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ABSTRACT
Despite being the sum of decentralized and uncoordinated efforts
by heterogeneous groups and individuals, the World Wide Web ex-
hibits a well defined structure, characterized by several interesting
properties. This structure was clearly revealed by Broder et al. [4]
who presented the evocative bow-tie picture of the Web. Although,
the bow-tie structure is a relatively clear abstraction of the macro-
scopic picture of the Web, it is quite uninformative with respect to
the finer details of the Web graph. In this paper we mine the inner
structure of the Web graph. We present a series of measurements
on the Web, which offer a better understanding of the individual
components of the bow-tie. In the process, we develop algorithmic
techniques for performing these measurements. We discover that
the scale-free properties permeate all the components of the bow-
tie which exhibit the same macroscopic properties as the Web graph
itself. However, close inspection reveals that their inner structure
is quite distinct. We show that the Web graph does not exhibit
self similarity within its components, and we propose a possible
alternative picture for the Web graph, as it emerges from our exper-
iments.

1. INTRODUCTION
In the past decade the world has witnessed the explosion of the

World Wide Web from an information repository of a few millions
of hyperlinked documents into a massive world-wide “organism”
that serves informational, transactional, and communication needs
of people all over the globe. Naturally, the Web has attracted the
interest of the scientific community, and it has been the subject
of intensive research work in various disciplines. One particularly
interesting line of research is devoted to analyzing the structural
properties of the Web, that is, understanding the structure of the
Web graph [4, 15, 1].

The Web graph is the directed graph induced by the hyperlinks
of the Web: the nodes are the (static) HTML pages, and the edges
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Figure 1: The bow-tie structure of the Web graph

are the hyperlinks between them, directed from the page that con-
tains the link to the target of the link. Understanding the structure
and the evolution of the Web graph is a fascinating problem for the
community of theoretical computer science. At the same time it
has many practical implications. Knowledge of the Web structure
can be used to devise better crawling strategies [17], perform clus-
tering and classification [15], improve browsing [5]. Furthermore,
it can help in improving the performance of search engines, one of
the major driving forces in the development of the Web. The cel-
ebrated HITS [13] and PageRank [3] algorithms rely on the link
structure of the Web to produce improved rankings of the search
results. The knowledge of the macroscopic structure of the Web
has been used in devising efficient algorithms for the computation
of PageRank [12, 10].

The first large-scale study of the Web graph was performed by
Broder et al. [4] and it revealed that the Web graph contains a gi-
ant component that consists of three distinct components of almost
equal size: the CORE, made up of a single strongly connected com-
ponent; the IN set, comprised by nodes that can reach the CORE
but cannot be reached by it; the OUT set, consisting of nodes that
can be reached by the CORE but cannot reach it. These three com-
ponents form the well known bow-tie structure of the Web graph,
shown in Figure 11.

The bow-tie picture describes the macroscopic structure of the

1The figure is reproduced from [4]



Web. However, very little is known about the inner structure of the
components that comprise it. Broder et al. [4] pose it as an open
problem to study further the structure of those components. Under-
standing the finer details of the Web graph is an interesting problem
on its own, but it is also important in practice for improving the per-
formance of algorithms that rely on the link structure of the Web.
Furthermore, it could be useful for refining the existing stochastic
models for the Web [1, 18, 14].

The study of the Web graph poses additional challenges. Typi-
cally, the Web graph consists of millions of nodes and billions of
edges. Performing standard graph algorithms (such as BFS and
DFS) on a graph of this size is a non-trivial task since data can-
not be stored in main memory. It is therefore necessary to devise
external-memory algorithms [6] that can work on massive graphs.
The challenge is to customize the algorithms to the Web graph, tak-
ing advantage of the specific structure of the Web.

In this paper we study the finer structure of the Web graph, ad-
dressing the open question raised by Broder et al. [4]. We refine
the bow-tie picture by providing details for its individual compo-
nents. In the process we develop a suite of algorithms for handling
massive graphs. Our contributions can be summarized as follows.

• We implement a number of external and semi-external mem-
ory graph theoretic algorithms for handling massive graphs,
which can run on computers with limited resources. Our al-
gorithms have the distinct feature that they exploit the struc-
ture of the Web in order to improve their performance.

• We experiment with four different crawls and we observe the
same macroscopic properties previously reported in the lit-
erature: the degree distributions follow a power-law, and the
graph has a bow-tie structure, although (depending on the
crawler) a little different in shape.

