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Abstract

The explosive growth and the widespread accessibility of the Web has led to surge of

research activity in the area of information retrieval on the World Wide Web. Ranking has

always been an important component of any information retrieval system. In the case of Web

search its importance becomes critical. Due to the size of the Web, it is imperative to have

ranking functions that capture the user needs. To this end the Web offers a rich context

of information which is expressed through the hyperlinks. In this thesis we investigate,

theoretically and experimentally, the application of Link Analysis to ranking on the Web.

Building upon the framework of hubs and authorities [57], we propose new families of

Link Analysis Ranking algorithms. Some of the algorithms we define no longer enjoy the

linearity property of the previous algorithms. As a result, it is harder to analyze them, or

even prove that they actually converge. However, for a special case of the families we con-

sider, we are able to prove that it will converge, and we provide a complete characterization

of the combinatorial properties of the stationary authority weights it produces.

The plethora of Link Analysis Ranking algorithm, generates the necessity for a formal

way to evaluate their properties and compare their behavior. We introduce a theoretical

framework for the study of Link Analysis Ranking algorithms, and we define specific prop-

erties of the algorithms within this framework. Using these properties we are able to provide

an axiomatic characterization of the InDegree algorithm that ranks pages according the

number of in-coming links.
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We conclude the thesis with an extensive experimental evaluation of Link Analysis Rank-

ing. We test the algorithms over multiple queries, and we use user feedback to determine

their quality. Our experiments reveal some of the limitations of Link Analysis Ranking.

Specifically, it appears that for most algorithms, the nodes and the structures in the graph

that they favor, do not correspond to the most relevant pages in the collection. These

observations offer a new insight into the mechanics of the algorithms, and we believe that

they will lead to improved algorithm design, and better input graphs for the algorithms.
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Chapter 1

Introduction

1.1 Motivation

Searching on the World Wide Web is the second most frequent operation on the Web after

e-mail [14]. Therefore, it is important to have tools that perform search efficiently and

effectively. Recently, much research has been devoted to creating better search engines for

the Web. Even though there is a rich literature in the area of information retrieval [5], the

Web, due to its size, and the diversity of the users that perform search, poses new challenges

and problems. In this thesis, we concentrate on the problem of ranking.

Ranking is an integral component of any information retrieval system. In the context

of the World Wide Web the role of ranking becomes even more important. A query on

the Web can have thousands, or even millions, of relevant results. If the ranking function

does not output what the user is looking for within the top few positions of the ranking,

the search engine is rendered useless. Web users do not have the patience to go through

hundreds, or thousands of pages to find the one they are looking for. It has been documented

that most Web users do not even look “below the fold”, that is, below the first screen of

results [14, 84, 52]. In this setting, the quality of the ranking function becomes critical.

Furthermore, the needs of the users when querying the Web are different. For example,

a user that poses the query “microsoft” to a Web search engine is most likely looking for the

home page of Microsoft Corporation, rather than the page of some random user that rants

about the bugs in Microsoft products. In traditional information retrieval, this random

page may be highly relevant to the query. However, Web users are not so much interested

in finding relevant pages, as much as finding authoritative pages. The definition of an
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authoritative page appeals to the intuition of the Web user, and it can be roughly described

as a page that is not only relevant to the query, but it is also a trusted source of correct

information. In Web search the focus shifts from relevance to authoritativeness. The task of

the ranking function becomes to identify and rank high the authoritative documents within

a collection of Web pages.

To this end, the Web itself offers a rich context of information which is expressed through

the hyperlinks. A Web page is part of a bigger picture that is defined through the pages

that can reach, or can be reached by this page. These pages define the context in which

the page appears. If we remove the page from this context, and treat it as a flat text file,

we discard valuable information about the content and the quality of the page. This is

why, currently, most commercial search engines make use, to some extent, of the hyperlink

information.

There are two popular ways of using the hyperlink information. The first is explicit.

The anchor text of the hyperlink, or the text that surrounds the hyperlink is often highly

descriptive about the content of the Web page. In this thesis, we do not consider this use

of hyperlinks. The second is implicit. If Web page q points to Web page p, then we may

assume that page q endorses and recommends the content of page p. Therefore, we can

think of the Web as a network of recommendations which contains information about the

authoritativeness of the pages. Our task is to extract this latent information, and rank the

pages according to their authoritativeness. We call the algorithms that rely on hyperlink

information for deriving a ranking, Link Analysis Ranking (LAR) algorithms.

1.2 Link Analysis Ranking Algorithms

A Link Analysis Ranking algorithm starts with a collection of Web pages to be ranked. The

algorithm then proceeds to extracting the hyperlinks between the pages, and constructing

the underlying hyperlink graph. The hyperlink graph is constructed by creating a node for

every Web page, and a directed edge for every hyperlink between two pages. The graph

is given as input to the Link Analysis Ranking algorithm. The algorithm operates on the

graph, and produces a weight for each Web page. This weight captures the authoritativeness

of the page, and it is used to rank the pages. Our task is to devise Link Analysis Ranking

algorithms that best discover the authoritative nodes in the graph.
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Link Analysis Ranking can be traced back to two seminal papers by Brin and Page [13],

and Kleinberg [58]. These two papers changed the way that people think about the Web, and

spawned the research area of Link Analysis Ranking. They were followed by a substantial

amount of research work [4, 1, 8, 10, 64, 78, 73]. The PageRank algorithm, introduced

by Brin and Page, later became a commercial success story as an integral component of

Google1, the dominant search engine on the Web at this time.

Kleinberg [58] introduced the hubs and authorities paradigm. In this framework, every

page is associated with a hub and an authority weight. Kleinberg defined the authority

weight of a page to be the sum of the hub weights of the pages that point to this page,

and the hub weight to be the sum of the authority weights of the pages that are pointed

to by this page. He proposed Hits (Hyperlink Induced Topic Distillation), an iterative

algorithm for computing the weights. The Hits algorithm has two implicit properties. The

first is symmetry. Both hub and authority weights are computed in the same way; authority

weights are the sum of the hub weights, while hub weights are the sum of authority weights.

The second is equality. When computing the hub weights (resp. authority weights), the

sum operator treats all authority (resp. hub) weights equally. However, there are cases

where these two properties of the Hits algorithm lead to non-intuitive results. In this

thesis, we deviate from these two properties, and we examine alternative ways of defining

the authority and hub weights. Our definitions produce new families of LAR algorithms,

with interesting properties.

Following the Hits and PageRank algorithms, a large number of modifications [8,

10, 64, 78], extensions [1, 73], as well as novel algorithmic approaches [10, 19, 48] were

proposed. A Web practitioner now has a wide range of Link Analysis Ranking algorithms

to choose from. Therefore, it is important to be able to compare different LAR algorithms,

and evaluate their properties. Typically, this is done experimentally. However, given the

subjective nature of the problem, and the inherent limitations of experimental evaluation, it

becomes obvious that we need a formal way to study LAR algorithms. Ideally, we would like

to identify a set of properties that characterize every LAR algorithm. Then, the practitioner

can select the LAR algorithm with the desired properties. In this thesis, we initiate a

theoretical analysis of LAR algorithms. We first introduce a framework for the evaluation

and comparison of LAR algorithms. We then define several intuitive properties within this

1http://www.google.com
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framework, and we study the behavior of various LAR algorithms. The framework sets the

foundation for a theoretical analysis of LAR algorithms. The long term goal is to have a

formal way of assessing the properties of LAR algorithms.

1.3 Contributions and guided tour of the thesis

The remainder of the thesis is structured as follows.

• In Chapter 2 we review the related literature on Link Analysis Ranking algorithms.

We also present the necessary tools from linear algebra that will be used throughout

the thesis.

• Chapter 3 introduces new Link Analysis Ranking algorithms. We modify the definition

of the hub and authority weights provided by Kleinberg. As a result, we produce new

families of algorithms, with new properties.

• Chapter 4 examines the application of non-linear dynamical systems to ranking. Some

of the algorithms introduced in Chapter3 can no longer be reduced to an eigenvector

computation since they apply non-linear operators. When departing from the com-

fortable world of linear algebra, even the proof of convergence of the algorithms is

no longer a simple task. In Chapter 4 we analyze in detail the Max algorithm, a

member of the family of the algorithms that we defined. We prove that the algorithm

converges. Furthermore, we describe rigorously the combinatorial properties of this

algorithm. The study reveals a well-defined mechanism for distributing the authority

weights, and gives a clear characterization of the Max algorithm.

• In Chapter 5 we define a theoretical framework for comparing and analyzing LAR

algorithms. We define different notions of distance, and similarity between LAR

algorithms. We also define properties such as monotonicity, stability, locality, and

label independence. Our framework allows for the axiomatic characterization of the

InDegree algorithm, the algorithm that ranks pages according to the number of

incoming links.

• In Chapter 6 we present experiments on multiple queries, using the proposed algo-

rithms. We also present a comparative evaluation of different LAR algorithms. The
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experiments provide significant insight into the behavior of the different algorithms,

and the types of nodes that they tend to favor in their rankings. They also reveal

some of the limitations of Link Analysis Ranking. We also examine the application

of LAR algorithms to the problem of finding related pages to a query Web page.

• Chapter 7 concludes the thesis with a summary of the results, and a discussion on

possible future directions.

The material in Chapters 3 and 5 was first introduced in the collaborative work with

Allan Borodin, Gareth Roberts, and Jeffrey Rosenthal [10], and it was later expanded in

the journal version of this paper [11].
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Chapter 2

Background and Previous Work

In this chapter we present the necessary background for the rest of the thesis. We also

review the literature in the area of link analysis ranking upon which this work builds.

2.1 Preliminaries

A link analysis ranking algorithm starts with a set of Web pages. Depending on how

this set of pages is obtained we distinguish between query independent algorithms, and

query dependent algorithms. In the former case, the algorithm ranks the whole Web. The

PageRank algorithm [13] was proposed as a query independent algorithm that produces a

PageRank value for all Web pages. In the latter case, the algorithm ranks a subset of Web

pages that is associated with the query at hand. Kleinberg [58] describes how to obtain such

a query dependent subset. Using a text-based Web search engine a Root Set is retrieved

consisting of a short list of Web pages relevant to a given query. Then, the Root Set is

augmented by pages which point to pages in the Root Set, and also pages which are pointed

to by pages in the Root Set, to obtain a larger Base Set of Web pages. This is the query

dependent subset of Web pages on which the algorithm operates.

Given the set of Web pages, the next step is to construct the underlying hyperlink graph.

A node is created for every Web page, and a directed edge is placed between two nodes if

there is a hyperlink between the corresponding Web pages. The graph is simple. Even

if there are multiple links between two pages, only a single edge is placed. No self-loops

are allowed. The edges could be weighted using, for example, content analysis of the Web

pages, similar to the spirit of the work of Bharat and Henzinger [8]. In our work we will
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assume that no weights are associated with the edges of the graph. Usually, links within

the same Web site are removed since they do not convey an endorsement; they serve the

purpose of navigation. Isolated nodes are removed from the graph.

Let P denote the resulting set of nodes, and let n be the size of the set P . Let G = (P,E)

denote the underlying graph. The input to the link analysis algorithm is the adjacency

matrix W of the graph G, where W [i, j] = 1 if there is a link from node i to node j, and

zero otherwise. The output of the algorithm is an n-dimensional vector a, where ai, the i-th

coordinate of the vector a, is the authority weight of node i in the graph. When convenient

we may use a(i) instead of ai to denote the authority weight of node i. These weights are

used to rank the pages.

We also introduce the following notation. For some node i, we denote by B(i) = {j :

W [j, i] = 1} the set of nodes that point to node i (Backwards links), and by F (i) = {j :

W [i, j] = 1} the set of nodes that are pointed to by node i (Forward links). Furthermore,

we define an authority node in the graph G to be a node with non-zero in-degree, and a hub

node in the graph G to be a node with non-zero out degree. We use A to denote the set

of authority nodes, and H to denote the set of hub nodes. We have that P = A ∪H. We

define the undirected authority graph Ga = (A,Ea) on the set of authorities A, where we

place an edge between two authorities i and j, if B(i) ∩B(j) 6= ∅. This corresponds to the

(unweighted) graph defined by the matrix W T W .

2.2 Previous Algorithms

In this section we describe some of the previous link analysis ranking algorithms that we

will consider in this work.

2.2.1 The InDegree algorithm

A simple heuristic that can be viewed as the predecessor of link analysis ranking is to

rank the pages according to their popularity (often also referred to as visibility [69]). The

popularity of a page is measured by the number of pages that link to this page. We refer to

this algorithm as the InDegree algorithm, since it ranks pages according to their in-degree

8



in the graph G. That is, for every node i,

ai =
|B(i)|
|E| .

This simple heuristic was applied by several search engines in the early days of Web

search [69]. Kleinberg [58] makes a convincing argument that the InDegree algorithm

is not sophisticated enough to capture the authoritativeness of a node, even when restricted

to a query dependent subset of the Web.

2.2.2 The PageRank Algorithm

The intuition underlying the InDegree algorithm is that a good authority is a page that is

pointed to by many nodes in the graph G. Brin and Page [13] extended this idea further by

observing that not all links carry the same weight. Links from pages of high quality should

confer more authority. It is not only important how many pages point to a page, but also

what is the quality of these pages. Therefore, they propose a one-level weight propagation

scheme, where a good authority is one that is pointed to by many good authorities. They

employ this idea in the PageRank algorithm. The PageRank algorithm performs a

random walk on the graph G that simulates the behavior of a “random surfer”. The surfer

starts from some node chosen according to some distribution D (usually assumed to be the

uniform distribution). At each step, the surfer proceeds as follows: with probability 1− ε

an outgoing links is picked uniformly at random, and the surfer moves to a new page, and

with probability ε the surfer jumps to a random page chosen according to distribution D.

The “jump probability” ε is passed as a parameter to the algorithm. The authority weight

ai of node i (called the PageRank of node i) is the fraction of time that the surfer spends

at node i, that is, it is proportional to the number of visits to node i during the random

walk.

Formally, assume for a moment that every node i has at least one out-going link. Then

the PageRank of node i is given by the formula

ai = εD(i) + (1− ε)
∑

j∈B(i)

aj

|F (j)| . (2.1)

Let Wr denote the matrix W after we normalize all the rows so that they sum to one. Also
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let J be an n× n “jump” matrix, where for all i, j,

J [i, j] = εD(j). (2.2)

Now let MPR = J +(1− ε)Wr. This is the matrix of the Markov Chain that corresponds to

the random walk performed by the PageRank algorithm. The addition of the jump matrix

guarantees that the Markov Chain is irreducible and aperiodic, then there is an equilibrium

steady state distribution for the states of the Markov Chain. The stationary distribution a

is the left eigenvector of the matrix MPR, that is,

a = aMPR .

Normally, the graph G contains many nodes with no out-going links. Brin and Page [13]

propose to remove these nodes from the graph, and run the PageRank algorithm on the

resulting graph. Then, they use Equation 2.1 to assign a PageRank value to the removed

nodes. If we do not wish to resort to this heuristic method, the following two implemen-

tations of PageRank have been considered in the literature. The algorithm may force a

random jump whenever reaching a dead-end. In this case the jump matrix is defined as

follows.

J [i, j] =





εD(j) if F (j) 6= ∅
D(j) if F (j) = ∅

Again the authority vector is the left eigenvector of the matrix MPR = J + (1− ε)Wr.

Alternatively, self loops are introduced to dead-end nodes. That is, Wr[i, i] = 1 if

F (i) = ∅. Then, MPR = J + (1− ε)Wr, where J is defined as in Equation 2.2.

2.2.3 The Hits Algorithm

Independent of Brin and Page, Kleinberg [58] proposed a more refined notion for the impor-

tance of Web pages. He proposed a two-level weight propagation scheme where endorsement

is conferred on authorities through hubs, rather than directly between authorities. In his

framework, every page can be thought of as having two identities. The hub identity cap-

tures the quality of the page as a pointer to useful resources, and the authority identity

captures the quality of the page as a resource itself. A good authority is a source of useful

information, while a good hub is a page that contains a useful collection of links. If we
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make two copies of each page, we can visualize graph G as a bipartite graph, where hubs

point to authorities. There is a mutual reinforcing relationship between the two. A good

hub is a page that points to good authorities, while a good authority is a page pointed to by

good hubs. In order to quantify the quality of a page as a hub and an authority, Kleinberg

associated every page with a hub and an authority weight. Following the mutual reinforcing

relationship between hubs and authorities, Kleinberg defined the hub weight to be the sum

of the authority weights of the nodes that are pointed to by the hub, and the authority

weight to be the sum of the hub weights that point to this authority. Let h denote the

n-dimensional vector of the hub weights, where hi, the i-th coordinate of vector h, is the

hub weight of node i. We have that

ai =
∑

j∈B(i)

hj and hj =
∑

i∈F (j)

wi . (2.3)

In matrix-vector terms

a = W T h and h = Wa .

Building upon the mutual reinforcing relationship between hubs and authorities, Klein-

berg proposed the following iterative algorithm for computing the hub and authority weights.

Initially all authority and hub weights are set to 1. At each iteration the operations O
(“out”) and I (“in”) are performed. The O operation updates the authority weights, and

the I operation updates the hub weights, both using the Equation 2.3. A normalization

step is then applied, so that the vectors a and h become unit vectors in some norm. The

algorithm iterates until the vectors converge. Let at denote the authority vector after the

t-th iteration. Given a constant ε, we say the the vector at has converged, if ‖at−at−1‖ ≤ ε,

where ‖ ·‖ is the normalization norm. This idea was later implemented as the Hits (Hyper-

link Induced Topic Distillation) algorithm [40]. The algorithm is summarized in Figure 2.1.

Kleinberg proves that the algorithm computes the principal left and right singular vec-

tors of the adjacency matrix W . That is, the vectors a and h converge to the principal

right eigenvectors of the matrices MH = W T W and MT
H = WW T , respectively. The con-

vergence of Hits to the singular vectors of matrix W is subject to the condition that the

initial authority and hub vectors are not orthogonal to the principal eigenvectors of matrices

MH and MT
H respectively. Since these eigenvectors have non-negative values, it suffices to

initialize all weights to positive values, greater than zero. We discuss the properties of the
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Hits

Initialize all weights to 1
Repeat until the weights converge:

For every hub i ∈ H
hi =

∑
j∈F (i) aj

For every authority i ∈ A
ai =

∑
j∈B(i) hj

Normalize

Figure 2.1: The HitsAlgorithm

vectors in detail in Section 2.3 where we talk about Singular Value Decomposition (SVD).

The convergence of the Hits algorithm does not depend on the normalization. Indeed, for

different normalization norms, the authority weights are the same up to a constant scaling

factor. Let ‖ · ‖p and ‖ · ‖q denote two different norms, and let ap(i) and aq(i) denote the

weight of node i, when norm p and q respectively are used for the normalization step. Then

we have that

ap(i) =
‖a‖q

‖a‖p
aq(i)

Note that the relative order of the nodes in the ranking does not depend on the normaliza-

tion.

2.2.4 The Salsa Algorithm

An alternative algorithm, Salsa, was proposed by Lempel and Moran [64], that combines

ideas from both Hits and PageRank. As in the case of Hits, visualize the graph G

as a bipartite graph, where hubs point to authorities. The Salsa algorithm performs a

random walk on the bipartite hubs and authorities graph, alternating between the hub and

authority sides. The random walk starts from some authority node selected uniformly at

random. The random walk then proceeds by alternating between backward and forward

steps. When at a node on the authority side of the bipartite graph, the algorithm selects

one of the incoming links uniformly at random and moves to a hub node on the hub side.

When at node on the hub side the algorithm selects one of the outgoing links uniformly at

random and moves to an authority. The authority weights are defined to be the stationary

distribution of this random walk. Formally, the Markov Chain of the random walk has
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transition probabilities

Pa(i, j) =
∑

k : k∈B(i)∩B(j)

1
|B(i)|

1
|F (k)| .

Recall that Ga = (A,Ea) denotes the authority graph, where there is an (undirected) edge

between two authorities if they share a hub. This Markov Chain corresponds to a random

walk on the authority graph Ga, where we move from authority i to authority j with

probability Pa(i, j). Let Wr denote the matrix derived from matrix W by normalizing the

entries such that, for each row, the sum of the entries is 1, and let Wc denote the matrix

derived from matrix W by normalizing the entries such that, for each column, the sum of

the entries is 1. Then the stationary distribution of the Salsa algorithm is the principal

left eigenvector of the matrix MS = W T
c Wr. The algorithm is shown in Figure 2.2.

If the underlying authority graph Ga consists of more than one component, then the

Salsa algorithm selects a starting point uniformly at random, and performs a random

walk within the connected component that contains that node. Let j be a component that

contains node i, let Aj denote the set of authorities in the component j, and Ej the set of

links in component j. Then the weight of authority i in component j is

ai =
|Aj |
|A|

|B(i)|
|Ej | .

If the graph Ga consists of a single component (we refer to such graphs as authority connected

graphs), that is, the underlying Markov Chain is irreducible, then the algorithm reduces

to the InDegree algorithm. Furthermore, even when the graph Ga is not connected,

if the starting point of the random walk is selected with probability proportional to the

“popularity” (in-degree) of the node in the graph G, then the algorithm again reduces to

the InDegree algorithm. This algorithm was referred to as pSALSA (popularity Salsa)

by Borodin et al. [10].

The Salsa algorithm can be thought of as a variation of the Hits algorithm (Figure 2.2).

In the I operation of the Hits algorithm the hubs broadcast their weights to the authorities,

and the authorities sum up the weight of the hubs that point to them. The Salsa algorithm

modifies the I operation as follows. Instead of broadcasting, each hub divides its weight
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Salsa

Initialize all weights uniformly
Repeat until the weights converge:

For every hub i ∈ H
hi =

∑
j∈F (i)

1
|B(i)|aj

For every authority i ∈ A
ai =

∑
j:j∈B(i)

1
|F (j)|hj

Normalize

Figure 2.2: The Salsa Algorithm

equally among the authorities to which it points. Therefore,

ai =
∑

j:j∈B(i)

1
|F (j)|hj .

Similarly, the Salsa algorithm modifies the O operation so that each authority divides its

weight equally among the hubs that point to it. Therefore,

hj =
∑

i:j∈F (i)

1
|B(i)|aj .

However, the Salsa algorithm does not really have the same “mutually reinforcing

structure” that Kleinberg’s algorithm does. Indeed, ai = |Aj |
|A|

|B(i)|
|Ej | , the relative authority of

site i within a connected component is determined from local links, not from the structure

of the component.

Lempel and Moran [64] define a similar Markov Chain for the hubs that has transition

probabilities

Ph(i, j) =
∑

k : k∈F (i)∩F (j)

1
|F (i)|

1
|B(k)| .

The stationary distribution h is the left eigenvector of the matrix W T
r Wc.

2.3 Singular Value Decomposition

Singular Value Decomposition is a powerful technique for data analysis. In this section

we give a brief overview of the method. For the following we assume a familiarity of the
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reader with basic concepts and terminology of linear algebra, and we refer the reader to the

excellent textbook of Strang [87] for an introduction to the field.

The Singular Value Decomposition of a matrix M is defined as follows [87].

Theorem 2.1 Given an m by n matrix M , we can express it as

M = UΣV T (2.4)

where U is a column orthonormal m by r matrix, r is the rank of the matrix M , Σ =

diag(σ1, σ2, . . . , σr) is an r by r diagonal matrix, where σ1, σ2, . . . , σr are positive and non-

zero, and V is a column orthogonal n by r matrix.

Recall that the rank of a matrix is the number of rows (or columns) that are linearly

independent. Also, a matrix U is column orthonormal if and only if its column vectors are

all orthogonal (i.e., their dot product is equal to zero) and all column vectors have unit

length in the Euclidean norm. Equivalently, UT U = I, where I is the identity matrix.

The values σ1, . . . , σr are called singular values of the matrix, while the column vectors of

matrices U and V are called left singular and right singular vectors respectively. If we insist

that the singular values are sorted in a non-increasing order, then, if the singular values are

distinct, this decomposition is unique. Given this decomposition of M , we will refer to the

k-th pair of singular vectors, as the k-th principal singular vectors. We will often refer to

the first principal singular vectors, as the principal singular vectors.

It is not hard to see (by performing simple matrix multiplications) that the left singular

vectors in matrix U are the eigenvectors of the matrix MMT , while the right singular

vectors in matrix V are the eigenvectors of the matrix MT M . Furthermore, the r non-zero

eigenvalues of these two matrices, are equal to the squares of the singular values of the

matrix M .

The Singular Value Decomposition has some interesting properties. From the definition

of SVD, we can write M as

M =
r∑

i=1

σiuiv
T
i .

Let k be a number such that 1 ≤ k ≤ r. We can approximate matrix M by

Mk =
k∑

i=1

σiuiv
T
i
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that is, as the sum of k rank one matrices defined by the first k principal singular vectors.

Matrix Mk has rank k, and it can be shown that it is the best possible rank k approximation

of matrix M with respect to the Frobenius and the L2 matrix norms. Let ‖M‖F denote

the Frobenius norm of matrix M , where

‖M‖F =
∑

1≤i≤m

∑

1≤j≤n

M [i, j]2 .

