressed opinions

In this section, we define the ModerateExpressed problem, we analyze its com-
plexity, and we design an efficient algorithm for solving it.

5.1 Problem definition

When moderating expressed opinions, we seek a small set of nodes Tz to set their
expressed opinions to zero, such that the polarization index is minimized. We use
π(z | Tz) to denote the polarization index after setting the expressed opinions of the
nodes in Tz to zero. The formal problem definition is the following.
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Problem 2 (ModerateExpressed) Given a graph G = (V, E), a vector of internal
opinions s, the resulting vector of expressed opinions z, and an integer k, identify a set
Tz of k nodes such that fixing the expressed opinions of the nodes in T to 0, minimizes
the polarization index π(z | Tz).

5.2 Problem complexity

We prove the following Theorem for the hardness of theModerateExpressed prob-
lem.

Theorem 2 The ModerateExpressed problem is NP-hard.

Proof The proof of the theorem follows closely the proof of hardness in Gionis et al.
(2013), so we only provide the correspondence between the two proofs. The proof
exploits the equivalence between the opinion formation model and absorbing random
walks, shown in Gionis et al. (2013).

Similar to the proof in Gionis et al. (2013) our proof uses a reduction from the
Vertex Cover on Regular Graphs problem (VCRG) (Feige 2003). We show
that there exists a set of nodes Y for a regular graph GVC in the VCRG problem such
that |Y | ≤ K and Y is a vertex cover if and only if there exists a set Ts for a graph
G in the ModerateExpressed problem, such that |Tz | ≤ k and π(z | Tz) ≤ θ , for
θ = n

2(d+1)2
. In our construction we set G = GVC , and we initialize the vector s, such

that si = 1 for all i ∈ V . The proof then proceeds in the same way as in Gionis et al.
(2013). We can show that we can achieve a value π(z | Tz) less than θ if and only if
the nodes Tz that we select in G (to make absorbing) define a vertex cover in GVC . ��

Using a similar example as the one we used in Sect. 4.2 we can show that π(z | Tz)
is also not monotone with respect to Tz , implying again that it is not straightforward
to design an algorithm for solving ModerateExpressed.

5.3 Algorithms

Our algorithm for ModerateExpressed is a greedy algorithm, which we call
GreedyExt. GreedyExt is an iterative algorithm which starts with an empty set
T 0
z . At each step t the algorithm adds to the existing solution T t−1

z the node vi , which,
when setting zi = 0, it causes the largest decrease π(z | T t−1

z ) − π(z | T t
z ) in the

objective function.
A naive implementation of the GreedyExt algorithm is computationally expen-

sive. At each step of the algorithm we need to check n nodes, and for each node
compute the new opinion vector after setting the expressed opinion of the node to
zero. The most straightforward way to do this is by multiplying s directly with Q, in
O(n2) time; recall that Q = (L + I)−1, and thus it is a dense matrix. Alternatively,
one can iteratively apply Eq. (1) and achieve the same computation in time O(mI ),
where I the number of iterations it will take until convergence and m the number
of edges of G. In our experiments, this computation converges in about a hundred
iterations. Thus if we implement GreedyExt using the first method its running time
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becomes O(kn3), while with the second method the running time is O(knmI ). Our
experiments with large graphs show that both these computations are impractical when
dealing with medium-size datasets.

In order to improve the overall running time of GreedyExt, we exploit the
Sherman–Morrison formula (Hager 1989), a special case of the Woodbury matrix
identity, to speed up the computation of the updated polarization index after adding
a new node to the solution set. The identity states that the inverse of a matrix after
adding a rank-1 correction matrix to it can be computed by doing a rank-1 correction
to the inverse of the original matrix. Formally, given an invertible matrixA and vectors
u and vT , the Sherman–Morrison formula states that:

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(2)

Consider now the case where wewant to add node vi to the solution set Tz . Letπ(z′)
denote the new polarization index after setting zi = 0.We can express the polarization
index as π(z′) = ‖Q′s′‖2. In this equation, Q′ = (

L′ + I
)−1, where L′ is the updated

Laplacian with a row of zeros at the i-th index, and s′ is the updated internal opinion
vector, with si = 0 at the i-th entry. To understand the update process ofQ and s, note
that in the random walk interpretation, setting zi = 0 is equivalent to removing all
outgoing edges from node vi and keeping only the edge to the node xi , while setting
si = 0.

