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ABSTRACT
Diffusion in social networks has been studied extensively in
the past few years. Most previous work assumes that the un-
derlying network is a static object that remains unchanged
as the diffusion process progresses. However, there are sev-
eral real-life networks that change dynamically over time.
In this paper, we study diffusion on such evolving networks
and extend the popular Independent Cascade and Linear
Threshold models to account for network evolution. In par-
ticular, we introduce two natural variations, a persistent and
a transient one, to capture diffusions of different types. We
consider the problem of influence maximization where the
goal is to select a few influential nodes to initiate a diffu-
sion with maximum spread. We show that, surprisingly,
when considering evolving networks the diffusion function is
no longer submodular for the transient models, and not even
monotone for the transient Independent Cascade model. We
also show that, depending on the model, delaying the acti-
vation of the initiators may improve diffusion. Our exper-
iments, using three real datasets, demonstrate the effect of
network evolution on the diffusion process, and highlight the
importance of timing in the selection process.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sci-
ences; H.2.8 [Database Applications]: Data Mining; H.4
[Information Systems Applications]: Miscellaneous
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Diffusion Maximization; Evolving Social Networks

1. INTRODUCTION
Information propagation and social influence have long

been important topics for communication media and social
sciences [10]. The growth of online social networks such as
Facebook, Twitter, and Instagram, and the importance of
influence and diffusion in viral marketing applications [8, 12],
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has intensified the research interest in the topic. A problem
that has attracted considerable attention in this area is that
of identifying “influencers”: a small set of individuals that
will initiate the diffusion of a trend and maximize its spread
in the social network. This is a problem of great research
interest, with immediate practical applications.

The problem of diffusion maximization was first defined
in the seminal works of Domingos and Richardson [8] and
Kempe et al. [15]. The work in [15] laid the theoretical
and algorithmic foundations for understanding and address-
ing the problem. The paper introduced two basic diffusion
models, the Independent Cascade (IC) model and the Lin-
ear Threshold (LT) model, and it formulated the influence
maximization problem as a discrete optimization problem.
They showed that the problem is NP-hard, but thanks to the
submodularity property of the diffusion spread there exists
a greedy algorithm with a constant approximation ratio.

The work in [15] was followed by an avalanche of work that
proposed improvements or modifications to the basic models
(e.g., [18, 4, 5, 19, 7]). Most of the follow-up work consid-
ers the network as a static object that remains unchanged
as the diffusion process progresses. However, this assump-
tion is often not true. There are many real-life networks
that evolve dynamically, with nodes joining and leaving the
network, and edges being formed and destroyed over time.
Examples include mobile contact networks, location-based
networks, collaboration networks and many more. Many of
these networks evolve in predictable ways [6], enabling us to
incorporate network evolution in the analysis and modeling
of diffusion on the network.

To circumvent the evolving nature of the network, previ-
ous approaches aggregate the multiple instances over time
into a single static graph. However, such approaches disre-
gard the importance of timing in the diffusion process, that
is, the importance of information being at the right place,
at the right time, so that there is a path in the network on
which to propagate. As we will see, network evolution has
a significant effect on the process of information diffusion,
and timing is critical in the correct selection of influencers.

In this work, we address the problem of diffusion max-
imization on evolving graphs, and we make the following
contributions:

• We define the Independent Cascade and the Linear
Threshold models on evolving networks. We introduce
two variants for each model, a persistent and a tran-
sient one, to account for diffusions of different temporal
nature.



• We consider the problem of diffusion maximization on
evolving graphs and study theoretically its properties
under the different models. We prove that, surpris-
ingly, the optimization function is not submodular for
the transient models, and for the transient Evolving
Independent Cascade model it is not even monotone.
We also show that, for some models, delayed activation
of the seed nodes may improve the diffusion spread.

• We study experimentally the diffusion process on three
real evolving datasets. Our experimental evaluation
demonstrates the effect of network evolution on dif-
fusion, as well as the importance of timing of node
activations.

The rest of the paper is structured as follows. Section 2 re-
views related work. In Section 3, we introduce preliminary
definitions and in Section 4 we formulate our problem. In
Sections 5, we define the Evolving Independent Cascade and
the Evolving Linear Threshold models and study their prop-
erties. In Section 6, we report the results of our experimental
evaluation. Section 7 concludes the paper.

2. RELATED WORK
The pioneering work of Domingos and Richardson [8] and

Kempe et al. [15] generated significant amount of research [18,
4, 5, 7], focusing mostly on variations of the models, and effi-
cient implementations of the algorithms. Surprisingly, there
is little research on diffusion on evolving graphs.

Evolving networks: Most closely related to our work are
the works of Zhuang et al., [26] and Aggarwal et al., [1]
who, as in this paper, view an evolving graph as a sequence
of graphs {Gt} at different time instances. However, the
work of Zhuang et al., [26] addresses a different problem.
They apply diffusion maximization independently in each
static graph Gt, and assuming that only the initial graph G0

is fully known, they ask which b nodes to probe to get the
edges incident on these nodes at time t, so as to approximate
the diffusion on Gt. Our goal is maximizing diffusion over
the sequence of graphs as a whole assuming that diffusion
and evolution run in parallel.

The focus of the work of Aggarwal et al., [1] is on the ef-
ficient estimation of the influence spread by avoiding calcu-
lations among graph instances that are structurally similar.
Our focus is not on algorithms, but instead on modeling evo-
lution and understanding diffusion maximization in evolving
networks under different models. In fact, we show that de-
pending on the model, submodularity may not hold, thus
raising the need for new algorithmic approaches.

Another work that considers diffusion on evolving graphs
is that of Albano et al., [2]. They make a distinction be-
tween extrinsic time measured in seconds and intrinsic time
where a time unit corresponds to a new edge appearing in the
graph. Their goal is different from ours: they differentiate
between diffusion and graph evolution, e.g., to understand
whether an increase in diffusion is due to a sudden growth
in the graph.