Also, let ‖M‖2 denote the L2 norm of matrix M , where

‖M‖2 = max
|x|=1

|Mx| ,

where |x| denotes the Euclidean norm of vector x. The proof of the following theorem can

be found in the textbook of Golub and Van Loan [41].

Theorem 2.2 Let the SVD of A be given by Theorem 2.1. If k < r and

Ak =
k∑

i=1

σiuiv
T
i ,

then

min
rank(B)=k

||A−B||F = ||A−Ak||F =
r∑

i=k+1

σ2
i (2.5)

and

min
rank(B)=k

||A−B||2 = ||A−Ak||2 = σk+1 (2.6)

The columns of the U and V matrices are orthogonal unit vectors. Therefore any k

of them define a basis for a k-dimensional space. Intuitively, the singular vectors define

the basis of a feature space. The matrix M can be thought of as a matrix that associates

two different types of entities: objects (rows) with attributes (columns). The objects are

expressed as vectors in the attribute space, while the attributes are defined as vectors in the

object space. The singular vectors of matrix V define features in the attribute space, while

the singular vectors of matrix U define features in the object space. From Equation 2.4 we

have that

MV = UΣ .

The product MV in the left hand side defines a projection of the objects (row vectors) from
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the attribute space on the feature space defined by the column vectors of matrix V . The

positions of the projections in the feature space are given by the rows of the matrix UΣ

in the right hand side. Therefore, the matrix V defines the directions on which the object

vectors are projected to in the feature space, and UΣ defines the mapping of the object

vectors to the feature space. Similarly, the column vectors of U define the directions on

which the attribute vectors are projected to the feature space, and the rows of the matrix

V Σ define the positions of the projections in the feature space.

Achlioptas and McSherry [2] present an intuitive explanation as to why the k principal

singular vectors correspond to the k strongest linear trends in the dataset. Consider a

matrix M and let v1 denote the principal right singular vector of M . It can be proved that

the vector v1 is the “certificate” for the L2 norm of the matrix M . That is, the vector v1

is the unit vector that causes |Mx| to be maximized. For matrix M , let M [i] denote the

vector of the i-th row of matrix M . Then

|Mv1| =

√√√√
(

m∑

i=1

M [i] · v1

)2

.

We can think of the dot product as a measure of the similarity of two vectors, where

similarity captures how closely aligned these two vectors are. Then, vector v1 captures the

strongest linear trend in the attribute space, in the sense that it is the vector that is most

closely aligned with the row vectors of the matrix M . The strength of the strongest linear

trend is captured in the value of |Mv1| = σ1. Let R1 = M − M1 denote the matrix M

after we remove the rank one approximation M1 = Mv1v
T
1 . The second principal right

singular vector corresponds to the certificate of the strongest linear trend of the matrix R1.

Continuing this process we can obtain all the right singular vectors of matrix M .

Returning to link analysis, the Hits algorithm computes the principal singular vectors

of the authority to hub matrix W T . The hub vector h, and the authority vector a are the

right and left principal singular vectors respectively of the matrix W T . In this matrix, the

rows correspond to the authorities, which can be thought of as vectors in a hub space. The

hub vector h captures the strongest linear trend within this space. The authority vectors

are projected on this vector. The projection lengths are the authority weights, and they

capture how closely aligned is each authority with the strongest linear trend. The authority

vector a is also the strongest linear trend in the hub space.
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Drineas et al. [29] reveal another property of the Hits algorithm. They propose to

think of the vectors a and h as clusters of authorities and hubs. The value of ai is the

intensity with which the node i belongs to the cluster a. Similarly, the value hi denotes

the intensity with which node i belongs to cluster h. The authors propose to use |hT W |2

and |Wa|2 as a measure of the strength of the clusters. The i-th coordinate of vector

hT W is (hW )i =
∑n

j=1 hjW [j, i] and it captures the frequency with which node i appears

in the neighborhood of the cluster h. A large value for (hW )i implies that node i is

pointed to by many hubs with high intensity value. Thus, node i is strongly affiliated

with the cluster h. Furthermore, node i reinforces the relationship between the hubs.

Since |hT W |2 =
∑n

i=1(hW )2i we want to maximize this reinforcing relation. Note that

hT W = σ1a. The vectors a and h are constructed such that |hT W |2 and |Wa|2 are

maximized, since they are the certificates for the L2 norm of the W and W T matrices

respectively. Thus, the vectors h and a have the property that they maximize the reinforcing

relation between hubs and authorities. A symmetric argument can be made if we consider

the cluster a.

The reinforcing relation is captured in the fact that the Hits algorithm assigns the

highest authority and hub weights to a set of nodes that are tightly interconnected; the most

Tightly Knit Community in the graph, as it is often referred to in the literature [58, 64]. That

is, Hits promotes sets of nodes S and T such that there are many edges of the form (u, v),

where u ∈ S and v ∈ T . Drineas et al. [29] give further support to this claim. Consider

the residual matrix R1 = W −W1 that is obtained by removing matrix W1 = σ1a
T h from

matrix W . They prove that for any subsets S, T of nodes

∣∣∣∣∣∣
∑

i∈S,j∈T

R1[i, j]

∣∣∣∣∣∣
≤ σ2

√
|S||T | .

Since σ1 ≥ σ2, it follows that matrix W1 contains the most dense connected component in

the matrix W .

2.3.1 Some Applications of Singular Value Decomposition in Computer

Science

One of the most celebrated applications of Singular Value Decomposition has been in the

area of information retrieval [23, 6]. Deerwerster et al. [23] introduced the Latent Semantic
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Analysis where they proposed to apply Singular Value Decomposition on the document

to term matrix. The effect of SVD is not only to reduce the dimensionality of the term

space, but also to group together documents on the same topic, thus dealing with problems

such as synonymy and polysemy. Synonymy refers to the case that two different words

have the same meaning (e.g., car and automobile), while polysemy refers to the case that a

word has multiple meanings (e.g., windows, referring to the actual house windows, and the

Microsoft operating system). The problem of synonymy in Information Retrieval is to be

able to retrieve documents that contain the synonyms of the query word. The problem of

polysemy is to be able to separate between documents that refer to different meanings of the

query word. Latent Semantic Analysis appears to be able to deal with these two problems.

Preliminary work on the theoretical support of this phenomenon was later provided by

Papadimitriou et al. [75], and it was later extended by the work of Azar et al. [4], and

Achlioptas et al. [1].

Singular Value Decomposition has been applied in many different settings. Usually, it

is applied as a dimensionality reduction tool, for obtaining a concise and compact repre-

sentation of a large dataset. For example, we reference some applications in lossy compres-

sion [60], query processing [77], image recognition [91], and clustering [71, 29, 54].

2.4 Other Related Work

Link analysis has been previously considered in different areas. In the area of social net-

works, given a network of endorsements between the members of a community, we are

interested in determining the standing of an individual within the community. This is a

notion very close to that of the authoritativeness. The algorithms proposed by Katz [55],

and Hubbell [51] for computing the standing of an individual can be seen as the forefathers

of the link analysis ranking algorithms for the Web.

The area closest to the link analysis of Web documents is bibliometrics [31]. The object

of study of bibliometrics is a collection of academic documents. Link analysis is applied to

the citation structure of the documents for calculating the impact of a scientific journal.

The algorithms in this area include the celebrated impact factor algorithm by Garfield [42],

as well as extensions and variations of this algorithm [76, 38, 27, 28].

The analysis of link structures in hypertext documents dates back to the work of
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Frisse [37], who proposed heuristics for enhancing the relevance of a document using hyper-

link information. Botafogo, Rivlin and Shneiderman [12] define index and reference nodes,

which can be viewed as the predecessors of hubs and authorities. They also proposed to use

the centrality of a node as a ranking criterion. Carrière and Kazman [15] proposed simple

heuristics that use the in and out degree of a node for ranking. Marchiori [69] proposed the

HyperSearch algorithm for determining the relevance of a hypertext document, using the

relevance of the pages that can be reached from this document.

However, the origin of link analysis ranking can be pinpointed to the ground-breaking

work of Kleinberg [57, 58], and Brin and Page [13]. These two algorithms spawned the

area of link analysis ranking and were followed by a substantial amount of research work.

Bharat and Henzinger [8] considered improvements on the Hits algorithm by using textual

information to weight the importance of nodes. They also down-weight the importance of

links that arrive from, or end at the same host by averaging. The ARC algorithm [16]

enhances the Hits algorithm by weighting the edges of the graph, taking into account the

anchor text of the hyperlink, and the surrounding text. Further improvements are suggested

by Li, Shang and Zhang [67] that make use of relevance scores. Bharat and Mihaila [9]

suggest an elaborate way of finding experts on topics, and constructing a bipartite graph

of experts and targets. They assign an expert cost to every expert. Then they propose to

set the authority weight of the targets to be the sum of the expert weights of the experts

that point to them. Rafiei and Mendelzon [78, 70] consider the application of link analysis

for determining the reputation of a page. They propose the application of the PageRank

algorithm, and they also consider a combination of the PageRank and Hits algorithms.

This is the same as the Salsa algorithm, except that, similar to PageRank, at every

step the algorithm makes a jump to a random page with probability ε. Almost the same

algorithm is also proposed by Ng, Zheng and Jordan [72, 73], termed Randomized HITS.

Page, Brin, Motwani and Winograd [74] propose personalized versions of the PageRank

algorithm, by selecting the jump distribution D so that it favors pages selected by the user.

Recently, Haveliwala [44] proposed a topic sensitive version of the PageRank algorithm.

For a given set of topics he computes a topic specific PageRank value by making the jump

distribution biased towards that topic. Then depending on how related the query is to

that topic, he sets the final weight of the document to be a weighted combination of the

PageRank values for each topic. A similar idea is explored by Jeh and Widom [53] where
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a sophisticated algorithm for combining PageRank vectors is proposed that requires less

computational time and storage space, and it allows for a larger set of base topics to be

considered. Richardson and Domingos [79] consider a topic sensitive version of PageRank

where for every query word a different jump distributionD is used, and a different PageRank

value is computed, and they argue about the scalability of their approach in terms of storage

and computational costs.

Extensions of the Hits algorithm that use multiple eigenvectors were proposed by Ng,

Zheng and Jordan [73], and Achlioptas et al. [4]. Ng, Zheng and Jordan propose to use

multiple singular vectors of the adjacency matrix for defining a subspace in the hub space on

which to project the authority vectors. Achlioptas et al., propose a model for the generation

of links, text and user queries. Their model assumes the existence of latent communities

of Web pages. Based on this model they propose an algorithm that uses Singular Value

Decomposition to discover authoritative pages for a given query.

A different line research exploits the application of probabilistic and statistical tech-

niques for computing rankings. The PHits algorithm by Cohn and Chang [19] assumes

a probabilistic model in which a link is caused by latent “factors” or “topics”. They use

the Expectation Maximization (EM) Algorithm of Dempster et al. [24] to compute the

authority weights of the pages. Their work is based on the Probabilistic Latent Semantic

Analysis framework introduced by Hofmann [48], who proposed a probabilistic alternative

to Singular Value Decomposition. Hofmann [49] proposes an algorithm similar to PHits

which also takes into account the text of the documents. In the work with Borodin, Roberts

and Rosenthal [10] we considered a probabilistic algorithm that assumes that each page has

latent authority, hub, and “link tendency” parameters, and that the generation of a link

between two pages is governed by these parameters. Given a well specified model, they

condition on the observed data (the actual links in the graph) to compute the posterior

distribution of the parameters. They apply a Metropolis Monte Carlo algorithm for com-

puting the conditional means of the authority parameters which are output as the authority

weights. Roberts and Rosenthal [80] propose an algorithm that groups similar pages to-

gether to create “super-nodes”. Then, they apply probabilistic techniques on this graph to

compute the ranking. They observed that their algorithms have the property of escaping

the Tightly Knit Community (TKC) effect.

Tomlin [90] generalizes previous work on targeted advertising [89], and proposes a gener-
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alization of the PageRank measure. He proposes to generalize the idea of the random surfer,

and to assign flows on the edges of the Web graph. Then, using the maximum entropy prin-

ciple he estimates the values for flows on the edges of the graph. The author proposes, as a

ranking value for every page, the total flow that arrives to a page (TrafficRank). As a by-

product of the algorithm a Lagrange multiplier is computed for each page, which captures

the “temperature” of the page. The author proposes to use this “temperature” (HOTness)

as the authority value.

The problem of retrieving and ranking documents from a given corpus has been studied

extensively in the area of Information Retrieval [5]. An influential conference in this area is

the Text REtrieval Conference (TREC). The aim of TREC is to evaluate document search

algorithms, using benchmark text collections. The document collections accompanied with

a set of queries. For each query, relevance feedback is provided for each document in the

collection. The algorithms are evaluated by computing the precision over the top k results.

Recently, the TREC conference has created a separate Web Track for the study of document

search algorithms over collections of Web documents. Early studies [82, 83, 46, 47] with link

analysis ranking algorithms (including PageRank and Hits) indicated that link analysis

does not improve the quality of search, compared to traditional text searching algorithms.

However, the study of Singhal and Kaszkiel [85] demonstrated that commercial search

engines that use some form of link analysis outperform the state of the art TREC algorithms.

Their study focused on Home Page queries, where the objective of the user is to discover

the home page of an organization, or a person. They speculated that the observations in

the earlier studies were due to the limitations of the corpus on which the algorithms were

tested, and the nature of the queries. Recent experiments with link analysis algorithms on

TREC Web data [20] demonstrate that, although link analysis does not improve much upon

traditional information retrieval algorithms for topical queries (queries for finding relevant

pages to a topic), it exhibits considerable improvement when applied to Home Page queries.

The experiments were limited to specific LAR algorithms and techniques. Although these

studies are indicative of the limitations of Link Analysis Ranking, the TREC experiments

do not offer a conclusive argument for the value of Link Analysis in Ranking.

Apart from ranking, link analysis has been applied in diverse contexts. Lempel and

Soffer [66] propose the application of link analysis for retrieving images. Dean and Hen-

zinger [22] propose the application of link analysis for finding related pages to a query page.
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Guo, Shao, Botev and Shanmugasundaram [43] consider the application of the PageRank

algorithm on XML documents, where rankings are computed at the granularity of XML

elements rather than documents. Chakrabarti, Dom and Indyk [17] propose the use of link

information for classification of Web pages. Lee [62] uses links for aggregating the results

of multiple search engines.

There is a considerable amount of work on clustering Web pages using link information.

Kumar, Raghavan, Rajagopalan and Tomkins [61] defined a community as a set of pages

that contain a complete bipartite graph, called the core of the community. They proposed

efficient algorithms for identifying such bipartite cliques. Flake and co-authors [35, 36] use

maximum flow algorithms to define and discover communities in Web graphs. Fagin et

al. [33] consider the application of link analysis ranking on intranets. Recently, Bhalotia et

al. [7] proposed the application of link analysis to the problem of ranking the query results

for keyword searches in relational data. There is a substantial amount of work in this area,

but a detailed review is beyond the scope of this thesis.
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Chapter 3

Link Analysis Ranking Algorithms

3.1 Implicit Properties of the Hits Algorithm

The idea underlying the Hits algorithm can be captured in the following recursive definition

of quality: “A good authority is one that is pointed to by many good hubs, and a good hub

is one that points to many good authorities”. Therefore, the quality of some page p as an

authority (captured by the authority weight of page p) depends on the quality of the pages

that point to p as hubs (captured in the hub weight of the pages), and vice versa. Kleinberg

proposes to associate the hub and authority weights through the addition operation. The

authority weight of a page p is defined to be the sum of the hub weights of the pages that

point to p, and the hub weight of the page p is defined to be the sum of the authority

weights of the pages that are pointed to by p. This definition has the following two implicit

properties. It is symmetric, in the sense that both hub and authority weights are defined in

the same way. If we reverse the orientation of the edges in the graph G, then authority and

hub weights are swapped. The Hits algorithm is also egalitarian, in the sense that when

computing the authority weight of some page p, the hub weights of the pages that point to

page p are all treated equally (similarly when computing the hubs weights).

However, these two properties may some times lead to non-intuitive results. Consider

for example the graph in Figure 3.1. In this graph there are two components. The black

component consists of a single authority pointed to by a large number of hubs. The white

component consists of a single hub that points to a large number of authorities. If the

number of white authorities is larger than the number of black hubs then the Hits algorithm

will allocate all authority weight to the white authorities, while giving zero weight to the
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Figure 3.1: A bad example for Hits algorithm

black authority. The reason for this is that the white hub is deemed to be the best hub,

thus causing the white authorities to receive more weight. However, intuition suggests that

the black authority is better than the white authorities and should be ranked higher.

In this example, the two implicit properties of the Hits algorithm combine to produce

this non-intuitive result. Equality means that all authority weights of the nodes that are

pointed to by a hub contribute equally to the hub weight of the node. As a result quantity

becomes quality. The hub weight of the white hub increases inordinately because it points

to many weak authorities. This leads us to question the definition of the hub weight, and

consequently other implicit property of Hits. Symmetry assumes that hubs and authorities

are qualitatively the same. However, there is a difference between the two. For example,

intuition suggests that a node with high in-degree is likely to be a good authority. On the

other hand, a node with high out-degree is not necessarily a good hub. If this was the

case, then it would be easy to increase the hub quality of a page, simply by adding links to

random pages. It seems that we should treat hubs and authorities in different manners.

In this chapter we challenge both implicit properties of Hits. We present different ways

for breaking the symmetry and equality principles and we study the ranking algorithms

that emerge.

3.2 The Hub-Averaging (HubAvg) Algorithm

In the example of Figure 3.1, the symmetric and egalitarian nature of the Hits algorithm

has the effect that the quality of the white hub is determined by the quantity of authorities

it points to. Thus, the white hub is rewarded simply because it points to a large number

of authorities, even though they are of low quality. We propose a modification of the Hits

algorithm to help remedy the above-mentioned problem. The Hub-Averaging algorithm

(HubAvg) (first presented in the collaborative work with A. Borodin, G. Roberts, and J.
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HubAvg

Initialize authority weights to 1
Repeat until the weights converge:

For every hub i ∈ H
hi = 1

|F (i)|
∑

j∈F (i) aj

For every authority i ∈ A
ai =

∑
j∈B(i) hj

Normalize

Figure 3.2: The HubAvg Algorithm

Rosenthal [10]) updates the authority weights like the Hits algorithm, but it sets the hub

weight of some node i to the average authority weight of the authorities pointed to by hub

i. Thus for some node i we have

ai =
∑

j∈B(i)

hj and hi =
1

|F (i)|
∑

j∈F (i)

aj . (3.1)

The intuition of the HubAvg algorithm is that a good hub should point only (or at least

mainly) to good authorities, rather than to both good and bad authorities. Note that in

the example of Figure 3.1, HubAvg assigns the same weight to both black and white hubs,

and it identifies the black authority as the better authority. The HubAvg algorithm is

summarized in Figure 3.2.

The HubAvg algorithm can be viewed as a “hybrid” of the Hits and Salsa algorithms.

The operation of averaging the weights of the authorities pointed to by a hub is equivalent

to dividing the weight of a hub among the authorities it points to. Thus, we can replace

Equation 3.1 by the following.

ai =
∑

j∈B(i)

1
|F (j)|hj and hi =

∑

j∈F (i)

ai .

Therefore, the HubAvg algorithm performs theO operation like the Hits algorithm (broad-

casting the authority weights to the hubs), and the I operation like the Salsa algorithm

(dividing the hub weights to the authorities). This lack of symmetry between the update

of hubs and authorities is motivated by the qualitative difference between hubs and author-

ities previously discussed. The authority weights for the HubAvg algorithm converge to
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Figure 3.3: A bad example for the HubAvg algorithm

the principal right eigenvector of the matrix MHA = W T Wr.

It is interesting to observe what happens if we make the algorithm symmetric. There are

two ways to re-establish symmetry. We can let the authorities divide their weight among

the hubs that point to them. In this case authority and hub weights are defined as follows.

ai =
∑

j∈B(i)

1
|F (j)|hj and hi =

∑

j∈F (i)

1
|B(j)|ai .

The authority weights will then converge to the principal left eigenvector of the matrix

W T
c Wr and the algorithm becomes the Salsa algorithm. Alternatively, we can make the

authority weight of a node be the average of the hub weights that point to that node. In

this case the authority and hub weights are updated as follows.

ai =
1

|B(i)|
∑

j∈B(i)

hj and hi =
1

|F (i)|
∑

j∈F (i)

aj

The authority weights will then converge to the principal right eigenvector of the matrix

W T
c Wr. Since this is a stochastic matrix, the principal right eigenvector is the uniform

vector. Thus, the algorithm degenerates to the algorithm that assigns the same weight to

each node in the graph.

3.3 The Authority Threshold (AT(k)) Family of Algorithms

The HubAvg algorithm has its own shortcomings. Consider for example the graph in

Figure 3.3. In this graph there are again two components, one black and one white. They

are completely identical, except for the fact that some of the hubs of the black component

point to a few extra authorities. If we run the HubAvg algorithm on this graph, then the

white authority will receive higher authority weight than the black authority. This is due to
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the fact that the black hubs are penalized for pointing to these “weaker” authorities. The

HubAvg algorithm rewards hubs that point only (or mainly) to good authorities. Hubs

that have links to a few poor authorities are penalized. However, this is not always fair. In

the example of Figure 3.2, the black authority seems to be at least as authoritative as the

white authority. Although we would not like the black hubs to be rewarded for pointing

to these weak authorities, we do not necessarily want them to be penalized either. Such

situations may arise in practice, where a node is at the same time a strong hub on one topic,

and a weak hub on another topic. Such hubs are penalized by the HubAvg algorithm.

What we want is to reduce the effect of the weak authorities on the computation of the

hub weight, while at the same time we retain the positive effect of the strong authorities.

A simple solution is to apply a threshold operator, that retains only the highest authority

weights. We propose the Authority-Threshold, AT(k), algorithm (first presented in the

collaborative work with A. Borodin, G. Roberts, and J. Rosenthal [10]), which sets the hub

weight of node i to be the sum of the k largest authority weights1 of the authorities pointed

to by node i. This corresponds to saying that a node is a good hub if it points to at least

k good authorities. The value of k is passed as a parameter to the algorithm.

Formally, let Fk(i) denote the subset of F (i) that contains k nodes with the highest

authority weights. That is, for any node p ∈ F (i), such that p 6∈ Fk(i), ap ≤ aq, for all

q ∈ Fk(i). If |F (i)| ≤ k, then Fk(i) = F (i). The AT(k) algorithm computes the authority

and hub weights as follows.

ai =
∑

j∈B(i)

hj and hi =
∑

j∈Fk(i)

aj

The outline of the AT(k) algorithm is shown in Figure 3.4.

It is interesting to examine what happens at the extreme values of k. For k = 1,

the threshold operator becomes the max operator. We will discuss this case in detail in

Section 4.2. If dout is the maximum out-degree of any node in the graph G, then for k ≥ dout,

the AT(dout) algorithm is the Hits algorithm.

1Other types of threshold are possible. For example the threshold may depend on the largest difference
between two weights.
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AT(k)

Initialize authority weights to 1
Repeat until the weights converge:

For every hub i ∈ H
hi =

∑
j∈Fk(i) aj

For every authority i ∈ A
ai =

∑
j∈B(i) hj

Normalize

Figure 3.4: The AT(k) Algorithm

3.4 The Norm(p) Family of Algorithms

The Authority Threshold algorithm operates on the principle of preferential treatment of

the authority weights. That is, higher authority weights should be more important in the

computation of the hub weight. This principle is enforced by applying a threshold operator.

A smoother approach is to scale the weights, so that lower authority weights contribute

less to the hub weight. An obvious question is how to select the scaling factors. A natural

solution is to use the weights themselves to determine the scaling factors.

This idea is implemented in the Norm(p) family of algorithms. In this case we set the

hub weight of node i to be the p-norm of the vector of the authority weights of the nodes

pointed to by node i. Recall that the p-norm of vector x = (x1, . . . , xn) is defined as follows:

‖x‖p =

(
n∑

i=1

xp
i

)1/p

.

The authority and hub weights are computed as follows:

ai =
∑

j∈B(i)

hj and hi =


 ∑

j∈F (i)

ap
j




1/p

.

The value of p is passed as a parameter to the algorithm. We assume that p ∈ [1,∞] As

p increases the value of the p-norm is dominated by the highest weights. For example, for

p = 2, we essentially scale every weight with itself. The outline of the Norm(p) algorithm

is shown in Figure 3.5. An almost identical algorithm was proposed by Gibson, Kleinberg

and Raghavan [39] for clustering categorical data.

30



Norm(p)

Initialize authority weights to 1
Repeat until the weights converge:

For every hub i ∈ H

hi =
(∑

j∈F (i) ap
j

)1/p

For every authority i ∈ A
ai =

∑
j∈B(i) hj

Normalize

Figure 3.5: The Norm(p) Algorithm

Again, it is interesting to examine the behavior of the algorithm in the extreme cases

of the value p. For p = 1 the Norm(1) algorithm is the Hits algorithm. For p = ∞ the

p-norm reduces to the max operator.