• We study in detail the inner structure of the bow-tie graph.
We perform a series of measurements on the CORE, IN and
OUT components. Our measurements reveal the following
surprising fact: although the individual components share the
same macroscopic statistics with the whole Web graph, they
have substantially different structure. We suggest a refine-
ment of the bow-tie picture, the daisy structure of the Web
graph, that takes our findings into account.

The rest of the paper is structured as follows. In Section 2 we re-
view some of the basic graph theoretic definitions, and some of the
previous work. In Section 3 we outline the algorithms for handling
the Web graph. in Section 4 we present our experimental findings.
We conclude in Section 5 with a discussion on the implications of
our findings, and possible future experiments.

2. BACKGROUND
Graphs and Power Laws: We will be using various basic graph
theoretic definitions and algorithms that can be found in any graph
theory textbook (e.g., [7]). Here, we only remind the reader of the
definitions of strongly and weakly connected components.

A set of nodes S forms a strongly connected component (SCC) in
a directed graph, if and only if for every pair of vertices u, v ∈ S,
there exists a path from u to v, and from v to u. A set of nodes S
forms a weakly connected component (WCC) in a directed graph G,
if and only if the set S is a connected component of the undirected
graph Gu that is obtained by removing the directionality of the
edges in G.

We will often talk about power-law distributions which are char-
acteristic of the Web. A discrete random variable X follows a

power law distribution if the probability of taking value i is P [X =
i] ∝ 1/iγ , for a constant γ ≥ 0. The value γ is the exponent of the
power-law.

Related Work: The study of the structure of the Web graph has
recently been the subject of a large body of literature. A well-
documented characteristic of the Web graph is the ubiquitous pres-
ence of power law distributions. Kleinberg et al. [14] and Barabasi
and Albert [1] demonstrated that the in-degree of the Web graph
follows a power-law distribution. Later experiments by Broder et
al. [4] on a crawl of 200M pages from 1999 by Altavista confirmed
it as a basic property: the in-degree of a vertex is distributed accord-
ing to a power-law with exponent γ ≈ 2.1. The sizes of the SCC
components also follow a power-law. The out-degree distribution
follows an imperfect power law distribution.

Broder et. al. [4] studied also the structure of the Web graph, and
presented the bow-tie picture. They decomposed the Web graph
into the following components (Figure 1): the CORE, consisting of
the largest SCC in the graph; the IN, consisting of nodes that can
reach the CORE; the OUT, consisting of nodes that are reachable
from the CORE; the TENDRILS, consisting of nodes not in the
CORE that are reachable from the nodes in IN, or can reach the
nodes in OUT; the DISC, consisting of the remaining nodes.

Dill et al. [9] demonstrated that the Web exhibits self-similarity
when considering “Thematically Unified Clusters” (TUCs), that is,
sets of pages that are brought together due to some common trait.
Thus the Web graph can be viewed as the outcome of a number of
similar and independent stochastic processes. Pennock et al. [18]
also argue that the Web is the sum of stochastic independent pro-
cesses that share a common (fractal) structure.

The findings about the structure of the Web generated a flurry
of research in the field of random graphs. Given that the standard
graph theoretic model of Erdös and Rèny [11] is not sufficient to
capture the generation of the Web graph, various stochastic models
were proposed [1, 18, 14]. Most of them address the fact that the
in-degrees must follow a power-law distribution [1]. The copying
model [14] generates graphs with multiple bipartite cliques [15].

3. ALGORITHMIC TECHNIQUES FOR
HANDLING THE WEB GRAPH

This study has required the development of a complete algorith-
mic methodology for handling very large Web graphs. As a first
step we need to identify the individual components of the Web
graph. For this we need to be able to perform graph traversals.
The link structure of the Web graph takes several gigabytes of disk
space, making it prohibitive to use traditional graph algorithms de-
signed to work in main memory. Therefore, we implemented algo-
rithms that achieve remarkable performance improvements when
processing data that are stored on external memory. We imple-
mented semi-external algorithms, that use only a small constant
amount of memory for each node of the graph, as well as fully-
external algorithms that use an amount of main memory that is in-
dependent of the graph size.

We implemented the following algorithms.

• A semi-external graph traversal for determining vertex reach-
ability using only 2 bits per node. The one bit is set when the
node is first visited, and the other when all its neighbors have
been visited (we say that the node is “completed”). The al-
gorithm operates on the principle that the order in which the
vertices are visited is not important. Starting from an initial
set of nodes, it performs multiple passes over the data, each
time visiting the neighbors of the non-completed nodes.