Time-varying and continuous networks: The notion
of time has been introduced in the analysis of information
diffusion, as a way of extending the basic diffusion model
to capture the duration or latency of diffusion. The du-
ration of diffusion is usually modeled by associating with

Figure 1: A sequence of three graph G = {G1, G2, G3}, and
the union graph GU .

each edge or node, in addition to its activation probabil-
ity, a latency function that determines when the node reacts
to an activation. The problem of influence maximization
and estimation is studied for both discrete time (e.g., Liu
et al., [19] and Chen et al., [3]) as well as for continuous
time (e.g., Gomez-Rodriguez et al. [14] and Du et al., [9])
where the latency per edge entails a random spreading time
drawn from a distribution over the time of activation. The
recent work of Xie et al., [25] extends the continuous model
to capture dynamic properties, but still the diffusion func-
tion remains submodular. An orthogonal line of research
focuses on learning the influence graph by inferring the in-
fluence probabilities, as well as the latency functions of each
edge, e.g., the work of Gomez-Rodriguez et al., [13].

The key difference of our work from previous work on
time-varying or temporal graphs is that in time-varying graphs,
the effect of time on the propagation probability is with re-
spect to the activation time of each node. In our work, we
assume that the network changes over time, independently
of the diffusion process.

Epidemics: Another line of research focuses on virus prop-
agation on dynamic networks using epidemics models. Such
research addresses different problems such as determining
the epidemic threshold [23]. Stattner et al., [24] studies
the spread of infectious diseases by simulating the infection
transmission using the SIR model (a model similar to Inde-
pendent Cascade) on evolving networks. Their experimen-
tal results showed that changes of the underlying network
greatly affect the spread of diseases.

3. PRELIMINARIES
In this section, we introduce the necessary concepts for

describing the graph evolution and diffusion processes on
evolving graphs.

Evolving graphs: We model an evolving graph as a se-
quence of n graphs G = {G1, G2, ..., Gn}, defined over the
same set of nodes V , where the set of edges differs between
time-stamps. That is, Gi = (V,Ei), where Ei ⊆ V × V .
Essentially, we can think of the graph sequence, as a se-
quence of sets of edges E1, E2, ..., En over the same set of
nodes V . Note that our model is general enough to allow
for the addition and deletion of both edges and nodes in the
graph over time. The set of nodes V contains all the nodes
that appear in any snapshot. If a node is not present in a
snapshot, there are no edges incident to it. Furthermore,
our model can easily be extended to capture evolving prob-
abilistic graphs, where at every time-step, an edge appears
in the graph with some probability, that changes over time.

An example of a graph sequence G = {G1, G2, G3} with
three snapshots is shown in Figure 1. Given a sequence, we
define the union graph GU = (V,EU ), where EU = ∪ni=1E

i,



to be the graph consisting of the union of all the graphs in
the sequence. The union graph (which can also be defined
as a multi-graph, or a weighted graph) is the aggregation of
the sequence into a single graph. This is a common way to
transform an evolving graph into a static one.

Diffusion and network evolution: In the following, we
consider two commonly used models for diffusion: Indepen-
dent Cascade (IC) and Linear Threshold (LT). We describe
the models in detail in Sections 5.1 and 5.2 respectively.
At a high level, both models assume that nodes are in two
states: either active or inactive. Diffusion starts with a set
of active nodes A0 and then proceeds in discrete steps. At
each diffusion step τ , given the already active nodes Aτ−1,
depending on the graph topology and the diffusion model,
a new set of nodes Sτ is activated, resulting in a new set of
active nodes Aτ = Aτ−1 ∪ Sτ . The process continues until
no more activations are possible.

Regardless of the diffusion model we consider, in order
to define the diffusion process on an evolving graph, the
first issue that we need to address is to define the notion of
time. We have two distinct time-tracks that run in parallel:
the graph evolution time, where a time-step is defined by a
graph instance in the graph sequence, and the diffusion time,
where a time-step is defined by one step in the diffusion
process. We need to decide how to synchronize these two
time-tracks. That is, we need to decide how many diffusion
steps can happen on a graph instanceGt, or how many graph
instances a diffusion step spans.

In this work, we make the decision to have the evolution
time and the diffusion time run in lock-step. In our model,
one time-step t corresponds to one graph instance Gt, on
which a single diffusion step takes place. That is, entering
time-step t there is a set of nodes At−1 ⊆ V that are active.
Similar to the case of a static graph, a diffusion step happens
on the graph Gt, and a new set of vertices St are activated,
defining the set At = At−1 ∪ St. We then move on to time-
step t+ 1 and graph Gt+1. Note that since the set of nodes
is the same for all graph instances, the notion of a node u
that is inactive at time t − 1 and active at time t is well
defined. Once a node becomes active, it remains active for
all following steps. The diffusion process continues for as
many steps as the graph sequences instances.

Our definition is general enough to include the possibility
that the diffusion time runs faster than the evolution time.
Assume for a example that s diffusion steps are executed
on a graph instance Gi. We can simulate this process by
adding s copies of the graph Gi in the sequence, and assume
again that evolution and diffusion time are synchronized.
Similarly, if diffusion time is slower than evolution time, we
can aggregate the multiple graph instances that correspond
to a single diffusion step, and assume again that diffusion
and evolution time are synchronized.

Transient and persistent diffusion: Another issue that
arises when considering diffusion on a time-evolving graph
is to determine the temporal nature of diffusion. In all diffu-
sion models, when a node u gets activated, the model makes
a decision as to whether the neighbors of u will be affected.
When the graph is static, this decision can be made at the
time that u is activated. When the graph evolves over time,
the neighbors of u also change over time. What is the time-
span in which node u can affect its neighbors?