3.4.1 Making it Symmetric: The DoubleNorm(p) algorithm

The Norm(p) algorithm can be made symmetric by setting the authority weight of a node

to be the p-norm of the vector of the hub weights of the hubs that point to that node. Then

the authority and hub weights are computed as follows:

ai =


 ∑

j∈B(i)

hp
j




1/p

and hi =


 ∑

j∈F (i)

ap
j




1/p

.

Let DoubleNorm(p) denote this algorithm. The behavior of this symmetric version

is particularly intriguing. First consider the limiting case p = ∞. When all initial weights

are set to 1, then it is easy to see that all nodes will receive weight 1. If we initialize

the authority weights to some other configuration then the algorithm assigns the authority

weights as follows. Recall (Section 2.1) that the authority graph Ga is defined on the set

of authorities A, and that there exists an (undirected) edge between two authorities if they

have a hub in common. For every component in the graph Ga, all nodes in the component

receive the weight of the node with the maximum initial weight in the component.

For 1 ≤ p < ∞, we will prove that the DoubleNorm(p) algorithm converges and it

produces the same ranking as the Hits algorithm. For the following, fix p, and assume for a

moment that the DoubleNorm(p) algorithm converges. Now, let aq(i) denote the authority
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weight of node i assigned by the DoubleNorm(p) algorithm when the normalization is

performed in the Lq norm. Also, let wq(i) denote the authority weight of node i assigned

by the Hits algorithm, when the normalization is performed in the Lq norm. We prove the

following.

Theorem 3.1 The DoubleNorm(p) algorithm converges, and aq(i) =
(
wq/p(i)

)1/p.

Proof: We will prove the theorem using induction on the number of iterations. Let at
q(i)

denote the authority weight of node i, after t iterations of the DoubleNorm(p) algorithm.

Similarly, for the Hits algorithm let wt
q(i) denote the corresponding quantity. Let a0(i)

denote the initial weight of node i for the DoubleNorm(p) algorithm. We initialize the

weight of the i-th node in the Hits algorithm to w0(i) = (a0(i))p. We note that the

convergence of the Hits algorithm does not depend on the initialization. We will prove

that, for all t ≥ 0, at
q(i) =

(
wt

q/p(i)
)1/p

.

For t = 0, it is obviously true (the initial weight does not depend on the normalization).

Assume that it is true at the end of iteration t. Let hj and gj denote the hub weight of

node j assigned by the DoubleNorm(p) and the Hits algorithm respectively at iteration

t + 1. We have that

(hj)
p =

∑

i∈F (j)

(
at

q(i)
)p

=
∑

i∈F (j)

wt
q/p(i)

= gj

Let at+1(i) and wt+1(i) denote the authority weights of node i before applying the normal-

ization step, for the DoubleNorm(p) and Hits algorithms, respectively. We have that

wt+1(i) =
∑

j∈B(i)

gj ,

and

at+1(i) =


 ∑

j∈B(i)

(hj)
p




1/p
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=


 ∑

j∈B(i)

gj




1/p

=
(
wt+1(i)

)1/p

Therefore, we have that

at+1
q (i) =

at+1(i)
(∑n

i=1

(
at+1(i)

)q)1/q

=

(
wt+1(i)

)1/p

(∑n
i=1

(
wt+1(i)

)q/p
)1/q

=


 wt+1(i)

(∑n
i=1

(
wt+1(i)

)q/p
)p/q




1/p

=
(
wt+1

q/p (i)
)1/p

As t → ∞, wt
q/p(i) → wq/p(i). Therefore, the DoubleNorm(p) algorithm converges, and

aq(i) =
(
wq/p(i)

)1/p. Note that the convergence of DoubleNorm(p) follows from the

convergence of the Hits algorithm, and thus it does not depend on the initial authority

weights. 2

From Theorem 3.1 we observe that, although the authority weights produced by the

DoubleNorm(p) and Hits algorithms may be significantly different, the actual rankings

(orderings of pages) are identical. Let ai and wi denote the authority weight for node i

produced by algorithms DoubleNorm(p) and Hits respectively. Then, for any two nodes

i, j, ai < aj if and only if wi < wj . This is independent of the normalization, and it holds

for all 1 ≤ p < ∞. Thus, we have the following surprising phenomenon. For any 1 ≤ p < ∞,

the DoubleNorm(p) algorithm produces the same ranking as Hits, but for p = ∞, the

DoubleNorm(p) algorithm becomes the uniform algorithm that assigns the same weight

to all nodes. However, this can be explained by the following observation. For any two

nodes i and j, we have that

aq(i)
aq(j)

=

(
wq/p(i)

)1/p

(
wq/p(j)

)1/p
=

(
wq/p(i)
wq/p(j)

)1/p

.
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The ratio wq/p(i)

wq/p(j) is independent of p and q. Thus, as p grows, the ratio aq(i)
aq(j) converges to

1. We discuss similarity between algorithms more in Chapter 5.

3.5 The Breadth-First-Search (BFS) Algorithm

In this section we introduce a link analysis ranking algorithm that combines ideas from

both InDegree and Hits algorithms. The InDegree algorithm computes the authority

weight of a page taking into account only the popularity of this page within its immediate

neighborhood, and disregarding the rest of the graph. On the other hand, the Hits algo-

rithm considers the whole graph, taking into account the structure of the graph around the

node, rather than just the popularity of that node in the graph.

Let B denote a path that consists of a single edge that we follow backwards, and let F

denote a path that consists of a single forward edge. We combine these to obtain longer

paths. For example, a (BF )n path is a path that alternates between backward and for-

ward links n times. If we assume that the normalization in Hits is performed in the L1

norm, then after n iterations of the Hits algorithm the authority weight of authority i is

|(BF )n(i)|/|(BF )n|, where |(BF )n(i)| is the number of (BF )n paths that leave node i, and

(BF )n denotes the set of all (BF )n paths in the graph. Another way to think of this is

that the contribution of a node j 6= i to the weight of i is equal to the number of (BF )n

paths that go from i to j. Therefore, if nodes j and i belong to a bipartite component,

their weights increase exponentially fast. This may not always be desirable, especially if

the bipartite component is not representative of the query.

We now describe the Breadth-First-Search (BFS) algorithm (first proposed in the col-

laborative work with A. Borodin, G. Roberts, and J. Rosenthal [10]), as a generalization

of the InDegree algorithm, and a restriction of the Hits algorithm. The BFS algorithm

extends the idea of popularity that appears in the InDegree algorithm from a one-link

neighborhood to an n-link neighborhood. The construction of the n-link neighborhood is

inspired by the Hits algorithm. However, instead of considering the number of (BF )n paths

that leave i, it considers the number of (BF )n neighbors of node i. Abusing the notation,

let (BF )n(i) denote the set of nodes that can be reached from i by following a (BF )n path.

The contribution of node j to the weight of node i depends on the distance of the node j

from i. We adopt an exponentially decreasing weighting scheme. Therefore, the weight of
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node i is determined as follows:

ai = |B(i)|+ 1
2
|BF (i)|+ 1

22
|BFB(i)|+ . . . +

1
22n−1

|(BF )n(i)|+ 1
22n

|(BF )Bn(i)|.

The algorithm starts from node i, and visits its neighbors in BFS order, alternating

between backward and forward steps. Every time we move one link further from the starting

node i, we update the weight factors accordingly. The algorithm stops either when n links

have been traversed, or the nodes that can be reached from node i are exhausted.

The idea of applying an exponentially decreasing weighting scheme to paths that orig-

inate from a node has been previously considered by Katz [55]. In the algorithm of Katz,

for some fixed parameter α < 1, the weight of node i is equal to

ai =
∞∑

k=1

n∑

j=1

αkW k[j, i]

where W k is the k-th power of the adjacency matrix W . The entry W k[j, i] is the number

of paths in the graph G of length k from node j to node i. As we move further away from

node i, the contribution of the paths decreases exponentially. There are two important dif-

ferences between BFS and the algorithm of Katz. First, the way the paths are constructed

is different, since the BFS algorithm alternates between backward and forward steps. More

important, the BFS algorithm and the algorithm of Katz is that the BFS algorithm con-

siders the neighbors at distance k. Every node j contributes to the weight of node i just

once, and the contribution of node j is 1/2k (or αk if we select a different scaling factor),

where k is the shortest path from j to i. In the algorithm of Katz, the same node j may

contribute multiple times, and its contribution is the number of paths that connect j with

i. The algorithm of Katz resembles the PageRank algorithm, where the weight of node i

can be expressed as the sum of paths leading to node i.
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Chapter 4

Applications of Non-Linear

Dynamical Systems to Link

Analysis Ranking

In this chapter we examine the application of dynamical systems to Link Analysis Rank-

ing. We are especially interested in dynamical systems that use non-linear operators. We

study in detail one such system, prove that it converges, and give a characterization of the

combinatorial properties of the weights that the algorithm produces.

4.1 Dynamical Systems

A discrete dynamical system is defined [25] as a process that starts with an n-dimensional

real vector, and repeatedly applies a function g : Rn → Rn. We define a configuration

of the system as any intermediate value of the vector. The initial assignment of values is

called the initial configuration of the dynamical system. Of particular interest are the fixed

configurations (or fixed points). These are vectors x, such that g(x) = x. We will also refer

to these vectors as the stationary configurations of the dynamical system. An interesting

question in dynamical systems is the limiting value of the dynamical system. That is, if

gt(x) denotes the t-th iteration of the function g, then we are interested in understanding

the limiting behavior of gt(x), as t →∞, for different initial values of x. For an introduction

to dynamical systems, we refer the reader to the texts by Denavey [25] , Sandefur [81], and
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Holmgren [50].

In the case of link analysis algorithms, the real vector is the authority weight vector, and

the function g propagates the authority weight in the graph G. Let at denote the authority

weight vector after t iterations of the algorithm. The outline of a dynamical system for

link analysis ranking is shown in Figure 4.1. We note that, alternatively, we could define

DynamicalSystemg (a0)

Initialize authority weights to a0

Repeat until the weights converge:
at = g(at−1)

Figure 4.1: The outline of a dynamical system

the output of an LAR algorithm as a fixed point of the function g. The dynamical system

provides one possible way for computing such fixed points.

Depending on the function g we distinguish between two types of dynamical systems:

linear and non-linear. In linear dynamical systems, the function g is of the form g(x) = Mx,

where M is an n×n matrix. The majority of the link analysis algorithms that have appeared

so far in the literature [58, 13, 64, 78, 10, 1, 73] can be described as linear dynamical systems.

Table 4.1 shows the linear function that corresponds to the PageRank, Salsa, Hits, and

HubAvg. The functions for Hits and HubAvg are referred to in the literature as linear

automorphisms [25]. We can transform a linear automorphism into a linear system by

dividing the entries of the corresponding matrix M by its principal eigenvalue [81].

Algorithm Function

PageRank gPR(a) = MT
PRa

Salsa gS(a) = MT
S a

Hits gH(a) = MHa
‖MHa‖

HubAvg gHA(a) = MHAa
‖MHAa‖

Table 4.1: LAR algorithms as Linear dynamical systems
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Consider now a linear dynamical system with matrix M . We assume that the matrix M

has positive entries, non-negative non-defective1 real eigenvalues, and principal eigenvalue

1. For such linear dynamical systems, linear algebra offers the tools to analyze the limiting

behavior of the system. If the principal eigenvalue is unique, then if we initialize the system

to some initial configuration x0 that is not orthogonal to the principal eigenvector of the

matrix the dynamical system converges to a fixed configuration, which is the principal

eigenvector of the matrix M that defines the system. If the principal eigenvalue is not

unique, then the system converges to a linear combination of the principal eigenvectors.

When x0 is orthogonal to the principal eigenvector of the matrix, the system converges to

the highest-indexed eigenvector to which it is not initially orthogonal.

For the linear systems we consider, the PageRank, Salsa, Hits, and HubAvg algo-

rithms, the conditions for the matrices of the systems are satisfied and the convergence

of the systems is guaranteed. For the PageRank and Salsa algorithms, the convergence

follows from the fact that the MPR and MS matrices are stochastic matrices. For the Hits

and HubAvg the convergence follows from the fact that the MH and MHA matrices are

symmetric matrices.

Things become more complicated when the function g is non-linear. Outside of the well

understood world of linear algebra, we know very little about the behavior of dynamical

systems. In Link Analysis Ranking, non-linear dynamical systems arise when we apply

non-linear operators for the computation of the weights. Examples of non-linear dynamical

systems that are applied to ranking include the AT(k) and Norm(p) families of algorithms,

since the threshold and p-norm operators that are applied for the computation of the hub

weights are non-linear. For these algorithms we do not even know if they converge, which

is a basic requirement for a well defined Link Analysis Ranking algorithm.

In the following we study in detail the Max algorithm, a special case of both the

AT(k) and Norm(p) families, where we set the hub weight to be the maximum authority

weight of the nodes pointed to by the hub. This algorithm was previously considered by

Gibson, Kleinberg and Raghavan [39], but it was not rigorously analyzed. We prove that

the algorithm converges, and we characterize the combinatorial properties of the stationary

configuration.

1A defective eigenvalue is one that has geometric multiplicity (number of associated eigenvectors) less
than its algebraic multiplicity (number of times the eigenvalue is repeated).
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Max(a0)

Initialize authority weights to a0

Repeat until the weights converge:
For every hub i ∈ H

hi = maxj∈F (i) aj

For every authority i ∈ A
ai =

∑
j∈B(i) hj

Normalize in the L∞ norm

Figure 4.2: The Max Algorithm

4.2 The Max algorithm

The Max algorithm is a special case of both the AT(k) algorithm for the threshold value

k = 1, and the Norm(p) algorithm for the value p = ∞. The underlying intuition is that a

hub node is as good as the best authority that it points to. That is, a good hub is one that

points to at least one good authority.

Formally, we define the Max algorithm as follows. The algorithm sets the hub weight of

node i to be the maximum authority weight over all authority weights of the nodes pointed

to by node i. The authority weights are computed as in the Hits algorithm. Therefore, the

authority and hub weights as computed as follows.

ai =
∑

j∈B(i)

hj and hi = max
j∈F (i)

aj .

The outline of the algorithm is shown in Figure 4.2. We set the normalization norm to

be the max (or infinity) norm. This makes the analysis easier, but it does not affect the

convergence, and the combinatorial properties of the stationary configuration.

4.3 Preliminaries

We will now introduce some of the terminology that we will use in the remainder of this

chapter. We first define a notion of time. We define time t to be the moment immediately

after the t-th iteration of the algorithm. We denote by at
i the un-normalized weight of

node i at time t. The weights are normalized in the L∞ norm. This means that the

normalization factor at step t is the maximum un-normalized authority weight, and the
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maximum normalized weight is 1. We use at
i to denote the normalized weight of node i at

time t. When not specified, the weight of node i at time t refers to the normalized weight

of node i at time t. We denote ai = limt→∞ at
i, the limit of the weight of node i, as t →∞,

assuming that the limit exists. When convenient we will use at(i), at(i), and a(i) for the

quantities at
i, at

i, and ai respectively.

We also define the mapping f t : H → A, where the hub j is mapped to authority i, if at

time t the authority i is the authority with the maximum weight among all the authorities

pointed to by hub j. If there are many authorities in F (j) that have the largest weight, we

arbitrarily select one of the authorities (e.g., according to some predefined ordering). We

use f(j) = limt→∞ f t(j) to denote the limit of the mapping function as t → ∞, assuming

again that the limit exists. For an authority i, the un-normalized weight of node i at time

t is at
i =

∑
j∈B(i) at−1

(
f t−1(j)

)
.

Recall that G = (P, E) denotes the underlying graph, and Ga = (A,Ea) the authority

graph, where there exists an undirected edge between two authorities if they share a hub.

Assume now that the graph Ga consists of k connected components C1, C2, . . . , Ck. Let

a0 be the weight vector of the initial configuration. The weight assigned by configuration

a0 to component Ci is the sum of weights of all authorities in Ci. We define a fair initial

configuration as a configuration that assigns non-zero weight to all components in the graph

Ga. We will assume that the initial configuration is always fair. If the component Ci is

assigned zero weight by the vector a0, then the weights of the nodes in Ci will immediately

converge to zero. Thus, we can disregard the nodes in the component Ci and assume that

the algorithm operates on a smaller graph G̃, initialized to a fair configuration ã0.

Finally, for some node i ∈ A, let di denote the in-degree of authority i in the graph G,

and let d = max{di : i ∈ A}, denote the maximum in-degree of any authority in the graph

G. Let S ⊆ A denote the set of nodes with in-degree d. We call these nodes, the seeds of

the algorithm. Seed nodes play an important role in the Max algorithm. We define U to

be the set of non-seed nodes. Thus, A = S ∪ U .

4.4 Convergence of the Max algorithm

In this section we prove that the algorithm converges for any initial configuration. First,

we prove that the weights of the seed nodes always converge.
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Lemma 4.1 The weight of every seed node s ∈ S is a non-decreasing function of time.

Proof: Consider any seed node s ∈ S, and let t ≥ 0 be some time in the execution of the

algorithm. At iteration t + 1, for every hub node j, we have that hj = max{at
i : i ∈ F (j)}.

Thus, for every hub j ∈ B(s), hj ≥ at
s. Therefore, at time t + 1, the un-normalized weight

of node s is at+1
s =

∑
j∈B(s) hj ≥ dat

s. Let x be the authority node with maximum un-

normalized weight at time t + 1. Since the weight of any authority at time t is at most 1,

we have that for every hub j ∈ B(x), hj ≤ 1. It follows that at+1
x =

∑
j∈B(x) hj ≤ dx ≤ d.

Therefore, after normalization

at+1
s ≥ d

at+1
x

at
s ≥ at

s

which concludes the proof. 2

Corollary 4.1 The weight of every seed node s ∈ S converges for any initial configuration.

Proof: For every seed node s ∈ S, the weight of s is a non-decreasing function that is

upper-bounded, therefore it will converge. 2

Note that “non-decreasing” means that the weights either increase, or remain constant.

We now prove that there always exists a seed node with stationary weight 1.

Lemma 4.2 For every initial configuration there exists a point in time t0, such that for

some seed node s ∈ S, at
s = 1, for all t ≥ t0.

Proof: Assume that for every s ∈ S, at
s < 1, for all t ≥ 0. We will then prove that for every

s ∈ S, at
s ≥ a0

sd
t/(d − 1)t by induction on t. For t = 0 it is trivially true. Now, assume

that at time t, at
s ≥ a0

sd
t/(d − 1)t. At time t + 1, we have (as in the proof of Lemma 4.1)

that the un-normalized weight of s is at+1
s ≥ dat

s. Let x be the node with maximum un-

normalized weight at time t + 1. Node x cannot be a seed node, since then we would have

that at+1
x = 1, reaching a contradiction with our initial assumption. Since x is not a seed

node, at
x ≤ dx ≤ d− 1. Normalizing the weight of s by at

x we have that

at+1
s ≥ d

(d− 1)
at

s ≥
dt+1

(d− 1)t+1
a0

s .

Therefore, the weight of every seed node is an increasing function of time. As t → ∞,

at
s →∞. Since, the weights are bounded, we reach a contradiction. Therefore, there must
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exist some point in time t0 such that, for some node s ∈ S, at0
s = 1. From Lemma 4.1 we

know that the weight of the seed nodes is a non-decreasing function, thus, at
s = 1, for all

t ≥ t0. Therefore, for this seed node, the weight increases until it becomes 1, and then it

remains constant for the remaining iterations. 2

For the following, given an accuracy constant δ, we say that the weight of some node

i has converged at time ti if |at+1
i − at

i| ≤ δ, for all t ≥ ti.2 Corollary 4.1 and Lemma 4.2

guarantee that the seed nodes will converge, and at least one of the seeds will converge to

weight 1. Let t0 denote the first time that all seed nodes have converged, and let s be a seed

node with weight 1. For t ≥ t0, the un-normalized weight of s is d. Furthermore, it is easy

to see that for every other authority i, at
i ≤ at

s. Therefore, for all t ≥ t0, the normalization

factor ‖at‖∞ is equal to d, the maximum in-degree of graph G, independent of the vector

at.

We are now ready to consider the convergence of the Max algorithm. The proof proceeds

roughly as follows. We first prove that as t →∞ the configuration at of the Max algorithm

is independent of the weights of the non-seed nodes at time t0, and depends solely on

the stationary weights of the seeds. Then, we set the weights of the non-seed nodes to

zero at time t0 and we prove that in this case the system converges. The fact that the

configuration is independent of the non-seed weights implies that the system converges for

any configuration of the non-seed nodes, which in turn implies convergence of the Max

algorithm. However, “setting” the weights of the non-seed nodes to zero, is not simple to

do without disrupting the Max algorithm. To this end, we need to introduce an auxiliary

system Aux.

The system Aux is defined with two parameters. The first is the initial configuration a0

of the Max algorithm. The second is a weight vector u for the non-seed nodes in U . Given

some configuration vector v, we use vS to denote the projection of v on the seed nodes S,

and vU to denote the projection of v on the non-seed nodes U . For the following we use at

to denote the weight vector of the Max algorithm at time t, and xt to denote the weight

vector of the system Aux at time t. The structure of Aux is given in Figure 4.3.

The system Aux sets the weights of the seed nodes to the stationary weights of the

Max algorithm when run on the initial configuration a0, and it updates the weights of

2Any other method for testing convergence is applicable. Our analysis does not depend on the definition
of convergence.
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Aux(a0, u)

Run the Max algorithm on a0

Let t0 be the time that the seed nodes converge
x0

S = at0
S x0

U = u
Repeat until the weights converge:

For every hub i ∈ H
hi = maxj∈F (i) xt

i

For every authority i ∈ U

xt+1
i =

∑
j∈B(i) hj

For every authority s ∈ S
xt+1

s = at0+t+1
s

Normalize in the L∞ norm

Figure 4.3: The Aux dynamical system

the non-seed nodes in the regular fashion. Note that if u = at0
U , then for every node i,

xt
i = at+t0

i , for all t ≥ 0. That is, Aux(a0,at0
U ) and Max(a0) are equivalent; the system

Aux converges if and only if the system Max converges. The Aux system serves the

purpose of “disconnecting” the seed nodes from the non-seed nodes. This will become clear

in the following.

We will now prove that in the limit the configuration of Aux is independent of the

initial configuration u of the non-seed nodes. To assist the proof, we introduce the following

conventions. We assume that at the initialization of the Aux system, each node i receives

an amount of mass µ0
i of color i. The weight of this mass is x0

i , where a unit of mass

corresponds to a unit of weight. That is, there is a one to one correspondence between mass

and weight, except for the fact that mass has color. As mass is moved around in the graph,

by measuring the amount of mass of color i at time t, we can quantify the contribution of

the initial weight of authority i to the configuration xtat time t.

Consider the Aux system at time t− 1. Recall that the function f t−1 maps every hub

j to the authority i which at time t− 1 has the maximum weight among all authorities in

F (j). We take the following view of the t-th iteration. Every authority i sends its mass to

all hubs that map to i at time t−1 (assuming that mass can be replicated). Consider a hub

j, for which f t−1(j) = i. The hub j receives the mass of the authority i, and sends it to all

the authorities in F (j), except the seed nodes in S. Every seed node s ∈ S receives mass of

color s, with weight at+t0
s . Non-seed authority i receives mass from every hub in B(i). The
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weight of i is the total weight of all the mass it receives. If node i receives µ units of mass

of color k, we say that node i contains µ units of mass of color k. We use µt
k to denote the

total mass of color k in the system at time t. The amount of mass of color k contained in

node i at time t is the contribution of the initial weight x0
k of node k to the weight xt

i of

node i, at time t.

We are now ready to prove the following lemma.

Lemma 4.3 For every non-seed node k ∈ U in the Aux system, as t →∞, µt
k → 0.

Proof: First, we note that by definition of the Aux system, no seed node ever receives

mass of color k, for all k ∈ U . We will prove that for all t ≥ 0, every authority i ∈ U

contains at most µ0
k(d− 1)t/dt units of mass of color k. For t = 0 the claim is trivially true.

Assume that it is true at time t. At the iteration t + 1, the hub j receives the mass of the

authority p, such that f t(j) = p. By the inductive hypothesis, every authority contains at

most µ0
k(d − 1)t/dt units of mass of color k; therefore, after this first step of the iteration

every hub j contains at most µ0
k(d− 1)t/dt units of mass of color k.

Consider now some authority i ∈ U . Authority i receives the mass of di ≤ d − 1 hubs.

Since every hub contains at most µ0
k(d − 1)t/dt units of mass of color k it follows that at

the end of iteration t+1 authority i contains at most µ0
k(d− 1)t+1/dt units of mass of color

k. At the normalization step, the mass at every authority is scaled by a factor 1/d. Thus,

at the end of iteration t + 1, authority i contains at most µ0
k(d − 1)t+1/dt+1 units of mass

of color k.

