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We consider the following problem: given a set of clusterings, find a single clustering that agrees

as much as possible with the input clusterings. This problem, clustering aggregation, appears nat-

urally in various contexts. For example, clustering categorical data is an instance of the clustering

aggregation problem; each categorical attribute can be viewed as a clustering of the input rows

where rows are grouped together if they take the same value on that attribute. Clustering ag-

gregation can also be used as a metaclustering method to improve the robustness of clustering

by combining the output of multiple algorithms. Furthermore, the problem formulation does not

require a priori information about the number of clusters; it is naturally determined by the opti-

mization function.

In this article, we give a formal statement of the clustering aggregation problem, and we propose

a number of algorithms. Our algorithms make use of the connection between clustering aggregation

and the problem of correlation clustering. Although the problems we consider are NP-hard, for

several of our methods, we provide theoretical guarantees on the quality of the solutions. Our

work provides the best deterministic approximation algorithm for the variation of the correlation

clustering problem we consider. We also show how sampling can be used to scale the algorithms

for large datasets. We give an extensive empirical evaluation demonstrating the usefulness of the

problem and of the solutions.
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1. INTRODUCTION

Clustering is an important step in the process of data analysis and has appli-
cations to numerous fields. Informally, clustering is defined as the problem of
partitioning data objects into groups (clusters) such that objects in the same
group are similar, while objects in different groups are dissimilar. This defini-
tion assumes that there is some well-defined quality measure that captures in-
tracluster similarity and/or intercluster dissimilarity. Clustering then becomes
the problem of grouping together data objects so that the quality measure is op-
timized. There is an extensive body of literature on clustering methods, see, for
instance, Jain and Dubes [1987]; Hand et al. [2001]; Han and Kamber [2001].

In this article, we consider an approach to clustering that is based on the
concept of aggregation. We assume that given a set of data objects, we can obtain
some information on how these objects should be clustered. This information
comes in the form of m clusterings C1, . . . , Cm. The objective is to produce a single
clustering C that agrees as much as possible with the m input clusterings. We
define a disagreement between two clusterings C and C ′ as a pair of objects (v, u)
such that C places them in the same cluster, while C ′ places them in different
clusters or vice versa. If d (C, C ′) denotes the number of disagreements between
C and C ′, then the task is to find a clustering C that minimizes

∑m
i=1 d (Ci, C).

As an example, consider the dataset V = {v1, v2, v3, v4, v5, v6} that consists
of six objects, and let C1 = {{v1, v2}, {v3, v4}, {v5, v6}}, C2 = {{v1, v3}, {v2, v4}, {v5},
{v6}}, and C3 = {{v1, v3}, {v2, v4}, {v5, v6}} be three clusterings of V . Figure 1
shows the three clusterings where each column corresponds to a clustering,
and a value i denotes that the tuple in that row belongs in the i-th cluster
of the clustering in that column. The right-most column is the clustering C =
{{v1, v3}, {v2, v4}, {v5, v6}} that minimizes the total number of disagreements with
the clusterings C1, C2, C3. In this example, the total number of disagreements is
5 one with the clustering C2 for the pair (v5, v6), and four with the clustering C1

for the pairs (v1, v2), (v1, v3), (v2, v4), (v3, v4). It is not hard to see that this is the
minimum number of disagreements possible for any partition of the dataset V .

We define clustering aggregation as the optimization problem where, given a
set of m clusterings, we want to find the clustering that minimizes the total num-
ber of disagreements with the m clusterings. Clustering aggregation provides a
general framework for dealing with a variety of problems related to clustering:
(i) it gives a natural clustering algorithm for categorical data; (ii) it handles het-
erogeneous data where tuples are defined over incomparable attributes; (iii) it
determines the appropriate number of clusters and it detects outliers; (iv) it
provides a method for improving the clustering robustness by combining the
results of many clustering algorithms; and (v) it allows for clustering of data
that is vertically partitioned in order to preserve privacy. We elaborate on the
properties and the applications of clustering aggregation in Section 2.
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C1 C2 C3 C
v1 1 1 1 1

v2 1 2 2 2

v3 2 1 1 1

v4 2 2 2 2

v5 3 3 3 3

v6 3 4 3 3

Fig. 1. An example of clustering aggregation. C1, C2, and C3 are the input clusterings, and v1, . . . , v6

are the objects to be clustered. A value k in the entry (vi , C j ) means that object vi belongs to cluster k
of the clustering Cj . Column C is the clustering that minimizes the disagreements with clusterings

C1, C2, and C3.

The algorithms we propose for the problem of clustering aggregation take
advantage of a related problem which is known as correlation clustering [Bansal
et al. 2004]. In the version of the problem we consider, we are given a graph
with edge weights X uv satisfying the triangle inequality. We map clustering
aggregation to correlation clustering by considering the tuples of the dataset as
vertices of a graph and summarizing the information provided by the m input
clusterings by weights on the edges of the graph. The weight X uv of the edge
(u, v) is the fraction of clusterings that place u and v in different clusters. For
example, the correlation clustering instance for the dataset in Figure 1 is shown
in Figure 2. Note that if the weight of the edge (u, v) is less than 1/2, then the
majority of the clusterings place u and v together, while if the weight is greater
than 1/2, the majority places u and v in different clusters. Ideally, we would like
to cut all edges with weight more than 1/2 and not cut all edges with weight
less than 1/2. The goal in correlation clustering is to find a partition of the
vertices of the graph that cuts as few as possible of the edges with low weight
(less than 1/2) and as many as possible of the edges with high weight (more
than 1/2). In Figure 2, clustering C = {{v1, v3}, {v2, v4}, {v5, v6}} is obviously the
optimal clustering since it only cuts edges with weight greater than 1/2.

Clustering aggregation has been previously considered under a variety of
names (consensus clustering, clustering ensemble, clustering combination) in
a variety of different areas such as machine learning [Strehl and Ghosh 2002;
Fern and Brodley 2003], pattern recognition [Fred and Jain 2002], bioinformat-
ics [Filkov and Skiena 2004], and data mining [Topchy et al. 2004; Boulis and
Ostendorf 2004]. The problem of correlation clustering is interesting in its own
right, and it has recently attracted a lot of attention in the theoretical com-
puter science community [Bansal et al. 2004; Charikar et al. 2003; Demaine
et al. 2006; Swamy 2004]. We review some of the related literature on both
clustering aggregation and correlation clustering in Section 3.

Our contributions can be summarized as follows.

—We formally define the problem of clustering aggregation, and we demon-
strate the connection between clustering aggregation and correlation clus-
tering.

—We present a number of algorithms for clustering aggregation and correlation
clustering. We also propose a sampling mechanism that allows our algorithms
to handle large datasets. The problems we consider are NP-hard, yet we are

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 4, Publication date: March 2007.



4 • A. Gionis et al.

Fig. 2. A correlation clustering instance for the dataset in Figure 1. Solid edges indicate distances

of 1/3, dashed edges indicate distances of 2/3, and dotted edges indicate distances of 1. The circles

depict the clusters of clustering C that minimizes the number of disagreements.

still able to provide approximation guarantees for many of the algorithms
we propose. For the formulation of correlation clustering we consider, we
give a combinatorial deterministic 3-approximation algorithm, which is an
improvement over the previously best known deterministic 9-approximation
algorithm.

—We present an extensive experimental study wherein we demonstrate the
benefits of our approach. Furthermore, we show that our sampling technique
reduces the running time of the algorithms without sacrificing the quality of
the clustering.

The rest of this article is structured as follows. In Section 2, we discuss
the various applications of the clustering aggregation framework. Section 3
contains a review of the related work. The problem statements we consider in
this article are formally defined in Section 4. In Section 5, we describe in detail
the proposed algorithms for clustering aggregation and correlation clustering as
well as the sampling-based algorithm that allows us to handle large datasets.
Our experiments on synthetic and real datasets are presented in Section 7.
Finally, Section 8 is a short conclusion.

2. APPLICATIONS OF CLUSTERING AGGREGATION

Clustering aggregation can be applied in various settings. We will now present
some of the main applications and features of our framework.

Clustering categorical data. An important application of clustering aggre-
gation is that it provides a very natural method for clustering categorical data.
Consider a dataset with tuples t1, . . . , tn over a set of categorical attributes
A1, . . . , Am. The idea is to view each attribute Aj as a way of producing a sim-
ple clustering of the data, that is, if Aj contains k j distinct values, then Aj

partitions the data in k j clusters, one cluster for each value. Then, clustering
aggregation considers all those m clusterings produced by the m attributes and
tries to find a clustering that agrees as much as possible with all of them.

For example, consider a Movie database. Each tuple in the database corre-
sponds to a movie that is defined over a set of attributes such as Director,
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Actor, Actress, Genre, Year, etc, some of which take categorical values. Note
that each of the categorical attributes naturally defines a clustering. For ex-
ample, the Movie.Genre attribute groups the movies according to their genre,
while the Movie.Director according to who directed the movie. The objective
is to combine all these clusterings into a single clustering.