This question is not a simple technicality: the answer de-
termines the temporal nature of the diffusion. In this work
we consider two cases: (1) Transient diffusion processes,
where the effect of a node activation is “local” in time. This
models the case where the diffusion capability is short-lived
and localized in time; (2) Persistent diffusion processes,
where the activation of a node has an effect that lasts be-
yond a single time instance. This models the case where the
diffusion capability can persist over time. We elaborate on
these issues when we describe the specific models.

4. PROBLEM DEFINITION
We now define the diffusion maximization problem that

we consider in this work. Similar to prior work on diffusion
maximization, we assume that there is an item that we want
to spread in the network. This may be a product, an idea,
or a piece of information. Our goal is to select a small set
of influential nodes in the network that will initiate the dif-
fusion, such that the spread of the item is maximized. We
will refer to this set of nodes as the initiators, or influencers,
and denote it as I.

In the following, we use An to denote the set of nodes that
are active in graph Gn after the diffusion process has been
completed. Given the sequence of graphs, and the diffusion
model, the setAn depends on the set of influencers I selected
to be activated. We define σD(I) = |An| to be the number
of activated nodes under the diffusion model D for the set
of initiators I. We call σD(I) the spread of the diffusion
for the set I. Our goal is to select a set I of k nodes that
maximizes σD(I).

Since we have an evolving graph, when selecting a node
v to activate, we must also select the time t at which we
want to activate it. Activating node v at time t means that
the node v is added to the set of active nodes At, and it
can influence its neighbors in future time-steps. It is also
possible to activate node v at time t = 0 which means that
v is active entering the graph evolution and diffusion process.
We use vt to denote the instance of node v in graph Gt at
time t. The selection algorithm is thus required to select
appropriate instances of k nodes from the set VT = {vt : v ∈
V, t = 0, ..., n− 1}.

We can now define the following problem, which we call
the Spread Maximization on Evolving Graphs problem
(EvolveMaxSpread).

Problem 1 (EvolveMaxSpread). Given a sequence
of graphs G = {G1, G2, ..., Gn} and an integer k, for a given
diffusion model D, find a set I = {vt11 , ..., v

tk
k }, vi 6= vj, of k

node instances to be activated, such that σD(I) is maximized.

Our problem contains as a special case the problems de-
fined in [15], since we can simulate the diffusion process in
a static graph G, as the diffusion on a sequence of graphs,
where all graph instances are copies of G, and the length of
the sequence is sufficient for the diffusion to be completed.
Therefore, we can conclude that the problem is NP-hard.

Following the work in [15], most works that consider varia-
tions of the diffusion maximization problem on a static graph
are able to derive a constant factor approximation algorithm
by making use of the fact that the spread function is mono-
tone and submodular. Let f : 2V → R denote a set function
that maps a subset S ⊆ V of the nodes to a real number. We
say that the function f is monotone if f(S∪{v})−f(S) ≥ 0



for all S ⊆ V , v ∈ V \ S. We say that function f is sub-
modular if f(A ∪ {v}) − f(A) ≥ f(B ∪ {v}) − f(B) for all
A ⊆ B, v ∈ V \ B. The problem of finding a set S of
size k that maximizes f(S) is NP-hard for several submod-
ular functions that arise in practice [16]. However, it is well
known [21] that a greedy hill-climbing algorithm that builds
a set incrementally by adding each time the element that
yields the maximum increase in f , produces a solution that
has approximation factor (1 − 1/e) of the optimal, where e
is the base of the natural logarithm. In the following, we
show that, surprisingly, depending on the diffusion model,
the spread function is not always submodular, and in some
cases not even monotone.

As we have already discussed, when selecting the initiator
set I, we need to select not only the nodes to activate but
also the time at which to activate them. For some of the
diffusion models we consider, the best time to activate a
node so as to maximize the spread is as early as possible,
that is, at time t = 0. In this case we say that the model is
timing-insensitive. Formally, a diffusion model D is timing-
insensitive if for any graph sequence G, and any initiator set
I = {vt11 , . . . , v

tk
k }, for the initiator set I0 = {v01 , . . . , v0k}

we have σD(I) ≤ σD(I0). We will otherwise say that the
diffusion model is timing-sensitive.

5. EVOLVING MODELS
In this section, we introduce our diffusion models that ex-

tend the Independent Cascade (IC) and the Linear Thresh-
old (LT) models for evolving networks. We also study the
properties of the diffusion spread function for each of the
models, and the sensitivity to the timing of the activation
of the initiators.

5.1 Evolving IC Model
In the case of a static graph, diffusion under the IC model

proceeds in discrete steps, where at step t a new set of nodes
St is activated. Entering time-step t, the nodes in the set
St−1 (where St−1 = A0 for t = 1, i.e., the set of active nodes
at time zero) are said to be infectious. During time-step
t, the nodes in St−1 have a single chance to activate their
inactive neighbors. Node u ∈ St−1 activates an inactive
node v over the edge (u, v) with probability puv. If the
activation is successful then v is added to the set St (and
At). After step t, node u does not attempt to activate any
of its neighbors.

We will now define two variants of the IC model for the
case of evolving graphs. We will collectively refer to these
models as the Evolving Independent Cascade model and de-
note it by EIC.

5.1.1 Transient EIC Model
In the first variant of the model, we assume that a node

u can activate its neighbors only immediately after the time
instance that it becomes active. In this case, the diffused
item and the activation capability of the nodes in the net-
work are transient. For example, consider an infectious dis-
ease that is transmitted through a human contact network.
When a node becomes infected it has a probability of in-
fecting its neighbors, and then it becomes inoculated. We
refer to this model as the Transient Evolving Independent
Cascade model, and denote it by tEIC.

Formally, similar to the static case, at step t the infectious
nodes in St−1 are given a single chance to activate their

Figure 2: Counter-example graph sequence for EIC.