We can express the Laplacian matrix L′ as a rank-1 correction of the Laplacian L,
that is, L′ = L+ uvT , where u is the unit vector with 1 at the i-th entry, and vT is the
negative i-th row of the Laplacian. Following the Sherman–Morrison formula (Eq. 2)
we have that Q′ = Q − B, where

B = QuvTQ
1 + vTQu

,

We can also write s′ = s − s, where s is a vector with si = si , and zero in all other
entries. Thus, we have:

∥
∥Q′s′

∥
∥2 = ‖(Q − B)(s − s)‖2

= ‖Qs − Bs − Qs + Bs‖2

=
∥
∥
∥
∥z − QuvT z

1 + vTQu
− Qs + QuvTQs

1 + vTQu

∥
∥
∥
∥

2

. (3)

In order to efficiently compute the quantity in Eq. (3), we perform the operations
in such an order, so that we never need to compute any n × n matrix. As a result we
can compute Eq. (3) in time O(n), which is better than the O(mI ) complexity of the
power-iteration, given that m = nd, where d is the average degree of the graph.

First, we compute the vector w = Qu
1+vTQu

. This can be computed in linear time.
Since u is the unit vector with 1 in one entry, and zero everywhere else, Qu can be
obtained in O(1) via column selection. Given the vector Qu we can compute vTQu
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in O(n) time, and then obtain w by scaling Qu, bringing the total computational cost
of w to O(n).

Given the vector w we can now compute wvT z (the second term in Eq. (3)) in
linear time, by first computing the dot-product vT z, and then scaling the vector w
with the result. Also, we can compute the vector Qs in O(n) time, by first selecting
the column of Q and then scaling it by si . The term wvTQs (the last term in Eq. (3))
can be computed as before in linear time. All other computations are computations on
vectors, resulting in O(n) total cost for the computation of Eq. (3).

We repeat the above procedure n times to find the best candidate node. For the
selected node, we compute the updated matrix Q′ = Q − B using the Sherman–
Morrison formula in O(n2). This brings the total computational cost of GreedyExt
to O(kn2).

6 Experiments

In this section, we present an experimental evaluation of the polarization index, and
of our algorithms for both problems. The goals of our experiments are to validate the
polarization index, study the properties of the proposed algorithms, and evaluate their
performance and scalability.

6.1 Datasets

We consider five datasets representing different types of social networks. We use
networks that are partitioned into opposing communities, and there is ground-truth
data about the community membership of the nodes. Thus, we can naturally assign
internal opinions -1 and 1 to the nodes depending on their community membership.
We consider the following datasets:
Karate3: This dataset represents a social network of friendships between 34 members
of a karate club at a US university in the 1970s. The social network is partitioned into
two distinct equal-sized communities that correspond to two fractions built around
two rival instructors.
Books4: This is a network of books about US politics published around the time of
the 2004 presidential election and sold by the online bookseller Amazon.com. Edges
between books represent frequent co-purchasing. Books are classified as Liberal,Con-
servative, and Neutral. There are in total 43 liberal books, 49 conservative, and 13
neutral . We handled the neutral nodes by assigning to them internal opinion zero.
Blogs5: A directed network of hyperlinks between weblogs on US politics, recorded in
2005 by Adamic and Glance (2005). Blogs are classified as either Liberal or Conser-
vative. We converted the social graph into an undirected one and only kept the largest