Methods for aggregating clusterings can also be extended to incorporate do-
main knowledge when available. For example, if some attributes are more im-
portant than others, then we can increase their influence on the aggregate
solution by including multiple copies of the specific attributes in the clustering
aggregation. Similarly, if we have some prior knowledge about the relation-
ships between the values of a specific attribute (e.g., a hierarchy that renders
thriller closer to horror than to comedy) we can incorporate it by adding clus-
terings that place similar values together. In the movie database example, if the
Movie.Genre takes the values thriller, horror, and comedy, we can add to the
clustering aggregation a clustering that places all movies with genre thriller
and horror together; this will bias the aggregation algorithm towards merging
these two values. In this way, we can incorporate the available domain knowl-
edge in the final result in a very natural way.

Clustering heterogeneous data. The clustering aggregation method can be
particularly effective in cases where the data are defined over heterogeneous
attributes that contain incomparable values. Consider for example the case
that there are many numerical attributes whose units are incomparable (say,
Movie.Budget and Movie.Year) and so it does not make sense to compare nu-
merical vectors directly using an Lp-type distance measure. A similar situation
arises in the case where the data contains a mix of categorical and numerical
values. In such cases, the data can be partitioned vertically into sets of homo-
geneous attributes, obtain a clustering for each of these sets by applying the
appropriate clustering algorithm, and then aggregate the individual clusterings
into a single clustering.

Identifying the correct number of clusters. One of the most important fea-
tures of the formulation of clustering aggregation is that there is no need to
specify the number of clusters in the result. The automatic identification of
the appropriate number of clusters is a deep research problem that has at-
tracted significant attention (see, e.g., Schwarz [1978]; Hamerly and Elkan
[2003]; Smyth [2000]). For most clustering approaches, the quality of the so-
lution (likelihood, sum of distances to cluster centers, etc.) improves as the
number of clusters is increased. Thus, the trivial solution of all singleton clus-
ters is the optimal. There are two ways of handling the problem. The first is to
have a hard constraint on the number of clusters or on their quality. For exam-
ple, in agglomerative algorithms, one can either fix in advance the number of
clusters in the final clustering or impose a bound on the distance beyond which
no pair of clusters will be merged. The second approach uses model selection
methods, for example, Bayesian information criterion (BIC) [Schwarz 1978],
or cross-validated likelihood [Smyth 2000] to compare models with different
numbers of clusters.
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The formulation of clustering aggregation gives one way of automatically
selecting the number of clusters. If many input clusterings place two objects
in the same cluster, then it will not be beneficial for a clustering-aggregation
solution to split these two objects. Thus, the solution of all singleton clusters
is not a trivial solution for our objective function. Furthermore, if there are k
subsets of data objects in the dataset such that, for each subset, the majority
of the input clusterings places its elements together and separates them from
the rest, then the clustering aggregation algorithm will correctly identify the
k clusters, without any prior knowledge of k. A simple instance is the example
in Figures 1 and 2 where the optimal solution C naturally discovers a set of 3
clusters in the dataset.

Indeed, the structure of the objective function ensures that the clustering ag-
gregation algorithms will naturally settle to the appropriate number of clusters.
As we will show in our experimental section, our algorithms take advantage
of this feature, and for all our datasets, they generate clusterings with a very
reasonable number of clusters. On the other hand, if the user insists on a pre-
defined number of clusters, most of our algorithms can be easily modified to
return that specific number of clusters. For example, the agglomerative algo-
rithm described in Section 5 can be modified to continue merging clusters until
the predefined number is reached.

Detecting outliers. The ability to detect outliers is closely related to the abil-
ity to identify the correct number of clusters. If a node is not close to any other
nodes, then from the point of view of the objective function, it would be bene-
ficial to assign that node in a singleton cluster. In the case of categorical data
clustering, the scenarios for detecting outliers are very intuitive. If a tuple con-
tains many uncommon values, it does not participate in clusters with other
tuples, and it is likely that it will be identified as an outlier. Another scenario
where it pays off to consider a tuple as an outlier is when the tuple contains
common values (and therefore it participates in big clusters in the individual
input clusterings), but there is no consensus on a common cluster (e.g., a horror
movie featuring actress Julia.Roberts and directed by the independent direc-
tor Lars.vonTrier).

Improving clustering robustness. Different clustering algorithms have dif-
ferent qualities and different shortcomings. Some algorithms might perform
well in specific datasets but not in others, or they might be very sensitive to
parameter settings. For example, the single-linkage algorithm is good at iden-
tifying elongated regions, but it is sensitive to clusters connected with narrow
strips of points. The k-means algorithm is a widely-used technique, but it favors
spherical clusters, it is sensitive to clusters of uneven size, and it can get stuck
in local optima.

We suggest that by aggregating the results of different clustering algorithms,
we can significantly improve the robustness and quality of the final clustering.
The idea is that different algorithms make different types of mistakes that can
be canceled out in the final aggregation. Furthermore, for objects that are out-
liers or noise, it is most likely that there will be no consensus on how they should
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be clustered, and thus it will be more beneficial for the aggregation algorithm
to single them out. The intuition is similar to performing rank aggregation for
improving the results of Web searches [Dwork et al. 2001]. Our experiments
indicate that clustering aggregation can significantly improve the results of
individual algorithms.

Privacy-preserving clustering. Consider a situation where a database table
is vertically split and different attributes are maintained in different sites. Such
a situation might arise in cases where different companies or governmental
administrations maintain various sets of data about a common population of
individuals. For such cases, our method offers a natural model for clustering the
data maintained in all sites as a whole in a privacy-preserving manner, that
is, without the need for the different sites to reveal their data to each other
and without the need to rely on a trusted authority. Each site clusters its own
data independently, and then all resulting clusterings are aggregated. The only
information revealed is which tuples are clustered together; no information is
revealed about data values of any individual tuples.

3. RELATED WORK

A source of motivation for our work is the literature on comparing and merging
multiple rankings [Dwork et al. 2001; Fagin et al. 2003]. Dwork et al. [2001]
demonstrated that combining multiple rankings in a metasearch engine for the
Web yields improved results and removes noise (spam). The intuition behind our
work is similar. By combining multiple clusterings we improve the clustering
quality and remove noise (outliers).

The problem of clustering aggregation has been previously considered in the
machine learning community, under the name clustering ensemble and con-
sensus clustering. Strehl and Ghosh [2002] consider various formulations for
the problem, most of which reduce the problem to a hypergraph partitioning
problem. In one of their formulations, they consider the same graph as in the
correlation clustering problem. The solution they propose is to compute the
best k-partition of the graph, which does not take into account the penalty for
merging two nodes that are far apart. All of their formulations assume that the
correct number of clusters is given as a parameter to the algorithm.

Fern and Brodley [2003] apply the clustering aggregation idea to a collection
of soft clusterings they obtain by random projections. They use an agglomerative
algorithm similar to ours, but again they do not penalize for merging dissim-
ilar nodes. Fred and Jain [2002] propose to use a single linkage algorithm to
combine multiple runs of the k-means algorithm.Cristofor and Simovici [2001]
observe the connection between clustering aggregation and clustering of cate-
gorical data. They propose information theoretic distance measures, and they
propose genetic algorithms for finding the best aggregation solution. Boulis and
Ostendorf [2004] use linear programming to discover a correspondence between
the labels of the individual clusterings and those of an optimal metaclustering.
Topchy et al. [2004] define clustering aggregation as a maximum likelihood
estimation problem, and they propose an EM algorithm for finding the consen-
sus clustering. Filkov and Skiena [2004] consider the same distance measure
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between clusterings as ours. They propose a simulating annealing algorithm for
finding an aggregate solution and a local search algorithm similar to ours. They
consider the application of clustering aggregation to the analysis of microarray
data. Recently, Mielikäinen et al. [2006] considered the problem of aggrega-
tion for segmentations of sequential data. A segmentation can be thought of
as an order-preserving clustering. They showed that the problem can be solved
optimally using dynamic programming.

There is an extensive literature in the field of theoretical computer science for
the problem of correlation clustering. The problem was first defined by Bansal
et al. [2004]. In their definition, the input is a complete graph with +1 and −1
weights on the edges. The objective is to partition the nodes of the graph so
as to minimize the number of positive edges that are cut, and the number of
negative edges that are not cut. The best known approximation algorithm for
this problem is by Charikar et al. [2003] who give an LP-based algorithm that
achieves an approximation factor of 4. The LP-based algorithm of Charikar et
al. is very similar to the BALLS algorithm proposed in this article. One difference
is that in Charikar et al., the algorithm works with the edge weights obtained
by the LP solution, while in our case, the algorithm works with the input edge
weights. The algorithm of Charikar et al. combined with a reduction in Bansal
et al. [2004] (Theorem 23) provides a deterministic 9-approximation algorithm
for correlation clustering when the edge weights satisfy the probability condi-
tion (i.e., for every edge (i, j ), the cost for taking that edge is X ij ∈ [0, 1], while
the cost for splitting an edge is 1 − X ij ), even if they do not satisfy the triangle
inequality.

