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ABSTRACT
In the sponsored search model, search engines are paid by
businesses that are interested in displaying ads for their site
alongside the search results. Businesses bid for keywords,
and their ad is displayed when the keyword is queried to
the search engine. An important problem in this process is
keyword generation: given a business that is interested in
launching a campaign, suggest keywords that are related to
that campaign. We address this problem by making use of
the query logs of the search engine. We identify queries re-
lated to a campaign by exploiting the associations between
queries and URLs as they are captured by the user’s clicks.
These queries form good keyword suggestions since they cap-
ture the “wisdom of the crowd” as to what is related to a
site. We formulate the problem as a semi-supervised learn-
ing problem, and propose algorithms within the Markov
Random Field model. We perform experiments with real
query logs, and we demonstrate that our algorithms scale to
large query logs and produce meaningful results.

Categories and Subject Descriptors: H.3.5 [Informa-
tion Systems]: Information Storage and Retrieval — On-line
Information Services; J.0 [Computer Applications]: General

General Terms: Algorithms

Keywords: Absorbing Random Walks, Keyword Genera-
tion, Markov Random Fields,Query Click Logs, Sponsored
Search

1. INTRODUCTION
The main source of income for search engines is web search

advertising, which places relevant advertisements together
with the search engine results. Given a specific keyword
(a single word or a short phrase), advertisers bid for the
keyword, and the winner of the auction has her ads displayed
as sponsored links next to the “algorithmic” results of the
search engine.

The problem of identifying an appropriate set of keywords
for a specific advertiser is called keyword generation (or key-
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word research). This problem is important for both the
search engines and the advertisers. Providing a broad set
of relevant keywords to an advertiser enables the search en-
gine to tap the long tail of small businesses and organiza-
tions. At the same time, such small businesses now have in-
expensive access to a powerful advertising medium, and they
can attract traffic to their site by bidding on the appropri-
ate keywords. All major search engines provide services for
keyword research (e.g., Google’s AdWords Keyword Tool1,
Overture/Yahoo! Keyword Selector Tool2, and Microsoft
adCenter Labs’ Keyword Group Detection3).

Previous approaches to the keyword generation problem
have exploited the content of either Web pages [10, 20, 26]
or search engine results [14]. In this paper, we tackle the
problem by making use of search engine query-click logs, an
approach that has received limited attention in the literature
[4]. Search engine query-click logs maintain the queries that
users pose to the search engine and the documents that are
clicked in return. Clicks define a strong association between
queries and URLs. The semantics of a query is captured
in the URLs that are clicked as a result of the query, while
the queries that result in a click to a URL provide a short,
concise description of that URL. We exploit this reinforcing
relationship between queries and URLs to find queries that
are related to the interests of the advertiser. Our approach
has the advantage that it exploits the proverbial “wisdom of
the crowds” for keyword generation. Furthermore, the sug-
gested keywords take into account the click-through traffic
that they generate in the search engine, and as a result they
are more directly monetizable.

As an illustrative example, suppose that the owner of the
shoes.com online store decides to launch an ad campaign.
We can safely assume that most of the queries that end up
in the Web site of shoes.com come from users interested
in buying shoes. Furthermore, the click-logs enable us to
expand this immediate set of queries further by exploiting
semantic associations between queries and documents. Con-
sider the sample of a search engine click log shown in Table 1.
Since some user issued the query“running shoes”and clicked
on www.shoes.com, we can assume that this query is about
shoes. Notice that the query “running shoes” also resulted

1http://adwords.google.com/select/KeywordToolExternal
2http://inventory.overture.com/d/searchinventory/suggestion
3http://adlab.msn.com/contextSim/Default.aspx
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Table 1: A sample of a click log

Query Clicked Url
running shoes www.shoes.com

running shoes www.runningshoes.com

reebok shoes www.runningshoes.com

rebok shoes www.runningshoes.com

in a click to www.runningshoes.com, which in turn attracted
clicks from the queries“reebok shoes”and“rebok shoes”. We
may then conclude (perhaps with less certainty) that these
two queries and the URL www.runningshoes.com are also
about shoes. Notice that although the latter query has a
misspelling, it still represents an interest in buying shoes of
a specific brand, and is therefore valuable to the advertiser.

We can now define the keyword generation problem as fol-
lows. Given a concept (such as shoes), a set of elements that
represent the concept (such as a set of URLs), and the re-
lationships between the documents and the queries, obtain
a set of keywords that best capture the concept. We for-
mulate the problem as a semi-supervised learning problem.
The input consists of (i) a set of labeled objects about a
concept (e.g., the URLs in the shoes.com domain); (ii) a set
of unlabeled objects (the remaining URLs and the queries
in the log); and (iii) a set of constraints between labeled and
unlabeled objects (the click log). The goal is to label some
of the unlabeled elements in a meaningful way.

There is an extensive literature in the area of semi-super-
vised learning [7]. In this work, we employ Markov Ran-
dom Fields [17] to model the query click graph. Specifically,
the clicks quantify pairwise relationships between documents
and queries, and define a bipartite graph which induces a
Markov Random Field. Informally, in a Markov Random
Field the probability that an object is associated to a label
depends only on the labels of its neighbors. In our con-
text, this means that the probability of a query being as-
sociated to a concept is determined by the documents that
were clicked for this query (and, analogously, for the proba-
bilities of the documents).

The Markov Random Field model lends itself to differ-
ent inference algorithms for computing the probability dis-
tribution over the labels for unlabeled objects. The main
algorithm we consider in this paper makes use of absorbing
random walks. This is an inference algorithm for Gaussian
Markov Random Fields, that computes the probability of a
query to belong to a concept as the average of the probabil-
ity of the clicked URLs for this query (similarly for URLs).
We also consider a variational inference algorithm where we
attempt to maximize the entropy of an approximating label
distribution while respecting the underlying constraints.

The contributions of this paper are the following:

• We provide an approach for keyword generation based
on exploiting the query-click graph.

• We propose an algorithm for keyword generation based
on a random walk with absorbing states. The al-
gorithm is intuitively appealing and performs well in
practice.