Figure 3: Diffusion with I = {v01}.

Figure 4: Diffusion with I = {v01 , v05}.

inactive neighbors, and node u ∈ St−1 activates the inactive
node v over the edge (u, v) ∈ Et with probability ptuv. This
yields a new set of recently activated and infectious nodes
St. The difference in the evolving case is that at each time-
step the graph is different, and the neighbors of node u are
defined over the graph Gt.

This seemingly small variation makes a big difference in
the properties of the model. We show that for the transient
EIC model, the spread function is no longer monotone and
submodular.

Lemma 1. The function σtEIC is neither monotone nor
submodular.

Proof. For the proof we will construct a graph sequence
G for which the function σtEIC is neither monotone nor sub-
modular. For simplicity we will assume that all diffusion
probabilities ptuv are 1, that is, if an edge (u, v) is present in
the graph then it will cause the activation of a node. The
set of nodes V consists of N + 6 nodes, V = {v1, . . . v6, u1,
· · · , uN}, and we have a sequence of 4 graphs G1, G2, G3, G4

on these nodes. The sequence for N = 3 is shown in Fig-
ure 2. The four graphs are identical except for the fact that
in G3 there is also the edge (v3, v4). A key property of the
sequence is that nodes u1, . . . , uN are connected only to node
v4.

Figure 3 shows the diffusion process for the initiator set
I = {v01}. The dark (red) colored nodes are active nodes
that are infectious when entering a given step. The light



(cyan) colored nodes are the ones that are activated at that
step, and will become infectious in the next step. The nodes
with the heavy border are active nodes that are no longer
infectious. The spread of the diffusion is equal to the num-
ber of colored nodes (any color) in graph G4. Through
the chain of activations of nodes v1, v2, v3, v4 at time-steps
t = 0, 1, 2, 3 respectively, node v4 is infectious at time t = 4,
and it activates nodes u1, ..., uN . The resulting spread is
σtEIC({v01}) = N + 3.

Consider now the addition of node v05 to the set I. Fig-
ure 4 shows the diffusion process in our example. The acti-
vation of v5 at time t = 0 causes node v3 to be activated at
time t = 1. Node v3 is infectious at time t = 2, but it has no
neighbors. At time t = 3, node v3 becomes connected to v4,
but it is no longer infectious, so it can not activate it. Fur-
thermore, the diffusion that stared from node v1 now stops
at node v2 and does not proceed any further. Intuitively, the
activation of node v5 at time t = 0 causes a premature acti-
vation of the node v3 which then blocks the diffusion initiated
at node v1. Therefore, we have that σtEIC({v01 , v05}) = 4 <
σtEIC({v01}) proving that σtEIC is not monotone.

The same sequence can be used to prove that σtEIC is
not submodular. Consider the addition of node v06 to the
initiator set I = {v01}. The activation of node v6 will
cause the nodes v4 and u1, . . . , uN to be activated earlier,
however it has no effect on the overall spread since these
nodes would have been activated anyway. Therefore, the
increase in spread is σtEIC({v01 , v06})− σtEIC({v01}) = 1, cor-
responding to the activation of v6. However, adding v06 to
the initiator set I = {v01 , v05} results in activating N + 1
additional nodes, whose activation was previously blocked.
Thus, σtEIC({v01 , v05 , v06})−σtEIC({v01 , v05}) = N+3, meaning
that σtEIC is not submodular.

The example demonstrates the importance of timing in
the activation of nodes in an evolving graph. Node v3 must
become active at exactly time t = 2 in order to activate
v4 at t = 3, which in turn can activate nodes u1, ..., uN at
time t = 4. Diffusions originated from different nodes in the
graph act competitively, and it is possible for one diffusion
to block another, thus reducing the overall spread. Clearly,
the tEIC model is timing-sensitive.

5.1.2 Persistent EIC Model
In the second variant of the model, we assume that the

item to be diffused, and the interest of the nodes in the
item are persistent. A node u that becomes active at time
t is given a chance to activate another node v at the first
time instance after t that u and v become connected. For
example, in a social network, a user that adopts a product
will show it to her friends the first time that they meet,
affecting their decision process. We refer to this model as
the Persistent Evolving Independent Cascade model, and we
denote it by pEIC.

Formally, consider a node u that becomes active at time
t. For a node v, let tuv ≥ t denote the earliest time instance
after time t where there is an edge between u and v (tuv is
not defined if there is no such edge). If v is not active at
time tuv, node u tries to activate v with probability ptuv

uv . If
not successful it will not attempt to activate v again for any
t′ > tuv.

For the persistent EIC model we can prove that the spread
function is monotone and submodular when the activation
probabilities per edge are constant over time, that is, ptuv =

Figure 5: The union graph GU , and the expanded graph GX
for the graph sequence in Figure 1.

puv for every edge (u, v), for all graph instances Gt, where
(u, v) ∈ Et. We say in this case that the graph sequence has
fixed probabilities.

For the proof we make use of the union graph GU =
(V,EU ) defined in Section 3, consisting of the union of all
the graphs in the sequence. Similar to the work in [15], we
assume that all random choices are made in advance. That
is, for each edge (u, v) ∈ EU , we make it “live” (active) with
probability puv. Note that although an edge (u, v) may ap-
pear in multiple graph instances, it is used for the diffusion
process exactly once, at time tuv. Since, the probability puv
is the same for all graph instances, we can assume that the
decision to make the edge live is made in advance. We use
ELU ⊆ EU to denote the set of live edges.