When the edge weights are arbitrary, the problem is equivalent to the mul-
ticut problem as shown in Demaine, Emanuel, Fiat, and Immorlica [2006], and
there is a O(log n)-approximation bound. If one considers the corresponding
maximization problem, that is, maximize the agreements rather than mini-
mize disagreements, then the situation is much better. Even in the case of
graphs with arbitrary edge weights, there is a 0.76-approximation algorithm
using semidefinite programming [Charikar et al. 2003; Swamy 2004].

Recently, Ailon et al. [2005] considered a variety of correlation clustering
problems. They proposed an algorithm very similar to the BALLS algorithm,
and they showed that if the weights obey the probability condition, then their
algorithm achieves expected approximation ratio 5. If the weights X ij also obey
the triangle inequality, then the algorithm achieves expected approximation
ratio 2. For the clustering aggregation problem, they show that choosing the
best solution between their algorithm and the best of the input clusterings
(the BESTCLUSTERING algorithm) yields a solution with expected approximation
ratio 11/7.

One difference of our work with the work of Ailon et al. [2005] is that our
algorithm is deterministic, while their algorithm is probabilistic. Furthermore,
we investigate experimentally the performance of our algorithms for various
applications such as clustering of categorical data, clustering robustness, and
finding the correct number of clusters. For the problem of categorical clustering,
we compare our algorithms with various existing algorithms to demonstrate the
benefits of our approach.
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4. DESCRIPTION OF THE FRAMEWORK

We begin our discussion of the clustering aggregation framework by introducing
our notation. Consider a set of n objects V = {v1, . . . , vn}. A clustering C of V is a
partition of V into k disjoint sets C1, . . . , Ck , that is,

⋃k
i Ci = V and Ci ∩ Cj = ∅

for all i �= j . The k sets C1, . . . , Ck are the clusters of C. For each v ∈ V , we
use C(v) to denote the label of the cluster to which the object v belongs, that is,
C(v) = j if and only if v ∈ Cj . In the following, we consider m clusterings: we
write Ci to denote the ith clustering, and ki for the number of clusters of Ci. In
some cases, it is possible that there are weights associated with the clusterings
provided by the user, so that weight wi captures the user’s belief on the quality
of clustering Ci. Most of our algorithms can handle a weighted version of the
clustering problem, however, we are mostly focusing on the case that all the
weights are equal, that is, wi = 1.

In the clustering aggregation problem, the task is to find a clustering that
minimizes the disagreements with a set of input clusterings. To make the notion
more precise, we need to define a measure of disagreement between clusterings.
Consider first two objects u and v in V . The following simple 0/1 indicator
function checks if two clusterings C1 and C2 disagree on the clustering of u and v.

du,v(C1, C2) =
⎧⎨
⎩

1 if C1(u) = C1(v) and C2(u) �= C2(v),
or C1(u) �= C1(v) and C2(u) = C2(v),

0 otherwise.

The distance between two clusterings C1 and C2 is defined as the number of
pairs of objects on which the two clusterings disagree, that is,

dV (C1, C2) =
∑

(u,v)∈V ×V

du,v(C1, C2).

The clustering aggregation problem can now be formalized as follows.

Problem 1 (Clustering Aggregation). Given a set of objects V and m clus-
terings C1, . . . , Cm on V , compute a new clustering C that minimizes the total
number of disagreements with all the given clusterings, that is, it minimizes

D(C) =
m∑

i=1

dV (Ci, C).

If weights are provided for the clusterings, then the objective function becomes
D(C) = ∑m

i=1 wi · dV (Ci, C). Note that when all weights wi are integers, then we
can solve the weighted clustering aggregation problem by adding wi copies of
each clustering Ci to the input, and then solving the simple aggregation problem.
The Clustering Aggregation problem was shown to be NP-hard by Filkov and
Skiena [2004], using the results of Barthelemy and Leclerc [1995].

It is easy to show that the distance measure dV (·, ·) satisfies the triangle
inequality on the space of clusterings.

OBSERVATION 1. Given a set of objects V , and clusterings C1, C2, C3 on V , we
have dV (C1, C3) ≤ dV (C1, C2) + dV (C2, C3).
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PROOF. It is sufficient to show that, for each pair (u, v), we have du,v(C1, C3) ≤
du,v(C1, C2)+du,v(C2, C3), and the lemma follows from the definition of dV . Since
du,v takes 0/1 values, the only case in which the triangle inequality could
be violated is if du,v(C1, C3) = 1 and du,v(C1, C2) = du,v(C2, C3) = 0. However,
du,v(C1, C3) = 1 implies that either C1(u) = C1(v) and C3(u) �= C3(v) or that
C1(u) �= C1(v) and C3(u) = C3(v). Assume that C1(u) = C1(v) and C3(u) �= C3(v).
Then du,v(C1, C2) = 0 implies that the clusterings C1 and C2 agree on the clus-
tering of u and v; therefore, C2(u) = C2(v). However, since du,v(C2, C3) = 0, C2

and C3 are also in agreement, and thus C3(u) = C3(v), which contradicts our
assumption that C3(u) �= C3(v). The case where C1(u) �= C1(v) and C3(u) = C3(v)
is treated symmetrically.

The algorithms we propose for the problem of clustering aggregation take
advantage of a related formulation which is a version of the problem known
as correlation clustering [Bansal et al. 2004]. The version of correlation clus-
tering we consider is different than the original version proposed in Bansal
et al. [2004], which coresponds to having binary edge weights, and it is more
restricted than the general weighted version since in our case the edge weights
satisfy the triangle inequality. Formally, we define correlation clustering as
follows.

Problem 2 (Correlation Clustering). Given a set of objects V , and distances
X uv ∈ [0, 1] for all pairs u, v ∈ V , find a partition C for the objects in V that
minimizes the score function

d (C) =
∑
(u,v)

C(u)=C(v)

X uv +
∑
(u,v)

C(u)�=C(v)

(1 − X uv).

Correlation clustering is a generalization of clustering aggregation. Given
the m clusterings C1, . . . , Cm as input, one can construct an instance of the cor-
relation clustering problem by defining the distances X uv appropriately. Let
X uv = 1

m · |{i | 1 ≤ i ≤ m and Ci(u) �= Ci(v)}| be the fraction of clusterings that
assign the pair (u, v) into different clusters. For a candidate solution C of corre-
lation clustering, if C places u, v in the same cluster, it will disagree with mX uv

of the original clusterings, while if C places u, v in different clusters, it will
disagree with the remaining m(1− X uv) clusterings. Thus, for any clustering C,
we have m · d (C) = ∑m

i=1 dV (C, Ci) = D(C), showing that clustering aggregation
reduces to correlation clustering. We note that an instance of correlation clus-
tering produced by an instance of clustering aggregation is a restricted version
of the correlation clustering problem.

It is easy to show that the values X uv obey the triangle inequality.

OBSERVATION 2. For all u, v and w in V , we have that X uw ≤ X uv + X vw.

PROOF. Define the indicator function X i
uv, such that X i

uv = 1 if Ci(u) �= Ci(v)
and zero otherwise. Then X uv = 1

m

∑m
i=1 X i

uv. Therefore, it suffices to show that
X i

uw ≤ X i
uv+X i

vw. The only way that this inequality can be violated is if X i
uw = 1

and X i
uv = X i

vw = 0. However, the latter equality suggests that u, v, w are all
placed in the same cluster, thus reaching a contradiction.
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In the weighted case, the distance on the edge (u, v) would be

X uv =
∑m

i wi · X i
uv∑m

i wi
.

Our expositions hold for the weighted case as well. However, for simplicity in
the following, we consider only the case where all weights are equal.

Bansal et al. [2004] already showed that correlation clustering is NP-hard.
The previous reduction from clustering aggregation to correlation clustering
shows that even our version of correlation clustering, which corresponds to the
weighted correlation clustering problem where the + and − edge weights sum
to 1 and satisfy the triangle inequality, is NP-hard. Since both problems we
consider are NP-hard, it is natural to seek algorithms with provable approxi-
mation guarantees. For the clustering aggregation problem, it is easy to obtain
a 2-approximation solution. The idea is to take advantage of the triangle in-
equality property of the distance measure dV (·, ·). Assume that we are given
m objects in a metric space and we want to find a new object that minimizes
the sum of distances from the given objects. Then it is a well-known fact that
selecting the best among the m original objects yields a factor 2(1−1/m) approx-
imate solution. For our problem, this method suggests taking as the solution
to clustering aggregation the clustering Ci that minimizes D(Ci). Despite the
small approximation factor, this solution is nonintuitive, and we observed that
it does not work well in practice. Furthermore, the previous algorithm cannot
be used for the problem of correlation clustering; there are no input clusterings
to choose from. In general, the correlation clustering problem we consider is
not equivalent to the clustering aggregation problem.