• We define a formal framework for keyword generation
in terms of Markov Random Fields. We show how the

random walk algorithm can be modeled within this
framework, and we consider an alternative approach.

• We perform an experimental study in the context of a
large-scale click log. The experiments show that this
approach can be used to produce large, high-quality
lists of keywords with minimal effort. For example, in
one of the experiments we show that by leveraging a
list of 12 popular domains, it is possible to construct a
list of 500,000 keywords, 95.9% of which are relevant
to the desired concept.

The rest of the paper is structured as follows. In Section
2, we define the keyword generation problem. In Section 3,
we present an algorithm for the keyword generation prob-
lem that is based on random walks with absorbing states.
In Section 4, we demonstrate how the keyword generation
problem and the random walk algorithm can be formulated
within the Markov Random Field model, and we consider
an alternative algorithm within the Markov Random Field
model. In Section 5, we perform an experimental valida-
tion of our techniques using real click logs. In Section 6 we
present related work, and in Section 7 we give some conclud-
ing remarks.

2. PROBLEM DEFINITION
We now define the click-based keyword generation problem.

We assume that the following is given as input.

1. A search engine click log L. The search engine click log
consists of triples 〈q, u, fqu〉, where q is a query, u is the
URL of a document, and fqu is the number of times
that the users issued query q to the search engine and
clicked on URL u. We use Q and U to denote the set
of all queries and all URLs, respectively, in the click
log L. We have that L ⊆ Q× U ×N+.

We will consider the click log L as a weighted bipartite
graph G = (Q,U , E), henceforth called the click graph.
The URLs U and queries Q constitute the partitions
of the graph, and for every record 〈q, u, fqu〉 in the log,
there is an edge (q, u) ∈ E with weight fqu.

2. A set of concepts C = {c1, ..., ck}. The concepts repre-
sent abstract themes that the advertiser is interested
in. Concepts may be general (e.g., shoes), or specific
(e.g., running shoes for teenagers). In the simplest
case, C consists of a single concept provided by the ad-
vertiser. In the more complex one, it is a full taxonomy
of different classes.

3. A seed set S ⊆ U ×C of URLs in the click log that are
manually assigned to the concepts in C. The seed set
S consists of pairs 〈u, c〉 where u ∈ U and c ∈ C is the
label of concept c. The set of URLs assigned to the
concept c can be thought of as a representation of the
concept c in terms of URLs.

Given G, C, and S the goal of the keyword generation
problem is to populate the concepts in C with queries from
Q. These queries will be used as keyword suggestions to the
advertisers that are interested in the specific concept.

Note that in the problem definition we defined the seed
set to be a set of labeled URLs. We could also define the
seed set as a set of labeled queries, or a mix of queries and
URLs. For simplicity, we will restrict ourselves to the case
that the seed set consists only of URLs.
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3. A RANDOM WALK ALGORITHM
We begin the algorithmic exploration of the keyword gen-

eration problem by describing an algorithm that is based on
a random walk with absorbing states. The algorithm is intu-
itively appealing and can be implemented efficiently. In the
next section, we show the connection between this algorithm
and the theory of Markov Random Fields.

Recall the motivating example presented in the previous
section. The advertiser is interested in the general concept of
“shoes”and the seed set consists of the URL www.shoes.com.
Starting from this URL, we were able to associate the query
“running shoes” to the concept “shoes” as some user had
posed this query and clicked on the above URL. That is, we
assumed that the query is associated to the concept “shoes”
because one of its immediate neighbors (i.e., the URL) was
also related to this concept. We also made a similar assump-
tion for URLs associated to queries about shoes. Intuitively
the queries (and URLs) are related to the concept of shoes
because they are connected closely in the graph to the seed
set that represents this concept.

We capture this intuition using a random walk. For some
query q ∈ Q, we compute the affinity of q to some seed
node s ∈ S as the probability that a random walk that
starts from q ends up at node s. The affinity of q to the
class c ∈ C is the probability that the random walk that
starts from q ends up in any seed node in the class c. Note
that in this walk the nodes in the seed set act as absorbing
nodes, that is, sink nodes in the state transition graph from
which the random walk cannot escape. Absorbing nodes
naturally model the fact that for the URLs in the seed set
we have complete certainty about their class since they were
manually assigned to that class, and thus their assignment
should not be changed by the algorithm.

Note that for the case where there exists a single seed node
s in the graph, every query that is reachable from the seed
node will be absorbed with probability 1 at node s. How-
ever, the further away a query is from the seed URL, the less
related it should be to the URL’s class. We model this by
introducing an absorbing “null class” node ω to the graph,
and connecting this node to every other node in the graph.
The effect of this null class node is that long paths are penal-
ized by the algorithm, and the probability of a node being
absorbed at the seed node decreases exponentially with the
length of the path.

Performing a random walk for every query in the graph
is computationally prohibitive for a large graph. However,
there is a simple iterative algorithm that can compute the
class probabilities efficiently. We will now describe the al-
gorithm for the case that we have a single concept c (that
is, C = {c}), and then show how to generalize to the case of
multiple classes.

Let ℓq (or ℓu) denote the random variable pertaining to the
concept label for query q (or URL u). We want to compute
P (ℓq = c), that is, the probability that a random walk that
starts from q will be absorbed at some node of the class c.
Let α be the probability of making a transition to the null
class absorbing node, from any node in the graph. Then we
have that

P (ℓq = c) = (1 − α)
X

u:(q,u)∈E

wquP (ℓu = c) (1)

where

wqu =
fqu

P

u:(q,u)∈E
fqu

is the transition probability from query q to URL u, and
P (ℓu = c) is the probability that a random walk that starts
from URL u ends up being absorbed in class c. For all URLs
u in the seed set, we have that P (ℓu = c) = 1 if the pair
〈u, c〉 belongs in the seed set, and zero otherwise. For all
other URLs, the probability P (ℓu = c) is again recursively
computed as

P (ℓu = c) = (1 − α)
X

q:(u,q)∈E

wuqP (ℓq = c) (2)

where

wuq =
fqu

P

q:(q,u)∈E
fqu

is the transition probability from u to q.
The iterative process defined by Equations 1 and 2 is

known to converge [9]. The computation has interesting con-
nections with electrical networks. Consider the click graph
as an electrical network, where each edge (q, u) is a wire, and
the weight fqu of the edge is the conductance of the wire. If
we apply a unit of voltage to the nodes in the seed set, and
we ground the absorbing node ω, then the probabilities that
we compute are the voltages on the non-seed nodes.