• A semi-external Breadth First Search that computes blocks
of reachable nodes and splits them up in layers according to
their distance from the root. In a second step, these layers are
sorted to produce the standard BFS traversal of the graph.

• A semi-external Depth First Search (DFS) that needs 12 bytes
plus one bit for each node in the graph. This traversal has
been developed following the approach suggested by Sibeyn
et al. [19].

• An algorithm for computing the largest SCC of the Web graph.
The algorithm exploits the fact that the largest SCC is a siz-
able fraction of the Web graph. Thus, by sampling a few
nodes of the graph, we can obtain a node of the largest SCC
with high probability. We can then identify the nodes of the
SCC using the reachability algorithm. As an end product we
obtain the bow-tie regions of the Web graph, and we are able
to compute all the remaining SCCs of the graph efficiently
using the semi-external DFS algorithm.

A software library containing a suite of algorithms for generating
and processing massive Web graphs is available online2. A detailed
presentation of some of these algorithms and a study of their effi-
ciency has been presented in [16]. A complete description of these
algorithms is available in the extended version of this work [8].

4. EXPERIMENTS AND RESULTS
We experiment with four different crawls. The first three crawls

are samples from the Italian Web (the .it domain), the Indochina
Web (the .vn, .kh, .la, .mm, and .th domains), and the
UK Web (the .uk domain) collected by the ”Language Observa-
tory Project” 3 and the ”Istituto di Informatica e Telematica” 4 us-
ing UbiCrawler [2]. The fourth crawl is a sample of the whole Web,
collected by the WebBase project at Stanford5 in 2001. This sample
contains 360 millions of nodes and 1.5 billion of edges. In order
to eliminate non-significant data, we pruned the frontier nodes (i.e.
the nodes with in-degree 1 and out-degree 0, on which the crawler
has been arrested). The sizes of the crawls are shown in Table 1.

4.1 Macroscopic measurements
As a first step in our analysis of the Web graph, we repeat the

experiments of Broder et al. [4] on the macroscopic analysis of the
graph. We computed the in-degree, out-degree and SCC size distri-
butions. As expected, the in-degrees, and the sizes of SCCs follow
a power-law distribution, while the out-degree distribution follows
an imperfect power-law. All our measurements are in agreement
with the respective measurements of Broder et al. [4] for the Alta-
Vista crawl. More detailed results on the various distributions for
the WebBase crawl are reported in [16].

We also computed the macroscopic structure of the Web graph.
We observe a bow-tie structure. The relative sizes of the compo-
nents of the bow-tie are shown in Table 1, where we also present
the numbers for the AltaVista crawl [4], for the purpose of com-
parison. The first observation is that for the Italian, Indochina, and
UK crawls, the IN and TENDRILS components are almost non-
existent. As a result either the CORE is overgrown (for the Italian
and UK crawls), or the nodes are equally distributed between the
CORE and the OUT component. For the WebBase crawl we ob-
serve that the relative size of IN (11%) is significantly smaller than

2http://www.dis.uniroma1.it/∼cosin/
3www.language-observatory.org
4www.itt.cnr.it
5http://www-diglib.stanford.edu/ testbed/doc2/WebBase/

that observed in the AltaVista crawl, while the OUT component
(39%) is now the largest component of the bow-tie. These dis-
crepancies with the AltaVista crawl can most likely be attributed to
different crawling strategies and capabilities, rather than to the evo-
lution of the Web. The first three crawls are relatively recent, and
all crawls are generated using a small number of starting points.
Unfortunately, large-scale crawls are not publicly available.

4.2 The inner structure of the bow-tie graph
We now study the fine-grained structure of the Web graph. We

are interested in understanding not only the characteristics of each
component individually, but also how the components relate to each
other. For this purpose we label each node with the name of the
component to which it belongs. This gives us five sets of nodes
(CORE, IN, OUT, TENDRILS, DISC). For each such subset we
obtain the induced subgraph, resulting in five different subgraphs.
For example, when referring to the IN graph, we mean the graph
that consists of the nodes in IN and all the edges between these
nodes.

As a first step in the understanding of the individual components
we compute the same macroscopic measures as for the whole Web
graph. We compute the in-degree, out-degree and SCC size dis-
tributions for each of the IN, OUT, TENDRILS and DISC graphs.
Figure 2 shows the plots of the distributions for each component
and for the whole graph, for the case of the WebBase crawl. It is
obvious that the same macroscopic laws that are observed on the
whole graph are also present in the individual components.