5. ALGORITHMS

5.1 Description of the Algorithms

In this section, we present several algorithms for clustering aggregation. Most
of our algorithms approach the problem through the correlation clustering prob-
lem and most of the algorithms are parameter-free.

The BESTCLUSTERING Algorithm. This is the simple algorithm that was men-
tioned in the previous section. Given m clusterings C1, . . . , Cm, BESTCLUSTERING

finds the input clustering Ci that minimizes the total number of disagreements
D(Ci). Using the data structures described in Barthelemy and Leclerc [1995]
or techniques similar to those described in Mielikäinen et al. [2006] the best
clustering can be found in time O(m2n). As discussed, this algorithm yields a
solution with an approximation ratio at most 2(1−1/m). In Section 6, we show
that this bound is tight, that is, there exists an instance of the clustering ag-
gregation problem where the algorithm BESTCLUSTERING produces a solution of
cost exactly 2(1 − 1/m) times the cost of the optimal solution.

The algorithm is specific to clustering aggregation—it cannot be used for
correlation clustering. In fact, it is not always possible to construct a clustering
aggregation instance that gives rise to the given correlation clustering instance.
Any metric X uv that arises out of clustering aggregation is a convex combination
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of cut metrics and is, therefore, an L1 metric (see Deza and Laurent [1997]).
Thus, a metric X uv that is not an L1 metric cannot be represented by a clustering
aggregation instance.

The BALLS Algorithm. The BALLS algorithm is inspired by the algorithm in
Charikar et al. [2003], and it works on the correlation clustering problem. It
takes as input the matrix of pairwise distances X uv. Equivalently, we view
the input as a graph whose vertices are the tuples of a dataset, and the edges
are weighted by the distances X uv. The algorithm is defined with an input
parameter α, and it is the only algorithm that requires an input parameter.
Following the theoretical analysis in Section 6, we can set α to a constant that
guarantees a constant approximation ratio. However, different values of α can
lead to better solutions in practice.

The intuition of the algorithm is to find a set of vertices that are close to
each other and far from other vertices. Given such a set, we consider it to be
a cluster, we remove it from the graph, and we proceed with the rest of the
vertices. The difficulty lies in finding such a set since in principle any subset of
the vertices can be a candidate. We overcome the difficulty by resorting again
to the triangle inequality, this time for the distances X uv. In order to find a
good cluster, we take all vertices that are close (within a ball) to a vertex u. The
triangle inequality guarantees that if two vertices are close to u, then they are
also relatively close to each other. We also note that for the correlation clustering
problem, it is intuitive that good clusters should be ball-shaped: since our cost
function penalizes for long edges that are not cut, we do not expect to have
elongated clusters in the optimal solution.

More formally the algorithm is described as follows. It first sorts the vertices
in increasing order of the total weight of the edges incident on each vertex.
This is a heuristic that we observed to work well in practice. The ordering
does not affect the approximation guarantee of the algorithm. At every step,
the algorithm picks the first unclustered node u in that ordering. It then finds
the set of nodes B that are at a distance of at most 1/2 from the node u, and it
computes the average distance d (u, B) of the nodes in B to node u. If d (u, B) ≤ α,
then the nodes in B ∪ {u} are considered to form a cluster; otherwise, node u
forms a singleton cluster.

We can prove that, when setting α = 1
4
, the cost of a solution produced by

the BALLS algorithm is guaranteed to be at most 3 times the cost of the optimal
clustering. The proof appears in Section 6. In our experiments, we have observed
that the value 1

4
tends to be small as it creates many singleton clusters. For

many of our real datasets, we have found that α = 2
5

leads to better solutions.

The complexity of the algorithm is O(mn2) for generating the table and O(n2)
for running the algorithm.

The AGGLOMERATIVE Algorithm. The AGGLOMERATIVE algorithm is a standard
bottom-up procedure for the correlation clustering problem. It starts by placing
every node into a singleton cluster. It then proceeds by considering the pair of
clusters with the smallest average distance. The average distance between two
clusters is defined as the average weight of the edges between the two clusters.
If the average distance of the closest pair of clusters is less than 1/2, then the
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two clusters are merged into a single cluster. If there are no two clusters with
average distance smaller than 1/2, then no merging of current clusters can lead
to a solution with improved cost d (C). Thus, the algorithm stops, and it outputs
the clusters it has created so far.

The AGGLOMERATIVE algorithm has the desirable feature that it creates clus-
ters where the average distance of any pair of nodes is at most 1/2. The intuition
is that the opinion of the majority is respected on average. Using this property,
we are able to prove that when m = 3, the AGGLOMERATIVE algorithm produces
a solution with cost at most 2 times that of the optimal solution. The proof ap-
pears in Section 6. The complexity of the algorithm is O(mn2) for creating the
matrix plus O(n2 log n) for running the algorithm.

The FURTHEST Algorithm. The FURTHEST algorithm is a top-down algorithm
that works on the correlation clustering problem. It is inspired by the furthest-
first traversal algorithm, for which Hochbaum and Shmoys [1985] showed that
it achieves a 2-approximation for the clustering formulation of p-centers. As
the BALLS algorithm uses a notion of a center to find clusters and repeatedly
remove them from the graph, the FURTHEST algorithm uses centers to partition
the graph in a top-down fashion.

The algorithm starts by placing all nodes into a single cluster. Then it finds
the pair of nodes that are furthest apart and places them into different clusters.
These two nodes become the centers of the clusters. The remaining nodes are
assigned to the center that incurs the least cost. This procedure is repeated
iteratively: at each step, a new center is generated that is the furthest from
the existing centers, and the nodes are assigned to the center that incurs the
least cost. At the end of each step, the cost of the new solution is computed. If
it is lower than that of the previous step, then the algorithm continues. Oth-
erwise, the algorithm outputs the solution computed in the previous step. The
complexity of the algorithm is O(mn2) for creating the matrix and O(k2n) for
running the algorithm where k is the number of clusters created.

The LOCALSEARCH Algorithm. The LOCALSEARCH algorithm is an application
of a local search heuristic to the problem of correlation clustering. The algorithm
starts with some clustering of the nodes. This clustering could be a random
partition of the data or it could be obtained by running one of the algorithms
we have already described. The algorithm then goes through the nodes, and
it considers placing them into a different cluster or creating a new singleton
cluster with this node. The node is placed in the cluster that yields the minimum
cost. The process is iterated until there is no move that can improve the cost. The
LOCALSEARCH can be used as a clustering algorithm, but also as a postprocessing
step to improve upon an existing solution.

When considering a node v, the cost d (v, Ci) of assigning a node v to a cluster
Ci is computed as follows.

d (v, Ci) =
∑
u∈Ci

X vu +
∑
u∈Ci

(1 − X vu).

The first term is the cost of merging v in Ci, while the second term is the
cost of not merging node v with the nodes not in Ci. We compute d (v, Ci)
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efficiently as follows. For every cluster Ci, we compute and store the cost
M (v, Ci) = ∑

u∈Ci
X vu and the size of the cluster |Ci|. Then the distance of v to Ci

is

d (v, Ci) = M (v, Ci) +
∑
j �=i

(|Cj | − M (v, Cj )).

The cost of assigning node v to a singleton cluster is
∑

j (|Cj | − M (v, Cj )).
The running time of the LOCALSEARCH algorithm, given the distance matrix

X uv, is O(Tn2), where T is the number of local search iterations until the al-
gorithm converges to a solution for which no better move can be found. Our
experiments showed that the LOCALSEARCH algorithm is quite effective, and it
improves the solutions found by the previous algorithms significantly. Unfor-
tunately, the number of iterations tends to be large, and thus the algorithm is
not scalable to large datasets.

5.2 Handling Large Datasets

The algorithms we described in Section 5.1 take as input the distance matrix so
their complexity is quadratic in the number of data objects in the dataset. The
quadratic complexity is inherent in the correlation clustering problem since the
input to the problem is a complete graph. Given a node, the decision of placing
the node to a cluster has to take into account not only the cost of merging
the node to the cluster, but also the cost of not placing the node to the other
clusters. Furthermore, the definition of the cost function does not allow for an
easy summarization of the clusters, a technique that is commonly used in many
clustering algorithms. However, the quadratic complexity makes the algorithms
inapplicable to large datasets. We will now describe the algorithm SAMPLING,
which uses sampling to reduce the running time of the algorithms.