We will now create a graph that unfolds the graph se-
quence and the diffusion process into a single graph. A
similar construction is described in [15]. We refer to this
graph as the expanded graph GX = (VX , EX). The graph
GX consists of n + 1 layers of |V | nodes, where the edges
of graph Gi are placed between the nodes of layer i− 1 and
i. Formally, let V i denote the i-th layer of nodes, where
i = 0, 1, ..., n. For each node v ∈ V there is a corresponding
node vi in layer i. For every (directed) edge (u, v) in graph
Gi we add an edge (ui−1, vi) to the set of edges EX if it is
also one of the live edges in ELU . Furthermore, we add a set
of transition edges of the form (vi−1, vi) for all v ∈ V and
all layers i = 0, 1, ..., n.

An example of our construction for the sequence of three
graphs in Figure 1 is shown in Figure 5. The bold edges in
the union graph GU correspond to the live edges ELU . The
expanded graph GX has four layers of nodes V 0, V 1, V 2, V 3.
The dashed edges correspond to the transition edges of the
graph GX , and the solid edges correspond to the live edges
in ELU . The shaded nodes show an example of the diffusion,
when I = {v01}. As we will show below, the activated nodes
are the ones reachable from node v01 in graph GX .

Theorem 1. For all instances of the persistent EIC model
on a graph sequence with fixed probabilities, the spread func-
tion σpEIC is monotone and submodular.

Proof. Given a set of live edges, we will prove by induc-
tion that for a set of initiators I, the set of active nodes at
time-step At is the same as the set of nodes in V t in graph
GX that are reachable from I. The claim is trivially true
for time-step t = 0. Assume that it is true at time t − 1.
Consider now time-step t. First note that thanks to the
transition edges, any node u that is reachable at t − 1 will
remain reachable at t. If a node v becomes active at time t



then there must be an active node u in At−1 that gets con-
nected with v for the first time since u became active, and
edge (u, v) is live. Since u is reachable, v will also become
reachable. If v becomes reachable at time t then this means
that at time t it became connected with a live edge with a
reachable node u. Since u is active, this means that v will
also become active.

Reachability defines a monotone and submodular func-
tion. Therefore, the expected spread σpEIC can be written
as a linear combination of monotone and submodular func-
tions, and thus it is also monotone and submodular.

In Figure 5 we can see the set of reachable nodes from the
set A0 = {v01}, and the time-step at which each node is ac-
tivated. Note that reachability in the graph GX is different
from reachability in the graph GLU = (V,ELU ) through live
edges. In our example, in the GLU graph, all nodes are reach-
able from v1 through live edges. However, in the graph GX
node v3 never becomes reachable, since at the time that v2
is activated the edge (v2, v3) no longer appears in the graph.

From the proof and the discussion above, it is clear that
the best time to activate a node u in the pEIC model is at
the beginning of the diffusion process, since this maximizes
the chances of u to meet other nodes in the future. We can
prove by induction that the pEIC model on a graph sequence
with fixed probabilities is timing-insensitive.

However, monotonicity and submodularity properties do
not hold if the activation probabilities vary over time.

Lemma 2. The function σpEIC is neither monotone nor
submodular for arbitrary graph sequences.

Proof. The proof is similar to that for the tEIC model.
We use the same graph sequence as in Figure 2 except for
the fact that in graph G2 we have an additional edge (v3, v4)
with activation probability ε. All other activation probabil-
ities are 1. As before, if we activate node v1 at time t = 0,
we have spread σpEIC({v01}) = N+3. If we add v5 to the ini-
tiator set, the diffusion reaches node v3 at time t = 1. As a
result the first time that v3 connects with v4 is at time t = 2,
where the activation probability of edge (v3, v4) is ε. The ex-
pected spread in this case is σpEIC({v01 , v03}) = ε(N + 1) + 4.
It follows that σpEIC is not monotone. Using the same ar-
gument as in the previous proof we can show that it is also
not submodular.

The intuition behind this counter-example is similar to
that for the tEIC model in Section 5.1.1. Since the activa-
tion probability of (v3, v4) varies over time, it is important to
time the activation of node v3 appropriately, so that it gets
activated when the edge activation probability is high. Oth-
erwise, similar to before, the diffusion is blocked. The vari-
ation in the activation probabilities makes the pEIC model
timing-sensitive.

5.2 Evolving LT Model
Given a static graph G = (V,E), the LT model assumes

that every edge (u, v) in E is associated with a weight buv,
such that for any node v ∈ V , the weight of its incoming
edges sums to a value less than 1. In diffusion under the
LT model, each node has a threshold θv chosen uniformly
at random in the interval [0, 1]. If (u, v) is an incoming
edge to v, and u is active, we say that (u, v) is live. Node
v is activated when the sum of weights over the live edges
exceeds the threshold θv.

Figure 6: A counter-example for ELT submodularity.

In the case of an evolving graph, let GU = (V,EU ) denote
the union graph defined in Section 3. Similar to the static
case we assume that every edge (u, v) in EU is associated
with a weight buv independent of the time that the edge
appears in the graph sequence. We also assume that for any
node v ∈ V , we have that∑

u:(u,v)∈EU

buv ≤ 1

The threshold of a node is defined in the same way as for
the static case.

Similar to the EIC model, we will consider two variations
of the LT model for the case of evolving graphs that differ
in the mechanism used for node activations. We will collec-
tively refer to these models as the Evolving Linear Threshold
model, and denote it by ELT.

5.2.1 Transient ELT Model
In this model, the diffusion process is similar to that in

the static graph, but the total incoming weight of live edges
is computed only over the live edges that are all present
in a single graph instance. This model captures again a
transient diffusion process, where a node is affected only by
the neighbors present in a graph instance, and their influence
dies off when not present. We refer to this model as the
Transient Evolving Linear Threshold model, and denote it
by tELT.

Formally, for a node v, let N t
v denote the set of incoming

neighbors of v at time t. Recall that At is the set of active
nodes at time t, and let NAt

v = N t
v ∩ At denote the active

neighbors of v at time t. Now, let W t
v denote the total weight

incoming to node v from live edges at time t. That is,

W t
v =

∑
u∈NAt

v

buv (1)

A node v becomes active at time t if W t
v ≥ θv.