4.2.1 The structure of the IN and OUT components
Given the fact that the in-degree, out-degree, and SCC size dis-

tributions in the IN and OUT components are the same as for the
whole Web graph, it is tempting to conjecture that the Web has a
self-similar structure. That is, the bow-tie structure repeats itself
inside the IN and OUT components. Dill et al. [9] demonstrated
that the web exhibits self-similarity when considering “themati-
cally unified” sets of web pages. These subsets are structurally
similar to the whole Web. Similar observations are made by Pen-
nock et al. [18]. However, the subsets considered by these previous
works are composed by nodes that may belong to any of the com-
ponents of the bow-tie graph. The question we are interested in
is if such self-similarity appears when considering the individual
components of the bow-tie graph.

The first indication that the self-similarity conjecture is not true
comes from the fact that there is no large SCC in the IN and OUT
components. For the OUT component, in all crawls, the largest
SCC is only a few thousands of nodes. Given that the size of the
OUT component is in the order of millions, the largest SCC is stag-
geringly small. Furthermore, this is also the second largest SCC in
the graph, which, compared the largest one (the CORE), is minus-
cule. We observe a similar phenomenon for the IN component. For
the WebBase graph (which is the most interesting case, since the IN
component is a non-trivial fraction of the graph) the largest SCC in
the IN component is less than 6,000 nodes. Detailed numbers about
the size of the largest SCC in the IN and OUT components are given
in Table 2.

Therefore, it appears that there exists no sizable SCC in the IN
and OUT components that could play the role of the CORE in a
potential bow-tie. However it is still possible that there exists a gi-
ant weakly connected component (WCC) in each component. We
therefore computed the WCCs of the two sets. Surprisingly we
discovered that there is no giant WCC in either of the two com-
ponents. In fact, there is a large number of WCCs per component
and their sizes follow a power law distribution. Figure 3(a) shows



Italy Indochina UK WebBase AltaVista

nodes 41.3M 7.4M 18.5M 135.7M 203.5M
edges 1.15G 194.1M 298.1M 1.18G 1.46G
CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.3%) 44.7M (32.9%) 56.4 (27.7%)
IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.7%) 14.4M (10.6%) 43.3 (21.3%)
OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39.3%) 43.1 (21.2%)
TENDRILS 6.4K (0.01%) 50.4K (0.66%) 139.4K (0.8%) 17.1M (12.6%) 43.8 (21.5%)
DISC 1.25K (0%) 101.1K (1.4%) 80.2K(0.4%) 6.2M (4.6%) 16.7 (8.2%)

Table 1: Sizes and bow-tie components for the different crawls and the Alta Vista graph
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Figure 2: Macroscopic measures for all components

the WCC size distribution for the WebBase graph. Statistics for
all graphs are reported in Table 2. Most of the WCCs are of size
one. The singleton WCCs comprise 10-22% of the IN component
(with the exception of Indochina), and 20-45% of the OUT com-
ponent. On the other hand, the largest WCC is never more than
30% of the component it belongs to, which is small compared to
the giant WCC in the Web graph, which contains more than 90%
of the nodes. For the WebBase graph, the largest WCC in the IN
component consists of just 1% of the nodes, while the largest WCC
in the OUT component consists of 28% of the nodes.

We also investigate how the nodes in the largest WCCs in the
IN and OUT components are connected to see if they organized in
a bow-tie shape. Our investigation revealed that starting from the
largest SCC in the WCC, we can create a bow-tie that is no more
than 15% of the WCC (for the Italian Web), and usually less than
5%. The rest belongs to the DISC component. (Note that a node
that points to the tendrils coming out of IN, or is pointed to by
those going into OUT, belongs to DISC, although it is still weakly
connected to the graph). This suggests that the WCC consists of
multiple small atrophic bow-ties that are sparsely interconnected
with each other.

Italy Indochina UK WebBase
depth IN 2 11 15 8
depth OUT 26 21 25 580

Table 3: IN and OUT depth

In order to better understand how the nodes in IN and OUT are
arranged with respect to the CORE, we performed the following
experiment. We condensed the CORE in a single node and we
performed a forward and a backward BFS. This allows us to split
the nodes in the IN and OUT components in levels depending on
their distance from the CORE. The depths of the components are
shown in Table 3. In all graphs, the depths of the components are
relatively small. Furthermore, most nodes are concentrated close

to the CORE. Typically, about 80-90% of the nodes in the OUT
component are found within the first 5 layers. For the WebBase
graph, although the OUT is much deeper, with 580 levels, more
than 58% of its nodes are at distance 1 from the CORE, and 93%
are within distance 5. Furthermore, after level 305 there exists only
a single chain of nodes that extends until level 580, making the
effective depth of the OUT 305. The node distributions, level by
level, for the WebBase graph are shown in Figure 3(b) and 3(c),
for the IN and OUT sets respectively. The plots are in logarithmic
scale.