The SAMPLING algorithm is run on top of the algorithms we described Sec-
tion 5. The algorithm performs a preprocessing and postprocessing step that
is linear in the size of the dataset. In the preprocessing step, the algorithm
samples a set of nodes, S, uniformly at random from the dataset. These nodes
are given as input to one of the clustering aggregation algorithms. The output
is a set of � clusters {C1, ..., C�} of the nodes in S. In the postprocessing step,
the algorithm goes through the nodes in the dataset not in S. For every node,
it decides whether or not to place it in one of the existing clusters or to create a
singleton cluster. In order to perform this step efficiently, we use the same tech-
nique as for the LOCALSEARCH algorithm. We observed experimentally that at
the end of the assignment phase there are too many singleton clusters. There-
fore, we collect all singleton clusters, and we run the clustering aggregation
again on this subset of nodes.

The size of the sample S is determined so that for all large clusters in the
dataset the sample will contain at least one node from each such larger cluster
with high probability. Large cluster means a cluster that contains a constant
fraction of the nodes in the dataset. Using the Chernoff bounds, we can prove
that sampling O(log n) nodes is sufficient to ensure that we will select at least
one of the nodes in a large cluster with high probability. Note that although
nodes in small clusters may not be selected, these will be assigned in singleton
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clusters in the postprocessing step. When clustering the singletons, they are
likely to be clustered together. Since the size of these clusters is small, this does
not incur a significant overhead in the cost of the algorithm.

6. THEORETICAL ANALYSIS

In this section, we consider some of the algorithms described in Section 5, and
we prove guarantees for the cost of the solution they produce with respect to the
cost of the optimal solution. For any algorithm ALG, let ALG(I ) denote the cost
of the algorithm ALG on input I . Also let OPT(I ) denote the cost of the optimal
solution on input I . Let |I | denote the length of the input. Define I to be the set
of all possible inputs to ALG. We say that the algorithm ALG has approximation
ratio R(ALG, |I |) if, for all I ∈ I, it holds that

ALG(I ) ≤ R(ALG, |I |) · OPT(I ).

For simplicity, we will usually use R(ALG) to denote the approximation ratio of
ALG. We are interested in bounding R(ALG) for the different algorithms.

6.1 The BESTCLUSTERING Algorithm

The BESTCLUSTERING algorithm is an approximation algorithm for Problem 1, the
clustering aggregation problem. The input I is a set of m clusterings of n points.
The cost function D(C) is the number of disagreements of the output clustering
C with the input clusterings. We know that R(BESTCLUSTERING) ≤ 2(1 − 1

m ). We
will now prove that this bound is tight.

THEOREM 1. The BESTCLUSTERING algorithm has approximation ratio
R(BESTCLUSTERING) ≥ 2(1 − 1

m ) for Problem 1.

PROOF. In order to prove the lower bound to the approximation ratio of BEST-
CLUSTERING it suffices to construct an instance I of the clustering aggregation

problem such that BESTCLUSTERING(I )
OPT(I )

= 2(1 − 1
m ).

Let V be the set of objects and let n denote the size of the set V . We take
n = km, where k ≥ 2 is an integer, and we construct m clusterings C1, . . . , Cm on
V as follows. We partition (arbitrarily) the set V into m subsets V1, V2, . . . , Vm

of equal size. The clustering Ci assigns the elements of Vi into singleton clusters,
while it groups the elements of each set Vj , j �= i, into a single cluster. Formally,
the clustering Ci assigns distinct labels to all elements of the subset Vi, that
is, Ci(u) �= Ci(v), for all u, v ∈ Vi. It assigns the same label to all elements in
subset Vj , for all j �= i, that is, Ci(u) = Ci(v) for all u, v ∈ Vj . Furthermore, for
all j �= k, Ci(u) �= Ci(v) for all u ∈ Vj and v ∈ Vk .

Due to the symmetry in the definition of subsets V1, V2, . . . , Vm and the clus-
terings C1, . . . , Cm, selecting any clustering Ci gives the same number of dis-
agreements D(Ci). Specifically,

D(Ci) = (m − 1)

(
n/m

2

)
+ (m − 1)

(
n/m

2

)
= 2(m − 1)

(
n/m

2

)
.

The first (m−1)
(n/m

2

)
term is due to the elements of the set Vi. The clustering

Ci assigns a different label to each element in Vi, while each of the other m − 1
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clusterings assigns the same label to all elements in Vi. There are
(n/m

2

)
pairs,

and each of them contributes a disagreement between cluster Ci and each of the
m − 1 other clusters.

The second (m − 1)
(n/m

2

)
term appears due to the remaining m − 1 subsets.

For each such subset Vj , the clustering Ci assigns the same label to all elements
in Vj . All other clusterings, except for clustering Cj , do exactly the same, in
agreement with Ci. Clustering C j assigns distinct labels to all the elements of
Vj , generating one disagreement for each pair of elements.

Let C∗ denote the clustering produced by the optimal algorithm. Clustering
C∗ creates a cluster for each subset Vi. The total number of disagreements is

D(C∗) = m
(n/m

2

)
. Therefore, D(Ci) = 2(1 − 1

m )D(C∗), and BESTCLUSTERING(I )
OPT(I )

=
2(1 − 1

m ).

6.2 The BALLS Algorithm

The BALLS algorithm is an approximation algorithm for Problem 2, the correla-
tion clustering problem. The input I to the problem is a set of n points and the
pairwise distances X uv. The cost function is d (C) defined in Section 4. We will
prove that the approximation ratio of the algorithm is bounded by a constant.

We first prove the following general lemma.

LEMMA 1. For any algorithm ALG and any pair of objects u and v, if

(a) X uv ≤ c and ALG assigns u and v in the same cluster, or
(b) X uv ≥ 1 − c and ALG assigns u and v in different clusters,

then the cost paid by ALG on edge (u, v) is at most c
1−c times the cost of the optimal

algorithm for (u, v).

PROOF. In both case (a) and (b), the algorithm ALG pays at most c. If the
optimal takes the same decision as ALG, then it pays the same cost. If the optimal
takes the opposite decision, then it pays at least 1 − c, hence the ratio c

1−c .

As an obvious corollary, if X uv ≤ 1/2 and an algorithm assigns u and v to
the same cluster, or if X uv ≥ 1/2 and an algorithm assigns u and v to different
clusters, then the algorithm cannot do worse than the optimal on (u, v).

We are now ready to prove the following theorem. Our proof follows along
the lines of the analysis in Charikar et al. [2003].

THEOREM 2. The BALLS algorithm has approximation ratio
max{ 1−α

α
, 1+2α

1−2α
, 2−2α

1−2α
}.

For α = 1
4
, the algorithm achieves an approximation ratio of 3.

PROOF. We analyze the algorithm by bounding the cost that the algorithm
pays for each edge in terms of the cost that the optimal algorithm pays for the
same edge. Consider an iteration of the BALLS algorithm, and let u be the node
selected to be the center of the ball. We now consider the following cases.

Singleton clusters. First, we consider the case that C = {u} is selected to be
a singleton cluster. Recall that B is the set of nodes that are within distance
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1/2 from u and that in this case the average distance d (u, B) of the nodes in B
to u is more than α. For all edges (u, i) with i �∈ B, we have X ui ≥ 1/2. Since
the algorithm separates u from i, the cost of the optimal cannot be less on each
(u, i). The algorithm also splits all edges (u, i) with i ∈ B, so the cost of the
algorithm is ∑

i∈B

(1 − X ui) = |B| −
∑
i∈B

X ui ≤ (1 − α)|B|,

where the fact
∑

i∈B X ui ≥ α|B| follows from the fact that the algorithm chose
{u} to be a singleton cluster. On the other hand, the optimal algorithm might
choose to place u in the same cluster with some vertices M ⊆ B. Thus the cost
of the optimal for the edges from u to the set B is∑

i∈M

X ui +
∑

i∈B\M

(1 − X ui) ≥
∑
i∈B

X ui ≥ α|B|,

where we used the fact that since i ∈ B, we have that X ui ≤ 1/2, and thus
1 − X ui ≥ X ui. As a result, the approximation ratio achieved on edges incident
to the singleton clusters is at most R1 = (1−α)|B|

α|B| = 1−α
α

.

Next, we analyze the case where the BALLS algorithm creates the cluster
C = B ∪ {u}. Such a cluster C is created when d (u, B) ≤ α.

Edges within clusters. For the edges of type (u, i) with i ∈ B that the algo-
rithm places in the cluster C, we have X ui ≤ 1/2, so the optimal cannot improve
the cost by splitting those edges.

The other type of edges within the cluster C = B ∪ {u} are edges (i, j ) with
i, j ∈ B. We order the vertices i ∈ B in order of increasing distance X ui from
the node u. For a fixed j , we will bound the cost of the edges (i, j ) for i < j .

If X uj ≤ β for a constant β < 1/2 to be specified later, by the triangle
inequality, for all i < j , we have that X ij ≤ X ui + X uj ≤ 2β. Therefore, by

Lemma 1, the approximation ratio for those edges is at most R2 = 2β

1−2β
.