3 https://networkdata.ics.uci.edu/data.php?id=105.
4 https://networkdata.ics.uci.edu/data.php?id=8.
5 https://networkdata.ics.uci.edu/data.php?id=102.
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connected component. The resulting dataset contains two communities with 636 and
586 nodes each, and 19,089 edges.
Elections: This dataset is the network between the Twitter followers of Hillary Clinton
and Donald Trump collected in the period 15/12/2016-15/01/2017–around the time
of the 2016 presidential elections. Members of this network are assigned an internal
opinion of 1 or−1 based on which one of the two candidates they follow. Followers of
both candidates are assigned a neutral opinion. Since the dataset is prohibitively large
(20M followers), we only considered the network formed by the first 50,000 users,
according to their user id. We took the largest connected component and iteratively
pruned nodes to guarantee that every node has degree greater than 1. The resulting
network had a disproportionately large number of Clinton followers so we subsampled
her followers to ensure that the ratio of followers for each side reflected the one in the
full dataset. In the resulting network there are 7715 Hillary Clinton followers, 8336
Donald Trump followers, and 2216 Neutral followers, for a total of 18,267 users with
204,040 connections between them. As before, we treat the network as undirected.
Hashtags: Using the followers of Clinton and Trump that we collected, we also created
“topical” networks, where we assign the opinions according to the specific hash-
tag that the users tweeted. We considered two pairs of hashtags: The #maga and
#imwithher hashtags, which we expect to be polarized, and the #halloween
and #walkingdead hashtags for which we do not expect to have polarization. We
selected these hashtags since they are among the most popular in the dataset. We
sampled users that have tweeted at least one hashtag from both pairs, and we created
the follow network between them. Again, we kept the largest connected component
and iteratively pruned nodes to guarantee that every node has degree greater than 1.
The resulting network has 18,890 nodes and 269,696 edges. Using this graph, we
consider two possible settings for the opinions: In the first, we assign opinion −1 if
the users have tweeted the hashtag #maga, 1 if they have tweeted #imwithher,
and 0 if they have tweeted both. We will refer to this dataset as Hashtags P. In the
second, we assign opinion −1 if the users have tweeted the hashtag #halloween,
1 if they have tweeted #walkingdead, and 0 if they have tweeted both. We will
refer to this dataset as Hashtags NP. These two different settings allow us to study
the behavior of our metric in a polarized (Hashtags P), and non-polarized network
(Hashtags NP).

Table 1 summarizes the statistics of our datasets. For all datasets we treat the
graphs as undirected. When applying the opinion formation model, we set all edge
weights, and all opinion weights to be 1. In order to handle the cases where there is
an imbalance of opinions, we normalize the opinion values by subtracting the mean
opinion and dividing by the difference of the maximum and the minimum. In this way,
the mean opinion value becomes zero, which we consider to be the moderate stance.

6.2 Evaluation of the polarization index

In this section we evaluate the metric in its ability to identify polarization.We compute
the value of the metric for the five different datasets. Table 2 shows the values we
obtain. In order to understand if the values are indicative of polarization, we perform
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Table 1 Dataset statistics

Dataset Nodes Edges Avg degree Diameter Positive Negative Neutral

Karate 34 78 4.58 5 17 17 0

Books 105 441 8.4 7 43 49 13

Blogs 1222 16,717 27.36 8 636 586 0

Elections 18,267 204,040 22.33 8 7715 8336 2216

Hashtags P 18,890 269,696 28.55 7 12,281 6612 0

Hashtags NP 18,890 269,696 28.55 7 12,408 4102 2383

Table 2 Dataset polarization
index and randomization values

Dataset π Mean π for random
assignments

Std. dev.

Karate 0.089 0.022 0.00499

Books 0.107 0.007 0.00172

Blogs 0.029 0.012 0.00027

Elections 0.012 0.011 0.00007

Hashtags P 0.028 0.005 0.00004

Hashtags NP 0.0049 0.0044 0.00005

a randomization test, where we randomly assign the internal opinions on the graph. A
randomized assignment of opinions that is independent of the network structure does
not create any opinion clusters, and thus it corresponds to a non-polarized state. We
compare the value of the π with that of the random assignment, in order to understand
the significance of the polarization index value.

We create 100 random assignments of the opinion values, and we report the average
and standard deviation of the polarization index values we obtain for these cases.
We observe that the polarization index values are significantly higher than those in
the randomized datasets in all networks except for the Elections and Hashtags NP
datasets, where the π values are small, and close to that of the random assignment. In
the case of the Hashtags NP dataset we obtain essentially the same π value.