Therefore, the total mass of color k in the graph at time t is at most µt
k = |A|µ0

k(d−1)t/dt,

where |A| is the number of authorities. Thus, as t →∞, µt
k → 0. 2

Corollary 4.2 follows immediately from Lemma 4.3.

Corollary 4.2 The configuration limt→∞ xt of the Aux system is independent of the ini-

tialization vector u.

Let 0 denote the vector of all zeros. We now prove the following lemma.

Lemma 4.4 The system Aux(a0,0) converges for any configuration a0.

Proof: We will prove that the weights of all authorities in the system are non-decreasing

functions of time. Since the weights are upper bounded it follows that they will converge.
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For every seed node s ∈ S, xt
s = at+t0

s , that is, the weight of the seed nodes in the Aux

system at time t is the same with the weight of the seed nodes in the Max system at time

t+ t0. From Lemma 4.1 we know that for the Max algorithm, the weights of all seed nodes

are non-decreasing functions of time. Therefore, xt
s is a non-decreasing function of time, for

all s ∈ S.

We will now prove that for every authority i ∈ U , xt
i ≥ xt−1

i for all t ≥ 1, using induction

on time. For t = 1, x1
i ≥ 0, so the claim is trivially true. Assume that it is true at time t.

Consider now the difference xt+1
i −xt

i. We break up the hubs in B(i) into two sets. The set

V contains the hubs j ∈ B(i) such that f t(j) = f t−1(j); that is, the hubs whose mapping

does not change at time t. The set W contains the hubs j ∈ B(i) such that f t(j) 6= f t−1(j),

that is, the hubs whose mapping changes at time t.

We have that xt+1
i − xt

i = S1 + S2, where

S1 =
∑

j∈V

(
xt

(
f t(j)

)− xt−1
(
f t−1(j)

))
and S2 =

∑

j∈W

(
xt

(
f t(j)

)− xt−1
(
f t−1(j)

))
.

For every j ∈ V , there exists p ∈ A such that f t(j) = f t−1(j) = p. By the inductive

hypothesis we have that xt
p − xt−1

p ≥ 0. Therefore, S1 ≥ 0. For every j ∈ W , there exist

p, q ∈ A such that f t(j) = p, and f t−1(j) = q. Since at time t the mapping of the hub j

switches from q to p, it follows that xt
p > xt

q, and xt−1
p ≤ xt−1

q (or xt
p ≥ xt

q, and xt−1
p < xt−1

q

depending on the way that we break the ties). By the induction hypothesis we have that

xt
q ≥ xt−1

q . Therefore, xt
p − xt−1

q ≥ xt
p − xt

q ≥ 0. Thus, S2 ≥ 0, and xt+1
i − xt

i ≥ 0. Since

xt+1
i − xt

i = (xt+1
i − xt

i)/d, it follows that xt+1
i ≥ xt

i. 2

Theorem 4.1 The Max algorithm converges for any initial configuration. The stationary

configuration of Max is determined by the stationary weights of the seed nodes.

Proof: For any initial configuration a0 the system Aux(a0,0) converges. From Corol-

lary 4.2 the limiting behavior of Aux is independent of the initial configuration of the

non-seed nodes. Therefore, for any vector u, the Aux(a0, u) system will converge, and it

will converge to the same vector as Aux(a0,0). When u = at0
U , the system Aux(a0, at0

U ) is

equivalent to the Max(a0) algorithm. Therefore, the Max algorithm converges for any ini-

tial configuration. From Corollary 4.2 it follows that the stationary configuration depends

only on the weights of the seed nodes at time t0. 2
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We are particularly interested in the uniform initial configuration, when all nodes are

initialized to the same weight. Since the configuration is a unit vector in the L∞ norm

all nodes are initialized to weight 1. In this case from Lemma 4.1, we know that the

weight of the seed nodes will immediately converge to 1. Corollary 4.3 follows directly from

Theorem 4.1.

Corollary 4.3 For every initial configuration that assigns weight 1 to all seed nodes, the

Max algorithm converges to the same weight vector as when initialized to the uniform

configuration.

In the case of the uniform initial configuration we have a very clear characterization of

the rate of convergence of the algorithm. In this case, the seed nodes converge immediately

to weight 1. Given an accuracy constant δ, the Max algorithm converges when the mass of

the non-seed nodes becomes less than δ. Let d′ denote the second-highest in-degree in the

graph. As we saw in Lemma 4.3, for every non-seed node k, after t iterations, the mass of

color k is equal to µt
k ≤ |A|(d′/d)t. We have that |A|(d′/d)t ≤ δ, if

t ≥ log(|A|/δ)
log(d/d′)

Thus, the rate of convergence depends upon the size of the graph, and the ratio between

the highest, and second-highest in-degree in the graph.

4.5 The stationary configuration

In this section we give a better understanding of the way the Max algorithm assigns the

weights to the authorities. We first introduce the auxiliary graph GA. Assume that the

algorithm has converged, and let ai denote the stationary weight of node i. Define H(i) =

{j ∈ H : f(j) = i} to be the set of hubs that are mapped to authority i. Recall that the

authority graph Ga defined in Section 2.1 is an undirected graph, where we place an edge

between two authorities if they share a hub. We now derive the directed weighted graph

GA = (A,EA) on the authority nodes A, from the authority graph Ga as follows. Let i and

j be two nodes in A, such that there exists an edge (i, j) in the graph Ga, and ai 6= aj .

Let B(i, j) = B(i) ∩ B(j) denote the set of hubs that point to both authorities i and j.

Without loss of generality assume that ai > aj . If H(i) ∩ B(i, j) 6= ∅, that is, there exists
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Figure 4.4: Graphs G, Ga, and GA.

at least one hub in B(i, j) that is mapped to the authority i, then we place a directed edge

from i to j. The weight c(i, j) of the edge (i, j) is equal to the size of the set H(i)∩B(i, j),

that is, it is equal to the number of hubs in B(i, j) that are mapped to i. The intuition of

the directed edge (i, j) is that there are c(i, j) hubs that propagate the weight of node i to

node j. The graph GA captures the flow of authority weight between authorities.

Now, let N(i) denote the set of nodes in GA that point to node i. Also, let ci =
∑

j∈N(i) c(j, i), denote the total weight of the edges that point to i in the graph GA. This

is the number of hubs in the graph G that point to i, but are mapped to some node with

weight greater than i. The remaining di− ci hubs (if any) are mapped to node i, or to some

node with weight equal to the weight of i. We set bi = di − ci. The number bi is also equal

to the size of the set H(i), the set of hubs that are mapped to node i, when all ties are

broken in favor of node i.

An example of the graphs G, Ga, and GA is shown in Figure 4.4. Every edge {i, j} in

the graph Ga is tagged with the number of hubs B(i) ∩ B(j) that point to both i and j

nodes. The numbers next to the nodes of graph GA are the stationary weights, and the

weights on the edges are the c(i, j) values.

The following proposition gives a recursive formula for weight ai, given the weights of

the nodes in N(i).

Proposition 4.1 The weight of node i satisfies the equation

ai =
∑

j∈N(i)

c(j, i)aj/d + biai/d .

Proof: Recall that for every node i, ai =
∑

j∈B(i) a (f(j)) /d. From the hubs in B(i), bi of
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them are mapped to node i, or to some node with weight equal to ai. These hubs recycle the

weight of node i, and they contribute weight biai/d to the weight of node i. The remaining

hubs bring in the weight of some other authority. For every j ∈ N(i), there are c(j, i) hubs

in B(i) that are mapped to node j. These hubs propagate the weight aj of node j to node

i. Thus, they collectively contribute weight c(j, i)aj/d to the weight of node i. Therefore,

we have that

ai =
∑

j∈N(i)

c(j, i)aj/d + biai/d .

2

By definition, the graph GA is a DAG. Therefore, there must exist some nodes, such

that no node in GA points to them. We define a source node in the graph GA to be a

node x, such that N(x) = ∅ (i.e., there is no node in GA that points to x), and ax > 0.

Lemma 4.2 guarantees that at least one such node exists. In the example of Figure 4.4(c),

there is only one source node, the seed node s. Nodes v and u have no incoming edges, but

they are not source nodes, since they have zero weight. We now prove that the set of source

nodes is identical to the set of the seed nodes.

Lemma 4.5 A node is a source node of the graph GA if and only if it is a seed node in the

graph G.

Proof: Let x be a source node of the graph GA. Since N(x) = ∅, it follows that all dx

hubs that point to x are mapped to x, or to some node with weight equal to ax. Therefore

bx = dx. We have that ax = axdx/d. Since ax > 0, it follows that dx = d.

Let s be a seed node. Assume that s is not a source node in the graph GA. Then,

either as = 0, or N(s) 6= ∅. We have assumed that the initial configuration is a fair

configuration, that is, the initial configuration assigns to every component of the graph Ga

non-zero weight. If Cs is the component in the graph Ga that contains node s, then at least

one node in Cs was initialized to non-zero weight. Therefore, there exists some point in

time ts such that the ats
s > 0. From Lemma 4.1 we know that the weight of every seed node

is a non-decreasing function of time, therefore, at
s ≥ ats

s for all t ≥ ts. Therefore, as > 0.

Assume that N(s) 6= ∅. We have that

as =
∑

i∈N(s)

c(i, s)ai/d + bsas/d .
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For every i ∈ N(s) we have that ai > as. Therefore, it follows that

as =
∑

i∈N(s)

c(i, s)ai/d + bsas/d > csas/d + bsas/d = asd/d = as ,

thus reaching a contradiction. 2

We now turn our attention to the non-seed nodes of the graph. For the following, we

say that node i is connected to a seed node in the graph Ga if there exists a path in the

graph Ga from a seed node to node i. We say that node i is reachable from a seed node in

the graph GA if there exists a directed path in the graph GA from a seed node to the node

i. We will often say that a node is reachable to indicate that it is reachable from a seed

node in the graph GA. In the example of Figure 4.4, nodes x, y, z are connected to, and

reachable from the seed node s, while nodes u and v are neither connected to, nor reachable

from seed node s.

Lemma 4.6 A node i is reachable from a seed node in the graph GA if and only if ai > 0.

Proof: We will prove that every reachable node has positive weight using induction on the

length of the shortest path from a seed node to node i in the graph GA. Let radiusA(s, i)

be the length of the shortest path from seed node s to node i in the graph GA. Let

radiusA(i) = mins∈S radiusA(s, i) be the shortest path from any seed node to node i in the

graph GA. For every node i with radiusA(i) = 0, that is, the seed nodes themselves, the

lemma is trivially true. Assume that it is true for every node i with radiusA(i) ≤ `. Every

node j with radiusA(j) = ` + 1 must be connected to a node i with radiusA(i) = `. From

Proposition 4.1 we have that aj ≥ c(i, j)ai/d > 0.

Assume now that node i ∈ U is not reachable from a seed node. If N(i) = ∅, then

it must be that ai = 0. Otherwise, node i is a source node. From Lemma 4.5 this is

not possible, since node i is not a seed node. Assume now that N(i) 6= ∅, that is, there

exists some node in the graph GA that points to node i. Then starting from node i we

can follow edges backwards in the graph GA to other non-reachable nodes. Since the graph

GA contains no cycles, we will eventually find a node j that is not reachable, and has no

incoming edges. Since j is not a seed node, we have that aj = 0, and aj > ai ≥ 0, thus

reaching a contradiction. Therefore, there cannot be any node pointing to node i, and

ai = 0. 2
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Lemma 4.7 A node is reachable from a seed node in the graph GA if and only if it is

connected to a seed node in the graph Ga.

Proof: Obviously, by definition of the graphs Ga and GA, if a node is not connected to

seed node, then it is be reachable from a seed node. We will now prove that every node

i, that is connected to a seed node in the graph Ga, it is also reachable from a seed node

in the graph GA, using induction on the length of the shortest path from a seed node to

node i in the graph Ga. Let radiusa(s, i) be the length of the shortest path from seed node

s to i in the graph Ga. Let radiusa(i) = mins∈S radiusa(s, i) be the shortest path from

any seed node to node i in the graph Ga. For every node i such that radiusa(i) = 0, that

is, the seed nodes themselves, the lemma is trivially true. Assume that it is true for every

node i with radiusa(i) = `. Now consider some node j with radiusa(j) = `+1. Since node

j is connected to a seed node in the graph Ga, there exists a node i with radiusa(i) = `

such that the edge (i, j) belongs to graph Ga. This implies that there exits at least one hub

h that points to both i and j. Let f(h) = k be the mapping of this hub. Node k is not

necessarily node i or j, and it is not necessarily the case that radiusa(k) ≤ `. However, we

know that hub h points to both i and k, and that ak ≥ ai. By the inductive hypothesis,

node i is reachable, so ai > 0. Thus, ak > 0.

Consider now the nodes j and k. If aj ≥ ak, then aj > 0, therefore, node j is reachable.

Otherwise, for the pair (k, j) we have that: [a] there exists an edge (k, j) in the graph Ga

(since the nodes j and k share the hub h); [b] B(k, j)∩H(k) 6= ∅ (since the hub h is mapped

to k); [c] ak > aj . Therefore, there must exist a directed edge (k, j) in the graph GA. Since

ak > 0, Lemma 4.6 guarantees that node k is reachable from a seed node in GA. Thus,

node j is also reachable. 2

For some node i, and some seed node s, we define dist(s, i) to be the distance of the

longest path in GA from s to i. We define the distance of node i, dist(i) = maxs∈S dist(s, i),

to be the maximum distance from a seed node to i, over all seed nodes. We note that the

distance is well defined, since the graph GA is a DAG. We now summarize the results of

this section in the following theorem.

Theorem 4.2 Given a graph G, let C1, C2, . . . Ck be the connected components of the graph

Ga. For every component Ci, 1 ≤ i ≤ k, if component Ci does not contain a seed node,

then ax = 0, for all x in Ci. If component Ci contains a seed node, then every node x in
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Ci is reachable from a seed node in Ci, and ax > 0. Given the weights of the seed nodes,

we can recursively compute the weight of a reachable (in the graph GA) node x at distance

` > 0, using the equation

ax =
1

d− bx

∑

j∈N(x)

c(j, x)aj ,

where for all j ∈ N(i), dist(j) < `.

Proof: Let Ci denote the i-th component of the graph Ga. Obviously, if a node is not

connected to a seed node in graph Ga, it cannot be reachable from a seed node in the graph

GA. Therefore, if component Ci does not contain a seed node, then, from Lemma 4.6, for

every x in Ci, ax = 0. Assume now that the component Ci contains a seed node. Lemma 4.7

guarantees that every node x in Ci becomes reachable from a seed node in the graph GA.

The weight of node x ∈ Ci can be computed recursively using Proposition 4.1. We have

that

ax =
∑

j∈N(x)

c(j, x)aj/d + bxax/d .

Therefore,

ax =
1

d− bx

∑

j∈N(x)

c(j, x)aj .

If node x is at distance `, then all nodes j ∈ N(x) have dist(j) < `. Therefore, starting from

the seed nodes, we can iteratively compute the weights of all nodes at increasing distances.

2

Theorem 4.2 is in agreement with our findings in the Section 4.4, where we observed

that the stationary configuration depends solely on the stationary weights of the seed nodes.

Note that Theorem 4.2 does not provide a constructive way of assigning weights to the nodes,

since the graph GA depends on the stationary configuration. However, it provides a useful

insight in the mechanics of the algorithm, and in the way the weight is propagated from

the seed nodes to the remaining authorities. All weight emanates from the seed nodes, and

it floods the rest of the nodes, propagated in the graph GA. As the distance from the seed

nodes increases, the weight decreases exponentially by a scaling factor d. However, well

connected nodes, and nodes with high in-degree in the graph G, reinforce their own weight.

For node i, there are bi hubs that recycle the weight of node i. Thus, high in-degree can

increase the weight of a node, even if it is far from a seed node.
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The uniform initial configuration case: In the case of the uniform initial configuration

we know that the seed nodes will converge immediately to weight 1. Therefore, the Max

algorithm will rank the seed nodes first. The rest of the nodes receive less weight than the

seed nodes. Their weight is determined from Theorem 4.2, and depends upon their relation

with the seed nodes of the graph, the connectivity with the rest of the nodes and their own

in-degree.

The arbitrary initial configuration case: If we knew the stationary weights of the seed

nodes then we would be able to compute the weights of the rest of the nodes recursively,

using the formula in Theorem 4.2. However, the weights of the seeds depend on the initial

configuration. Lemma 4.2 guarantees that at least one seed will receive weight 1. We obtain

the following corollary of Lemma 4.2 for the special case of graphs that contain a single

seed node (a case we encounter often in our experiments).

Corollary 4.4 For a graph G that contains a single seed node, the algorithm Max con-

verges for any initial fair configuration to the same stationary configuration as when ini-

tialized to the uniform configuration.

One would hope that all seeds converge to weight 1, for all initial configurations, in

which case we would fall back to the uniform case. However, this is not the case. One

can construct simple examples of graphs that consist of multiple disconnected components,

where, depending on the weight assigned to each component, the algorithm converges to

different configurations. Consider for example the graph in Figure 4.5. The graph G

consists of two components. and has just 3 authorities. The first component consists of just

authority v which is pointed to by 3 hubs. The second component contains two authorities.

Authority u is pointed to by 3 hubs, and one of these hubs points also to authority w. There

are two seeds in the graph, authorities v and u. Assume that we initialize the algorithm

with weights a0
v = 1, a0

u = x, and a0
w = 1, where 0 ≤ x ≤ 1. Then, the algorithm will

converge to the weights av = 1, au = (1 + 2x)/3, and aw = (1 + 2x)/9. For different values

of x we obtain a different stationary weight configuration. This is something to be expected.

From Corollary 4.2 it is clear that the only mass that “survives” is the mass of the seed

nodes. Therefore, by varying the weight of the seed nodes we vary the stationary weight

vector.
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Figure 4.5: An example with a non-uniform initial configuration

A natural question is whether we can prove a similar result if we consider an authority

connected graph, that is, a graph G, such that the authority graph Ga is connected. We

now present a counter example, where we show that for an authority connected graph G,

there exists an initial configuration such that one of the seed nodes converges to a weight

less than 1. Furthermore, there exist non-seed nodes that have weight greater than the

weight of that seed node.

Proposition 4.2 The Max algorithm does not always converge to the same weight vector

for all initial configurations, even when restricted on authority connected graphs.

Proof: Consider the graph G in Figure 4.6(a). The large red and white nodes are the

authorities, while the small black nodes are the hubs. The shaded (red) nodes are the seed

nodes of the graph G. There are four seeds in the graph, each with in-degree 3. Figure 4.6(b)

shows the corresponding graph Ga. The initial configuration assigns weight 1 to all seed

nodes, except for the central seed, which receives zero weight. The non-seed nodes are also

initialized to zero weight. The initial weights for each node are shown next to vertices of

the graph in Figure 4.6(a).

When the algorithm converges, we obtain graph GA shown in Figure 4.6(c). The number

next to each node in the graph is the stationary weight of the node. The weights on the

edges are equal to the c(i, j) values. Obviously, the algorithm does not converge to the same

stationary configuration as when initialized to the uniform configuration, since the central

seed node receives weight less than 1. Also, in this example there exist non-seed nodes that

receive weight greater than the weight of the central seed node. 2
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Figure 4.6: An example with a non-uniform initial configuration for authority connected
graphs
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Chapter 5

A Theoretical Framework for the

Analysis of LAR Algorithms

5.1 Motivation

The seminal work of Kleinberg [57] and Brin and Page [13] was followed by an avalanche

of Link Analysis Ranking algorithms [10, 8, 64, 78, 4, 1, 73]. Faced with this wide range of

choices for LAR algorithms, researchers usually resort to experiments to evaluate them and

determine which one is more appropriate for the problem at hand. However, experiments

are only indicative of the behavior of the LAR algorithm. In many cases, experimental

studies are inconclusive. Furthermore, there are often cases where algorithms exhibit similar

properties and ranking behavior. For example, in their experimental study, Borodin et

al. [10] observed a strong “similarity” between two seemingly unrelated algorithms.

It seems that experimental evaluation of the performance of an LAR algorithm is not

sufficient to fully understand its ranking behavior. We need a precise way to evaluate the

properties of the LAR algorithms. We would like to be able to formally answer questions

of the following type. “How similar are two LAR algorithms?”. “On what kind of graphs

do two LAR algorithms return similar rankings?”. “How does the ranking behavior of an

LAR algorithm depend on the specific class of graphs?”. “How does the ranking of an LAR

algorithm change as the underlying graph is modified?”. “Is there a set of properties that

characterize an LAR algorithm?”.

In this chapter we describe a formal study of LAR algorithms. We introduce a theo-
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retical framework that allows us to define properties of the LAR algorithms, and compare

their ranking behavior. We conclude with an axiomatic characterization of the InDegree

algorithm.

5.2 Link Analysis Ranking algorithms

We first need to formally define a Link Analysis Ranking algorithm. Let Gn denote the set

of all possible graphs of size n. The size of the graph is the number of nodes in the graph.

Let Gn ⊆ Gn denote a collection of graphs in Gn. We define a link analysis algorithm A as

a function A : Gn → Rn, that maps a graph G ∈ Gn to an n-dimensional real vector. The

vector A(G) is the authority weight vector (or weight vector) produced by the algorithm A
on graph G. The value of the entry A(G)[i] of vector A(G) denotes the authority weight

assigned by the algorithm A to the node i. We will use a (or often w) to denote the

authority weight vector of algorithm A. In this chapter we will sometimes use a(i) instead

of ai to denote the authority weight of node i. All algorithms that we consider are defined

over Gn, the class of all possible graphs. We will also consider another class of graphs, GAC
n ,

the class of authority connected graphs. Recall that a graph G is authority connected, if

the corresponding authority graph Ga consists of a single component.

We will assume that the weight vector A(G) is normalized under some chosen norm.

The choice of normalization affects the output of the algorithm, so we distinguish between

algorithms that use different norms. For any norm L, we define an L-algorithm A to be

an algorithm, where the weight vector of A is normalized under L. That is, the algorithm

maps the graphs in Gn onto the unit L-sphere. For the following, when not stated explicitly,

we will assume that the weight vectors of the algorithms are normalized under the Lp norm

for some 1 ≤ p ≤ ∞.

5.3 Monotonicity

The first property of LAR algorithms that we define is monotonicity. Monotonicity requires

that, if all hubs that point to node j also point to node k, then node k should receive

authority weight at least as high as that of node j. Formally, we define monotonicity as

follows.
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Figure 5.1: The non-monotonicity of AuthorityAvg

Definition 5.1 An LAR algorithm A is monotone on the class of graphs Gn if it has the

following property. For every graph G ∈ Gn, and for every pair of nodes j and k in the

graph G, if B(j) ⊆ B(k), then A(G)[j] ≤ A(G)[k].

Monotonicity appears to be a “reasonable” property but one can define “reasonable”

algorithms that are not monotone. For example, consider the AuthorityAvg algorithm,

the authority analogue of the HubAvg algorithm, where the authority weight of a node is

defined to be the average of the hub weights of the nodes that point to this node. Consider

now the graph in Figure 5.1. In this graph we have that B(x) ⊂ B(z) and B(y) ⊂ B(z),

but AuthorityAvg assigns higher weight to nodes x and y than to z. An idea similar to

that of the AuthorityAvg algorithm is suggested by Bharat and Henzinger [8]. When

computing the authority weight of node i they average the weights of hubs that belong to

the same domain. Another example of a non-monotone algorithm is the HubTheshold

algorithm defined by Borodin et al. [10].

Theorem 5.1 The algorithms InDegree, Hits, PageRank, Salsa, HubAvg, AT(k),

Norm(p), and BFS are all monotone.

Proof: Let j and k be two nodes in a graph G, such that B(j) ⊆ B(k). For the InDegree

algorithm monotonicity is obvious, since the authority weights are proportional to the in-

degrees of the nodes, and the in-degree of j is less than, or equal to the in-degree of k. The

same holds for the Salsa algorithm within each authority connected component, which is

sufficient to prove the monotonicity of the algorithm.

For the PageRank algorithm, if aj and ak are the weights of nodes j and k, then we

have that

aj =
n∑

i=1

MPR[i, j]ai and ak =
n∑

i=1

MPR[i, k]ai
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where MPR is the matrix for the PageRank algorithm, defined in Section 2.2.2. Then, for

all i, MPR[i, j] ≤ MPR[i, k]. Therefore, aj ≤ ak.

For the Hits, HubAvg, AT(k), and Norm(p) algorithms, it suffices to observe that, at

every iteration t,

at
j =

∑

i∈B(j)

hi ≤
∑

i∈B(k)

hi = at
k

where at
j and at

k are the weights of nodes j and k at iteration t before applying the normal-

ization step. Normalization may result in both weights converging to zero, as t → ∞, but

it cannot be the case that in the limit aj > ak.

For the BFS algorithm, it suffices to observe that, since B(j) ⊆ B(k), every node that

is reachable from node j is also reachable from node k. Thus aj ≤ ak. 2

We also define the following stronger notion of monotonicity.

Definition 5.2 An LAR algorithm A is strictly monotone on the class of graphs Gn if it

has the following property. For every graph G ∈ Gn, and for every pair of nodes j and k in

the graph G, B(j) ⊂ B(k) if and only if A(G)[j] < A(G)[k].