The outline of the Absorbing Random Walk (ARW) algo-
rithm is shown in Algorithm 1. Note that in lines 5 and 9
of the algorithm we discard probabilities that are below a
threshold γ. This step is mainly for efficiency purposes. If
we do not do any pruning, then all nodes that are reachable
from the seed set will get some probability of belonging to
the class regardless of how small that probability is. How-
ever, we are not interested in such queries, since they are
too far from the seed set. Making the probabilities of these
nodes to be zero conceptually means that we temporarily
make them absorbing nodes and place them in the null class.
At convergence, we have a set of null class nodes that define
the boundary of the graph that we have explored.

Algorithm 1 The ARW algorithm for a single class

Input: the seed set S for class c, the click-graph G, the
threshold parameter γ, the transition probability α to ω

Output: P (ℓq = c), for every query q.
1: for u ∈ S do P (ℓu = c) = 1
2: repeat

3: for all q ∈ Q do

4: P (ℓq = c) = (1 − α)
P

u:(q,u)∈E
wquP (ℓu = c)

5: if P (ℓq = c) < γ then P (ℓq = c) = 0
6: end for

7: for all u ∈ U \ S do

8: P (ℓu = c) = (1 − α)
P

q:(u,q)∈E
wuqP (ℓq = c)

9: if P (ℓu = c) < γ then P (ℓu = c) = 0
10: end for

11: until convergence
12: Output P (ℓq = c), for every query q in Q

The algorithm generalizes naturally to the case where
there are multiple concepts. More specifically, Equations 1
and 2 can still be used for computing the probabilities P (ℓq =
c) and P (ℓu = c) for each concept c ∈ C. We can thus
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perform the same iterative algorithm for all classes simul-
taneously. However, this process is memory intensive since
it requires to maintain probability vectors for all k classes.
Furthermore, the fraction of the graph that will be explored
will increase substantially even if we prune nodes with low
probabilities, since the size of the seed set may be signifi-
cantly larger.

This problem can be addressed by considering the con-
cepts one at the time. However, this should be done care-
fully so as to take into account all the information contained
in the seed set. Let S = {S1, · · · ,Sk} be the partition of the
seed set into the k concepts. Applying Algorithm 1 directly
for each set Si is incorrect, since we discard the information
we have about the seed nodes in the other concepts. For
these nodes, we know with certainty that they cannot be-
long to class ci; thus, they are negative examples for the class
ci. We can easily model this effect in the absorbing random
walk: when considering class ci we make all the remaining
seed nodes in S \ Si to be in the null class.

The outline of the ARW algorithm for multiple classes
is shown in Algorithm 2. The outer loop of the algorithm
iterates over all classes, and for each class we perform an
absorbing random walk. The absorbing random walk for
each individual class ci is very similar to Algorithm 1, albeit
with two distinct differences. In line 2 of the algorithm, we
fix the probability of the nodes in S \ Si to belong to the
class ci to zero, thus making them into null absorbing nodes.
Also, when we update the URL probabilities (lines 9 – 12),
we do not update the probabilities for any of the URLs in
S. In effect, the seed set for the absorbing random walk
for class ci consists of the entire set S; the nodes in Si have
probability 1, while the nodes in S\Si have probability zero.

The effect of this optimization is that the memory foot-
print is decreased dramatically, since we only need to con-
sider a single class at the time. Single class runs are also
fast, since the size of the explored graph is smaller. Further-
more, the null absorbing nodes in S \Si “block” the random
walk, and thus speed up the convergence. Note also that the
algorithm is amenable to parallel execution.

Algorithm 2 The ARW algorithm for multiple classes

Input: the seed set S = {S1, · · · ,Sk} for concepts C =
{c1, · · · , ck}, the click-graph G, the threshold parameter
γ, the transition probability α to ω.

Output: P (ℓq = c), for every query q and every class c.
1: for all ci ∈ C do

2: for u ∈ S \ Si do P (ℓu = ci) = 0
3: for u ∈ Si do P (ℓu = c) = 1
4: repeat

5: for all q ∈ Q do

6: P (ℓq = c) = (1 − α)
P

u:(q,u)∈E
wquP (ℓu = c)

7: if P (ℓq = c) < γ then P (ℓq = c) = 0
8: end for

9: for all u ∈ U \ S do

10: P (ℓu = c) = (1 − α)
P

q:(u,q)∈E
wuqP (ℓq = c)

11: if P (ℓu = c) < γ then P (ℓu = c) = 0
12: end for

13: until convergence
14: Output P (ℓq = c), for every query q and class c
15: end for

Further optimizations are possible. Once the run for con-
cept ci is completed, we know that with probability Pqi =
P (ℓq = ci), the query q belongs to class ci. Therefore,
the probability mass “available” for the remaining classes
is 1−Pqi. When considering another class cj , we can create
a random jump with probability Pqi to the null absorbing
node. This will result in faster convergence for each individ-
ual run.

4. MARKOV RANDOM FIELDS
We now demonstrate how the keyword generation prob-

lem and the ARW algorithm that we described in the previ-
ous section can be formulated within the Markov Random
Field model. In order to compare different Markov Random
Field formulations, we also present another algorithm for
computing the class probabilities. In Section 5, we report
experiments comparing this algorithm against the ARW al-
gorithm.