It is interesting to contrast the π values for the Hashtags P and Hashtags NP
datasets. In the first case, the polarization is much higher, which agrees with our
intuition that these hashtags are adopted by different communities that do not interact
with each other. In the second case the polarization index is much lower, and close to
that of the random assingment. This suggests that the distribution of the opinions in
the second case cuts across the natural communities that appear in the graph. Although
users are organized in twowell-separated communities, positive and negative opinions
appear in both, and as a result there is no polarization and echo-chamber effect. This
experiment highlights the importance of taking the opinions into account formeasuring
polarization; looking only at the network structure it is not possible to differentiate
between these two cases.
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6.3 Heuristic algorithms for opinion moderation

In addition to the algorithms we described in Sects. 4 and 5, we also consider a few
more scalable heuristics. Our reasoning in the design of the heuristics is that in order
to moderate the overall expressed opinion we need to convert to neutral the opinions
of individuals that express extreme opinions, individuals belonging to extreme neigh-
borhoods, or individuals that are influential in the network. The following algorithms
implement this reasoning.
ExtremeExpressed: This heuristic works iteratively and at each step it selects to
neutralize the node v with the highest expressed opinion |zv|. Since it requires O(n)

time to find the most extreme node, the complexity of the algorithm is determined by
the time required to compute the updated z vector after neutralizing a node. In the case
of ModerateInternal, as we have shown in Sect. 4.3, we can efficiently calculate
the new z vector by subtracting the column ofQ corresponding to the neutralized node
from the current z vector. Therefore, the algorithm has complexity O(kn). In the case
of the ModerateExpressed problem, the fastest way to compute the new z is by
iteratively updating the zi values as defined in Eq. (1), until convergence. The updates
are implemented using efficient matrix-vector multiplication. This takes time O(mI ),
where I is the number of iterations required for convergence, and m is the number of
edges in the graph, leading to complexity O(kmI ) for the algorithm. In practice, we
have found that the algorithm converges in less than 100 iterations.
ExtremeNeighbors: In this heuristic we select the next node to neutralize based
on how extreme the neighborhood of the node is. The intuition is that neutralizing
this node will have an effect on many extreme nodes. The algorithm at each step
changes the opinion of the node v whose neighbors have the highest absolute sum
of expressed opinions, that is, v = argmaxi∈V | ∑ j∈N (i) z j |. For every node we
need to check its neighbors, which takes O(m) time, and then update z, accordingly.
Therefore, if we use the efficient update of z as above, the complexity of the algorithm
for ModerateInternal is O(k(n + m)). Using the iterative method to compute z,
the complexity of the algorithm for ModerateExpressed is O(k(n + m)I ).
Pagerank: The idea behind this heuristic is that in order to moderate the overall
opinion, it is a good idea to neutralize the nodes that are central in the network. This
will result in maximum spread of a balanced viewpoint. We use PageRank (Lawrence
et al. 1998) to measure the centrality of a node. The algorithm selects the nodes in
decreasing order of their PageRank value. The complexity of the algorithm is O((m+
n)I + n log n), where O((n +m)I ) is the time to compute the PageRank values, and
O(n log n) is the time required to sort the nodes.

6.4 Evaluation of algorithms for MODERATEINTERNAL

Wefirst evaluate our algorithms with respect to the value they achieve for the objective
function π . We evaluate on all five networks. For the Hashtags network we use the
hashtags #maga and #imwithher to set the opinions, since the #halloween and
#walkingdead hashtags are alreadymoderate. Figure 2 shows the value ofπ(z | Ts)
for different sizes of the solution set |Ts | = k, for all datasets. For the smaller datasets
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Performance of the algorithms for the ModerateInternal problem on all datasets. a Karate. b
Books. c Blogs. d Elections. e Hashtags P. f Comparison with optimal

Karate and Books we let k range over the full size of the dataset. This is impractical
for the larger Blogs, Elections andHashtags datasets, hence we consider Ts up to 10%
of the dataset; we plot the value of π in increments of 1%.

As expected, the GreedyInt algorithm achieves the best performance in all
datasets. The performance of GreedyInt is consistently matched by BOMP and
ExtremeExpressed. The Pagerank and ExtremeNeighbors algorithms are
significantly worse, and in the big datasets they achieve only a minimal reduction in
π . While we expected the BOMP algorithm to be competitive with GreedyInt the
performance of ExtremeExpressed was a surprise. We also compare the BOMP
and GreedyInt algorithms against the optimal for k up to 50% of the graph, for
the smallest dataset Karate, where this computation is possible. We observe that the
GreedyInt algorithm behaves optimally, while BOMP achieves performance very
close to optimal for k ≤ 6, and coincides with it for k > 6.