Therefore, we conclude that the IN and OUT components are
shallow and highly fragmented. They are comprised of several
sparse weakly connected components of low depth. Most of their
volume consists of nodes that are directly linked to the CORE.

4.2.2 The structure of the CORE
As a first step in the study of the CORE graph, we examine its

relation with the IN and OUT components. We define an entry
point to the CORE to be a node that is pointed to by at least one
node in the IN component, and an exit point to be a node that points
to at least one node in the OUT component. A bridge is a node
that is both an entry and an exit point. The number of entry and
exit points is shown in Table 2. It is interesting to observe that
a large fraction of the entry points act like bridges. Furthermore,
with the exception of the UK crawl, the majority of the nodes in
the CORE is connected to the “outside” world. In the WebBase
crawl, this number is around 80% of the whole CORE, while the
“deep CORE” consists of a little more than 20%.

We also compute the in-degree distribution of the entry points
when we restrict the source of the links to be in the IN component,
and, as expected, we observe a power law. This implies that most
nodes “serve” as entry points to just a few nodes in the IN compo-
nent, while there exist a few nodes that serve as entry points to a
large number of IN nodes. Similar distributions are obtained when
we consider the out-degree distribution of the exit points, restricted



Italy Indochina UK WebBase

The IN component
nodes in IN 13.8K (0.03%) 48.5K (0.66%) 312.6K (1.69%) 14.4M (11%)
max SCC 1,590 7,867 4,171 5,876
number of WCCs 1,633 117 62K 3.68M
max WCC 4,085 (29.5%) 13.2K (27.2%) 8,246 (2.7%) 197.5K (1.3%)
singleton WCCs 1,543 (11.15%) 63 (0.13%) 56K ( 17.89%) 3.2M (22.46 %)

The OUT component
nodes in OUT 11.4M (27.6%) 3.4M (45.9%) 5.9M (31.8%) 53.3M (39%)
max SCC 19,170 39,283 26,525 9,349
number of WCCs 3.73M 729,6K 1.97M 25.4M
max WCC 1.43M (12.52%) 335.9K (9.85%) 457.4K (7.75%) 14.94M (28.01%)
singleton WCCs 3.49M (30.6%) 672K (19.71%) 1.84M (31.11%) 24.48M (45.91%)

The CORE component
nodes in CORE 29.8M (72.3%) 3.8M (51.4%) 1.2M (65.28%) 44.7M (33%)
entry points 10.2K (0.03%) 2.3K (0.06%) 106.3K (0.88%) 2.6M (5,87%)
exit points 15.6M (52.2%) 2.3M (59.6%) 4.8M (39.8%) 29.6M (72.03%)
bridges 6.25K(0.02%) 1.5K (0.04%) 61.8K (0.51%) 2M (4.58%)
connectors 1.7M (5.71%) 164.2K (4.32%) 537.9K (4.45%) 2.96M (6.63%)
petals 325.3K (1.09%) 52.5K (1.38%) 138K (1.14%) 1.4M (3.14%)

Table 2: Statistics for the IN, OUT and CORE components for each crawl
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Figure 3: Characteristics of the IN and OUT components

to the OUT component.
We then study the connectivity of the CORE. We first look for

nodes that are loosely connected to the CORE. We define a con-
nector to be a node of the CORE that has a single in-coming and
out-going link. A connector forms a petal if the source of the in-
coming link, and the target of the out-going link are the same node.
Large number of connectors would imply weak connectivity of the
CORE. The number of connectors is shown in Table 2, and it is
on average around 5%. Of these 20 to 45% are petals. Therefore,
connectors are only a small part of the CORE.

In order to further understand the connectivity of the CORE, we
test the resilience of the CORE to targeted attacks by performing
the following experiment. For some k we delete all nodes from the
CORE that have total degree (in-degree plus out-degree) at least
k. We then compute the size of the largest SCC in the resulting
graph. Table 4(a) shows how the size of the largest SCC changes
as we decrease k, and we increase the number of deleted nodes for
the case of the WebBase graph. Similar trends are observed in the
other crawls. We observe that the threshold on the total degree must
become as low as 100 in order to obtain an SCC of size less than
50% of the CORE.