4.1 Model and definitions
A Markov Random Field (MRF) is an undirected graph,

where each node in the graph is associated with a random
variable and the edges model the pairwise relationships be-
tween the random variables. MRFs define a probability
model where the value of a random variable in the field de-
pends on the prior knowledge we may have for that variable,
and the values of all the adjacent variables in the graph.
The characteristic of the MRFs is the Markovian assump-
tion that the value of a random variable is independent of
the rest of the graph, given the values of all its neighbors.
Given a set of observations about certain variables in the
MRF, an important problem is to compute the most likely
assignment of values for the other unobserved variables.

We model the keyword generation problem using an MRF
as follows. Consider the random variables ℓq and ℓu that
represent the concept label for each query q and URL u,
respectively. The domain of these variables is the set of
concept labels C. The pairwise relationships between the
nodes are defined by the edges derived from the click graph,
and their strength depends on their weight. The seed set S
defines the observations for the variables. The observations
in our case are of the form P (ℓu = c) = 1 for all pairs 〈u, c〉
in the seed set. We are interested in assigning concepts to
the queries and the unlabeled URLs in the graph in such
a way that we respect the constraints defined by the click
graph.

In the MRF model this is translated to finding the assign-
ment of values to the random variables such that the pos-
terior probability P ({ℓq}, {ℓu}|S) is maximized. The main
assumption is that given the Markovian assumption we can
decompose the joint probability distribution to factors de-
fined over the edges in the graph. For some edge (q, u) in the
MRF, we define a compatibility function ψqu(ℓq, ℓu) (also
called potential function) that scores the relationship be-
tween q and u. The choice of potential function typically
reflects the prior knowledge one has about the problem un-
der consideration. As noted earlier, in our case a click to a
URL from a query can be viewed as an endorsement of sim-
ilar concept. Hence, a larger click count implies a stronger
agreement of concepts between the connected nodes. The
definition of ψ will be made to reflect this prior belief about
concept agreement and click counts.

Given the potential function we can now succinctly write
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the joint probability distribution of the MRF as follows:

P ({ℓq}, {ℓu},S) ∝
Y

(q,u)∈E

ψqu(ℓq, ℓu)
Y

s∈S

φs(ℓs; k) (3)

where φs(ℓs; k) = P (ℓs = ck), and P (ℓs = ck) = 1 if 〈s, ck〉 ∈
S.

The exact definition of the MRF depends on the choice of
the actual potential function, which dictates the way that
the probabilities are computed. However, given a specific
potential function ψqu(ℓq, ℓu), finding the optimal label as-
signment is NP-hard for graphs that have cycles, which is the
case with the click-log graph. Thus, approximate inference
algorithms are required. In the next sections we describe
two different ways for defining the potential function, and
performing approximate inference. The first approach leads
to the absorbing random walk algorithm we described in the
previous section.

4.2 Gaussian Markov Random Fields
One way to relax the MRF inference problem is to assume

that instead of having discrete labels C we have continuous
ones. For simplicity assume that C = {0, 1}, that is we have
only two classes and we want to assign each query q and
URL u to one of those classes. The continuous relaxation
assumes that C = [0, 1], that is the class labels ℓq and ℓu are
now real numbers in the [0, 1] interval. These continuous
labels can then be converted to discrete ones by rounding
them to the closest discrete value.

Given this relaxation assumption, we can now work within
the Gaussian Markov Random Field model. The potential
function ψqu(ℓq, ℓu) is now defined as follows

ψqu(ℓq, ℓu) = exp(−fqu(ℓq − ℓu)2)

The joint distribution of the MRF can be written as

P ({ℓq}, {ℓu},S) ∝
Y

(q,u)∈E

exp(−fqu(ℓq − ℓu)2)

= exp(
X

(q,u)∈E

−fqu(ℓq − ℓu)2)

where ℓu = 1 for all seed URLs u ∈ S. We have that

P ({ℓq}, {ℓu}|S) =
P ({ℓq}, {ℓu},S)

P (S)

where P (S) is the probability of the observations in the
seed set. Since P (S) is independent of the labels {ℓq} and
{ℓu}, maximizing P ({ℓq}, {ℓu}|S) is the same as maximizing
P ({ℓq}, {ℓu},S). Finding the label assignment that maxi-
mizes the probability P ({ℓq}, {ℓu},S) is the same as mini-
mizing

E = − logP ({ℓq}, {ℓu},S) ∝
X

(q,u)∈E

fqu(ℓq − ℓu)2

The quantity E is often referred to as the energy of the
Markov Random Field. This minimization criterion requires
that for edges (q, u) with large weight fqu the labels ℓq and ℓu
should be close, so that the value fqu(ℓq −ℓu)2 is minimized.
This is intuitive; a large number of clicks fqu implies a strong
association between the query q and URL u, and thus their
labels should be similar. This effect is a direct consequence
of the choice of the potential function which was chosen so

as to penalize discrepancy between the labels of edges with
large weight.

Finding the optimal labeling is now a tractable problem.
Zhu et al. [27] demonstrate that the optimal labeling is har-
monic and the optimal value can be found by iteratively
setting each label value to be the weighted average of the la-
bels of its neighbors. Note that this is exactly the property
satisfied by the absorbing random walk algorithm we de-
scribed in the previous section. The probability of a query
to belong to a class is computed as the weighted average of
the probabilities of its neighbors. The harmonic property
guarantees that the iterative computation leads to a unique
solution. Thus the ARW algorithm can be naturally viewed
as an inference algorithm in the Gaussian Markov Random
Field.

4.3 Variational Inference and the Mean Field
Algorithm

For comparison purposes we also consider a different Markov
Random Field formulation, and a different algorithm for
computing the posterior distribution. Unlike the Gaussian
Markov Random Field, in this case we consider the labels
to be discrete. To model the fact that for edges with large
weight we want the assigned labels to agree, we set the po-
tential function to be

ψ(ℓq, ℓu) =



exp(λfqu), if ℓu = ℓq
α, if ℓu 6= ℓq

where α is a constant. Therefore, the potential function
rewards agreement in class for query-URL pairs when there
is a large number of clicks.

As we have already argued, finding the optimal label con-
figuration that maximizes the posterior probability is in-
tractable. In the previous section, we addressed this prob-
lem by relaxing the labels. Here, we relax our requirements
on the posterior distribution, and we approximate it by one
that is easier to compute. This approach falls under the
general framework of variational inference.