Our results indicate that in order to minimize polarization in theModerateInter-
nalproblem, the best strategy is tomoderate the nodeswith themost extremeopinions.
The Pagerank and ExtremeNeighbors algorithms that take into account how
well a given node is connected to the network do not perform well.
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(a) (b)

Fig. 3 Selected nodes byGreedy on theKarate andBooks datasets for theModerateInternal problem.
a Karate. b Books

We further investigate this observation by visualizing the nodes selected by
GreedyInt in Fig. 3, for the two smaller datasets, Karate and Books. In the visual-
ization, we assign different color and shape to the nodes of the different communities.
The nodes are numbered according to their selection order by GreedyInt. The first
ten nodes are colored in orange-red and have larger size.

The visualization further confirms the behavior of GreedyInt: the nodes that are
selected first are nodes on the outskirts of the network. This means that the impact on
z is bigger when moderating fringe nodes with extreme opinions, instead of central
nodes. The broader implication of this is that for the ModerateInternal problem
the best we can do for moderating polarization is to change the opinions one user at
a time, rather than “diffusing” moderation in the network. This is in part due to the
fact that the internal opinion is only one of the contributing factors to the expressed
opinion of an individual, and thus its change has a limited effect.

6.5 Evaluation of the algorithms for MODERATEEXPRESSED

For the evaluation of theModerateExpressed problemwe follow the same method-
ology as for ModerateInternal. Figure 4 shows the π(z | Tz) as a function of the
size of Tz for all datasets.

As expected, theGreedyExt is again the best-performing algorithm.However, the
performance of the other algorithms changes depending on the dataset. For theKarate,
Books, Blogs and Hashtags P datasets, ExtremeNeighbors and Pagerank
achieve performance close to that of GreedyExt, especially for smaller values of
k, while ExtremeExpressed is clearly the worst performer. As the size of the
solution increases, Pagerank and ExtremeNeighbors seem to lose their effec-
tiveness, while ExtremeExpressed catches up with them. These results indicate
that when moderating expressed opinions, it is a good strategy to select nodes that are
relatively central and express an extreme opinion. After selecting a sufficient number
of influential nodes, the gains of moderating central nodes is diminished, and there is
more benefit in neutralizing extreme nodes which were not affected by the influential
ones, essentially, adopting the approach of moderating one node at the time.

However, we observe a very different picture in the Elections dataset, where
ExtremeExpressed is almost as good as GreedyExt, and Pagerank and
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Performance of the algorithms for the ModerateExpressed problem on all datasets. a Karate. b
Books. c Blogs. d Elections. e Hashtags P. f Elections top-1%

ExtremeNeighbors perform poorly. Note that, according to the randomization
test, the Elections dataset is not very polarized. Therefore, there is sufficient mixing
of opinions and it is not possible to moderate a large number of nodes by neutral-
izing an influential node. The one-node-at-the-time approach works better. In order
to further investigate this claim we “zoom in” in the performance of the algorithms
for k up to the top-1% of the nodes. Now, Pagerank and ExtremeNeighbors
appear competitive for small k, but their performance deteriorates in comparison to
ExtremeExpressed as k increases. This is in stark contrast to the Hashtags P
dataset, which is of similar size with Elections but it is very polarized, where the
algorithms that change influential nodes achieve a good performance.

From Fig. 4 we also observe that the reduction in π(z) is significantly higher for the
ModerateExpressed problem than for ModerateInternal for the same dataset,
for the same k. This is expected, as themoderation of the expressed opinion has amuch
larger effect in the opinion of the individual, and the opinions in her social network,
than the moderation of the internal opinion.
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(a) (b)

Fig. 5 Selected nodes by Greedy on the Karate and Books datasets for theModerateExpressed prob-
lem. a Karate. b Books

Table 3 Running times (secs) of all algorithms for k = 0.1n in the Elections dataset

ModerateInternal ModerateExpressed

Algorithm Running time (s) Algorithm Running time (s)