We can prove by induction that σtELT is monotone, and
timing-insensitive (i.e., the best time to activate a node is
at time t = 0). We omit the proofs due to space constraints.
Below we prove that σtELT is not submodular.

Lemma 3. The function σtELT is not submodular.

Proof. For the proof we use a simple example shown
in Figure 6. There are two snapshots in the graph sequence
G1 and G2, shown in the middle and right pane respectively.
The left pane shows the union graph GU . We assume that
bvi,u = 1/3, for all edges (vi, u). In this graph, it is clear
that the only node that can be activated via the diffusion
process is node u. Let Pr[u|I] denote the probability that
node u is active at the end of diffusion, given a set of ini-
tiator nodes I ⊆ {v1, v2, v3}. The expected diffusion spread
is σtELT(I) = |I| + Pr[u|I]. Consider now the case that



I = {v1}. Clearly, u can only be activated in snapshot
G1, and this happens if θu ≤ 1/3. Therefore, Pr[u|{v1}] =
Pr[θu ≤ 1/3] = 1/3. Consider now the addition of node v2
to the initiator set. Since the edges (v1, u) and (v2, u) do
not appear in the same snapshot, we still need θu ≤ 1/3 in
order for u to be activated. That is, Pr[u|{v1, v2}] = 1/3. In
a completely symmetric fashion, Pr[u|{v1, v3}] = 1/3. Con-
sider now the initiator set I = {v1, v2, v3}. In this case,
node u is activated if θu ≤ 2/3, since the total weight of the
live edges in G2 is 2/3, Pr[u|{v1, v2, v3}] = 2/3. Therefore,
σtELT({v1, v3})−σtELT({v1}) = 0 while σtELT({v1, v2, v3})−
σtELT({v1, v2}) = 1/3. That is, the addition of node v3 to
the set {v1, v2} has a greater effect than the addition of v3
to {v1}. Hence, σtELT(I) is not submodular.

5.2.2 Persistent ELT Model
In this model, we assume that influence persists over time.

A node accumulates the influence of the active nodes it has
met in the past. When the accumulated influence crosses
the node’s threshold it becomes activated. This is a reason-
able model to capture the scenario where a user in a social
network, who is interested in an item, collects opinions over
time, and when the peer pressure exceeds her threshold, she
makes the decision to adopt. We call this model Persistent
Evolving Linear Threshold model, and denote it by pELT.

Formally, we define CNAt
v = ∪tτ=1NAτ

v to be the set of
active neighbors of v at any time up to t, and we use W t

v

to denote the total weight accumulated by the node v up to
time t. That is,

W t
v =

∑
u∈CNAt

v

buv (2)

A node v becomes active at time t if W t
v ≥ θv.

We will now show that for the persistent ELT model the
spread function σpELT is monotone and submodular. The
proof works by showing that the diffusion process is equiv-
alent to reachability in the expanded graph GX defined in
Section 5.1.2. The set of live edges ELU in the case of the
pELT model is defined in the same way as in [15]: Given the
union graph GU , for every node v ∈ V we randomly select
a single edge (u, v) ∈ EU with probability buv. With prob-
ability 1−

∑
(u,v)∈EU

buv no edge is selected. This selection
is performed for each of the nodes in V to define the set of
live edges ELU . The diffusion then happens deterministically
through the live edges on the graph GX . A node connected
with a live edge to an active node gets immediately acti-
vated.

Figure 7 shows the union graph for the example graph
sequence in Figure 1, and the selected live edges. Note that,
different from the EIC model, each node has exactly one
incoming live edge. The expanded graph GX is shown in
the right part of the figure. The shaded nodes show the
diffusion, when I = {v01}. We can show that the activated
nodes are the ones reachable from node v01 in graph GX .
Note again that reachability in the graph GX is different
from reachability in the graph GLU = (V,ELU ) through live
edges.

Theorem 2. For all instances of the persistent ELT model
the spread function σpELT is monotone and submodular.

Proof. The proof follows closely the one in [15], by show-
ing by induction that the conditional distribution over the
activated nodes at time t = n given a set of initiators I

Figure 7: The union graph GU , and the expanded graph GX
for the graph sequence in Figure 1.

is the same as the distribution over the reachable nodes at
layer V n from the set I. We omit the details due to lack
of space. Given that the reachability function is monotone
and submodular, it follows that the function σpELT(I) can
be expressed as a linear combination of monotone and sub-
modular functions, and hence it is also monotone and sub-
modular.

It is also straightforward to see that the σpELT function
is timing-insensitive, that is, the best time to activate the
initiators is at time t = 0. This follows from the fact that
nodes accumulate weight over time.

5.3 Summary of Model Properties
Table 1 summarizes our theoretical results regarding the

properties of the diffusion spread function for the transient
and persistent EIC and ELT models.

Table 1: Summary of the properties of the spread function
for the evolving diffusion models.

Timing Monotone Submodular
tEIC sensitive no no
pEIC (fixed pr) insensitive yes yes
pEIC (general) sensitive no no
tELT insensitive yes no
pELT insensitive yes yes

6. EXPERIMENTAL EVALUATION
In this section, our goal is to evaluate experimentally how

the diffusion spread is affected by network evolution using
real datasets. We first describe the algorithms we use for
the influence maximization problem, the datasets, and the
experimental setup. We then present the evaluation results.

6.1 Algorithms
The algorithm most commonly used for diffusion maxi-

mization in static networks is Greedy. Greedy takes as input
a candidate set of nodes C and a value k, and it selects a
set I of k nodes to be activated. It proceeds iteratively,
where at each iteration it computes for each candidate node
the marginal increase in the expected spread that results
by adding the node to I. This is estimated by performing
a large number of Monte-Carlo simulations of the diffusion
process and taking the average spread. The node that causes
the maximum marginal increase is added to I and removed



(a) Hospital-Ward (b) DBLP-Authors (c) Social-Evolution

Figure 8: Influence spread of the any-time algorithms for the Transient Evolving Independent Cascade model.

from the candidate set C. The process continues until k
nodes are selected.