Variational inference is an important class of approximate
inference algorithms [13]. The goal of variational inference is
to approximate the true intractable posterior distribution P
with a tractable distribution P̂ that has a simpler form. The
parameters of the approximating P̂ distribution are com-
puted by directly optimizing a similarity measure between
the approximating and the true distribution. A common
choice for the (dis)similarity measure is the Kullback-Liebler
divergence (KL-divergence). The KL-divergence between

two distributions P̂ and P is defined as

K
h

P̂‖P
i

=
X

x

P̂ (x) log
P̂ (x)

P (x)
(4)

For the variational inference algorithm described here, we
define the approximate distribution to take a fully factored
form

P̂ ({ℓq}, {ℓu}|S) =
Y

q

P̂q(ℓq)
Y

u

P̂u(ℓu) (5)

This is also known as the Mean Field approximation. The
distributions P̂q and P̂u in the above equation model the pos-
terior over queries and URLs respectively; more specifically,
from the point of view of parametrization, P̂q and P̂u are
multinomial distributions that define the posterior over cat-
egories. For example, if there are k categories {c1, c2, . . . ck},
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then the parametrization of P̂q will have k numbers, P̂qi =

P̂q(ℓq = ci) such that
P

i
P̂qi = 1.

We now seek to estimate the parameters of the approxi-
mating distributions by minimizing the KL divergence be-
tween it and the true posterior. The minimization will be
performed with respect to every parameter of the P̂ distri-
bution. The KL-divergence can be computed as follows.

K
h

P̂‖P
i

=
X

ℓq,ℓu

P̂ (ℓq, ℓu) log
P̂ (ℓq, ℓu)

P (ℓq, ℓu|S)

=
X

ℓq,ℓu

P̂ (ℓq, ℓu) log
P̂ (ℓq, ℓu)P (S)

P (ℓq, ℓu|S)P (S)

=
X

ℓq,ℓu

P̂ (ℓq, ℓu) log
P̂ (ℓq, ℓu)

P (ℓq, ℓu,S)
+ log(P (S))

= −H(P̂ ) −
X

ℓq,ℓu

P̂ (ℓq, ℓu) logP (ℓq, ℓu,S) + logP (S)

= E + logP (S) (6)

The first term E in Equation 6 is generally referred to
as the mean field free energy4, the intuition being low en-
ergy configurations are more stable (and likely). The sec-
ond term logP (S) is the log probability of observations,

and does not depend on the parameters of the P̂ distribu-
tion; hence we can safely ignore the term while performing
the minimization and work only with E. To ensure that
P

c
P̂q(ℓq = c) = 1 for all queries q (and similarly for P̂u) we

need to introduce appropriate Lagrangian multipliers during
the minimization. The minimization is performed by doing
gradient descent on the parameter space {P̂qi}, {P̂qi}

The expansion of the mean-field energy term

E = −H(P̂ ) −
X

ℓq,ℓu

P̂ (ℓq, ℓu) logP (ℓq, ℓu,S)

results in two terms, one that is independent of observations
S, and the other encoding it. The former corresponds to the
(negative) entropy of the approximating distribution and the
latter can be associated with the expectation of the joint
distribution with respect to the approximating distribution.
During the minimization, the first terms favors a P̂ distri-
bution with high entropy, while the evidence term, which
encodes S, tends to explain the observations by pulling P̂
away from the uniform distribution. The updates for the P̂q

and the P̂u distributions will be coupled whenever there is
an edge between the particular query and URL. Using the
fact that the distribution P ({ℓq}, {ℓu},S) for a given config-
uration readily factors into a product of pairwise potentials,
we can now write the update equations as follows.

log P̂q(ℓq) =
X

u:(q,u)∈E

X

c

P̂u(ℓu = c) logψqu(ℓq, ℓu) − 1 + λq

log P̂u(ℓu) =
X

q:(q,u)∈E

X

c

P̂q(ℓq = c) logψqu(ℓu, ℓq) − 1 + λu

where λq and λu are the Lagrangian multipliers that nor-
malize the resulting distributions. Iterating yields a local

4Different from the Markov Random Field energy we mini-
mized before.

minimum, and we obtain a distribution over the class la-
bels.

5. EXPERIMENTS
We now present an experimental evaluation of our ap-

proach, centered around the ARW algorithm. In Section
5.1, we present the experimental setup. In Section 5.2, we
study the properties of the ARW algorithm and the qual-
ity of the results that it returns. Finally, in Section 5.3, we
compare the ARW algorithm with other algorithms, includ-
ing the Mean Field algorithm presented in Section 4.3.

5.1 Experimental setup

The query click graph. We perform experiments on a
click graph constructed from a snapshot of the query log
obtained from a major search engine. The graph has 41
million queries, 55 million URLs, and 93 million edges. The
URLs correspond to both clicked documents and ads. The
query-URL pairs account for 490 million clicks in the log.
Each edge has a frequency of at least two: we pruned all
query-URL pairs with just one click in the snapshot, since
we considered them to be too rare to define a meaningful
association.

Seed sets. We use three different seed sets that are mo-
tivated by specific scenarios. In the first scenario, the seed
set is created by just specifying the domain of the adver-
tiser’s Web site. We consider the scenario in our motivating
example in Section 1 where an advertiser is interested in
promoting the online shoe store www.shoes.com. The goal
of the advertiser is to find queries that are related to her do-
main, and could potentially result in clicks to her advertise-
ment. Therefore, the URLs in the domain shoes.com can
be thought of as a representation of the abstract concept
“shoes” that the advertiser is interested in. We construct
the seed set by obtaining all the URLs in the domain (i.e.,
all URLs that start with www.shoes.com) that appear in the
click log, and we label them with the “shoes” concept. We
call this seed set Shoes.