BOMP 2725

GreedyInt 2930 GreedyExt 16,326

ExtremeExpressed 6 ExtremeExpressed 87

ExtremeNeighbors 106 ExtremeNeighbors 121

Pagerank 7 Pagerank 17

In Fig. 5, we visualize again the selected nodes by GreedyExt for the Karate and
Books datasets. The selection is different from the one we obtained for the Moder-
ateInternalproblem (Fig. 3), and highlights the different nature of the twoproblems.
In the solution of ModerateExpressed the nodes selected are more central in the
graph. It is obvious that changing the expressed opinion of a node has a bigger impact
on the opinions of the neighbors of that node. As a result, GreedyExt tries to pick
nodes that are both central and extreme. The first selection of GreedyExt is the
node that it is ranked first for both Pagerank and ExtremeExpressed. This
combination is essential in achieving high reduction of π . As the selection process
continues, the selections of GreedyExt alternate between central and fringe nodes
as the algorithm is trying to “cover” different parts of the graph, andmoderate opinions
of nodes that are not easily reached by the central nodes.

6.6 Scalability

We now evaluate the scalability of our algorithms. Table 3 shows the running time for
all algorithms on the Elections dataset for ModerateInternal and ModerateEx-
pressed and k = 0.1n. All experiments were conducted on a machine with an Intel
Core i7-4790 CPU and 16GB RAM. The algorithms are implemented in Python using
the networkx and numpy libraries.

As expected from the theoretical analysis, for the ModerateInternal problem
ExtremeExpressed, ExtremeNeighbors and Pagerank far outperform the
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Fig. 6 Comparison of the running times (in secs) for the **Sherman–Morrison and iterative implementation
of GreedyExt, for varying size of n

GreedyInt and BOMP in terms of running time. Given that ExtremeExpressed
is matching the performance of GreedyInt and BOMP, this indicates that this is an
effective heuristic for very large datasets.

We also study the effect of using the Sherman–Morrison formula in the computation
of the update of the z vector when GreedyExt considers a candidate node. We
consider two implementations of GreedyExt: one that uses the Sherman–Morisson
formula (Sect. 5.3), and one that computes the z vector using Eq. (1) iteratively. We
construct different samples from the Elections dataset, of size 2.8, 6, 9.9, 13.8 and
18.2 K. Figure 6 shows the comparison of the two implementations for one update of
z. The x-axis is the size of the graph and the y-axis is the running time (in secs). The
plot is in log-log scale. Clearly, the Sherman–Morrison implementation is one order
magnitude faster, making the algorithm scalable for larger datasets.

Our algorithms use the fundamental matrix Q, and thus require quadratic amount
of memory and time. They are applicable to medium-to-large networks, such as an
ego-network, or the network induced by the users of specific hashtags, or a subset of
Twitter followers, but they cannot be used for massive networks of millions of nodes.
In such cases, we can use the iterative computation of the z vector. This computation
is very similar to the computation of PageRank, and lends itself to a distributed imple-
mentation. Using existing distributed computation techniques, we can compute the
polarization index for very large networks. Our algorithms can combine the efficient
heuristics we described to reduce the number of candidate nodes to be considered
(e.g., consider only the top nodes in terms of zi , or PageRank value).

6.7 Case study

We conclude by taking a closer look at the characteristics of individuals that were
selected by GreedyExt in the Elections dataset. For this, we pick the first 10 nodes
selected by GreedyExt and we rank them according to three other measures: the
extremity of their expressed opinion, measured by the node’s |zi |, their centrality,
measured by their PageRank score and their degree. In the last three columns of
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Table 4 Characteristics of the first ten nodes selected by GreedyExt in Elections dataset

Opinion zi |zi | rank Degree rank Pagerank rank

1 Positive 0.045 10683 16 11

2 Neutral −0.049 10,211 34 21

3 Positive 0.03 11704 9 8

4 Negative −0.35 32 12,473 4861

5 Negative −0.03 12,582 52 37

6 Positive 0.02 13634 2 1

7 Negative −0.04 10,844 114 59

8 Negative −0.06 8366 257 157

9 Negative −0.07 7486 601 170

10 Positive 0.04 11,269 23 19

Table 4 we show the rank of these first 10 nodes in the three rankings. In the same
table we report the internal opinion of the node (−1 for Trump and +1 for Clinton)
and their original expressed opinions zi .