We can now prove the following theorem.

Theorem 5.2 The algorithms InDegree, PageRank, Salsa, and BFS are strictly mono-

tone on the class Gn, while the algorithms Hits, HubAvg, and Max are not strictly mono-

tone on the class Gn. The algorithms InDegree, Hits, PageRank, Salsa, HubAvg,

AT(k), Norm(p), and BFS are all strictly monotone on the class of authority connected

graphs GAC
n .

Proof: The strict monotonicity on the class of the authority connected graphs GAC
n follows

directly from the proof of Theorem 5.1 for the monotonicity of the algorithms. Similarly,

for the strict monotonicity of InDegree, PageRank, Salsa, and BFS on the class Gn.

For the Hits and HubAvg algorithms, consider a graph G ∈ Gn consisting of two dis-

connected components. If the components are chosen appropriately the Hits and HubAvg

algorithms will allocate all the weight to one of the components, and zero weight to the

nodes of the other component. Furthermore, if one of the two components does not contain

a seed node, then the Max algorithm will allocate zero weight to the nodes of that compo-

nent. If chosen appropriately, the nodes in the component that receive zero weight violate

the strict monotonicity property. 2
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A different notion of monotonicity is considered by Chien et al. [18]. In their paper,

they study how the weight of a node changes as new links are added to the node. In this

setting an algorithm is monotone if the weight of a node increases as its in-degree increases.

5.4 Distance measures between LAR algorithms

We are interested in comparing different LAR algorithms, as well as studying the ranking

behavior of a specific LAR algorithm as we modify the underlying graph. To this end we

need to define a distance measure between the rankings produced by the algorithms. Recall

that an LAR algorithm A is a function that maps a graph G from a class of graphs Gn

to an n-dimensional vector A(G). Let A1 and A2 be two LAR algorithms defined on the

class Gn. We define the distance between the algorithms A1 and A2 on graph G ∈ Gn as

d (A1(G),A2(G)), where d : Rn×Rn → R is some function that maps two real n-dimensional

weight vectors a1, a2 to a real number d(a1, a2).

5.4.1 Geometric distance measures

The first distance functions we consider capture the closeness of the actual weights assigned

to every node. The authority weight vectors can be viewed as points in an n-dimensional

space, thus we can use common geometric measures of distance. We consider the Manhattan

distance, that is, the L1 distance of the two vectors. Let A1 and A2 be two LAR algorithms

defined on the class Gn, and let a1, a2 be the weight vectors of the algorithms on some

graph G ∈ Gn. We define the d1 distance measure between A1 and A2 on G as follows

d1(a1, a2) = min
γ1,γ2≥1

n∑

i=1

|γ1a1(i)− γ2a2(i)| .

The constants γ1 and γ2 are meant to allow for an arbitrary scaling of the two vectors,

thus eliminating large distances that are caused solely due to normalization factors. For

example, let w = (1, 1, ..., 1, 2), and v = (1, 1, ..., 1) be the output of two algorithms A1 and

A2, before any normalization is applied. These two vectors appear to be close. Suppose

that we normalize the output of the algorithm in the L∞ norm, and let w∞ and v∞ denote

the normalized vectors. Then
∑n

i=1 |w∞(i) − v∞(i)| = (n − 1)/2 = Θ(n). As we will

show in Section A.2 (Appendix A), the maximum L1 distance between any two L∞-unit
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vectors is Θ(n), therefore, these two vectors appear to be far apart. Suppose now that

we normalize in the L1 norm, and let w1 and v1 denote the normalized vectors. Then
∑n

i=1 |w1(i) − v1(i)| = 2(n−1)
n(n+1) = Θ(1/n). The maximum L1 distance between any two L1-

unit vectors is Θ(1), therefore, the two vectors now appear to be close. We use the constants

γ1, γ2 to avoid such discrepancies.

Instead of the L1 distance, we may use other geometric distance measures, such as the

Euclidean distance L2. In general we define the dq distance, as the Lq distance of the weight

vectors. Formally,

dq(a1, a2) = min
γ1,γ2≥1

n∑

i=1

‖γ1a1(i)− γ2a2(i)‖q

For the remainder of the chapter we only consider the d1 distance measure.

5.4.2 Rank distance measures

The next distance functions we consider capture the similarity between the ordinal rankings

produced by the two algorithms. The motivation behind this definition is that the ordinal

ranking is the usual end-product seen by the user. Let a be the n-dimensional authority

weight vector of an algorithm A over some graph G = (P, E) in Gn. The vector a induces

a ranking of the nodes in P , such that a node i is ranked above node j if ai > aj . If all

weights are distinct, the authority weights induce a total ranking of the elements in P . If

the weights are not all distinct, then we have a partial ranking of the elements in P . We

will also refer to total rankings as permutations.

We are interested in measuring the similarity between the rankings induced by the two

algorithms. We will first review some of the metrics for comparing permutations, and we

will see how these can be extended to the case of partial rankings. For the remainder of

this section, we borrow heavily from the work of Fagin et al. [34] on comparing top-k lists.

Distance measures between permutations

The problem of comparing permutations has been studied extensively [56, 26, 30]. In this

setting, we compare two complete rankings of a set of elements. Let P be a set of elements

that we wish to order (in our case the nodes in the graph). A permutation σ is defined

as a bijection from the set P to the set [n] = {1, 2, . . . , n}, where n is the size of P . The

value σ(i) is interpreted as the position (rank) of the element i ∈ P in the ranking. We say
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that element i is ranked ahead of element j if σ(i) < σ(j). We also use P to denote the

set of all distinct unordered pairs of nodes in P , and SP to denote the set of all possible

permutations of the elements of P .

The Kendall’s tau distance measure between permutations is defined as follows. Given

two permutations σ1 and σ2, we define the indicator function Iσ1σ2(i, j), such that Iσ1σ2(i, j) =

0, if i and j are ranked in the same order in both σ1 and σ2, and Iσ1σ2(i, j) = 1 otherwise.

Kendall’s tau is defined as follows.

K(σ1, σ2) =
∑

{i,j}∈P
Iσ1σ2(i, j)

Kendall’s tau is equal to the number of bubble sort swaps that are necessary to convert

one permutation to the other. The maximum value of Kendall’s tau is n(n − 1)/2, and it

occurs when the permutation σ1 is the reverse of the permutation σ2. In the following we

normalize the Kendall’s tau distance with n(n− 1)/2, so that it takes values in [0, 1].

Another metric for comparing permutations is Spearman’s Footrule metric [26], which is

the L1 distance between the two permutations. Formally, for two permutations σ1, σ2 ∈ SP ,

F (σ1, σ2) =
∑n

i=1 |σ1(i)− σ2(i)|.

Measures for comparing partial rankings

In an ideal world a ranking algorithm would produce a distinct authority weight for each

node in the set P . Then we would be able to compare rankings by applying directly the

distance measures on permutations. However, there are cases where the ranking algorithms

may assign equal weights to two different nodes. Thus, an authority weight vector usually

produces a partial ranking of the nodes. In this section we will show how we can extend

the measures we discussed in this setting. We later discovered that our results have been

proven independently by Fagin et al [32].

Let a be an authority vector produced by algorithm A. We say that permutation σ is

consistent with the vector a if the following holds. For every pair of nodes {i, j} if ai < aj

then σ(i) < σ(j). That is, if node i receives weight greater than the weight of node j, then

i must be ranked above j. Let Σa ⊆ SP denote the set of permutations that are consistent

with weight vector a.

There are several ways of generalizing the Kendall’s tau distance for the case of partial
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rankings. Let a1 and a2 be the weight vectors and let Σ1 and Σ2 be the sets of permutations

that are consistent with vectors a1 and a2 respectively. Similar to the work of Fagin et

al. [34], we define the following rank distance measures.

The minimizing Kendall rank distance, Kmin(a1,a2).

Kmin(a1, a2) =
1

n(n− 1)/2
min

σ1∈Σ1,σ2∈Σ2

K(σ1, σ2)

The Hausdorff Kendall rank distance, Khaus(a1, a2).

Khaus(a1,a2) =
1

n(n− 1)/2
max

{
max
σ1∈Σ1

min
σ2∈Σ2

K(σ1, σ2), max
σ2∈Σ2

min
σ1∈Σ1

K(σ1, σ2)
}

This is an application of the well known Hausdorff distance metric between sets for the sets

Σ1, Σ2, where the distance between the individual pairs of elements from Σ1, Σ2, is taken

to be Kendall’s tau.

The Kendall rank distance with penalty p, K(p)(a1, a2).

K(p)(a1, a2) =
1

n(n− 1)/2

∑

{i,j}∈P
I(p)
a1a2

(i, j)

where I(p)
a1a2

(i, j) is a penalty function defined over the set P. For the definition of the

function I(p)
a1a2

(i, j), we break up P into the following subsets.

• The set E = E(a1, a2) ⊆ P contains all pairs {i, j} ∈ P such that a1(i) = a1(j) and

a2(i) = a2(j). For all {i, j} ∈ E , I(p)
a1a2

(i, j) = 0.

• The set U = U(a1, a2) ⊆ P contains all pairs {i, j} ∈ P such that a1(i) < a1(j) and

a2(i) < a2(j), or a1(i) > a1(j) and a2(i) > a2(j). For all {i, j} ∈ U , I(p)
a1a2

(i, j) = 0.

• The set X = X (a1,a2) ⊆ P contains all pairs {i, j} ∈ P such that a1(i) < a1(j) and

a2(i) > a2(j), or a1(i) > a2(j) and a1(i) < a2(j). For all {i, j} ∈ X , I(p)
a1a2

(i, j) = 1.

• The set Y = Y(a1, a2) ⊆ P contains all pairs {i, j} ∈ P such that satisfy a1(i) = a1(j)

and a2(i) 6= a2(j). For all {i, j} ∈ Y, I(p)
a1a2

(i, j) = p.

• The set Z = Z(a1, a2) ⊆ P contains all pairs {i, j} ∈ P that satisfy a2(i) = a2(j)

and a1(i) 6= a1(j). For all {i, j} ∈ Z, I(p)
a1a2

(i, j) = p.
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The parameter p takes values in [0, 1]. The value p = 0 gives a lenient approach, where we

penalize the algorithm only for pairs that are weighted so that they force an inconsistent

ranking. The value p = 1 gives a strict approach, where we penalize the algorithm for all

pairs that are weighted so that they allow for an inconsistent ranking. Values of p in (0, 1)

give a combined approach. Clearly,

K(p)(a1, a2) = (1− p)K(0)(a1,a2) + pK(1)(a1,a2) . (5.1)

Also, from the definition of K(p), it is obvious that K(p)(a1, a2) = |X (a1, a2)|+p(|Y(a1,a2)|+
|Z(a1, a2)|). For the remainder, when it is understood, we will omit the indexes (a1, a2)

when referring to the subsets of P. For example we will use X to denote X (a1, a2).

We prove the following theorem for the different Kendall rank distances.

Theorem 5.3 Given two authority vectors a1 and a2 we have the following.

1. Kmin(a1,a2) = K(0)(a1, a2) = |X (a1,a2)|.

2. Khaus(a1, a2) = |X (a1, a2)|+ max{|Y(a1,a2)|, |Z(a1,a2)|}.

3. For any 0 < p < p′ ≤ 1 we have that K(p)(a1, a2) ≤ K(p′)(a1, a2) ≤ p′
p K(p)(a1, a2).

Proof: Let Σ1 and Σ2 denote the set of all permutations consistent with a1 and a2 respec-

tively. First, obviously, for all σ1 ∈ Σ1, and σ2 ∈ Σ2, K(σ1, σ2) ≥ |X |, since for all pairs

{i, j} ∈ X , σ1 and σ2 rank i and j differently. Also, for all pairs {i, j} ∈ |U|, Iσ1σ2(i, j) = 0.

Thus, these pairs do not contribute to the rank distance.

For the proof of part (1) of the theorem, consider a permutation σ∗1 ∈ Σ1 such that σ∗1

ranks the pairs in Z in an order that is consistent with the vector a2. Then consider a

permutation σ∗2 ∈ Σ2, such that σ∗2 ranks the pairs in Y in an order that is consistent with

the vector a1, and ranks the elements in E in the same order as σ∗1. Then K(σ∗1, σ
∗
2) =

|X | = minσ1∈Σ1,σ2∈Σ2 K(σ1, σ2).

For the proof of part (2), we first observe that the pairs in X contribute |X | to Khaus.

Consider now maxσ1∈Σ1 minσ2∈Σ2 K(σ1, σ2). Suppose that σ1 is fixed to a permutation σ∗1.

Then, the permutation σ∗2 that minimizes K(σ∗1, σ
∗
2) is the one that ranks the pairs in E and

Y in the same order as σ∗1. K(σ∗1, σ
∗
2) is obviously maximized when σ∗1 ranks the pairs in Z

in the reverse order of that defined by the vector a2. Thus, maxσ1∈Σ1 minσ2∈Σ2 K(σ1, σ2) =
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|X |+ |Z|. Symmetrically, maxσ2∈Σ2 minσ1∈Σ1 K(σ1, σ2) = |X |+ |Y|. Thus, Khaus(a1, a2) =

|X|+ max{|X |, |Y|}.
For the proof of part (3), K(p)(a1,a2) ≤ K(p′)(a1, a2) follows directly from the fact that

p ≤ p′ and the definition of K(p). Furthermore,

K(p′)(a1, a2)
K(p)(a1, a2)

≤ K(p′)(a1, a2)−K(0)(a1, a2)
K(p)(a1,a2)−K(0)(a1, a2)

=
p′

p

The inequality follows from the fact that for any 0 < a < y, x/y ≤ (x − a)/(y − a) if and

only if x ≤ y. The equality follows from Equation 5.1. 2

From Theorem 5.3 if follows that K(0)(a1, a2) ≤ Khaus(a1, a2) ≤ K(1)(a1,a2). Note

that, similar to Kmin, we could also define Kmax(a1, a2) = 1
n(n−1)/2 maxσ1∈Σ1,σ2∈Σ2 K(σ1, σ2),

and Kavg(a1, a2) = 1
n(n−1)/2E(K(σ1, σ2)), where the expectation is taken over all σ1 ∈ Σ1

and σ2 ∈ Σ2. However, for both distance measures, the pairs in the set E contribute to

the Kmax and Kavg distances. It seems counter-intuitive to penalize the algorithms for

pairs of nodes to which they assign equal weights, therefore, we do not consider these dis-

tance measures. For the remainder of the thesis, we focus on K(0) and K(1) rank distance

measures.

Not all of the distance measures that we defined are metrics. We examine the properties

of the measures in Appendix A, where we prove that some of the distance measures are

metrics and that some are near metrics. The metric property is useful when examining the

similarity and stability properties we discuss below.

5.4.3 Summary of distance measures used in the remainder of the thesis

Let G ∈ Gn be a graph and let a1 = A1(G), and a2 = A2(G) be the output of algorithms

of A1 and A2 on G. For the remainder of the chapter, for comparing the weights of the

algorithms, we will use the the d1 distance measure.

d1(a1, a2) = min
γ1,γ2≥1

‖γ1a1 − γ2a2‖1

For comparing the rankings produced by the algorithms we will use d
(0)
r = K(0), which

we will refer to as weak rank distance, and d
(1)
r = K(1), which we will refer to as strict rank

distance. The two functions can be defined using the indicator functions I(0)
a1a2

(i, j) and
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I(1)
a1a2

(i, j). The I(0)
a1a2

(i, j) function is defined as follows.

I(0)
a1a2

(i, j) =





1 if (a1(i) < a1(j) ∧ a2(i) > a2(j)) ∨ (a1(i) > a1(j) ∧ a2(i) < a2(j))

0 otherwise

The I(1)
a1a2

(i, j) is defined as follows.

I(1)
a1a2

(i, j) =





0 if a1(i) < a1(j) ⇔ a2(i) > a2(j)

1 otherwise

We define the weak rank distance, d
(0)
r , as follows.

d(0)
r (a1, a2) =

1
n(n− 1)/2

∑

{i,j}∈P
I(0)
a1a2

(i, j)

We define the strict rank distance, d
(1)
r , as follows.

d(1)
r (a1, a2) =

1
n(n− 1)/2

∑

{i,j}∈P
I(1)
a1a2

(i, j)

We will also use d
(p)
r to denote the K(p) Kendall rank distance.

We note that there are other possible distance measures that can be defined between

rankings. For example, we could view the weight vectors as probability distributions, and

apply information theoretic measures for comparing them. Also, Fagin et al [32] generalize

the Spearman’s Footrule measure [26] for the case of partial rankings. These measures are

beyond the scope of this thesis.

5.5 Similarity of LAR algorithms

We now turn to the problem of comparing two LAR algorithms. We first give the following

generic definition of similarity of two LAR algorithms, for any distance function d, and any

normalization norm L = || · ||.

Definition 5.3 Two L-algorithms A1 and A2 are similar on the class of graph Gn under
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distance d, if as n →∞
max
G∈Gn

d (A1(G),A2(G)) = o(Mn)

where Mn = sup‖w1‖=‖w2‖=1 d(w1, w2) is the maximum distance between any two n-

dimensional vectors with unit norm L = || · ||.

In the definition of similarity, instead of taking maxG∈Gn
we may use some other oper-

ator. For example, if there exists some distribution over the graphs in Gn, we could replace

max by the expectation of the distance between the algorithms. In this thesis, we only

consider the max operator.

We now give the following definitions of similarity for the d1, d(0) and d
(1)
r distance

measures. For the d1 distance measure, in Section A.2 of Appendix A we show that the

maximum d1 distance between any two n-dimensional Lp unit vectors is Θ(n1−1/p).

Definition 5.4 Let 1 ≤ p ≤ ∞. Two Lp-algorithms A1 and A2 are d1-similar (or, similar)

on the class of graphs Gn, if as n →∞,

max
G∈Gn

d1 (A1(G),A2(G)) = o
(
n1−1/p

)

Definition 5.5 Two algorithms, A1 and A2, are weakly rank similar on the class of graphs

Gn, if as n →∞,

max
G∈Gn

d(0)
r (A1(G),A2(G)) = o(1)

Definition 5.6 Two algorithms, A1 and A2, are strictly rank similar on the class of graphs

Gn, if as n →∞,

max
G∈Gn

d(1)
r (A1(G),A2(G)) = o(1)

Definition 5.7 Two algorithms, A1 and A2, are rank consistent on the class of graphs Gn,

if for every graph G ∈ Gn,

d(0)
r (A1(G),A2(G)) = 0

Definition 5.8 Two algorithms, A1 and A2, are rank equivalent on the class of graphs

Gn, if for every graph G ∈ Gn,

d(1)
r (A1(G),A2(G)) = 0
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We note that, according to the above definition, every algorithm is rank consistent with

the trivial algorithm that gives the same weight to all authorities. Although this may seem

somewhat bizarre, it does have an intuitive justification. For an algorithm whose goal is to

produce an ordinal ranking, the weight vector with all weights equal conveys no information;

therefore, it lends itself to all possible ordinal rankings. The weak rank distance counts only

the pairs that are weighted inconsistently, and in this case there are none. If a stronger

notion of similarity is needed, in the d
(1)
r distance, all such pairs contribute to the distance.

From the discussion in Section 5.4.2, it is obvious that if two algorithms are strictly

rank similar, then they are similar under all other rank distances defined in Section 5.4.2.

Equivalently, if two algorithms are not weakly rank similar, then they are not similar under

any of the rank distance measures defined in Section 5.4.2.

The definition of similarity depends on the normalization of the algorithms. In the

following, we show that, for the d1 distance, similarity in the Lp norm implies similarity in

the Lq norm, for any q > p.

Theorem 5.4 Let A1 and A2 be two algorithms, and let 1 ≤ p ≤ q ≤ ∞. If the Lp-

algorithm A1 and the Lp-algorithm A2 are similar, then the Lq-algorithm A1 and the Lq-

algorithm A2 are also similar.

Proof: Let G be a graph of size n, and let u = A1(G), and v = A2(G) be the weight

vectors of the two algorithms. Let vp and up denote the weight vectors, normalized in the

Lp norm, and let vq and uq denote the weight vectors, normalized in the Lq norm. Since

the Lp-algorithm A1 and the Lp-algorithm A2 are similar, there exist γ1, γ2 ≥ 1 such that

d1(vp,up) =
n∑

i=1

|γ1vp(i)− γ2up(i)| = o
(
n1−1/p

)

Now, vq = vp/‖vp‖q, and uq = up/‖up‖q. Therefore,
∑n

i=1 |γ1‖vp‖qvq(i)−γ2‖up‖quq(i)| =
o(n1−1/p). Without loss of generality assume that ‖up‖q ≥ ‖vp‖q. Then

‖vp‖q

n∑

i=1

∣∣∣∣γ1vq(i)− γ2
‖up‖q

‖vp‖q
uq(i)

∣∣∣∣ = o
(
n1−1/p

)
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We set γ′1 = γ1 and γ′2 = γ2
‖up‖q

‖vp‖q
. Then we have that

d1(vq, uq) ≤
n∑

i=1

|γ′1vq(i)− γ′2uq(i)| = o

(
n1−1/p

‖vp‖q

)
.

In Appendix A, Lemma A.3 we show that ‖vp‖q ≥ ‖vp‖pn
1/q−1/p = n1/q−1/p. Hence,

n1−1/p

‖vp‖q
≤ n1−1/p

n1/q−1/p = n1−1/q. Therefore, d1(vq, uq) = o(n1−1/q), and thus Lq-algorithm A1,

and Lq-algorithm A2 are similar. 2

Theorem 5.4 implies that if two L1-algorithms are similar, then the corresponding Lp-

algorithms are also similar, for any 1 ≤ p ≤ ∞. Consequently, if two L∞-algorithms are

dissimilar, then the corresponding Lp-algorithms are also dissimilar, for any 1 ≤ p ≤ ∞.

Therefore, all dissimilarity results proven for the L∞ norm hold for any Lp norm, for

1 ≤ p ≤ ∞.

5.5.1 Similarity Results

We now consider the similarity of the Hits, InDegree, Salsa, HubAvg and Max algo-

rithms. We will show that no pair of algorithms are similar, or rank similar in the class Gn

of all possible graphs of size n. For the dissimilarity results under the d1 distance measure,

we will assume that the weight vectors are normalized under the L∞ norm. Dissimilarity

between two L∞-algorithms implies dissimilarity in Lp norm, for p < ∞.

The Hits and the InDegree algorithms

Proposition 5.1 The Hits and the InDegree algorithms are neither similar, nor weakly

rank similar on Gn.

Proof: Consider a graph G on n = 7r − 2 nodes that consists of two disconnected compo-

nents. The first component C1 consists of a complete bipartite graph with 2r− 1 hubs and

2r − 1 authorities. The second component C2 consists of a bipartite graph with 2r hubs,

and r authorities. The graph G for r = 2 is shown in Figure 5.2.

Let a and w denote the weight vectors of the Hits, and the InDegree algorithm

respectively, on graph G. Then, the Hits algorithm allocates all the weight to the nodes in

C1. After normalization, for all i ∈ C1, ai = 1, while for all j ∈ C2, aj = 0. On the other

hand, the InDegree algorithm distributes the weight to both components, allocating more
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C1 C2

Figure 5.2: Dissimilarity of Hits and InDegree. The graph G for r = 2.

weight to the nodes in C2. After the normalization step, for all j ∈ C2, wj = 1, while for

all i ∈ C1, wi = 2r−1
2r .

There are r nodes in C2 for which wi = 1 and ai = 0. For all γ1, γ2 ≥ 1,
∑

i∈C2
|γ1wi −

γ2ai| ≥ r. Therefore, d1(w, a) = Ω(r) = Ω(n), which proves that the algorithms are not

similar.

The proof for weak rank dissimilarity follows immediately from the above. For every

pair of nodes {i, j} such that i ∈ C1 and j ∈ C2, ai > aj and wi < wj . There are Θ(n2) such

pairs, therefore, d
(0)
r (a,w) = Θ(1). Thus, the two algorithms are not weakly rank similar.

2

The Salsa algorithm

Proposition 5.2 The Salsa algorithm is neither similar, nor weakly rank similar to the

InDegree, HubAvg, or Hits algorithms.

Proof: Consider a graph G on n = 6r nodes, that consists of two components C1 and C2.

The component C1 is a complete bipartite graph with 2r hubs and 2r authorities. The

component C2 is a complete bipartite graph with r hubs and r authorities, with one link

(q, p) removed. Figure 5.3 shows the graph G for r = 3.