In the second scenario, the advertiser leverages publicly-
accessible data to produce the seed set. Consider an adver-
tiser who is interested in promoting a health-specific site,
that is, she is interested in the abstract concept of “health”.
The advertiser is interested in capturing queries related to
her site, but also queries that go to sites which are similar
to hers and are authoritative in the health domain. In this
case, the seed set can be obtained by resorting to a collec-
tion of popular health sites. For our experiment, we use the
12 most popular sites in the health domain obtained from
Nielsen NetRating5. The sites are the following:

health.yahoo.com, webmd.com, health.msn.com,

kidshealth.org, www.prevention.com, www.cdc.gov,

www.mayoclinic.com, familydoctor.org,

emedicine.com, health.ivillage.com,

parenting.ivillage.com, www.medicinenet.com

Similarly to the Shoes seed set, once we have the domains
we construct the seed set by obtaining all the URLs in the
click log from those domains. We call this seed set Health.

In the last scenario, we assume that the search engine of-
fers the advertiser a set of pre-existing concepts in the form

5http://www.nielsen-netratings.com/
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query set γ |Qi
k ∩Q0

k| |Qi
k ∩Q0

k|/|Q
0
k|

Q0
k 10−5 50,000 100%

Q1
k 10−4 45,645 91.3%

Q2
k 10−3 37,338 74.7%

Q3
k 10−2 15,276 31.2%

Table 2: Effect of threshold γ for α = 0.001 for Shoes

query set α |Qi
k ∩Q0

k| |Qi
k ∩Q0

k|/|Q
0
k|

Q0
k 0.0001 50000 100 %

Q1
k 0.001 49812 99.6 %

Q2
k 0.01 48259 96.5%

Q3
k 0.1 43608 87.2%

Q4
k 0.2 41359 82.7%

Q5
k 0.3 39564 79.1%

Table 3: Effect of α for γ = 0.0001 for Shoes

of a taxonomy. The advertiser can select the concepts that
she interested in and choose keywords from these concepts.
Our objective is to populate the taxonomy with keywords
by assigning queries to the different concepts. For the seed
set, we assume the existence of a directory that maps URLs
to some fixed taxonomy. In our experiment, we employ a
directory designed for marketing purposes that is similar in
spirit to the ODP directory. We focus on the third level of
the taxonomy, which contains 1,158 categories. We consider
each third-level category as a distinct concept, and we set
the seed set for that concept to be the URLs in the cor-
responding category in the directory. We call this seed set
Directory.

5.2 Experiments with the ARW algorithm
The goal of the following experiments is to evaluate the

properties of the ARW algorithm and the quality of the re-
sults that it returns. Given a concept c and a seed set S,
the ARW algorithm returns a set of queries related to the
concept. The queries are then sorted according to the prob-
ability of belonging to the concept, and the top-k queries Qk

are returned as candidates to the advertiser. We are inter-
ested in evaluating the answer set Qk. We first investigate
how the parameters of the ARW algorithm affect the set Qk,
and then the quality and properties of the queries in Qk for
different values of k. We use the Shoes and Health seed sets
for these experiments.

Setting the ARW parameters. We begin by studying
the effect of the ARW parameters α and γ on the result set
Qk. Increasing α causes query probabilities to decrease, so
very large values of α, in combination with the threshold γ,
will cause the size of the set Qk to diminish. However, it is
not clear what the effect of a small increase of α is on the
ranking produced by the query probabilities, and thus the
contents of Qk. Similarly, increasing γ will cause some more
nodes to be pruned, but it is not clear what effect it will
have on the high-probability queries.

We study the effect of the threshold value γ for the Shoes

seed set. We set α to 0.001, we run the ARW algorithm for
different values of γ, and we observe the change in the result
set Qk for k = 50K. The results are presented in Table 2. In
this table, we consider query sets Q0

k, . . . , Q
3
k corresponding

to values of γ ranging from 10−5 to 10−2. For each query
set Qi

k, we show the size of the intersection with Q0
k, and

query set γ |Qi
k ∩Q0

k| |Qi
k ∩Q0

k|/|Q
0
k|

Q0
k 0.0001 500000 100%

Q1
k 0.001 456892 91.3 %

Q2
k 0.01 393582 78.7%

Q3
k 0.05 211391 42.3%

Table 4: Effect of threshold γ for α = 0.001 for Health

query set α |Qi
k ∩Q0

k| |Qi
k ∩Q0

k|/|Q
0
k|

Q0
k 0.0001 500,000 100%

Q1
k 0.001 493,258 98.6%

Q2
k 0.01 456,344 91.2%

Q3
k 0.1 399,607 80%

Q4
k 0.2 381,747 76.3%

Q5
k 0.3 370,751 74.1%

Table 5: Effect of α for γ = 0.0001 for Health

the fraction of Q0
k that it represents. We can observe in

Table 2 that if we decrease γ by one order of magnitude
(from 10−5 to 10−4), we still retain 91.3% of the queries in
the intersection. If we decrease it by two orders of magnitude
(from 10−5 to 10−3) the intersection still contains 74.7% of
the queries in Q0

k. For γ = 10−2, the intersection drops
to 31.2%. However, for this high value of the threshold,
the algorithm retrieves only 15,360 queries, 99.4% of which
intersect with Q0

k.
We perform a similar study for the effect of the param-

eter α. We set the threshold γ to 10−4 and run the ARW
algorithm on the Shoes seed set for different values of α.
For each run we consider the top k = 50K queries. The
results are shown in Table 3. We denote the different query
result sets as Q0

k, . . . , Q
5
k, corresponding to values of α rang-

ing from 0.0001 to 0.3. As before, for each query set Qi
k, we

show the size of the intersection with Q0
k, and the fraction

of Q0
k that it represents. We observe in the table that if

we decrease the threshold by one order of magnitude (from
0.0001 to 0.001), we still retain 99.6% of the queries. Even
if we decrease the threshold by three orders of magnitude
(from 0.0001 to 0.1), the intersection is still 87.2% of the
top 50K queries.