We observe that GreedyExtmainly selects central nodes, but also selects a node
with very extreme expressed opinion high in the list (4-th pick). Nine out of the top-10
nodes are clearly very central in the network as they are ranked high both by their
degree and their PageRank scores. This is in line with the previous observation that
GreedyExt initially tries to diffuse as much neutrality as possible and then tries to
cover individuals that were not reached. We also note in the top-10 selected nodes we
have five Trump followers, four Clinton followers, and a neutral user. Note that this
matches relatively closely the proportions of Trump, Clinton and Neutral followers in
the full dataset, which agrees with our previous observations onKarate andBooks, and
indicates that it is a good strategy to take a balanced approach to moderating opinions.

7 Conclusions

In this paper we considered the problem of polarization in online social networks.
Using a popular opinion formation model, we proposed the polarization index, a
novel measure for quantifying the degree of polarization in the network that takes
into account both the network structure and the existing opinions of users. We then
considered the problem of identifying a small set of individuals, such that, if we
convince them to adopt a moderate opinion, this will minimize the polarization index.
We defined two variants of the problem, and showed that both variants areNP-hard.We
proposed efficient algorithms by exploiting the mathematical properties of the opinion
formation model. Experiments with real data demonstrate the validity of our model,
and the effectiveness of our algorithms in reducing polarization. Our experiments also
highlight the properties and the differences of the two problems we considered.

In our work we assumed that the opinions are given as input for the computation of
the polarization index. An interesting future direction for our work is to use opinion
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mining techniques to derive the opinions of the users in the social network. Such
techniques can be used as the first step in our pipeline. Alternatively, we could integrate
ideas from opinion and sentimentmining into the computation of a polarizationmetric,
or in the moderation algorithms.

Furthermore, our approach to moderation is to set the opinions of the users to zero.
An alternative approach would be to set the user opinions to values other than zero, so
as to minimize polarization. In the case of the internal opinions, there are interesting
connections of this problem with the algebraic properties of the fundamental matrix
Q that are worth exploring in future work.
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Appendix A: Theorem 1 proof

Theorem 1 The ModerateInternal problem is NP-hard.

Proof Our proof uses a reduction from them-SubsetSum problem, where given a set
of N positive integer numbers v1, . . . , vN , a value m, and a target value b, we ask if
there is a set of numbers B of size m, such that

∑
vi∈B vi = b.

Given an instance of them-SubsetSum problem,we construct an instance ofMod-
erateInternal as follows. The graph is a star with N + 1 nodes: we have a central
node u0, and a spoke node ui for each integer vi . For the center of the star (node u0) we
have thatw00 = t , for an appropriately selected value of t (we will discuss this below),
and s0 = −1. The weight of the edge (u0, ui ) from the center to node ui is w0i = vi ,
and the weight of node ui to its internal opinion is also wi i = vi . The opinion of all
spoke nodes is si = 1. We set k = N −m, and we ask for a set of nodes Ts , |Ts | = k,
such that, when setting si = 0 for ui ∈ Ts π(z | Tz) = ‖z‖2 is minimized.

The intuition of the proof is that the expressed opinion of the center node z0 deter-
mines π(z). The value of z0 is determined by the weight t of the internal opinion of u0,
and the weights of the edges of nodes whose opinion is not set to zero. If we select t
appropriately, we can guarantee that ‖z‖2 is minimized when the nodes whose opinion
is not set to zero sums to the value b.

Formally, assume that we have selected the set Ts , |Ts | = k. Assume that u0 /∈ Ts .
Also let R = V \Ts ∪ {u0} denote the set of spoke nodes whose opinion was not set to
0. According to the opinion formation model, the equations for the expressed opinions
of the spoke nodes are as follows. For every node ui ∈ R, zi = z0

2 + 1
2 . while for

every node ui ∈ Ts , zi = z0
2 .

We can thus write:

π(z | Ts) = ‖z‖2 = z20 + k
1

4
z20 + (N − k)

1

4
(z20 + 2z0 + 1)

= N + 4

4
z20 + N − k

2
z0 + N − k

4
.
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Recall that we want to minimize π(z | Ts). To find the value of z0 that minimizes
π(z | Ts), we take the derivative of the expression above, we set it zero, and solve for
z0. We get that the value of z0 that minimizes π(z) is:

z∗0 = k − N

N + 4
.