If X uj > β, let Cj be the set of vertices i with i < j . Notice that since the
average distance from u to the vertices in B is less than α, the average distance
from u to vertices in Cj is also less than α since Cj contains a prefix from the
list of vertices ordered in ascending order of their distance X ui from node u.
The cost of the algorithm for the edges (i, j ) where i is in Cj is

Aj =
∑
i∈Cj

X ij ≤
∑
i∈Cj

X uj +
∑
i∈Cj

X ui ≤
(

1

2
+ α

)
|Cj |.

On the other hand, assume that the optimal algorithm places some vertices
i ∈ M j ⊆ Cj in the same cluster with j , and the rest of the vertices i ∈ Sj =
Cj \ M j in different clusters than j ; thus |Cj | = |M j | + |Sj |. The cost of the
optimal algorithm for the edges (i, j ) where i is in Cj can now be written as

O PT j =
∑

i∈M j

X ij +
∑
i∈S j

(1 − X ij )

≥
∑

i∈M j

(X uj − X ui) +
∑
i∈S j

(1 − X uj − X ui)
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= (|M j | − |Sj |)X uj + |Sj | −
∑
i∈Cj

X ui

≥ (|M j | − |Sj |)X uj + |Sj | − α|Cj |
= (|M j | − |Sj |)X uj + |Sj | − α(|M j | + |Sj |)

We now have two cases.

—If |M j | < |Sj |, we use the fact that X uj ≤ 1/2 or equivalently (|M j | −
|Sj |)X uj ≥ (|M j | − |Sj |)/2 and so the cost of the optimal is O PTj ≥
(|M j | − |Sj |)/2 + |Sj | − α(|M j | + |Sj |) = ( 1

2
− α)(|M j | + |Sj |) = ( 1

2
− α)|Cj |. In

this case, the approximation factor is at most R3 = 1
2
+α

1
2
−α

= 1+2α
1−2α

.

—If |M j | ≥ |Sj |, we use the fact that X uj ≥ β, implying that the cost of the
optimal is O PTj ≥ β(|M j |− |Sj |) +|Sj |−α(|M j |+ |Sj |) = (β −α)|M j |+ (1 −
β − α)|Sj |. Selecting β ≥ α, we have that O PTj ≥ (1 − 2α)|Sj |.
We now consider difference Aj − O PTj . We have that

Aj − O PTj =
∑
i∈Cj

X ij −
( ∑

i∈M j

X ij +
∑
i∈S j

(1 − X ij )

)

=
∑
i∈S j

X ij −
∑
i∈S j

(1 − X ij ) = 2
∑
i∈S j

X ij − |Sj |

≤ 2
∑
i∈S j

1 − |Sj | = |Sj |,

where the last inequality follows from the fact that X ij ≤ 1 for all edges (i, j ).

We now look at the ratio
Aj −O PTj

O PTj
. We have that

Aj − O PTj

O PTj
≤ |Sj |

(1 − 2α)|Sj | = 1

(1 − 2α)
,

and therefore,

Aj

O PTj
≤ 2 − 2α

1 − 2α
.

In this case, the approximation factor is at most R4 = 2−2α
1−2α

.

Note that R2 is an increasing function of β. Since β ≥ α, it takes its minimum
value for β = α which is R2 = 2α

1−2α
. We also have that R2 ≤ R3, and R2 ≤ R4

for all α ∈ (0, 1/2). Therefore, the approximation ratio for the edges within a
cluster is at most max{R3, R4}.

Edges across clusters. Finally, we have to bound the cost of edges going
from inside C to clusters outside C. For edges of the type (u, i) with i �∈ C,
we have that X ui > 1/2 and the algorithm splits those edges so the optimal
cannot perform better on any one of those edges. Therefore, we concentrate on
edges of the type (i, j ) with i ∈ C and j �∈ C. In particular, X ui ≤ 1/2 and
X uj > 1/2. If X uj ≥ γ for a constant γ > 1/2 to be specified later, we have that
X ij ≥ X uj − X ui ≥ γ −1/2, so, from Lemma 1, the approximation ratio on those

edges will be at most R5 = 1−(γ−1/2)
γ−1/2

= 3/2−γ

γ−1/2
.
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In the remaining case 1/2 < X uj < γ , we proceed by fixing j and bounding
the cost of all edges (i, j ) for i ∈ C. For some fixed j , assume that the optimal
algorithm places some vertices i ∈ M j ⊆ C in the same cluster with j , and
the rest of the vertices i ∈ Sj = C \ M j in different clusters than j . Again
|C| = |M j | + |Sj |. The cost of the algorithm for all edges (i, j ) with i ∈ C is

Aj =
∑
i∈C

(1− X ij ) ≤
∑
i∈C

(1− (X uj − X ui)) ≤
∑
i∈C

(1− X uj )+
∑
i∈C

X ui ≤
(

1

2
+ α

)
|C|.

The cost of the optimal is bounded from below exactly as in the previous case,
that is, O PTj ≥ (|M j | − |Sj |)X uj + |Sj | − α(|M j | + |Sj |). If |M j | ≥ |Sj |. We use

the fact that X uj > 1/2, so the cost of the optimal is O PTj ≥ ( 1
2

− α)|C|, and
the approximation ratio is again R3.

If |M j | < |Sj |, we use the fact that X uj < γ , and therefore O PTj ≥ γ (|M j |−
|Sj |)+|Sj |−α(|M j |+|Sj |) = (γ −α)|M j |+(1−γ −α)|Sj |. Selecting γ ≤ 1−α, we
have that O PTj ≥ (1 − 2α)|M j |. We consider again the difference Aj − O PTj .
We have that

Aj − O PTj =
∑
i∈C

(1 − X ij ) −
( ∑

i∈M j

X ij +
∑
i∈S j

(1 − X ij )

)

=
∑

i∈M j

(1 − X ij ) −
∑

i∈M j

X ij =
∑

i∈M j

(1 − 2X ij )

≤ |M j | − 2
∑

i∈M j

(X uj − X ui)

≤ |M j | − 2
∑

i∈M j

X uj + 2
∑

i∈M j

X ui

≤ |M j | − |M j | + |M j | = |M j |,

where the last inequality follows from the fact that X ui ≤ 1/2 and X uj > 1/2.
Similar to before, we obtain that

Aj

O PTj
≤ 2 − 2α

1 − 2α
.

Therefore, the approximation ration in this case is again at most R4.
We note that the ratio R5 is a decreasing function of γ . Since we select

γ ≤ 1−α, R5 takes its minimum value for γ = 1−α, which is R5 = 1/2+α

1/2−α
= R3.

Bringing it all together. The overall approximation ratio of the BALLS algo-
rithm is R(BALLS) ≤ max{R1, R3, R4}. The ratios R1, R3, and R4 are functions
of the parameter α. We have that 0 ≤ α ≤ 1

2
, and that R1 is a decreasing

function of α, while R3 and R4 are increasing functions of α. For α = 1
4
, the

values of all three ratios agree to the value 3. Therefore, we conclude that the
approximation ratio of the BALLS algorithm is at most 3.

There are special cases where the BALLS algorithm can perform better. Con-
sider an instance of the correlation clustering problem that is derived when
we consider the aggregation of three clusterings. In this case, the weights X uv
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take values in the set {0, 1
3
, 2

3
, 1}. Then, for 1

3
≤ α ≤ 1

2
, the BALLS algorithm

achieves approximation ratio 2. This is due to the fact that in a ball B of radius
1
2

centered at some node u, there are only nodes that are at distance 0 or 1
3

from

node u. Selecting α such that 1
3

≤ α ≤ 1
2
, we force the algorithm to always cre-

ate a cluster with the nodes in B. Therefore, by definition, the algorithm takes
all edges with weight 0 and breaks all edges with weight 1. For the remaining
edges, Lemma 1 guarantees that the approximation ratio is at most 2.

However, this is not so interesting since even the simple algorithm that
merges only the edges of weight zero achieves the same approximation ratio.
In general, assume that the X uv satisfy the following property: there exists a
value 1

2
≤ c ≤ 1 such that if X uv �∈ {0, 1}, then X uv ∈ (1 − c, c). We say that the

values X uv are symmetrically bounded by c. In this case, Lemma 1 guarantees
that the approximation ratio of any algorithm that merges all the zero weight
edges and none of the weight one edges is at at most c/(1 − c). For c < 3

4
, we

guarantee that the approximation ratio is strictly less than 3. Note that for
correlation clustering problems derived from clustering aggregation instances,
the distance values are always symmetrically bounded by (m − 1)/m, yielding
an approximation ratio m − 1.

6.3 The AGGLOMERATIVE Algorithm

For the AGGLOMERATIVE algorithm, we can prove that for all input instances such
that the X uv values are symmetrically bounded by c, the algorithm achieves
approximation ratio c/(1 − c). Although, as we noted before, this is achieved by
any algorithm that merges all edges of weight zero and splits all edges of weight
one, it is not clear that the AGGLOMERATIVE algorithm satisfies this requirement
since we cannot guarantee that the algorithm will not merge any edge of weight
one. We can prove the following theorem.