We observe very similar trends for the Health seed set.
The results are shown in Tables 4 and 5. We can thus
conclude that there is a wide range of values for γ and α
for which the query set Qk returned by the algorithm re-
mains relatively unchanged. The algorithm is robust to the
changes of the parameters. This is not surprising since we
expect nodes that are close to the seed set to be in the top-k
results. The ranking of these nodes should not be signifi-
cantly affected by moderate changes to α or γ. This has
implications for the efficiency of the algorithm as well, since
we can pick relatively high values for the parameters and
speed-up the convergence of the algorithm, while retaining
consistent results.

Query set evaluation. We now evaluate the quality of the
query set Qk produced by the ARW algorithm. We consider
the following two metrics for evaluating the results.

• Relevance: We compute the relevance ratio R(Qk) of
the query set Qk as the fraction of relevant queries in
the set S. The evaluation of queries was done by hu-
man evaluators. In each experiment, the judges were
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Relevance Indirectness
k R(Qk) N(Qk)

5K 97.6% 64.2%
10K 97.7% 78.1%
20K 93.6 % 87.8%
30K 88.3% 91.6%
40K 84.7% 93.6%
50K 82.4% 94.7%

Table 6: Relevance and indirectness for Shoes
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(a) relevance R(Qk) (b) indirectness N(Qk)

Figure 1: Plots for evaluation metrics for Shoes

presented with a description of the concept and a set
of queries, and they were instructed to consider the
queries as “good” if they could find a relationship be-
tween the query and the concept, and“bad”otherwise.

• Indirectness: Given the seed set S, let Q(S) denote
the set of queries that are directly connected to S. We
say that a query q is indirect, if q 6∈ Q(S). We de-
note with N(Qk) the fraction of indirect queries in a
result set Qk. Indirect queries are of particular inter-
est when the seed set contains URLs associated to the
advertiser’s site, such as in the Shoes scenario, since
the advertiser may be interested in discovering rele-
vant queries that have not been generating traffic to
her site.

We first study the trade-off between the size of the query
result set and its relevance. For each seed set, we run a ran-
dom walk with α = 0.001 and γ = 10−4. For each result set,
we evaluate the relevance of the top-k queries, for different
values of k. The relevance results for Shoes and Health are
shown in Tables 6 and 7, respectively. We also plot them
in Figures 1(a) and 2(a), respectively. For the Shoes ex-
periment, the relevance decreases with the value of k, but
even for the top 50K queries it is reasonably high (82.4%).
For the Health experiment, the relevance remains relatively
constant as we increase k, and it is 95.9% for the largest
result set that we consider (k = 500K).

We then consider how indirectness changes for different
values of k. The results for Shoes are given in Table 6, and
plotted in Figure 1(b). Indirectness increases considerably
when k goes from 5K to 20K (from 64.2% to 87.8%), and
then continues to increase, but more slowly. Indirectness of
87.8% can be achieved with a relevance of 93.6%. Table 7
and Figure 2(b) show the indirectness values for the Health

seed set. Indirectness increases sharply from k = 50K to
k = 500K. Initially, only 2% of the queries are indirect, while

Relevance Indirectness
k R(Qk) N(Qk)

50K 97.1% 2.0%
100K 96.9% 23.3%
200K 96.2% 56.7%
300K 96.1% 70.8%
400K 96.4% 78.1%
500K 95.9% 82.4%

Table 7: Relevance and indirectness for Health
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Figure 2: Plots for evaluation metrics for Health

for k = 500K, the percentage of indirect queries is 82.4%.
This increase in indirectness does not come at the expense
of relevance, which is 97.1% in the former case and 95.9% in
the latter. These numbers indicate that we can obtain high
quality results even when we consider queries that are not
directly connected to the seed set in the click graph.

5.3 Comparison with other algorithms
In this section we compare the ARW algorithm with two

other algorithms. The first is the Mean Field algorithm as it
is described in Section 4.3. The second is an algorithm that
categorizes a query by grouping the snippets of the returned
URLs into a snippet document, and classifying the snippet
document. This method was first employed by Broder et
al. [6]. For the classification of the snippet document we
use a Rocchio classifier [18], trained using the content of
all the documents in the Directory seed set. The snippet
document is constructed by merging the snippets of the top-
40 documents, a number that was shown to perform well by
Broder et al. [6]

Both algorithms we compare against are better defined
for the case that there are multiple concepts, so for this
experiment we use the Directory seed set. We measure
relevance by sampling from the results and evaluating the
query-category pairs. For the evaluation of individual pairs,
we consider the third level of the taxonomy. Given the large
size of the taxonomy, for presentation purposes we aggregate
the results into the 20 top-level categories of the taxonomy.
We present micro-averaged relevance [25] for each category.
The micro-averaged relevance for a high level category c is
computed using the query-category pairs 〈q, c′〉, where c′

ranges over all subcategories of c. The micro-average rel-
evance of category c is the fraction of such pairs that are
judged as “good”. Notice that even though we aggregate
the values at the top level of the taxonomy, the queries are
actually evaluated at the third-level. Table 8 summarizes
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Micro-averages
Category ARW Mean Snippets

Field
Food and Drinks 99% 84.6% 92%
Social Sciences and Humanities 91.3% 35% 78%
Computers and Computing 89.6% 71.8% 70.1%
Health and Wellness 97.8% 83.8% 84.9%
Vehicles and Transportation 83.3% 90.9% 90.9%
Lawn and Garden 96.6% 66.7% 60%
Travel 94.7% 80% 96.3%
Sports and Recreation 91.1% 51.9% 76.7 %
Financial Services 96.7% 85.4% 82.3%
Arts and Entertainment 88.1% 78.7% 78.6%
Games Puzzles 94.2% 94.7% 77.8%
Kids and Teens Lifestyle 89.3% 77.3% 72.2%
Society and Culture 67.1% 54.5% 78.7%
Business 87.2% 72.1% 70.9%
Clothing and Shoes 98.4% 95.5% 95.7%
Science 86.2% 57.3% 86.3%
Educational Institutions 87.2% 34.4% 61%
Families and Relationships 94.1% 90.9% 80%
Animals 94.2% 90.9% 100%
Home Improvement 96.8% 84.2% 93.8%
Micro-average 88.2% 69% 80.2%

Table 8: Micro-average relevance. Aggregated for

top-level categories of the taxonomy, evaluated for

third-level categories.

the results. The first column lists the 20 top-level categories
in the taxonomy. The second column corresponds to the
ARW algorithm with parameters α = 0.01 and γ = 0.001;
the third column to the Mean Field algorithm; and the last
column to the snippets-based algorithm.