Let u, a, v, and w denote the normalized weight vectors for Salsa, Hits, HubAvg and

InDegree algorithms respectively. Also, let u1 denote the Salsa weight vector normalized

in the L1 norm (i.e., as it is computed by the random walk of the Salsa algorithm). The

Salsa algorithm allocates weight u1(i) = 1/3r for all authority nodes i ∈ C1, and weight

u1(j) = (r− 1)/3(r2− 1) for all authority node j ∈ C2 \ {p}. Hub nodes receive weight zero
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q

p

Component C2Component C1

Figure 5.3: Dissimilarity of Salsa with Hits,InDegree and HubAvg. The graph G for
r = 3.

for all algorithms. It is interesting to note that the removal of the link (q, p) increases the

weight of the rest of the nodes in C2. Since (r− 1)/3(r2− 1) > 1/3r, after normalization in

the L∞ norm, we have that ui = 1− 1
r2 for all i ∈ C1, and uj = 1 for all j ∈ C2\{p}. On the

other hand, both the Hits and HubAvg algorithms distribute all the weight equally to the

authorities in the C1 component, and allocate zero weight to the nodes in the C2 component.

Therefore, after normalization, ai = vi = 1 for all nodes i ∈ C1, and aj = vj = 0 for all

nodes j ∈ C2. The InDegree algorithm allocates weight proportionally to the in-degree of

the nodes, therefore, after normalization, wi = 1 for all nodes in C1, while wj = 1
2 for all

nodes j ∈ C2 \ {p}.
Let ‖ · ‖ denote the L1 norm. For the Hits and HubAvg algorithm, there are r entries

in C2 \ {p}, for which ai = vi = 0 and ui = 1. Therefore, for all of γ1, γ2 ≥ 1, ‖γ1u −
γ2a‖ = Ω(r) = Ω(n), and ‖γ1u − γ2a‖ = Ω(r) = Ω(n). From the above, we have that

d
(0)
r (u,a) = Θ(1), and d

(0)
r (u, v) = Θ(1).

The proof for the InDegree algorithm, is a little more involved. Let

S1 =
∑

i∈C1

|γ1wi − γ2ui| = 2r
∣∣∣γ1 − γ2 − γ2

r2

∣∣∣

S2 =
∑

i∈C2\{p}
|γ1wi − γ2ui| = r

∣∣∣∣γ1
1
2
− γ2

∣∣∣∣ .

We have that ‖γ1w − γ2u‖ ≥ S1 + S2. Unless 1
2γ1 − γ2 = o(1), then S2 = Θ(r) = Θ(n). If

γ1 = 2γ2 + o(1), since γ1, γ2 ≥ 1, we have that S1 = Θ(r) = Θ(n). Therefore, d1(w, u) =

Ω(n). From the above, d
(0)
r (w, u) = Θ(1).
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Figure 5.4: Dissimilarity of HubAvg and Hits. The graph G for r = 3.

Thus, Salsa is neither similar, nor weakly rank similar to Hits, InDegree, and

HubAvg. 2

The HubAvg algorithm

Proposition 5.3 The HubAvg and Hits algorithms are neither similar, nor weakly rank

similar on Gn.

Proof: Consider a graph G on n = 5r nodes that consists of two disconnected components.

The first component C1 consists of a complete bipartite graph with r hub, and r authority

nodes. The second component C2 consists of a complete bipartite graph C with r hub and

r authority nodes, and a set of r “external” authority nodes E, such that each hub node in

C points to a node in E, and no two hub nodes in C point to the same “external” node.

Figure 5.4 shows the graph G for r = 3.

Let a and w denote the weight vectors of the Hits and the HubAvg algorithm respec-

tively, on graph G. It is not hard to see that the Hits algorithm allocates all the weight to

the authority nodes in C2. After normalization, for all authority nodes i ∈ C, ai = 1, for

all j ∈ E, aj = 1
r−1 , and for all k ∈ C1, ak = 0. On the other hand, the HubAvg algorithm

allocates all the weight to the nodes in C1. After normalization, for all authority nodes

k ∈ C1, wk = 1, and for all j ∈ C2, wj = 0.

Let U = C1∪C. The set U contains 2r authority nodes. For every authority i ∈ U , either

ai = 1 and wi = 0, or ai = 0 and wi = 1. Therefore, for all γ1, γ2 ≥ 1,
∑

i∈U |γ1ai− γ2wi| ≥
2r. Thus, d1(a, w) = Ω(r) = Ω(n), which proves that the algorithms are not similar.

The proof for weak rank dissimilarity follows immediately from the above. For every

pair of authority nodes (i, j) such that i ∈ C1 and j ∈ C2, ai < wj , and ai > wj . There are
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Figure 5.5: Dissimilarity of HubAvg and InDegree. The Gs graph.

Θ(n2) such pairs, therefore, d
(0)
r (a,w) = Θ(1). Thus, the two algorithms are not weakly

rank similar. 2

Proposition 5.4 The HubAvg algorithm and the InDegree algorithm are neither simi-

lar, nor weakly rank similar on Gn.

Proof: Consider a graph G with n = 15r nodes. The graph G consists of r copies of a

subgraph Gs on 15 nodes. The subgraph Gs contains two components C1 and C2. The

component C1 is a complete bipartite graph with 3 hubs and 3 authorities. The component

C2 consists of 4 hubs that all point to an authority node p. Furthermore, each hub points

to one more authority, a different one for each hub. The graph Gs is shown in Figure 5.5.

Let a denote the authority weight vector of HubAvg algorithm, and let w denote the

authority weight of the InDegree algorithm on graph G. It is not hard to see that for

every subgraph Gs, the HubAvg algorithm assigns all the weight to component C1 and zero

weight to component C2. On the other hand, the InDegree algorithm assigns weight 1 to

all nodes with in-degree 4, and weight 3/4 to the authorities in the C1 components of the

Gs subgraphs. Since the graph G contains r copies of the graph Gs, it follows that there

are r = Θ(n) nodes for which ai = 0 and wi = 1. Therefore, dr(a, w) = Θ(1). Furthermore,

for all γ1, γ ≥ 1, ‖γ1a− γ2w‖1 = Θ(n). Thus, HubAvg and InDegree are neither similar,

nor weakly rank similar 2

The Max algorithm

Proposition 5.5 The Max algorithm is neither similar, nor weakly rank similar to the

Hits and the HubAvg algorithms on Gn.
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Figure 5.6: Dissimilarity of Max with Hits and HubAvg algorithms. The G graph for
r = 4.

Proof: Consider a graph G on n = 4r − 1 nodes that consists of two disconnected compo-

nents C1 and C2. Component C1 contains r hubs and r +1 authorities. The first authority,

denoted by s, is pointed to by all r hubs, while the rest of the authorities are pointed to by

exactly one hub, such that no two hubs point to the same authority. The C2 component

consists of r − 1 hubs and r − 1 authorities, arranged in (r − 1) × (r − 1) bipartite graph.

Figure 5.6 shows graph G for r = 4.

Since the C2 component does not contain a seed node, the Max algorithm, assigns all

weight to the C1 component, and zero weight to the authorities of the C2 component. Let

a denote the weight of the Max algorithm. For authority s, as = 1, while for every other

authority j in C1, aj = 1/r. For every authority i in C2, ai = 0.

On the other hand, the Hits and the HubAvg algorithms allocate all the weight to

the nodes in the C2 component, and no weight to the component C1. If w is the weight

vector of the Hits algorithm, and v the weight vector of the HubAvg algorithm, we have

that wi = vi = 1 for all authorities i in the C2 component, while wj = vj = 0 for every

authority j in the C1 component. Since C1 and C2 contain Θ(n) number of authorities,

the Max algorithm and the Hits and HubAvg algorithms, are neither similar, nor weakly

rank similar. 2

Proposition 5.6 The Max algorithm is neither similar, nor weakly rank similar to the

InDegree (and Salsa) algorithm on GAC
n .
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Figure 5.7: Dissimilarity of Max with InDegree and Salsa algorithms.

Proof: Consider a graph G that consists of 2r +9 nodes. The graph consists of a “central”

authority node c, a set of r authorities A1, and a set of r authorities A2. There are also 9

hub nodes h1, . . . , h9. Hubs h1, . . . , h4 point to all authorities in A1, while hubs h6, h7, h8

point to all authorities in A2. Seven hubs, h3, . . . , h8, point to the central authority c. The

graph is shown in Figure 5.7.

Let a denote the weight vector of the Max algorithm. The authority node c is the seed

node of the algorithm, so ac = 1. For every authority node i in A1, ai = 2/5, and for

every authority node j in A2, aj = 3/7. Let w denote the weight vector of the InDegree

algorithm. For the central authority c, wc = 1. For every authority node i ∈ A1, wi = 4/7,

and for all nodes in j ∈ A2, aj = 3/7.

Therefore, the Max algorithm ranks the authorities in A2 ahead of the authorities in

A1, while InDegree ranks the authorities in A1 ahead of the authorities in A2. Thus, there

are r2 pair of nodes (i, j), for which I(0)
aw(i, j) = 1. Since r = Θ(n), d

(0)
r (a, w) = Θ(n).

Thus Max and InDegree are not weakly rank similar.

For the dissimilarity of the Max and InDegree algorithms,

‖γ1a− γ2w‖1 = r(4γ1/7− 2γ2/5) + 3r/7(γ1 − γ2)
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For all γ1, γ2 ≥ 1, ‖γ1a − γ2w‖1 = Θ(r). Thus d1(a,w) = Θ(n), so Max and InDegree

are not similar.

In authority connected graphs the Salsa algorithm produces the same authority weights

as the InDegree algorithm. Thus, we conclude that Max and Salsa are not similar or

weakly rank similar. 2

Other Results

On the positive side, the following lemma follows immediately from the definition of the

Salsa algorithm and the definition of the authority-connected class of graphs.

Lemma 5.1 The Salsa algorithm is rank equivalent to the InDegree algorithm on the

class of authority connected graphs GAC
n .

In a recent work, Lempel and Moran [65] showed that the Hits, InDegree (Salsa),

and PageRank algorithms are not weakly rank similar on the class of authority connected

graphs, GAC
n .

5.6 Stability

In the previous section, we examined the similarity of two different algorithms on the same

graph G. In this section, we are interested in how the output of a fixed algorithm changes,

as we alter the graph. We would like small changes in the graph to have a small effect on the

weight vector of the algorithm. We capture this requirement by the definition of stability.

The notion of stability has been independently considered (but not explicitly defined) in a

number of different papers [72, 73, 4, 1]. For the definition of stability, we will use some of

the terminology employed by Lempel and Moran [65].

Let Gn be a class of graphs, and let G = (P, E) and G′ = (P,E′) be two graphs in Gn.

We define the link distance d` between graphs G and G′ as follows.

d`

(
G,G′) =

∣∣(E ∪ E′) \ (E ∩ E′)
∣∣

That is, d`(G,G′) is the minimum number of links that we need to add and/or remove so

as to change one graph into the other.
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The d` distance can be generalized to the case that G and G′ are weighted matrices. Let

W and W ′ denote the adjacency matrices of the graphs G and G′, respectively. Then we

can define the distance between the graphs as the sum of the L1 differences of the weights.

dw =
n∑

i=1

n∑

j=1

∣∣W [i, j]−W ′[i, j]
∣∣

Alternatively, we could use the Frobenius matrix norm. Given a matrix W the Frobenius

norm ‖W‖F is defined as follows

‖W‖F =




n∑

i=1

n∑

j=1

W [i, j]2




1/2

.

We then define the distance between the two graphs as

dF =
∥∥W −W ′∥∥

F
.

We note that in the case that W and W ′ are 0/1 matrices, the link distance d` is a special

case of both dw and dF .

Given a class of graphs Gn, we define a change, ∂, within class Gn as a pair ∂ = {G,G′},
where G,G′ ∈ Gn. The size of the change is defined as |∂| = d`(G,G′). We say that a

change ∂ affects node i, if the links that point to node i are altered. In algebraic terms,

the i-th column vectors of the adjacency matrices W and W ′ are different. We define the

impact set of a change ∂, {∂}, to be the set of nodes affected by the change ∂.

For a graph G ∈ Gn, we define the set Ck(G) = {G′ ∈ Gn : d`(G,G′) ≤ k}. The set

Ck(G) contains all graphs that have link distance at most k from graph G, that is, all graphs

G′ that can be produced from G, with a change of size at most k.

We are now ready to define stability. For the following, if G = (P, E) is a graph in Gn,

then we assume that E = ω(1). Otherwise, all properties that we discuss below are trivial.

Definition 5.9 An L-algorithm A is stable on the class of graphs Gn under distance d if

for every fixed positive integer k, we have as n →∞

max
G∈Gn,G′∈Ck(G)

d(A(G),A(G′)) = o(Mn)
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where Mn = sup‖w1‖=‖w2‖=1 d(w1, w2) is the maximum distance between any two n-

dimensional vectors with unit norm L = || · ||.

We now give definitions for stability for the specific distance measures we consider.

Definition 5.10 An Lp-algorithm A is d1-stable (or, stable) on the class of graphs Gn, if

for every fixed positive integer k, we have as n →∞

max
G∈Gn,G′∈Ck(Gn)

d1(A(G),A(G′)) = o
(
n1−1/p

)

Definition 5.11 An algorithm A is weakly rank stable on the class of graphs Gn if for

every fixed positive integer k, we have as n →∞

max
G∈Gn,G′∈Ck(G)

d(0)
r (A(G),A(G′)) = o(1)

Definition 5.12 An algorithm A is strictly rank stable on the class of graphs Gn if for

every fixed positive integer k, we have as n →∞

max
G∈Gn,G′∈Ck(G)

d(1)
r (A(G),A(G′)) = o(1)

As in the case of similarity, strict rank stability implies stability for all rank distance

measures we defined in Section 5.4.2, while weak rank instability implies instability for all

rank distance measures.

Stability seems to be a desirable property. If an algorithm is not stable, then slight

changes in the link structure of the Base Set may lead to large changes in the rankings

produced by the algorithm. Given the rapid evolution of the Web, stability is necessary to

guarantee consistent behavior of the algorithm. Furthermore, stability may provide some

“protection” against malicious spammers.

The following theorem is the analogue of Theorem 5.4 for stability.

Theorem 5.5 Let A be an algorithm, and let 1 ≤ p ≤ q ≤ ∞. If the Lp-algorithm A is

stable on class Gn, then the Lq-algorithm A is also stable on Gn.

Proof: Let ∂ = {G, G′} be a change within Gn of size at most k, for a fixed constant k.

Set v = A(G), and u = A(G′), and then the rest of the proof is identical to the proof of

Theorem 5.4. 2
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Theorem 5.5 implies that, if an L1-algorithm A is stable, then the Lp-algorithm A is

also stable, for any 1 ≤ p ≤ ∞. Consequently, if the L∞-algorithm A is unstable, then the

Lp-algorithm A is also unstable, for any 1 ≤ p ≤ ∞. Therefore, instability results proven

for the L∞ norm hold for any Lp norm, for 1 ≤ p ≤ ∞.

5.6.1 Stability and Similarity

We now prove an interesting connection between stability and similarity.

Theorem 5.6 Let d be a distance function that is a metric, or a near metric1, over a class

of graphs Gn. If two L-algorithms A1 and A2 are similar under d on the class Gn, and the

algorithm A1 is stable under d on the lass Gn, then A2 is also stable under d on the class

Gn.

Proof: Let ∂ = {G,G′} be a change in Gn of size k, where k is some fixed constant

independent of n. Now let w1 = A1(G), w2 = A2(G), w′
1 = A(G′), and w′

2 = A(G′). Since

A1 and A2 are similar, we have that d(w1,w2) = o(Mn), and d(w′
1,w

′
2) = o(Mn). Since

A1 is stable, we have that d(w1, w
′
1) = o(Mn). Since the distance measure d is a metric, or

a near metric, we have that

d(w2, w
′
2) = O(d(w1,w2) + d(w′

1,w
′
2) + d(w1,w

′
1)) = o(Mn)

Therefore, A2 is stable on Gn. 2

In Section A.1 (Appendix A), we show that d
(p)
r is a metric for p ≥ 1/2, and a near

metric for p < 1/2 such that p = Θ(1). Also, the d1 distance measure is a near metric over

the set of L1 unit vectors. The distance function d
(p)
r for p = o(1) is not a near metric.

5.6.2 Stability Results

Proposition 5.7 The Hits and HubAvg algorithms are neither stable, nor weakly rank

stable, on class Gn.

1A near metric is a distance function that is reflexive, and symmetric, and satisfies the following relaxed
polygonal inequality. There is a constant c independent of n, such that for all k > 0, and all vectors
u, w1, w2, . . . , wk, v, d(u, v) ≤ c(d(u, w1)+d(w1, w2)+ · · ·+d(wk, v)). We define metrics and near metrics
in Section A.1 (Appendix A).
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Figure 5.8: Instability of Hits and HubAvg algorithms.

Proof: Consider the graph G of size n = 2r+1 that consists of two disjoint components C1

and C2, each a complete graph on r nodes. There is also an extra hub node h that points

to some node in C1. For both Hits and HubAvg, in the corresponding matrices MH and

MHA, the eigenvalue of the component C1 is (slightly) larger than that of C2. Therefore,

both algorithms will allocate all the weight to the nodes of C1, and zero weight to C2. Now,

construct the graph G′ by removing the link from h to C1 and adding a link to some node

in C2. The graphs G and G′ are shown in Figure 5.8. In G′ the eigenvalue of C2 becomes

larger than that of C1, causing the all the weight to shift from C1 to C2, and leaving the

nodes in C1 with zero weight. It follows that the two algorithms are neither stable nor

weakly rank stable. 2

The proof of Proposition 5.7 makes use of a disconnected graph in order to establish the

instability of the algorithms. Lempel and Moran [65] have recently proved that the Hits

algorithm is weakly rank unstable on the class GAC
n of authority connected graphs.

Proposition 5.8 The Salsa algorithm, is neither stable, nor weakly rank stable on the

class Gn.

Proof: We first establish the rank instability of the Salsa algorithm. The example is

similar to that used in the previous proof. Consider a graph G of size n = 2r + 1, which

consists of two disjoint components. The first component consists of a complete graph C1

on r nodes and an extra authority p that is pointed to by a single node of the complete

graph C1. The second component consists of a complete graph C2 on r nodes.
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Figure 5.9: Instability of the Salsa algorithm.

Let a denote the weight vector of the Salsa algorithm on the graph G. Then for every

node i ∈ C1, ai = r+1
2r+1

r−1
r(r−1)+1 . For every node j ∈ C2, aj = 1

2r+1 . If r > 2, then the

Salsa algorithm ranks the r authorities in C1 higher than those in C2. We now remove the

link from the node in C1 to node p, and we add a link from a node in C2 to p. Now, the

nodes in C2 are ranked higher than the nodes in C1. There are Θ(n2) pairs of nodes whose

relative order is changed; therefore, Salsa is weakly rank unstable.

The proof of instability is a little more involved. Consider again the graph G that consists

of two complete graphs C1 and C2 of size n1 and n2 respectively, such that n2 = cn1, where

c < 1 is a fixed constant. There exists also an extra hub h that points to two authorities p

and q from the components C1 and C2 respectively. The graph has n = n1 + n2 + 1 nodes,

and na = n1 + n2 authorities. Figure 5.9 shows the example.

The authority Markov chain defined by the Salsa algorithm is irreducible, therefore,

the weight of authority i is proportional to the in-degree of node i. Let a be the weight

vector of the Salsa algorithm. Node p is the node with the highest in-degree, therefore,

after normalizing in the L∞ norm, ap = 1, ai = 1 − 1/n1, for all i ∈ C1 \ {p}, aq = c, and

aj = c− 1/n1 for all j ∈ C2 \ {q}.

Now let G′ be the graph G after we remove the two links from hub h to authorities

p and q. Let a′ denote the weight vector of the Salsa algorithm on graph G′. It is not

hard to see that all authorities receive the same weight 1/na by the Salsa algorithm. After

normalization, a′i = 1 for all authorities i in G′.
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Figure 5.10: Instability of the Max algorithm.

Consider now the difference ‖γ1a− γ2a
′‖1. Let

S1 =
∑

C1\{p}
|γ1ai − γ2a

′
i| = (n1 − 1)

∣∣∣∣γ1 − γ2 − γ1

n1

∣∣∣∣

S2 =
∑

C2\{q}
|γ1ai − γ2a

′
i| = (n2 − 1)

∣∣∣∣cγ1 − γ2 − γ1

n1

∣∣∣∣ .

It holds that ‖γ1a − γ2a
′‖1 ≥ S1 + S2. It is not hard to see that unless γ1 = 1

cγ2 + o(1),

then S2 = Θ(n2) = Θ(n). If γ1 = 1
cγ2 + o(1), then S1 = Θ(n1) = Θ(n). Therefore,

d1(a, a′) = Ω(n). Thus, the Salsa algorithm is unstable. 2

Proposition 5.9 The Max algorithm is unstable, and weakly rank unstable, on the class

of authority connected graphs GAC
n .

Proof: For the instability of the Max algorithm, we use the graph G defined for the

dissimilarity of the Max algorithm with the InDegree algorithm. We now add two links

from hubs h1 and h2 to the central authority c to produce the graph G′. The graphs G and

G′ are shown in Figure 5.10.
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In the graph G′, the Max algorithm produces the same authority weights as the In-

Degree algorithm. The instability and weak rank instability of the Max algorithm follow

directly from the dissimilarity of the Max and InDegree algorithms. 2

We note that it is possible to cause a complete reversal of the ranking produced by the

Max algorithm by just changing a few links. Lempel and Moran [65] present a proof for

the weak rank instability of the Hits algorithm on GAC
n . On this graph, the Max algorithm

produces exactly the same ranking as the Hits algorithm (albeit, not the same authority

weights). In their counter-example, changing two links causes a complete reversal of the

ranking produced.

On the positive side, we can prove that the InDegree algorithm is stable.

Theorem 5.7 The InDegree algorithm is stable on the class Gn.

Proof: Let ∂ = {G, G′} be a change within Gn of size k. Let m be the size of the impact

set {∂}, where m ≤ k. Without loss of generality assume that {∂} = {1, 2, . . . ,m}. Let u

be the weight vector that assigns to node i weight equal to |B(i)|, the in-degree of i. Let

w be the weight of the L1-InDegree algorithm. Then w = u/‖u‖, where ‖ · ‖ is the L1

norm. Let u′ and w′ denote the corresponding weight vectors for the graph ∂G. For all

i 6∈ {1, 2, . . . , m} u′i = ui. Furthermore,
∑m

i=1 |ui−u′i| ≤ k. Set γ1 = 1 and γ2 = ‖u′‖
‖u‖ . Then

‖γ1w − γ2w
′‖1 =

1
‖u‖

n∑

i=1

∣∣ui − u′i
∣∣ ≤ k

‖u‖ .

We note that ‖u‖ is equal to the sum of the links in the graph; therefore, ‖u‖ = Ω(1).

Thus, d1(w, w′) = o(1), which proves that L1-InDegree, and consequently InDegree is

stable. 2

We examine the rank stability of InDegree in Section 5.7 where we discuss locality.

5.6.3 Other Results

Following the work of Borodin et al. [10], Lempel and Moran [65] proved that the Hits and

PageRank algorithms are not stable on the class of authority connected graphs. Recently,

Lee and Borodin [63] considered a different definition of stability, where the distance between

the weights before and after the change may depend on the weights of the nodes whose in
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and out links where affected. The intuition is that, if a change is performed on a highly

authoritative node, then we expect a large change in the weights. They prove that, under

their definition, the PageRank algorithm is stable. They also prove the stability of a

randomized version of Salsa, where, similar to PageRank, at each iteration you are a

random jump may be performed. On the negative side, they prove that Hits and Salsa

remain unstable.

5.7 Locality

We now introduce the concept of “locality”. The idea behind locality is that for a local

algorithm a change should not affect the relative order of the nodes that are not affected

by the change.

Definition 5.13 An algorithm A is local if for every change ∂ = {G,G′} there exists λ > 0

such that A(G′)[i] = λA(G)[i], for all i 6∈ {∂}.

Definition 5.14 An algorithm A is weakly rank local if for every change ∂ = {G,G′}, if

a = A(G) and a′ = A(G′), then, for all i, j 6∈ {∂}, ai > aj ⇒ a′i ≥ a′j, or ai < aj ⇒ a′i ≤ a′j.

(equivalently, I(0)
aa′(i, j) = 0). The algorithm is strictly rank local if for all i, j 6∈ {∂},

ai > aj ⇔ a′i > a′j (equivalently, I(1)
aa′(i, j) = 0).

We note that locality and rank locality do not depend upon the normalization used by

the algorithm. From the definitions, one can observe that if an algorithm is local, then it is

also strictly rank local. If it is strictly rank local then it is obviously weakly rank local.

We have the following.

Theorem 5.8 If an algorithm A is weakly rank local on the class Gn, then it is weakly rank

stable on the class Gn. If A is strictly rank local on Gn, then it is strictly rank stable on Gn.

Proof: Let ∂ = {G, G′} be a change within the class Gn of size at most k. Let A be an

algorithm defined on Gn, let a be the weight vector of A on graph G, and a′ be the weight

vector of A on graph G′. Let T = {∂} be the impact set of change ∂, and let m be the size

of the set T , where m ≤ k. If the algorithm A is weakly rank local, then I(0)
aa′(i, j) = 0 for
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all i, j 6∈ T . Therefore,

d(0)
r (a1, a

′
1) =

1
n(n− 1)/2

n∑

i=1

∑

p∈P

I(0)
aa′(i, p)

≤ nm

n(n− a)/2
≤ 2k/(n− 1)

= o(1)

Similarly, if the algorithm A is strictly rank local, I(1)
aa′(i, j) = 0 for all i, j 6∈ T , and

d(1)
r (a,a′) =

1
n(n− 1)/2

n∑

i=1

∑

p∈P

I(1)
aa′(i, p)

≤ 2k/(n− 1) = o(1)

which concludes the proof of the theorem.