THEOREM 3. Assume that for all input instances I ∈ I for the corre-
lation clustering problem, the values X uv are symmetrically bounded by c
for 1

2
≤ c < 1. Then the AGGLOMERATIVE algorithm has approximation ratio

R(AGGLOMERATIVE) ≤ c
1−c .

PROOF. We are going to bound the approximation ratio of AGGLOMERATIVE by
bounding the approximation ratio achieved at each step of the algorithm. First,
we note that in the first step, the AGGLOMERATIVE algorithm will merge all edges
of weight zero. This is due to the fact that edges with zero weight appear always
in cliques (once again due to triangle inequality). Obviously no approximation
error is induced for these merges, thus we can examine the behavior of the
algorithm after these merges have been completed. Therefore, we can assume
that all subsequent merges involve only edges with weight greater than zero.

Consider now one step of the algorithm after all zero-weight edges have been
merged, and let k be the number of edges merged by the algorithm at that step.
Let {c1, c2, . . . , cp} denote the set of all distinct weights that these edges take
(p ≤ k) in decreasing order. Assume that c1 = 1, otherwise Lemma 1 provides
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the upper bound to the approximation ratio.1 We have that cp > 0, since we
have assumed that all edges of weight zero have already been merged. Let ki

denote the number of edges of weight ci. The cost paid by the agglomerative
algorithm is A = k1 + k2c2 + · · · + kpcp. From the definition of the algorithm,
we have that

k1 + k2c2 + · · · + kpcp

k1 + · · · + kp
≤ 1

2
.

Solving for k1, we obtain

k1 ≤ (1 − 2c2)k2 + (1 − 2c3)k3 + · · · + (1 − 2cp)kp

Therefore,

A ≤ (1 − c2)k2 + (1 − c3)k3 + · · · + (1 − cp)kp ≤ c(k2 + k3 + · · · + kp).

since for all weights 1 − c ≤ ci ≤ c, and thus 1 − c ≤ 1 − ci ≤ c.
Now let cq denote the smallest of the weights such that cq > 1/2. The cost of

the optimal solution for these edges is at least

O = (1 − c2)k2 + · · · (1 − cq)kq + cq+1kq+1 + · · · cpkp ≥ (1 − c)(k2 + k3 + · · · + kp).

Therefore, the approximation ratio is A/O ≤ c/(1 − c) which concludes the
proof.

For correlation clustering problems that arise from clustering aggregation
problem instances, Theorem 3 guarantees that, when merging m clusterings,
the AGGLOMERATIVE algorithm has an approximation ratio of at most m − 1.

7. EXPERIMENTAL EVALUATION

We have conducted extensive experiments to test the quality of the clusterings
produced by our algorithms on a varied collection of synthetic and real datasets.
Furthermore, for our SAMPLING algorithm, we have experimented with the qual-
ity vs. efficiency trade-off.

7.1 Improving Clustering Robustness

The goal in this set of experiments is to show how clustering aggregation can
be used to improve the quality and robustness of widely-used vanilla cluster-
ing algorithms. For the two experiments we are describing, we used synthetic
datasets of two-dimensional points.

The first dataset is shown in Figure 3. An intuitively good clustering for
this dataset consists of the seven perceptually distinct groups of points. We ran
five different clustering algorithms implemented in MATLAB: single linkage,
complete linkage, average linkage, Ward’s clustering, and k-means algorithm.
The first three algorithms are agglomerative bottom-up algorithms that merge
pairs of clusters, based on their minimum, maximum, and average distance,
respectively. Ward’s clustering algorithm is also an agglomerative bottom-up

1There are cases where a better approximation ratio may be proven when cp < 1, for example,

when X uv takes values from the set {1/3, 2/3}.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 4, Publication date: March 2007.



22 • A. Gionis et al.

Fig. 3. Clustering aggregation on five different input clusterings. To obtain the last plot, which is

the result of aggregating the previous five plots, the AGGLOMERATIVE algorithm was used.

algorithm whose merging criterion is to select the pair of clusters that min-
imize the sum of the square of distances from each point to the mean of the
two clusters. Finally, the k-means algorithm is the popular iterative clustering
method which is also known as Lloyd’s algorithm.

For all of the clusterings, we set the number of clusters to be 7, and for the
other parameters, if any, we used MATLAB’s defaults. The results for the five
clusterings are shown in the first five panels of Figure 3. One sees that all
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clusterings are imperfect. In fact, the dataset contains features that are known
to create difficulties for the selected algorithms such as, narrow bridges between
clusters, uneven-sized clusters, etc. The last panel in Figure 3 shows the results
of aggregating the five previous clusterings. The aggregated clustering is better
than any of the input clusterings (although average linkage comes very close),
and it confirms our intuition of how mistakes in the input clusterings can be
canceled out.

In our second experiment, the goal is to show how clustering aggregation
can be used to identify the correct clusters as well as outliers. Three datasets
were created as follows: k∗ cluster centers were selected uniformly at random
in the unit square, and 100 points were generated from the normal distribution
around each cluster center. For the three datasets, we used k∗ = 3, 5, and 7,
respectively. An additional 20% of the total number of points were generated
uniformly from the unit square and they were added in the datasets. For each
of the three datasets, we ran the k-means algorithm with k = 2, 3, . . . , 10, and
we aggregated the resulting clusterings, that is, in each dataset, we performed
clustering aggregation on 9 input clusterings. For lack of space, the input clus-
terings are not shown; however, most are imperfect. Obviously, when k is too
small, some clusters get merged, and, when k is too large, some clusters get
split. The results of clustering aggregation for the three datasets are shown
in Figure 4. We see that the main clusters identified are precisely the correct
clusters. Some small additional clusters are also found that contain only points
from the background noise, and they can be clearly characterized as outliers.

7.2 Clustering Categorical Data

In this section, we use the ideas we discussed in Section 2 for performing clus-
tering of categorical datasets. We used three datasets from the UCI Repository
of machine learning databases [Blake and Merz 1998]. The first dataset, Votes,
contains voting information for 435 people. For each person, there are votes on
16 issues (yes/no vote viewed as categorical values) and a class label classifying
a person as republican or democrat. There are a total of 288 missing values.
The second dataset, Mushrooms, contains information on physical characteris-
tics of mushrooms. There are 8,124 instances of mushrooms, each described by
22 categorical attributes such as shape, color, odor, etc. There is a class label
describing if a mushroom is poisonous or edible, and there are 2,480 missing
values in total. Finally, the third dataset, Census, has been extracted from the
census bureau database, and it contains demographic information on 32,561
people in the US. There are 8 categorical attributes (such as education, occupa-
tion, marital status, etc.) and 6 numerical attributes (such as age, capital gain,
etc.). Each person is classified according to whether they receive an annual
salary of more than $50K or less.

For treating the missing values, we assume that, given a pair of tuples for
which an attribute contains at least one missing value, the attribute tosses a
random coin and, with probability 1

2
, it reports the tuples as being clustered

together, while with probability 1
2
, it reports them as being in separate clus-

ters. Each pair of tuples is treated independently. Essentially we are then

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 4, Publication date: March 2007.



24 • A. Gionis et al.

Fig. 4. Finding the correct clusters and outliers. The three figures show datasets with k∗ = 3, 5,

and 7 clusters, and background noise. The shapes with which the data points are drawn indicate

the different clusters found by the clustering aggregation method.
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Table I. Results on Votes Dataset

(k is the number of clusters, I is the impurity index, and ED is

the disagreement error. The lower bound on ED is computed by

considering an algorithm that merges all edges with weight less

than 1
2

and splits all edges with weight greater than 1
2

)

Algorithm k I (%) ED

Class labels 2 0 34,184

Lower bound 28,805

BESTCLUSTERING 3 15.1 31,211

AGGLOMERATIVE 2 14.7 30,408

FURTHEST 2 13.3 30,259

BALLSα=0.4 2 13.3 30,181

LOCALSEARCH 2 11.9 29,967

ROCKk=2,θ=0.73 2 11 32,486

LIMBOk=2,φ=0.0 2 11 30,147

interested in minimizing the expected number of disagreements between the
clusterings.

For each of the datasets, we perform clustering based on the categorical
attributes, and we evaluate the clustering using the class labels of the datasets.
The intuition is that clusterings with pure clusters, that is, clusters in which all
objects have the same class label, are preferable. Thus, if a clustering contains
k clusters with sizes s1, . . . , sk , and the sizes of the majority class in each cluster
are m1, . . . , mk , respectively, then we measure the quality of the clustering by
an impurity index measure, defined as

I =
∑k

i=1(si − mi)∑k
i=1 si

=
∑k

i=1(si − mi)

n
.

If a clustering has I value equal to 0, it means that it contains only pure clusters.
Notice that clusterings with many clusters tend to have smaller I values—in
the extreme case, if k = n, then I = 0 since singleton clusters are pure. We
remark that this measure is only indicative of the cluster quality. It is not
clear that the best clusters in the dataset correspond to the existing classes.
Depending on the application, one may be interested in discovering different
clusters.