The ARW algorithm has the highest micro-average rele-
vance (88.2%, as opposed to 80.2% for the Snippets algo-
rithm). Notice that although the Snippets algorithm has a
lower micro-average relevance than the ARW on the entire
sample, it has higher micro-average relevance for 5 out of
the 20 classes that we consider. This suggests that, as fu-
ture work, it may be fruitful to consider an approach that
exploits both the content of documents and their clicks. On
the other hand, the Mean Field algorithm has a lower micro-
average relevance of 69%. It produces the best results for
two of the categories, but usually it exhibits the lowest rel-
evance ratio. It appears that the ARW algorithm benefits
significantly by the introduction of the null category, and
the exponential decay in the probability of reaching a node
in the seed set. This effect is not modeled well in the case
of the Mean Field algorithm, which results in poor perfor-
mance in the case that there are weak connections between
queries and URLs of non-relevant classes. Understanding
fully how the Mean Field algorithm can be optimized is also
an interesting problem for future work.

This experiment offers also an interesting insight into how
the ARW algorithm performs when the seed set contains
multiple concepts, as well as concepts of fine granularity.
The third level of the taxonomy contains 1158 categories,
some of which are fairly narrow. For example, under the top-
level category “Arts and Entertainment”, there are third-
level categories such as“Movies/Film Festivals”, “Movies/A-
wards”, “Movies/Filmaking” and “Movies/Theaters”. The
micro-average relevance that we obtained indicates that the
algorithm produces relevant results even for fine-grained cat-
egories of the taxonomy.

6. RELATED WORK
Most of the work on keyword generation has focused on

extracting keywords from documents. Turney [20] proposed
GenEx, a rule-based keyword extraction system tuned us-
ing a genetic algorithm. Another well-known keyword ex-
traction system is KEA [10], which employs a naive Bayes
learning algorithm. Later work added web document related
features to KEA, such as the number of documents returned
by a search engine [21] and link information [15]. The use
of natural language techniques for keyword extraction was
initially studied by Hulth [12]. Yih et al. [26] proposed a sys-
tem for extracting keywords from Web pages for contextual
advertising. Among other features, they use the frequen-
cies of candidate keywords in the query log. However, they
do not employ click information (i.e., relationships between
queries and documents). These techniques for keyword ex-
traction from documents can be viewed as complementary to
ours. In particular, we can consider the keywords extracted
from the given document as a seed set (of queries) for our
click-based algorithm.

Some approaches in the literature exploit the results re-
turned by a search engine instead of the user clicks [1, 14].
The idea is to start with a seed set of keywords, submit
them to the search engine and then use the retrieved text
snippets or documents to extract relevant keywords. Joshi
and Motwani [14] introduced a notion of non-obviousness
which, though similar in spirit to the notion of indirectness
presented in our work, is defined quite differently. In partic-
ular, they assume that a set of keywords is given as input,
and a term is considered non-obvious if it does not contain
any of the input keywords. To the best of our knowledge,
the only previous approach to keyword generation that em-
ploys the click graph is by Bartz et al. [4]; however, their
techniques are quite different from ours (they employ logistic
regression and collaborative filtering techniques).

The techniques presented in this paper can be used to
populate queries within a taxonomy if a directory of URLs
is used to represent the concepts. There are a number of
proposals in the literature that obtain a query category by
classifying the search results of the query (either documents
or snippets) [6, 19]. In contrast, we use clicks, and we do
not need to crawl content in order to train a classifier. More
related to our approach is the work of Xue et al. [23], which
considers the combination of the signal coming from docu-
ment content and the click logs, and shows an improvement
over pure content-based classification methods.

The click graph has been used extensively for other ap-
plications. Some related approaches include the following.
Beeferman and Burger [5] and Wen et al. [22] employ clus-
tering techniques to determine query-to-query similarity. Xue
et al. [24] use the click graph to find document-to-document
similarities. Craswell and Szummer [8] consider random
walk techniques on the click graph to produce a ranking
of documents for image search. Baeza-Yates and Tiberi [3]
use the click graph to extract semantic relationships between
queries.

In our approach, we start with a seed set (of queries or
URLs) and expand it in order to generate keywords. The
seed set expansion problem has been considered in other con-
texts such as detecting hubs and authorities [16], community
discovery [2], and detecting spam pages [11].
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7. CONCLUSIONS
We have introduced an approach to keyword generation

that leverages the information available in the search engine
click logs. Our approach requires minimal effort from the
part of the advertisers. In some cases, it just suffices to
provide one domain in order to produce large lists of relevant
keywords. Promising experimental results demonstrate that
our algorithms can scale to large query logs and produce
high-quality results.

There are several directions for future work. One impor-
tant direction is to consider richer click graphs, with addi-
tional attributes such as dwell times, and position of clicked
documents in the click graph. We can also add other types
of edges to the graph. For example, the query reformula-
tions made by users induce edges between queries; and hy-
perlinks induce edges between URLs. In addition to using
click information, we could also use the impressions (i.e., the
results that are shown to the users). This may yield valu-
able negative information: a “non-click” to a URL may be
an indication of the fact that it is not relevant to the query.
Another interesting direction is to consider the content of
Web pages. We could use a standard document classifier to
classify some of the documents, and use the output of the
classifier as priors in the click-based algorithm. The query
string could be used as well; if a query is not in the output
of our algorithm, we could consider approximate matching
techniques to find a similar query which is in the output.

Finally, it would be interesting to study the effect of spam
on the keyword generation techniques. There are two types
of spam that should be taken into account: spurious clicks
(usually from bot agents) and spam Web pages, each one
affecting the algorithm in a different way.
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