2

Therefore, locality implies rank stability. It is not necessarily the case that it also implies

stability. For example, consider the algorithm A, which for a graph G on n nodes, assigns

weight n|B(i)| to node i. This algorithm is local, but it is not stable.

Theorem 5.9 The InDegree algorithm is local, and consequently strictly rank local, and

rank local.

Proof: Given a graph G, let u be the weight vector that assigns to node i weight equal

to |B(i)|, the in-degree of i. Let w be the weight vector of the InDegree algorithm; then

wi = ui/‖u‖ = |B(i)|/‖u‖, where ‖ · ‖ is any norm.

Let ∂ = {G, G′} be a change within Gn, and let u′ and w′ denote the corresponding

weight vectors on graph G′. For every i 6∈ {∂}, the number of links to i remains unaffected

by the change ∂; therefore u′i = ui. For the InDegree algorithm, w′i = u′i/‖u′‖ = ui/‖u′‖.
For λ = ‖u‖

‖u′‖ , it holds that w′i = λwi), for all i 6∈ {∂}. Thus, InDegree is local, and

consequently strictly rank local, and rank local. 2

The following is a direct corollary of the locality of the InDegree algorithm.

Corollary 5.1 The InDegree algorithm is strictly rank stable.

The following corollary follows from the fact that the Salsa and InDegree algorithms

are equivalent on the class GAC
n of authority connected graphs.
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Corollary 5.2 The Salsa algorithm is stable, and strictly rank stable on GAC
n .

5.8 An axiomatic characterization of the InDegree algorithm

We will now prove that there is a set of properties that characterize the InDegree algo-

rithm. To this end we introduce the property of label-independence.

Definition 5.15 Let G ∈ Gn be a graph of size n, and let {1, 2, . . . , n} denote a labeling of

the nodes of G. Let A be an LAR algorithm, and let a = A(G) denote the weight vector of

A on a graph G ∈ Gn. Let π denote a permutation of the labels of the nodes of G, and let

a′ denote the weight vector of A on the graph with the permuted labels. The algorithm A is

label-independent if a′(π(i)) = a(i).

All the algorithms we considered in this thesis (InDegree, PageRank, Hits, Salsa,

HubAvg, AT(k), Norm(p), BFS) are clearly label-independent. Label-independence is a

reasonable property, but one can define reasonable algorithms that are not label-independent.

For example, an algorithm may choose to give more weight to a link from a node with a

specific label. The algorithm defined by Bharat and Henzinger [8], when computing the

authority weight of a node i, averages the hub weights of the nodes that belong to the same

domain. This algorithm is not label-independent, since it takes into account the “label” of

the node when computing the authority weights.

We now state the axiomatic characterization of InDegree.

Theorem 5.10 An algorithm A that is strictly rank local, monotone, and label-independent

is rank consistent with the InDegree algorithm on the class Gn, for any n ≥ 3. If A is

strictly rank local, strictly monotone, and label-independent then it is rank equivalent to the

InDegree algorithm on the class Gn, for any n ≥ 3.

Proof: Let G be a graph of size n ≥ 3, and let a = A(G) be the weight function of

algorithm A on graph G, and w be the weight vector of InDegree. We will modify G to

form graphs G1, and G2, and we use a1, and a2 to denote (respectively) the weight vector

of algorithm A on these graphs.

Let i and j be two nodes in G. If wi = wj = 0, that is B(i) = B(j) = ∅, then from the

monotonicity of A, we have that ai = aj . Therefore I(0)
aw(i, j) = 0, and I(1)

aw(i, j) = 0. If
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wi > wj = 0, that is, B(i) = ∅, and B(j) 6= ∅ then B(i) ⊂ B(j). If A is monotone, ai ≤ aj ,

thus I(0)
aw(i, j) = 0. If A is strictly monotone, ai < aj , thus I(1)

aw(i, j) = 0.

Now, assume that wi ≥ wj > 0, or equivalently that node i has at least as many in-links

as node j. The set B(i) ∪B(j) of nodes that point to i or j is decomposed as follows.

• There exists a set C = B(i) ∩B(j) of nodes, that point to both i and j.

• There exists a set L = B(j) \ C of nodes, that point to node j, but not to node i.

• There exists a set V = B(i) \ C of nodes, that point to node i, but not to node j.

The set V is further decomposed into the sets R and E. The set R is an arbitrary

subset of the set V with cardinality equal to that of L. Since the in-degree of node

i is at least as large as that of node j the set R is well defined. We also have that,

E = V \R.

Note that some of these sets may be empty, but not all of them are empty. Specifically,

V ∪ C 6= ∅, and L ∪ C 6= ∅. The set E is empty if any only if nodes i and j have equal

in-degrees. The links for nodes i and j are shown in Figure 5.11(a). The eliptic shapes

denote sets of nodes, while the thick arrows represent the links from a set of nodes to a

single node.

Let k 6= i, j be an arbitrary node in the graph. We now perform the following change

to graph G. We remove all links that do not point to i or j, and add links from the nodes

in R and C to node k. Let G1 denote the resulting graph. The graph G1 is shown in

Figure 5.11(b). Since A is strictly rank local, and the links to nodes i and j were not

affected by the change, we have that

a1(i) < a1(j) ⇔ a(i) < a(j) (5.2)

We will now prove that a1(k) = a1(j). Assume that a1(k) < a1(j). Let G2 denote the

graph that we obtain by removing all the links from set R to node i, and adding links from

set L to node i. The graph G2 is shown in Figure 5.11(c). We observe that the graphs G1

and G2 are the same up to a label permutation that swaps the labels of nodes j and k, and

the labels of the nodes in L with the labels of the nodes in R. Thus, a2(j) = a1(k), and

a2(k) = a1(j). Therefore, from our assumption that a1(k) < a1(j), we have a2(j) < a2(k).

However, graph G2 was obtained from graph G1 by performing a local change to node i.
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Figure 5.11: Axiomatic Characterization of InDegree
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Given the strict locality assumption, the relative order of the weights of nodes j and k should

remain unaffected, that is, a2(j) > a2(k), thus reaching a contradiction. We reach the same

contradiction if we assume that a1(k) > a1(j). Therefore, it must be that a1(k) = a1(j).

In the graph G1, we have that B(k) ⊆ B(i). We distinguish two cases. If B(k) = B(i)

then the set E is empty. Therefore, wi = wj , since i and j have the same number of in-links.

Furthermore, from the monotonicity property (weak or strict) of the algorithm A, we have

that a1(i) = a1(k) = a1(j). From Equation 5.2 it follows that a(i) = a(j).

If B(k) ⊂ B(i), then the set E is not empty, and wi > wj , since i has more links than j.

If A is monotone, then a1(i) ≥ a1(k) = a1(j). From Equation 5.2, we have that a(i) ≥ a(j).

Therefore, for all i, j wi > wj ⇒ ai ≥ aj . Thus d
(0)
r (w, a) = 0, and A and InDegree are

rank consistent. If A is strictly monotone, then a1(i) > a1(k) = a1(j). From Equation 5.2,

we have that a(i) > a(j). Therefore, for all i, j wi > wj ⇔ ai > aj . Thus d
(1)
r (w, a) = 0,

and A and InDegree are rank equivalent. 2

The conditions of Theorem 5.10 characterize InDegree. All three conditions, label

independence, (strict) monotonicity, and strict rank locality, are necessary for the proof

of the theorem. Assume that we discard the label independence condition. Now, define

algorithm A that assigns to each link a weight that depends on the label of the node from

which the link originates. The algorithm sets the authority weight of each node to be the

sum of the link weights that point to this node. This algorithm is clearly monotone and

local, however if the link weights are chosen appropriately, it will not be rank consistent with

InDegree. Assume now that we discard the monotonicity condition. Define an algorithm

A, that assigns weight 1 to each node with odd in-degree, and weight 0 to each node with

even in-degree. This algorithm is local and label independent, but it is clearly not rank

consistent with InDegree. Monotonicity and label independence are clearly not sufficient

for proving the theorem; we have provided examples of algorithms that are monotone and

label independent, but not rank consistent with the InDegree (e.g. the Hits algorithm).

Strict monotonicity is necessary for proving rank equivalence. The algorithm that assigns

equal weight to all nodes is monotone, label independent, and strictly rank local. It is rank

consistent with InDegree, but not rank equivalent.
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Chapter 6

Experimental Evaluation

In this section we present an experimental evaluation of the algorithms that we propose,

as well as some of the existing algorithms discussed in Chapter 2. We study the rankings

they produce, and how they relate to each other. The goal of this experimental study is to

assess the quality of the algorithms, and, more importantly, to understand how theoretically

predicted properties manifest themselves in a practical setting.

6.1 The Experimental Set-Up

6.1.1 The queries

We experiment with our algorithms on the following 34 different queries.

abortion, affirmative action, alcohol, amusement parks, architecture,

armstrong, automobile industries, basketball, blues, cheese, classical

guitar, complexity, computational complexity, computational geometry,

death penalty, genetic, geometry, globalization, gun control, iraq

war, jaguar, jordan, moon landing, movies, national parks, net censorship,

randomized algorithms, recipes, roswell, search engines, shakespeare,

table tennis, weather, vintage cars

Many of these queries have already appeared in previous works [30, 64, 58]. For the re-

maining queries, we selected queries that correspond to topics for which there are opposing

communities, such as, “death penalty”, “gun control”, “iraq war”, “globalization”, “moon
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landing”, or queries that are of interest to different communities, depending on the inter-

pretation of the word (for example, “jordan”, “complexity”, “armstrong”). Our objective

is to observe how the different algorithms represent these different (usually unrelated, and

sometimes opposing) communities in the top positions of the ranking. We are also interested

in observing the behavior of the algorithms when we move from a broad topic (“geometry”,

“complexity”) to a more specific subset of this topic (“computational complexity”, “compu-

tational geometry”). We also selected some queries for which we expect the most relevant

results not to contain the query words. For example, most search engines do not contain the

words “search engine”. The same for the query “automobile industries” which is a variation

of the query “automobile manufacturers” that appears in the work of Kleinberg [58]. The

remaining queries were selected as interesting queries on broad topics.

The Base Sets for these queries are constructed in the fashion described by Kleinberg [57].

We start with a Root Set of pages related to the query. This Root Set is obtained by querying

the Google1 search engine. The Root Set consists of the first 200 pages returned by the

search engine. This set is then expanded to the Base Set by including nodes that point to,

or are pointed to, by the pages in the Root Set. Following the guidelines of Kleinberg [58],

for every page in the Root Set, we include only the first 50 pages that point to this page,

in the order that they are returned by the Google search engine. We then extract the links

between the pages of the Base Set, and we construct the hyperlink graph.

The next step is to eliminate the navigational links. These are links that serve solely

the purpose of navigating within a Web site, and they do not convey an endorsement for

the contents of the target page. Finding navigational links is a non-trivial problem that

has received some attention in the literature [21, 9]. We adopt the following heuristics for

identifying navigational links. First, we compare the IP addresses of the two links. If the

first three bytes are the same then we label the link as navigational. If not, we look at the

actual URL. This is of the form “http://string1/string2/ ...”. The domain identifier

is string1. This is of the form “ x1.x2. · · · .xk”. If k ≥ 3 then we use x2. · · · .xk−1 as the

domain identifier. If k = 2 we use x1. If the domain identifiers are the same for the source

and target pages of the link, then the link is labeled as navigational, and it is discarded.

After the navigational links are removed, we remove any isolated nodes, and we produce

the Base Set P and the graph G = (P, E). Unfortunately, our heuristics do not eliminate

1http://www.google.com
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Figure 6.1: Matrix plots for query “abortion”

all possible navigational links, which in some cases results in introducing clusters of pages

from the same domain.

Table 6.1 presents statistics for our graphs. The “med out” is the median out-degree,

the “avg-out” is the average out-degree, where median and average are taken over all hub

nodes. The “ACC size” is the size of the largest authority connected component, that is,

the size of the largest connected component in the authority graph GA. Recall that the

graph GA is a graph defined on the authority nodes, where there exists an edge between

two authorities if they have a hub in common.

For the purpose of exhibition, we will often represent the graph for a query as a plot.

Figure 6.1(a) shows the graph for the query “abortion”. This figure plots a matrix, where

the rows of the matrix correspond to the authority nodes in the graph, and the columns

to the hub nodes. Every point corresponds to an edge in the graph. Each authority node

is represented as a row of the matrix plot, that is, as a vector of hubs that point to this

authority node.

In order to reveal some of the structure of the graph, the rows and columns are per-

muted so that similar nodes are brought together. For this, we used LIMBO, an agglom-
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query nodes hubs authorities links med out avg out ACC size
abortion 3340 2299 1666 22287 3 9.69 1583
affirmative action 2523 1954 4657 866 1 2.38 752
alcohol 4594 3918 1183 16671 2 4.25 1124
amusement parks 3410 1893 1925 10580 2 5.58 1756
architecture 7399 5302 3035 36121 3 6.81 3003
armstrong 3225 2684 889 8159 2 9.17 806
automobile industries 1196 785 561 3057 2 3.89 443
basketball 6049 5033 1989 24409 3 4.84 1941
blues 5354 4241 1891 24389 2 5.75 1838
cheese 3266 2700 1164 11660 2 4.31 1113
classical guitar 3150 2318 1350 12044 3 5.19 1309
complexity 3564 2306 1951 13481 2 5.84 1860
computational complexity 1075 674 591 2181 2 3.23 497
computational geometry 2292 1500 1294 8189 3 5.45 1246
death penalty 4298 2659 2401 21956 3 8.25 2330
genetic 5298 4293 1732 19261 2 4.48 1696
geometry 4326 3164 1815 13363 2 4.22 1742
globalization 4334 2809 2135 17424 2 8.16 1965
gun control 2955 2011 1455 11738 3 5.83 1334
iraq war 3782 2604 1860 15373 3 5.90 1738
jaguar 2820 2268 936 8392 2 3.70 846
jordan 4009 3355 1061 10937 2 3.25 991
moon landing 2188 1316 1179 5597 2 4.25 623
movies 7967 6624 2573 28814 2 4.34 2409
national parks 4757 3968 1260 14156 2 3.56 1112
net censorship 2598 1618 1474 7888 2 4.87 1375
randomized algorithms 742 502 341 1205 1 2.40 259
recipes 5243 4375 1508 18152 2 4.14 1412
roswell 2790 1973 1303 8487 2 4.30 1186
search engines 11659 7577 6209 292236 5 38.56 6157
shakespeare 4383 3660 1247 13575 2 3.70 1199
table tennis 1948 1489 803 5465 2 3.67 745
weather 8011 6464 2852 34672 3 5.36 2775
vintage cars 3460 2044 1920 12796 3 6.26 1580

Table 6.1: Query statistics
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erative hierarchical clustering algorithm [3], which is based on the Information Bottleneck

method [88, 86]. The distance between two vectors is measured by normalizing the vectors

so that the sum of their entries is 1, and then taking the Jensen-Shannon divergence [68]

of the two distributions. This corresponds to the information we lose about the entries of

the vectors if we merge them [88]. Any other hierarchical algorithm for clustering binary

vectors would also be applicable. Executing the algorithm on the rows of the matrix pro-

duces a tree, where each node in the tree corresponds to the merge of two clusters. The

leaves of this tree are the rows of the matrix (the authority nodes). If we perform a depth

first traversal of this tree and we output the leaves in the order in which we visit them,

then we expect similar rows to be brought together. We perform the same operation for

the columns of the graph. We do not claim that these permutations of rows and columns

are optimal in any sense. The purpose of the permutations is to enhance the visualization

of the graph by grouping together some of the similar rows and columns.

The matrix plot representation of the graph is helpful in identifying the parts of the

graph on which the various algorithms focus in the top-10 results, by highlighting the

corresponding rows. For example, Figure 6.1(b) shows again the plot of the matrix for the

“abortion” dataset. The rows in darker color correspond to the top-10 authority nodes of

the Hits algorithm. These matrix plots allow us to inspect how the top-10 results of the

different LAR algorithms are interconnected with each other and with the rest of the graph,

and they yield significant insight in the behavior of the algorithms.

6.1.2 Algorithms

We implemented all the algorithms we described in Chapter 3, namely HubAvg, AT(k),

Norm(p), Max and BFS. For the Norm(p) family, we set p = 2 and we denote this

algorithm as Norm. For the AT(k) family of algorithms, given a graph G, we compute the

distribution of the out-degrees in the graph and we experiment with k being the median,

and the average out-degree, where median and average are taken over all the hub nodes. We

denote these algorithms as AT-med and AT-avg respectively. We also perform a separate

study on how the behavior of the AT(k) and Norm(p) algorithms is affected as we vary p

and k.

We also implemented the Hits, PageRank, InDegree and Salsa algorithms. For

the PageRank algorithm, the jump probability ε usually takes values in the interval
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[0.1, 0.2] [13, 72]. We observed that the performance of the PageRank algorithm usu-

ally improves as we increase the value of ε. We set the jump probability ε to be 0.2, a value

that is sufficiently low, and produces satisfactory results.

For all algorithms, we iterate until the L1 difference of the authority weight vectors in

two successive iterations becomes less than δ = 10−7, or until 1000 iterations have been

completed. Although there are more sophisticated methods for testing for convergence, we

chose this one for the sake of simplicity. In most cases, the algorithms converge in no more

than a hundred iterations.

6.1.3 Measures

The measure that we will use for the evaluation of the quality rankings is precision over

top-10. This is the fraction of documents in the top 10 positions of the ranking that are

relevant to the query. Given the impatient nature of the Web users, we believe that this is an

appropriate measure for the evaluation of Web searching and ranking algorithms. Indeed,

a search engine is often judged by the first page of results it returns. We will also refer to

this fraction as the relevance ratio of the algorithm. Similar quality measures are used in

the TREC conferences for evaluating Web search algorithms.2

We also use a more refined notion of relevance. Given a query, we classify a document

as non-relevant, relevant, or highly relevant to the topic of the query. High relevance is

meant to capture the notion of authoritativeness. A highly relevant document is one that

you would definitely want to be in the few first page of results of a search engine. For

example, in the query “movies”, the Web page http://abeautifulmind.com/, the official

site for the movie “A Beautiful Mind”, is relevant to the topic of movies, but it cannot

be thought of as highly relevant. However the page http://www.imdb.com, the Internet

Movie Data Base (IMDB) site that contains movie information and reviews, is a page that

is highly relevant to the topic. This is a result that a Web user would most likely want to

retrieve when posing the query. The notion of high relevance is also employed in the TREC

conference for topic distillation queries, where the objective is to find the most authoritative

pages for a specific topic. For each algorithm we want to estimate the high relevance ratio,

the fraction of the top 10 results that are highly relevant. Note that every highly relevant

2For TREC data relevance and high relevance is usually predefined by a set of experts.
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page is of course relevant, so the high relevance ratio is always less or equal to the relevance

ratio.

We are also interested in studying how the algorithms relate to each other. For the

comparison of two rankings we will use the geometric distance measure, d1, defined in

Section 5.4.1, and the strict rank distance d
(1)
r , defined in Section 5.4.2. We do not consider

the weak rank distance in this chapter. For brevity, we will refer to the strict rank distance

as rank distance, and we will denote it by dr. When computing the d1 distance the vectors

are normalized so that the entries sum to 1. Thus, the maximum d1 distance is 2.

We will also consider the following two similarity measures for comparing the top-k

results of two algorithms.

• Intersection over top k, I(k): The number of documents that the two rankings have

in common in the top k results. In our experiments, we use k = 10.

• Weighted Intersection over top k, WI(k): This is the average intersection over the

top k results, where the average is taken over the intersection over the top-1, top-2,

up to top-k. The weighted intersection is given by the following formula.

WI(k) =
1
k

k∑

i=1

I(i)

In our study, we measure the similarity over the top-10 results.

6.1.4 User Study

In order to assess the relevance of the documents we performed a user study. The study

was performed on-line.3 The introductory page contained the queries with links to the

results, together with some instructions. By clicking on a query, the union of the top-10

results of all algorithms was presented to the user. The results were permuted, so that they

appeared in a random order, and no information was revealed about the algorithm(s) that

introduced each result in the collection. The users were then asked to rate each document

as “Highly Relevant”, “Relevant”, or “Non-Relevant”. They were instructed to mark a

page as “Highly Relevant” any page that they would definitely like to see within the top

positions of a search engine. An option “Don’t Know” (chosen as default) was also given,

3The URL for the study is http://www.cs.toronto.edu/∼tsap/cgi-bin/entry.cgi
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in the case that the user could not assess the relevance of the result. When pressing the

submit button, their feedback was stored into a file. No information was recorded about

the users, respecting their anonymity. No queries were assigned to any users, they were

free to do whichever ones, and however many they wanted. On average 7 users rated each

query. The maximum was 22, for the query “abortion”, and the minimum 3, for the query

“computational geometry”. The number of users per query are shown in Table 6.2. The

study was conducted mostly among friends and fellow grad students. Although they are

not all experts on all of the topics, we believe that their feedback gives a useful indication

about the actual relevance of the documents.4

We utilize the user’s feedback in the following two ways. First, we compute the average

relevance, and high relevance ratios for each algorithm, where the averages are taken over

all users and all queries. The ratings of a user for the documents of a query induce a

relevance ratio for each algorithm. Taking the average over users of these ratios, we obtain

a relevance ratio for the pair (query, algorithm). Taking the average over all queries we

obtain an overall relevance ratio for the algorithm.

Since our users are not experts in all topics, their feedback is bound to introduce some

noise. For example, a user marked the IMDB site5 as “Don’t Know” for the query “movies”,

while some other user marked all the pro-life pages as non-relevant. Given that the average

number of users per query is low, this introduces a measurable error. In order to reduce the

effects of such errors, we also make the following use of the user feedback. Given the users’

feedback for a specific document, we rate the document as “Relevant” if the “Relevant”

and “Highly Relevant” votes are more than the “Non-Relevant” votes (ties are resolved in

favor of “Non-Relevant”). Among the documents that are deemed as “Relevant”, we rate

as “Highly Relevant” the ones for which the “Highly Relevant” votes are more than the

“Relevant” ones. We can now compute the relevance ratios for the algorithms by using

the relevance ratings of the documents. We will refer to these measures as labeled ratios

(since the documents are labeled as relevant or non-relevant), to discriminate them from

the non-labeled ratios we defined before. Note that in the labeled case the “Don’t Knows”

do not affect the assessed quality of the algorithm. On the other hand, we get a coarse grain

evaluation. A document which was judged as “Not Relevant” by 50% of the users will be

4The results of the study may be slightly biased towards the opinion of people with Greek origin.
5The Internet Movie Database, http://www.imdb.com
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query users
abortion 22
affirmative action 7
alcohol 8
amusement parks 8
architecture 7
armstrong 8
automobile industries 7
basketball 12
blues 8
cheese 5
classical guitar 8
complexity 4
computational complexity 4
computational geometry 3
death penalty 9
genetic 7
geometry 7
globalization 5
gun control 7
iraq war 8
jaguar 5
jordan 4
moon landing 8
movies 10
national parks 6
net censorship 4
randomized algorithms 5
recipes 10
roswell 4
search engines 5
shakespeare 6
table tennis 6
weather 9
vintage cars 5
average 7

Table 6.2: Users per query
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treated in the same way as a document that was judged “Not Relevant” by all users.

6.2 Evaluation of the LAR algorithms

In this section we study the aggregate behavior of the algorithms. Appendix C contains

tables with the top-10 results for all queries. In these tables, the results that are la-

beled highly relevant appear in boldface, while the relevant ones appear in italics. Due

to space constraints we omit the results of the Salsa algorithm. In almost all queries,

they are identical to those of InDegree. The results for all queries are also posted at

http://www.cs.toronto.edu/∼tsap/experiments/thesis/ in a format that is easy to

understand and navigate. We strongly encourage the reader to browse through the results

while reading this part of the thesis.

Tables 6.3, 6.5, 6.4, 6.6 report the quality ratios of each algorithm for each query. In

each row the highlighted value is the best ratio for this query. For each algorithm we also

compute the average, the standard deviation, the minimum and the maximum values for all

quality ratios. We report both the labeled and non-labeled ratios. In most cases, there is

only a small difference between the two measures, and the general trends remain consistent

regardless of the measure that we use, so we will not distinguish between the two. Recall,

that for the relevance ratio, we consider documents that are marked either “Relevant” or

“Highly Relevant”, so the relevance ratio is always greater or equal to the high relevance

ratio. For the purpose of comparing between algorithms, we also report the average values

of all our similarity measures in Appendix B.