For submodular functions, the greedy algorithm provides
a constant factor approximation guarantee. Despite the fact
that, for evolving graphs, the spread function is not submod-
ular for all models, the greedy algorithm is still a natural
algorithm to consider.

To study the effect of timing of activation to the diffusion
spread, we consider two variants of the Greedy algorithm by
varying the set C of candidate initiators. The more general
case is to have C = VT = {vt : v ∈ V, t = 0, ..., n−1}, that is,
to be able to activate nodes at any graph instance. A node
is activated once at the selected time instance. We will refer
to this greedy algorithm as Greedy-AT (Greedy-Any-Time).
The other variant corresponds to the typical setting in dif-
fusion maximization which assumes that all initiators must
be activated at a single time-step, namely at the beginning
of the diffusion or evolution process. This is a reasonable
setting in a viral marketing scenario, where an advertising
budget is allocated to be used at a specific time-frame. In
this case the set of candidates C = {v0 : v ∈ V } is the set
of nodes V at time t = 0. We will refer to this greedy algo-
rithm as Greedy-OT (Greedy-One-Time). We note that the
comparison between Greedy-AT and Greedy-OT is of interest
only for the EIC models that are time-sensitive. The ELT
models are timing-insensitive, so the optimal activation time
is at time t = 0.

For selecting each of the k initiators, Greedy runs for each
of the |C| candidates R simulations of the difussion process.
Assuming that diffusion has complexity D, Greedy-AT runs
in O(kn|V |RD) and Greedy-OT in O(k|V |RD) time, where
n is the number of graphs in the sequence.

6.2 Datasets and Experimental Setup
We consider datasets from three real evolving networks.

For each dataset, nodes correspond to users, and edges to in-
teractions between them. All edges have time-stamps within
a time period T . We construct a graph sequence G =
{G1, ..., Gn} by breaking up the time period T into n inter-
vals of equal length. The graph Gt captures all user interac-
tions within the t-th time interval. If more than one inter-
action occurs between two users within interval t, multiple
edges are created between the corresponding nodes in the
graph. We provide next a short description of our datasets.

The Hospital-Ward dataset1 [22] contains the network of
contacts between 46 health-care workers and 20 patients of a

1 http://www.sociopatterns.org

hospital ward for 4 days in December 2010. We construct a
sequence of 16 graphs, where each graph represents a time-
frame of 6 hours. The union graph GU of this dataset is
very dense and includes a central node adjacent to about
80% of the nodes. All graphs in the sequence are sparse
with fluctuating degrees, following the day and night-time
habits of the hospital residents.

The DBLP-Authors dataset corresponds to the co-authorship
graph of authors that have published papers in a major
data mining, database or theory conferences between 2004
and 2013 downloaded from DBLP2. We include only authors
that have published in at least three distinct years during
this period resulting in 1,249 authors. We construct a graph
sequence of 10 graphs, where each graph represents collabo-
rations within a single year. All graphs are sparse and highly
fragmented.

The Social-Evolution dataset3 [20] reports meetings be-
tween college students in an undergraduate dormitory based
on mobile phones usage. The probability of two users meet-
ing at a specific time instant is estimated using bluetooth
information and proximity to WiFi access points. Thus each
edge e is annotated with a time-stamp T and a probability
qe. We select all interactions in the first week of October
2008 and create a sequence of 7 graphs, where each graph
corresponds to one day. There are 48 nodes. We view this
graph sequence as a typical example of the weekly pattern of
interactions of a group of users. All graphs in the sequence
are connected and relatively dense except from the first one
which contains few nodes and edges.

When simulating the diffusion process for the EIC model,
we set p = 0.01 for the propagation probabilities of the
edges, except for the DBLP-Authors network which is ex-
tremely sparse, for which we use p = 0.1. Note that due to
the variation in the multiplicity of edges, the activation prob-
abilities vary over time, making the persistent EIC model
timing-sensitive. For the ELT model, the weight buv is set
equal to the fraction of the edges incident on v in the union
graph that are between u and v. Finally, R is equal to
10, 000.

6.3 Results
We address two fundamental issues: (1) How does the

timing of the activation of the influencers affect the diffusion
spread? (2) Does the evolution of the network affect the
estimation of the spread?

2http://dblp.uni-trier.de/xml/
3http://realitycommons.media.mit.edu/
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Figure 9: Influence spread of static algorithms for the Transient Evolving Independent Cascade model.

(a) Hospital-Ward (b) DBLP-Authors (c) Social-Evolution

Figure 10: Influence spread of the static algorithms for the Transient Evolving Linear Threshold model.

Timing of activations: We first look into the importance
of timing in activating an initiator. For this experiment, we
only consider the EIC model which is time-sensitive. Fig-
ure 8 shows the spread of the different algorithms as a func-
tion of the number of initiators for the transient EIC model.
The first observation is that Greedy-AT significantly outper-
forms Greedy-OT. To stress the importance of timing we also
consider two weaker any-time algorithms: the GreedySort-AT

algorithm runs a single iteration of Greedy-AT and returns
the k nodes with the highest spread; the Degree-AT algorithm
selects as initiators the k nodes with the highest degree at
any graph instance. We also consider Random that outputs
a random selection of initiators at any graph snapshot.