We note that there is a large discrepancy between the values of
the in-degrees and out-degrees in the Web graph. The highest in-

degree is close to 566K, while the highest out-degree is just 536.
Note that an upper-bound on the out-degree may be imposed by
the crawler, if it limits the number of outgoing links of a page that
it explores. Therefore, it may be the case that when deleting the
nodes with high total degree, we only delete nodes with high in-
degree. We experiment with a different kind of attack that removes
(approximately) k nodes with the highest in-degree and k nodes
with the highest out-degree. The results are shown in Table 4(b).
The CORE remains resilient even against this combined attack. An
interesting observation while performing this experiment was that
the nodes with the highest in-degree and the nodes with the highest
out-degree are quite distinct. Actually, the correlation between the
in-degree and out-degree is close to zero. It appears that nodes that
are strong hubs in the CORE are not also strong authorities.

There are two ways to interpret these results. The first is that
there are no obvious failure points in the CORE, that is, strong
hubs or authorities that pull the rest of the nodes together, and
whose removal from the graph causes the immediate collapse of
the network. In order to disconnect the CORE you need to remove
nodes with sufficiently low degree. On the other hand, note that we
managed to reduce the largest SCC to 35-40% of the original by re-
moving about 1M nodes. However this is less than 1% of the total
nodes. In that sense the CORE is vulnerable to targeted attacks.



deg del max SCC max SCC % SCC num
50,000 9 44.2M 98.9% 81K
21,500 39 43.7M 97.9% 175K
10,000 199 43.2M 96.6% 285K
4,000 1.1K 42.3M 94.7% 505K
1,000 55K 35.1M 78.6% 3.7M
500 120K 31M 69.6% 5.7M
100 1.03M 14.8M 34.6% 14.7M

in-deg del out-deg del total del max SCC max SCC % SCC num
4,000 1.1K 233 1,154 2,263 42.2M 94.4% 595K
2,600 9.9K 185 10K 20.6K 39.8M 89.0% 1.75M
1,750 26K 158 25K 51K 37M 82.9% 3M
1,000 52K 130 54K 105K 33.7M 75.5% 4.75M
500 112K 105 108K 219K 29.4M 66.1% 7M
225 259K 82 227K 487K 23.5M 53.3% 10M
120 518K 62 499K 949K 17.8M 40.8% 13M

(a) Deleting nodes with high total degree (b)Deleting nodes with high in-degree and out-degree

Table 4: Sensitivity of the CORE under targeted attacks

Figure 4: The daisy structure of the Web

5. DISCUSSION AND FUTURE WORK
In this paper we undertook a study of the Web graph at a finer

level. We observed that the ubiquitous presence of power laws
describing several properties at a macroscopic level does not nec-
essarily imply self-similarity in the individual components of the
Web graph. Indeed, the different components have quite distinct
structure, with the IN and OUT being highly fragmented, while the
CORE being well interconnected.

Our work suggests a refinement of the bow-tie pictorial view of
the Web graph [4]. The bow-tie picture seems too coarse to describe
the details of the Web. The picture that emerges from our work
can better be described by the shape of a daisy (Figure 4): the IN
and OUT regions are fragmented into large number of small and
shallow petals (the WCCs) hanging from the central dense CORE.

It would be interesting to obtain larger, and more “realistic” crawls,
and perform the same measurements to verify our hypothesis. Our
current results are sensitive to the choices and limitations of the
crawlers, and it is not clear if the available crawls are representa-
tive of the actual Web graph. Unfortunately, there are no publicly
available crawls that have been collected with the aim of validating
our hypothesis on the structure of the Web graph. We plan in the
future to collect crawls with this goal in mind.

A deeper understanding of the structure of the Web graph may
also have several consequences on designing more efficient crawl-
ing strategies. The fact that IN and OUT are highly fragmented may
help in splitting the load between different robots without much
overlapping. Moreover, the fact that most of the vertices are at few
hops from the CORE may explain why breadth first search crawling
is more effective than other crawling strategies [17].

Our work motivates further experiments on the Web graph. It
would be interesting to devise efficient algorithms for estimating
the clustering coefficient, a commonly used measure for connectiv-

ity. Furthermore, further exploration of the structure of the CORE
is necessary to gain a deeper understanding. Possible measure-
ments could include spectral properties, or clustering and commu-
nity discovery. As a concluding remark, we observe that we are still
very far from devising a theoretical model that is able to capture the
finer connectivity properties of the Web graph.
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