We also run comparative experiments with the categorical clustering al-
gorithm ROCK [Guha et al. 2000] and the much more recent algorithm
LIMBO [Andritsos et al. 2004]. ROCK uses the Jaccard coefficient to measure
tuple similarity, and places a link between two tuples whose similarity exceeds
a threshold θ . For our experiments, we used values of θ suggested by Guha et al.
[2000] in the original ROCK paper. LIMBO uses information theoretic concepts
to define clustering quality. It clusters together tuples so that the conditional
entropy of the attribute values within a cluster is low. For the parameter φ of
LIMBO, we again used values suggested in Andritsos et al. [2004]. For both
algorithms, we adopt the convention of the LIMBO algorithm, and we treat
missing values as separate attribute values.

The results for the Votes and Mushrooms datasets are shown in Tables I
and II, respectively. In addition to the impurity index (I ), we also show the
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Table II. Results on Mushrooms Dataset

Algorithm k I (%) ED(×106)

Class labels 2 0 13.537

Lower bound 8.388

BESTCLUSTERING 5 35.4 8.542

AGGLOMERATIVE 7 11.1 9.990

FURTHEST 9 10.4 10.169

BALLSα=0.4 10 14.2 11.448

LOCALSEARCH 10 10.7 9.929

ROCKk=2,θ=0.8 2 48.2 16.777

ROCKk=7,θ=0.8 7 25.9 10.568

ROCKk=9,θ=0.8 9 9.9 10.312

LIMBOk=2,φ=0.3 2 10.9 13.011

LIMBOk=7,φ=0.3 7 4.2 10.505

LIMBOk=9,φ=0.3 9 4.2 10.360

number of clusters of each clustering (k) and the disagreement error (ED),
that is, the objective function in Problem 2 optimized by our algorithms. This
is the measure explicitly optimized by our algorithms. Since the clustering
aggregation algorithms make their own decisions for the resulting number of
clusters, we have run the other two algorithms for the same values of k so
that we ensure fairness. Overall the impurity indices are comparable with the
exception of LIMBO’s impressive performance on Mushrooms for k = 7 and k =
9. Our algorithms achieve low distance error, with LOCALSEARCH always having
the lowest distance error. The distance error for LOCALSEARCH is close to the
theoretical lower bound that is computed by considering an idealized algorithm
that merges all edges with weight less than 1

2
, and splits all edges with weight

more than 1
2
. Furthermore, the attractiveness of the algorithms AGGLOMERATIVE,

FURTHEST, and LOCALSEARCH lies in the fact that they are completely parameter-
free. Neither a threshold nor the number of clusters need to be specified. The
number of clusters discovered by our algorithms seem to be very reasonable
choices: for the Votes dataset, most people vote according to the official position
of their political parties so having two clusters is natural; for the Mushrooms
dataset, notice that both ROCK and LIMBO achieve much better quality for the
suggested values k = 7 and k = 9 so it is quite likely that the correct number
of clusters is around these values. Indicatively, in Table III, we present the
confusion matrix for the clustering produced by the AGGLOMERATIVE algorithm
on the Mushrooms dataset.

For the Census dataset, clustering aggregation algorithms report about 50-
60 clusters. To run clustering aggregation on the Census dataset, we need to
resort to the SAMPLING algorithm. As an indicative result, when the SAMPLING

uses the FURTHEST algorithm to cluster a sample of 4,000 persons, we obtain 54
clusters and the impurity index is 24%. ROCK does not scale for a dataset of
this size, while LIMBO with parameters k = 2 and φ = 1.0 gives impurity index
27.6%. For contrasting these numbers, we mention that supervised classifica-
tion algorithms (like decision trees and Bayes classifiers) yield classification er-
ror between 14% and 21%—but again, we note that clustering is a conceptually
different task than classification. We visually inspected some of the smallest of
the 54 different clusters, and many corresponded to distinct social groups, for
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Table III. Confusion Matrix for Class Labels and Clusters Found

by the AGGLOMERATIVE Algorithm on Mushrooms Dataset

(The column c j of the Matrix Gives the Number of Mushrooms

Found in Cluster Cj Having Labels Poisonous and Edible.)

c1 c2 c3 c4 c5 c6 c7

Poisonous 808 0 1296 1768 0 36 8

Edible 2864 1056 0 96 192 0 0

Table IV. An Example of a Small Cluster Representing a Distinct Social Group

(The attributes of the table are as follows: WC: Workclass, Edu: Education, MS: Mar-status,

Occ: Occupation, Rel: Relationship, Race: Race, Gen: Gender, and NC: Nat-country. The

values in the table are as follows: ?: missing value, SelfEmp: Self-emp-not-inc, MarSpAb:

Married-spouse-absent, AsAcdm: Assoc-acdm, AsVoc: Assoc-voc, NevMar: Never-married,

Div: Divorced, FarFish: Farming-fishing, CrRep: Craft-repair, Unmar: Unmarried, OthRel:

Other-relative, OwnCh: Own-child, NiFam: Not-in-family, AIEsk: Amer-Indian-Eskimo, W:

White, M: Male, F: Female, AdmCl: Adm-clerical.)

WC Edu MS Occ Rel Race Gen NC

? 1st-4th MarSpAb ? Unmar AIEsk M US

Private 10th NevMar FarFish Unmar AIEsk M US

SelfEmp 10th MarSpAb AdmCl Unmar AIEsk F US

SelfEmp 7th-8th NevMar FarFish Unmar W M US

SelfEmp AsAcdm Div CrRep OwnCh AIEsk M US

SelfEmp AsAcdm MarSpAb FarFish Unamr AIEsk M US

SelfEmp AsAcdm NevMar FarFish OthRel W M US

SelfEmp AsVoc NevMar FarFish NiFam AIEsk M US

example, male Eskimos occupied with farming-fishing, married Asian-Pacific
islander females, unmarried executive-manager females with high-education
degrees, etc. An example of such a small cluster is shown in Table IV.

7.3 Handling Large Datasets

In this section, we describe our experiments with the SAMPLING algorithm that
allows us to apply clustering aggregation to large datasets. First we use the
Mushrooms dataset to experiment with the behavior of our algorithms as a
function of the sample size. As we saw in Table II, the number of clusters found
with the nonsampling algorithms is around 10. When sampling is used, the
number of clusters found in the sample remains close to 10. For small sample
size, clustering the sample is relatively fast compared to the postprocessing
phase of assigning the nonsampled points to the best cluster, and the overall
running time of the SAMPLING algorithm is linear. In Figure 5(a), we plot the
running time of the SAMPLING algorithm as a fraction of the running time of the
nonsampling algorithm, and we show how it changes as we increase the sample
size. For a sample of size 1,600, we achieve more than 50% reduction in the
running time. At the same time, the impurity index of the algorithm converges
very fast to the value achieved by the nonsampling algorithms. This is shown
in Figure 5(b). For sample size 1,600, we have almost the same impurity index
with only half of the running time.

We also measured the running time of the SAMPLING algorithm for large syn-
thetic datasets. We repeated the configuration of the experiments shown in
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Fig. 5. Scalability experiments for the SAMPLING algorithm. (a) The running time as a fraction of

the time for the whole dataset plotted against the sample size. (b) The impurity index as a function

of the sample size. (c) The running time as a function of the dataset size.

Figure 4 but on a larger scale. Each dataset consists of points generated from
clusters normally distributed around five centers plus an additional 20% of
uniformly distributed points. We generate datasets of sizes 50K, 100K, 500K,
and 1M points. We then cluster the points using MATLAB’s k-means imple-
mentation for k = 2, . . . , 10, and we run SAMPLING clustering aggregation on
the resulting 9 clusterings. The results are shown in Figure 5(c). These results
are for sample size equal to 1,000. Once again, the five correct clusters were
identified in the sample, and the running time is dominated by the time it takes
to assign the nonsampled points in the clusters of the sample, resulting to the
linear behavior shown in the figure.

8. CONCLUDING REMARKS

In this article we considered the problem of clustering aggregation. Simply
stated, the idea is to cluster a set of objects by trying to find a clustering that
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agrees as much as possible with a number of preexisting clusterings. We mo-
tivated the problem by describing in detail various applications of clustering
aggregation including clustering categorical data, dealing with heterogeneous
data, improving clustering robustness, and detecting outliers. We formally de-
fined the problem, and we showed its connection with the problem of correlation
clustering. We proposed various algorithms for both the clustering aggregation
and the correlation clustering problem including a sampling algorithm that al-
lows us to handle large datasets with no significant loss in the quality of the
solutions. We also analyzed the algorithms theoretically, providing approxima-
tion guarantees whenever possible. Finally, we verified the intuitive appeal of
the proposed approach, and we studied the behavior of our algorithms with
experiments on real and synthetic datasets.
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