We observe that all any-time algorithms, even the simple
heuristics, outperform the Greedy-OT algorithm. In Social-
Evolution and Hospital-Ward, Greedy-OT performs close or
worse than random. It is competitive only on the DBLP-
Authors dataset. The reason is that for both Social-Evolution
and Hospital-Ward, the graphs become denser at later times,
whereas, for DBLP-Authors, the graphs are so sparse that
the timing of influence has a smaller effect. Even in this case
though the Greedy-AT and Degree-AT algorithms perform no-
ticeably better. It is interesting to point out that in the
Social-Evolution the Degree-AT exhibits non-monotonic be-
havior. This is due to the effect of “blocking” that we de-
scribed in Section 5.1. Our results clearly demonstrate the
importance of the activation time of a node.

Our experiments with the the persistent EIC model show
that the effect of timing is not noticeable for the specific
datasets we consider (see Figure 11), most probably because
the activation probabilities do not differ significantly over
time.

Evolution-agnostic vs evolution-aware diffusion: Al-
though most real-life networks evolve over time, most exist-
ing work on diffusion views the network as a static object
and estimates the spread of influence and the set of initia-
tors on a static graph, more specifically on the union graph
GU . We now compare such estimates with those obtained
on the full graph sequence. In particular, we want to study
(a) how accurate is the estimation of spread on the union
graph compared to that obtained on the graph sequence,
and (b) how good are the initiators computed for the static
case when used on the dynamic graph.

For this experiment, we run the Greedy algorithm on the
union graph GU and select a set I of k initiators. We use
Static-U to denote the spread obtained by using the selected
set I on the union graph GU (recall that the union graph is
the graph with edge set the union of all edges in all snap-
shots). This is an optimistic estimation of the actual influ-
ence spread, assuming that all edges are present at all times.
We then use the set I on the graph sequence G and compute
the spread under the evolving diffusion model. For the EIC
model, we use Static-OT to denote the algorithm that acti-
vates the nodes in I at time t = 0, and Static-AT to denote
the algorithm that activates each node in I at the best time
instant t, so that it (individually) achieves maximum spread.
For the ELT model the best activation time is always t = 0,
so we use Static to denote this algorithm.

Figures 9 and 10 show the results of the above algorithms
for the transient EIC and ELT models respectively and Fig-
ures 11 and 12 for the persistent EIC and ELT models re-
spectively. Note that in the pEIC case the curves for Static-

OT and Static-AT, and Greedy-OT and Greedy-AT are almost
identical. As we discussed before, the pEIC model is essen-
tially timing-insensitive in our experiments.
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Figure 11: Influence spread of static algorithms for the Persistent Evolving Independent Cascade model.

(a) Hospital-Ward (b) DBLP-Authors (c) Social-Evolution

Figure 12: Influence spread of the static algorithms for the Persistent Evolving Linear Threshold model.

A first observation is that the diffusion spread is severely
over-estimated when using the union graph. Static-U achieves
spread that is an order of magnitude higher than that of
Greedy-AT. This is especially pronounced in the DBLP-Authors
dataset which is highly fragmented. For any practical ap-
plication that wants to make decisions based on the size of
spread, using the static graph will yield a very poor estimate
of the true diffusion on the evolving graph.

A second observation is that, when using the initiator set
obtained for the static graph on the evolving graph, perfor-
mance is poor, especially for the EIC model. Static-OT is
clearly the worst algorithm indicating that the static union
graph is a poor indicator of how the diffusion will progress
on the evolving graph. Note though that the results can be
significantly improved for the EIC model by adding some
amount of time information. Static-AT achieves competitive
performance, being the second best algorithm for the Social-
Evolution dataset. Therefore, although the static graph pro-
vides some signal about which nodes are good initiators, it
is important to time appropriately the activation of these
initiators for the signal to be of any use. These differences
are less evident in the ELT model. In this case, the initiators
on the static graph perform well on the evolving graph se-
quence. This is reasonable given the activation mechanism
of the model.

Another observation is with regards to the differences be-
tween persistent and transient diffusion models. In general,
as expected, the actual spread of influence under the persis-
tent models is larger than that of the corresponding transient
variant, and slightly closer to the estimation obtained on the
static graph.

7. DISCUSSION AND CONCLUSIONS
In this paper, we studied the problem of influence maxi-

mization on dynamic networks, where the network evolves
while the diffusion process is in progress. We proposed
the Evolving Independent Cascade (EIC) and the Evolv-
ing Linear Threshold (ELT) diffusion models, and studied
them theoretically and experimentally. Our work reveals
that there are key differences between diffusion in static and
evolving graphs, both in theory and in practice, and that it
is wrong to ignore the dynamic nature of the network. Our
evolving models that incorporate the importance of timing
in diffusion result in a fundamentally different diffusion pro-
cess.

We note that in our problem definition we assume that
the entire graph sequence is known in advance. It would
be interesting to study diffusion on dynamic graphs that
evolve following specific patterns, for example weekly ones
[6]. Furthermore, instead of estimating the diffusion spread
using the actual graph sequence, one could provide approx-
imate estimations, e.g., based on studies of how real graphs
evolve over time and corresponding graph generation mod-
els, such as those in [17]. Another approach would be to de-
sign algorithms that have only partial information about the
future, e.g., only a subset of the future edges, or a window
of the m next graphs. It would be interesting to understand
and quantify the tradeoff between the amount of information
available and the success of the initiator selection. Finally,
it would be interesting to understand and analyze online
algorithms for the problem.

Another possible direction for future work is to study in
more detail the relationship between diffusion time and evo-
lution time. Dynamic processes on dynamic graphs have
been studied in the past (e.g., see [11] for random walks on



dynamic graphs) and it would be interesting to investigate
if such mathematical tools could be applied to the diffusion
problem. Finally, we note that the greedy algorithm needs
to run a large number of simulations for all candidate nodes
to estimate the spread, making it computationally expen-
sive. Recently, sketching algorithms have been proposed for
the influence maximization problem in static graphs [7]. It
would be interesting to consider such algorithms for the case
of evolving graphs.
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