It follows that the minimum value of π(z | Ts) is

π∗ = (N − k)(k + 4)

4(N + 4)
.

We now set the value of t such that if the set of numbers in R sums to the value of
b, then z0 achieves the z∗0 value. First we compute the value of z0 as a function of t .
In the following we set W = ∑N

i=1 vi . We have that:

z0 =
N∑

i=1

vi zi
W + t

− t

W + t
=

∑

ui∈Ts

vi z0
2(W + t)

+
∑

ui∈R

vi (z0 + 1)

2(W + t)
− t

W + t

=
∑N

i=1 vi

2(W + t)
z0 +

∑
ui∈R vi

2(W + t)
− t

W + t
= W

2(W + t)
z0 +

∑
ui∈R vi − 2t

2(W + t)

Solving for z0 we get:

z0 =
∑

ui∈R vi − 2t

W + 2t
.

We want the minimum to be achieved when
∑

ui∈R vi = b. Setting z0 = z∗0 we get:

b − 2t

W + 2t
= K − N

N + 4

Solving for t we get:

t = (N + 4)b + (N − k)W

2(k + 4)
.

Now, we want to prove the following. There is a set B of m numbers such that∑
vi∈B vi = b, if and only if there is a set of nodes Ts of size k = N − m such that

when setting their internal opinion to zero, π(z | Ts) < π∗ + ε for some appropriate
value of ε.

The forward direction is easy. If there exists this set B, then there is a set Ts such
that when setting their opinions to zero, for the set R we have that

z0 =
∑

ui∈R vi − 2t

W + 2t
= b − 2t

W + 2t
= k − N

N + 4
,

and therefore π(z | Ts) = π∗.
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For the backwards direction, if no such set of numbers exists, then it is not possible
to find a set of nodes Ts such the nodes in R give z0 = K−N

N+4 that minimizes π(z | Ts).
Therefore, there must be an ε such that π(z | Ts) ≥ π∗ + ε.

To set ε note that for any z0 �= z∗0
∣
∣z0 − z∗0

∣
∣ =

∣
∣
∣
∣

∑
ui∈R vi − b

W + 2t

∣
∣
∣
∣ ≥ 1

W + 2t
= k + 4

(N + 4)(W + b)
,

where the inequality follows from the fact that the values v1, . . . , vN , b are integers
and their difference is at least one. Now, let z∗ be the vector with z∗0 that achieves the
minimum value π∗. For any other z we have

π(z) − π∗ = N + 4

4

(
z20 − (z∗0)2

)
+ N − k

2
(z0 − z∗0)

= (
z0 − z∗0

)
(
N + 4

4
z0 + N + 4

4
z∗0 − 2(N + 4)

4

k − N

N + 4

)

= (
z0 − z∗0

)
(
N + 4

4
z0 − N + 4

4
z∗0

)

= N + 4

4

(
z0 − z∗0

)2

≥ N + 4

4

(
1

W + 2t

)2

= (k + 4)2

4(N + 4)(W + b)2
.

So it suffices to set ε <
(k+4)2

4(N+4)(W+b)2
.

Finally, in our computations so far we have assumed that our set Ts does not contain
node u0. This is not a restrictive assumption. Consider a solution Ts , where u0 ∈ Ts ,
and s0 = 0. Then, since s0 is the only negative opinion value in our instance, it follows
that z0 ≥ 0, and for any node ui ∈ R we have that zi = 1

2 z0 + 1
2 ≥ 1

2 . There are
N + 1 − k nodes in R. Therefore,

π(z | Ts) ≥ N + 1 − k

2
.

Note that π∗ = (N − k)(k + 4)/4(N + 4) ≤ (N − k)/4, since k ≤ N . Therefore,
π(z) ≥ 2π∗ + 1/4. Selecting ε < π∗ + 1

4 guarantees that π(z|Ts) > π∗ + ε. Thus,
if there is a set Ts such that π(z|Ts) is minimized, it cannot contain u0. ��
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