The qualitative evaluation reveals that all algorithms fall, to some extent, victim to

topic drift. That is, they promote pages that are not related to the topic of the query. In

terms of high relevance, on average, more than half (and as many as 8 out of 10 for the

case of Hits) of the results in the top-10 are not highly relevant. This is significant for the

quality of the algorithms, since the highly relevant documents represent the ones that the

users would actually want to see in the top positions of the ranking, as opposed to the ones

that they found just relevant to the topic. The performance improves when we consider

relevance, instead of high relevance. Still, the average relevance ratio is never more than

78%, that is, even for the best algorithm, on average 2 out of the top 10 documents are

irrelevant to the query. Furthermore, there exist queries such as “armstrong”, and “jaguar”,
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query Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS

abortion 35% 15% 45% 45% 41% 42% 40% 38% 40% 37%
affirmative action 33% 9% 36% 36% 4% 4% 4% 4% 4% 51%
alcohol 55% 40% 56% 56% 54% 50% 50% 49% 49% 59%
amusement parks 52% 11% 24% 38% 0% 65% 10% 0% 0% 39%
architecture 0% 31% 51% 51% 0% 44% 47% 0% 0% 37%
armstrong 0% 10% 4% 4% 0% 0% 0% 0% 0% 14%
automobile industries 1% 9% 11% 20% 3% 3% 3% 3% 3% 40%
basketball 0% 49% 18% 18% 0% 9% 9% 9% 9% 51%
blues 40% 36% 40% 40% 48% 42% 45% 46% 40% 31%
cheese 0% 4% 8% 8% 4% 0% 0% 4% 0% 20%
classical guitar 41% 24% 26% 26% 9% 35% 9% 9% 11% 41%
complexity 0% 28% 20% 20% 0% 60% 45% 0% 0% 45%
computational complexity 38% 40% 42% 42% 45% 38% 38% 38% 38% 30%
computational geometry 47% 20% 37% 37% 37% 47% 43% 40% 40% 50%
death penalty 68% 43% 58% 58% 42% 64% 64% 68% 68% 69%
genetic 66% 19% 57% 57% 50% 59% 59% 59% 59% 50%
geometry 54% 11% 49% 49% 46% 54% 54% 49% 54% 53%
globalization 2% 28% 22% 22% 4% 4% 4% 4% 4% 36%
gun control 0% 33% 63% 63% 60% 60% 60% 56% 60% 60%
iraq war 12% 11% 15% 15% 0% 10% 0% 0% 0% 42%
jaguar 0% 22% 2% 2% 2% 2% 2% 0% 0% 8%
jordan 0% 15% 25% 25% 20% 42% 42% 42% 0% 30%
moon landing 0% 20% 12% 12% 0% 0% 0% 0% 0% 72%
movies 9% 13% 27% 24% 34% 55% 55% 53% 55% 30%
national parks 0% 38% 7% 7% 48% 48% 48% 0% 0% 48%
net censorship 2% 25% 70% 70% 50% 72% 72% 72% 72% 70%
randomized algorithms 8% 30% 8% 8% 0% 2% 2% 2% 2% 8%
recipes 0% 10% 46% 46% 11% 56% 56% 65% 0% 47%
roswell 0% 5% 12% 12% 20% 25% 22% 0% 0% 20%
search engines 48% 64% 84% 84% 84% 84% 84% 82% 38% 74%
shakespeare 28% 35% 60% 60% 62% 67% 67% 67% 63% 63%
table tennis 55% 25% 53% 53% 50% 52% 52% 52% 52% 43%
weather 53% 26% 58% 58% 32% 53% 49% 49% 49% 64%
vintage cars 0% 2% 34% 34% 0% 38% 36% 0% 0% 34%

avg 22% 24% 35% 35% 25% 38% 34% 28% 24% 43%
max 68% 64% 84% 84% 84% 84% 84% 82% 72% 74%
min 0% 2% 2% 2% 0% 0% 0% 0% 0% 8%
stdev 24% 14% 22% 21% 25% 25% 26% 28% 26% 18%

Table 6.3: High Relevance Ratio – Non-Labeled case
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query Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS

abortion 72% 52% 82% 82% 81% 80% 82% 80% 79% 80%
affirmative action 57% 37% 46% 46% 16% 11% 11% 11% 11% 71%
alcohol 84% 59% 82% 82% 84% 76% 76% 75% 75% 84%
amusement parks 95% 31% 30% 50% 0% 90% 11% 0% 0% 79%
architecture 7% 67% 70% 70% 11% 63% 70% 7% 7% 59%
armstrong 19% 48% 21% 21% 19% 19% 19% 19% 19% 48%
automobile industries 10% 10% 20% 30% 10% 10% 10% 10% 10% 61%
basketball 0% 68% 19% 19% 10% 9% 9% 9% 9% 87%
blues 61% 75% 60% 60% 70% 61% 68% 70% 61% 55%
cheese 0% 26% 30% 30% 14% 0% 0% 14% 0% 48%
classical guitar 89% 48% 64% 64% 43% 75% 43% 43% 44% 89%
complexity 0% 38% 32% 32% 0% 70% 62% 0% 0% 65%
computational complexity 85% 68% 85% 85% 85% 85% 85% 85% 85% 80%
computational geometry 80% 30% 57% 57% 57% 87% 57% 57% 57% 83%
death penalty 98% 73% 88% 88% 70% 97% 97% 97% 97% 97%
genetic 94% 60% 91% 91% 89% 91% 91% 91% 91% 81%
geometry 87% 30% 81% 81% 80% 84% 84% 77% 84% 84%
globalization 82% 54% 86% 86% 84% 86% 86% 84% 84% 82%
gun control 0% 51% 97% 97% 94% 94% 94% 93% 94% 94%
iraq war 39% 35% 39% 39% 21% 32% 25% 20% 25% 85%
jaguar 0% 32% 4% 4% 10% 8% 4% 0% 0% 16%
jordan 0% 32% 42% 42% 38% 85% 85% 85% 0% 48%
moon landing 0% 31% 19% 19% 0% 0% 0% 0% 0% 99%
movies 9% 21% 45% 41% 48% 70% 70% 69% 70% 55%
national parks 0% 57% 10% 10% 82% 82% 82% 0% 0% 78%
net censorship 18% 38% 77% 77% 62% 85% 85% 85% 85% 77%
randomized algorithms 66% 78% 68% 68% 50% 52% 52% 54% 54% 56%
recipes 0% 27% 69% 69% 29% 89% 89% 98% 0% 79%
roswell 12% 20% 38% 38% 52% 70% 62% 8% 8% 50%
search engines 76% 86% 94% 94% 94% 94% 94% 96% 64% 84%
shakespeare 100% 60% 98% 98% 97% 97% 97% 97% 97% 100%
table tennis 92% 57% 97% 97% 93% 93% 93% 93% 93% 88%
weather 80% 51% 82% 82% 59% 80% 76% 76% 76% 92%
vintage cars 20% 10% 62% 62% 20% 60% 60% 20% 20% 64%

avg 45% 46% 58% 59% 49% 64% 60% 51% 44% 73%
max 100% 86% 98% 98% 97% 97% 97% 98% 97% 100%
min 0% 10% 4% 4% 0% 0% 0% 0% 0% 16%
stdev 24% 14% 22% 21% 25% 25% 26% 28% 26% 18%

Table 6.4: Relevance Ratio – Non-Labeled case
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query Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS

abortion 30% 10% 40% 40% 30% 40% 30% 30% 40% 30%
affirmative action 30% 0% 40% 40% 0% 0% 0% 0% 0% 60%
alcohol 60% 30% 60% 60% 60% 50% 50% 50% 50% 70%
amusement parks 50% 10% 30% 40% 0% 70% 10% 0% 0% 40%
architecture 0% 30% 70% 70% 0% 60% 60% 0% 0% 50%
armstrong 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
automobile industries 0% 10% 10% 20% 0% 0% 0% 0% 0% 40%
basketball 0% 60% 20% 20% 0% 10% 10% 10% 10% 60%
blues 60% 40% 40% 40% 50% 50% 50% 50% 60% 20%
cheese 0% 0% 0% 0% 0% 0% 0% 0% 0% 10%
classical guitar 40% 30% 30% 30% 0% 40% 0% 0% 10% 40%
complexity 0% 30% 20% 20% 0% 70% 50% 0% 0% 50%
computational complexity 30% 30% 30% 30% 40% 30% 30% 30% 30% 20%
computational geometry 40% 20% 40% 40% 40% 40% 50% 40% 40% 40%
death penalty 70% 30% 70% 70% 50% 80% 80% 80% 80% 80%
genetic 80% 20% 70% 70% 60% 70% 70% 70% 70% 60%
geometry 60% 10% 50% 50% 40% 70% 70% 60% 70% 60%
globalization 0% 30% 20% 20% 0% 0% 0% 0% 0% 30%
gun control 0% 50% 70% 70% 60% 60% 60% 60% 60% 60%
iraq war 0% 10% 10% 10% 0% 10% 0% 0% 0% 40%
jaguar 0% 20% 0% 0% 0% 0% 0% 0% 0% 10%
jordan 0% 10% 20% 20% 20% 40% 40% 40% 0% 30%
moon landing 0% 20% 10% 10% 0% 0% 0% 0% 0% 80%
movies 10% 10% 30% 30% 40% 70% 70% 70% 70% 40%
national parks 0% 50% 10% 10% 60% 60% 60% 0% 0% 50%
net censorship 0% 20% 80% 80% 60% 80% 80% 80% 80% 80%
randomized algorithms 0% 40% 10% 10% 0% 0% 0% 0% 0% 10%
recipes 0% 10% 60% 60% 10% 60% 60% 70% 0% 50%
roswell 0% 0% 0% 0% 0% 10% 10% 0% 0% 10%
search engines 60% 70% 100% 100% 100% 100% 100% 100% 40% 90%
shakespeare 0% 20% 50% 50% 50% 70% 70% 70% 60% 60%
table tennis 50% 20% 50% 50% 50% 50% 50% 50% 50% 40%
weather 60% 20% 60% 60% 30% 60% 50% 50% 50% 70%
vintage cars 0% 0% 40% 40% 0% 40% 40% 0% 0% 30%

avg 21% 22% 36% 37% 25% 41% 37% 30% 26% 44%
max 80% 70% 100% 100% 100% 100% 100% 100% 100% 100%
min 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
stdev 27% 17% 26% 26% 28% 30% 31% 32% 30% 23%

Table 6.5: High Relevance Ratio – Labeled case

103



query Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS

abortion 90% 70% 100% 100% 100% 100% 100% 100% 100% 100%
affirmative action 70% 50% 50% 50% 10% 10% 10% 10% 10% 80%
alcohol 90% 60% 90% 90% 90% 80% 80% 80% 80% 90%
amusement parks 100% 30% 30% 50% 0% 90% 10% 0% 0% 80%
architecture 10% 70% 70% 70% 10% 60% 70% 10% 10% 60%
armstrong 20% 50% 20% 20% 20% 20% 20% 20% 20% 50%
automobile industries 10% 10% 20% 30% 10% 10% 10% 10% 10% 60%
basketball 0% 70% 20% 20% 0% 10% 10% 10% 10% 100%
blues 60% 80% 60% 60% 70% 60% 70% 70% 60% 50%
cheese 0% 20% 30% 30% 10% 0% 0% 10% 0% 50%
classical guitar 90% 50% 70% 70% 50% 80% 50% 50% 50% 90%
complexity 0% 50% 50% 50% 0% 90% 90% 0% 0% 80%
computational complexity 90% 70% 90% 90% 90% 90% 90% 90% 90% 90%
computational geometry 100% 40% 70% 70% 70% 100% 70% 70% 70% 100%
death penalty 100% 70% 90% 90% 70% 100% 100% 100% 100% 100%
genetic 100% 70% 100% 100% 100% 100% 100% 100% 100% 90%
geometry 90% 20% 90% 90% 90% 90% 90% 80% 90% 90%
globalization 100% 70% 90% 90% 100% 100% 100% 100% 100% 90%
gun control 0% 50% 100% 100% 100% 100% 100% 100% 100% 100%
iraq war 40% 30% 30% 30% 10% 20% 20% 10% 20% 90%
jaguar 0% 30% 0% 0% 0% 0% 0% 0% 0% 10%
jordan 0% 30% 30% 30% 40% 100% 100% 100% 0% 40%
moon landing 0% 30% 20% 20% 0% 0% 0% 0% 0% 100%
movies 10% 20% 50% 40% 50% 70% 70% 70% 70% 60%
national parks 0% 50% 10% 10% 80% 80% 80% 0% 0% 70%
net censorship 0% 30% 80% 80% 60% 90% 90% 90% 90% 80%
randomized algorithms 70% 80% 80% 80% 40% 50% 50% 50% 50% 60%
recipes 0% 20% 70% 70% 30% 90% 90% 100% 0% 80%
roswell 0% 20% 40% 40% 70% 70% 60% 0% 0% 60%
search engines 80% 90% 100% 100% 100% 100% 100% 100% 70% 90%
shakespeare 100% 70% 100% 100% 100% 100% 100% 100% 100% 100%
table tennis 90% 60% 100% 100% 90% 90% 90% 90% 90% 90%
weather 80% 50% 80% 80% 60% 80% 80% 80% 80% 90%
vintage cars 20% 10% 60% 60% 20% 60% 60% 20% 20% 70%

avg 47% 48% 61% 62% 51% 67% 64% 54% 47% 78%
max 100% 90% 100% 100% 100% 100% 100% 100% 100% 90%
min 0% 10% 0% 0% 0% 0% 0% 0% 0% 10%
stdev 43% 23% 31% 31% 38% 36% 36% 42% 41% 21%

Table 6.6: Relevance Ratio – Labeled case

104



for which no algorithm was able to produce satisfactory results.

The algorithm that emerges as the “best” is the BFS algorithm. It exhibits the best high

relevance, and relevance ratio on average, and it is the algorithm that most often achieves

the maximum ratio (except for the high relevance ratio in the labeled case, a record held by

the Max algorithm). Furthermore, as the low standard deviation indicates, and the study

of the results reveals, it exhibits a robust and consistent behavior across queries.

At the other end of the spectrum, the Hits and the PageRank algorithms emerge

as the “worst” algorithms, exhibiting the lowest ratios, with Hits being slightly worse.

However, although they have similar (poor) performance on average, the two algorithms

exhibit completely different behaviors. The behavior of the Hits algorithm is erratic. As the

standard deviation indicates and the query results reveal, the performance of Hits exhibits

large variance. There are queries (such as “amusement parks”, “genetic”, “classical guitar”,

“table tennis”) for which the Hits algorithm exhibits good relevance and high relevance

ratios, but at the same time there are many of queries (such as, “basketball”, “gun control”,

“moon landing”,“recipes”) for which Hits has 0% relevance ratio (even for the non-labeled

case). This is related to the Tightly Knit Community(TKC) effect. Hits is known to

favor nodes that belong to the most tightly interconnected component in the graph. The

performance of the algorithm depends on how relevant this component is to the query. We

discuss the TKC effect further in Section 6.3.

On the other hand PageRank exhibits consistent, albeit poor, performance. It is the

only algorithm that never achieves 100% relevance in the labeled measure on any query,

always producing at least one non-relevant result. Furthermore, the PageRank algorithm is

qualitatively different from the rest. It is the algorithm that most often promotes documents

(relevant, or not) not considered by the remaining algorithms. The strong individuality of

PageRank becomes obvious when examining the average distance of PageRank to the

remaining algorithms (Tables B.1, B.2, B.3, B.4), especially for the I and WI measures. This

is something to be expected, since the philosophy of the algorithm is different. Furthermore,

the Base Set for each query is constructed in a way that is meant to exploit the mutual

reinforcing relation of hubs and authorities, a property not considered by the PageRank

algorithm. We discuss this more in Section 6.3.

The Max algorithm emerges as second best option after BFS, and it actually achieves

the best high relevance score for the labeled measure. The quality of the Max algorithm
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usually depends on the quality of the seed node, and the nodes with the highest in-degree.

We actually observed that in most cases, the top-10 nodes returned by Max are a subset of

the ten nodes with the highest in-degree, and the ten nodes that are most co-cited with the

seed node. The ratios of Max indicate that the seed node is usually relevant to the query.

This agrees with the following observations about the quality of the InDegree algorithm.

For the remaining algorithms, it is interesting to observe that the InDegree algorithm

performs relatively well. On average, 3 out of 10 of the most popular documents are highly

relevant, and 6 out 10 are relevant. Because of its simplicity, one would expect the quality of

the InDegree algorithm to set the bar for the remaining algorithms. Surprisingly, in many

queries, the InDegree algorithm outperforms some of the more sophisticated algorithms.

We should note though that due to the simplicity of the algorithm, the InDegree algorithm

is the one that is most affected by the choice of the search engine that it is used for generating

the Base Set of Web pages. Therefore, the performance of the InDegree algorithm reflects,

in part, the quality of the Google search engine, which uses, to some extent, link analysis

techniques. It would be most interesting if one could generate a Base Set using a search

engine that does not make use of any link analysis.

In our experiments, in most queries the Salsa algorithm produces the same top-10

pages as the InDegree algorithm. The similarity of the two algorithms becomes obvious

in the average values of all similarity measures in the tables of Appendix B, and especially

in the WI measure. As can be seen in Table 6.1, the graphs in our experiments contain a

giant authority connected component, which attracts most of the authority weight of the

Salsa algorithm. As a result, the algorithm reduces to the InDegree algorithm.

For the other variants of Hits, the HubAvg is the one that performs the worst, being

only slightly better than Hits. HubAvg suffers from its own TKC effect that we describe in

Section 6.3. For the AT-med, AT-avg and Norm, close examination of the results reveals

that they usually have the same ratios as either the Hits or the Max algorithm. In most

cases, the top-10 results of these algorithms are a subset of the union of the top-10 results of

Hits and Max. Thus it is not surprising that the average performance ratios of AT-med,

AT-avg and Norm take values between the ratios of Max and Hits. We also note that all

derivatives of Hits (including Max) exhibit similar erratic behavior to that of Hits. This

is due to the various TKC phenomena that we describe in the next section.
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6.3 Community effects

It has been well documented that the Hits algorithm tends to favor the most “tightly

interconnected component” of hubs and authorities in the graph G. This was first stated

by Kleinberg [58] in his original paper, and Drineas et al. [29] provided some theoretical

analysis to support this observation. Lempel and Moran [64] observed that the side-effect

of this property of Hits is that, in a graph that contains multiple communities, the Hits

algorithm will only focus on one of them in the top positions of the ranking, the one that

contains the hubs and authorities that are most tightly interconnected. They termed this

phenomenon the Tightly Knit Community (TKC) effect, and they compared the focused

behavior of the Hits algorithm, against the mixing behavior of the Salsa algorithm, which

tends to represent different communities in the top positions of the ranking. In this section

we study similar community effects for all the algorithms that we consider. Our objective

is to understand the kind of structures that the algorithms favor, and the effects on the

rankings they produce.

The TKC effect is prominent in our experiments with the Hits algorithm, most of

the time leading to a severe topic drift. Consider for example the query “gun control”.

Figure 6.2 shows the plot of the graph, and the top-10 results for Hits. In this query Hits

gets trapped in a tightly interconnected component of 69 nodes (63 hubs and 37 authorities)

which is completely disconnected from the rest of the graph, and obviously unrelated to the

query. Similar phenomena appear in many of the queries that we have tested (examples

include, “vintage cars”, “recipes”, “movies”, “complexity”).

Consider now the query “abortion”. Figure 6.3 shows the plot of the graph for this

query. The graph contains two separated, but not completely disconnected, communities of

Web pages; the pro-choice community, and the pro-life community. The pro-life community

contains a set X of 37 hubs from the domain http://www.abortion-and-bible.com/,

which form a complete bipartite graph with a set Y of 288 authority nodes. These appear

as a vertical strip in the top-right part of the plot. This tightly interconnected set of nodes

attracts the Hits algorithm to that community, and it ranks these 37 nodes, as the best

hubs. Among the 288 authorities, Hits ranks in the top-10, the authorities that are better

interconnected with the remaining hubs in the community. The top-10 results for Hits, and

their position in the graph are shown in Figure 6.4. The points in darker color correspond
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Hubs

Hits

1. (1.000) Coffee Club
URL: www.Batavia-rof.com

2. (0.982) Hotel and Travel
URL: www.bwdriftwood.com

3. (0.935) Basement Writers
URL: www.basement-writers.com

4. (0.935) Before Today
URL: www.beforetoday.com

5. (0.935) Bennett Boxing
URL: www.bennettboxing.com

6. (0.935) Boeing Mail
URL: www.boeingmail.com

7. (0.935) Burdan USA
URL: www.burdanusa.com

8. (0.935) British Jokes
URL: www.callusforfun.com

9. (0.917) Religious Happenings
URL: www.bellbrook-umc.com

10. (0.917) Blade Liners
URL: www.bladeliners.com

Figure 6.2: The TKC effect for the Hits algorithm for the query “gun control”
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Figure 6.3: The communities of the query “abortion”
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Hubs

Hits

1. (1.000) Priests for Life Index
URL:www.priestsforlife.org

2. (0.997) National Right to Life
URL:www.nrlc.org

3. (0.994) After Abortion: Information
URL:www.afterabortion.org

4. (0.994) ProLifeInfo.org
URL:www.prolifeinfo.org

5. (0.990) Pregnancy Centers Online
URL:www.pregnancycenters.org

6. (0.989) Human Life International
URL:www.hli.org

7. (0.987) Abortion - Breast Cancer Link
URL:www.abortioncancer.com

8. (0.985) Abortion facts and information
URL:www.abortionfacts.com

9. (0.981) Campaign Life Coalition British ...
URL:www.clcbc.org

10. (0.975) Empty title field
URL:www.heritagehouse76.com

Figure 6.4: The Hits algorithm for the “abortion” query

to the top-10 results of the Hits algorithm.

Consider now applying the HubAvg algorithm to the same graph. The authority nodes

in the set Y are not all of equal strength. Some of them are well interconnected with other

hubs in the pro-life community (the ones ranked high by Hits), but the large majority of

them are pointed to only by the hubs in the set X. Recall that the HubAvg algorithm

requires that the hubs point only (or at least, mainly) to good authorities. As a result,

the hubs in X are penalized. The HubAvg algorithm avoids the pro-life community and

focuses on the pro-choice one. Note that this is the community that contains the node with

the maximum in-degree. The top-10 results of HubAvg are shown in Figure 6.5.

Note that HubAvg does not penalize densely interconnected clusters of pages. On the

contrary, the HubAvg algorithm favors tightly knit communities, but it also poses the

additional requirement of exclusiveness. That is, it requires that the hubs be exclusive to

the community to which they belong. As a result, the HubAvg algorithm tends to favor

tightly knit isolated components in the graph that contain nodes of high in-degree. These

correspond to long thin horizontal strips in our plots. If such a strip exists, that is, if there

exists a large set of hubs that all point to just a few authorities in the graph, then this
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1. (1.000) NARAL Pro-Choice America
URL:www.naral.org

2. (0.935) Planned Parenthood Federation
URL:www.plannedparenthood.org

3. (0.921) NAF - The Voice of Abortion Providers
URL:www.prochoice.org

4. (0.625) Abortion Clinics OnLine
URL:www.gynpages.com

5. (0.516) FEMINIST MAJORITY FOUNDATION
URL:www.feminist.org

6. (0.484) The Alan Guttmacher Institute
URL:www.guttmacher.org

7. (0.439) center for reproductive rights
URL:www.crlp.org

8. (0.416) The Religious Coalition for ...
URL:www.rcrc.org

9. (0.415) National Organization for Women
URL:www.now.org

10. (0.408) Medical Students for Choice
URL:www.ms4c.org

Figure 6.5: The HubAvg algorithm for the “abortion” query

community receives most of the weight of the HubAvg algorithm. Unfortunately, this case

occurs often in our experiments, resulting in topic drift for HubAvg.

Figure 6.6 shows the plot of the graph for the query “recipes”. The communities that

attract the top-10 results of Hits and HubAvg are marked on the plot. Table 6.7 shows

the top-10 tuples for each algorithm. The community on news and advertising that attracts

Hits contains a set of hubs that point to nodes outside the community. This corresponds

to the vertical strip above the marked rows of Hits. HubAvg escapes this community, but

it assigns almost all weight to a community of just three nodes that are interconnected by

45 hubs. Only two out of these 45 hubs point to nodes other than these three nodes. Note

that, in order for such a structure to attract HubAvg, the authorities (or at least some of

the authorities) must have sufficiently large in-degree. In this case the top three nodes for

for HubAvg correspond to the nodes with the 10th, 11th and 13th highest in-degree in the

graph. This is a typical example of the behavior of the HubAvg algorithm. Although the

HubAvg algorithm manages to escape the communities that pull Hits into topic drift, it

still falls victim to its own TKC effect.

The influence of the various communities on the ranking of the Max algorithm is pri-
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Figure 6.6: The TKC effect for the query “recipes”

Hits

1. (1.000) HonoluluAdvertiser.com Hawaiis
URL:www.hawaiisclassifieds.com

2. (0.999) Gannett Company, Inc.
URL:www.gannett.com

3. (0.998) AP MoneyWire
URL:apmoneywire.mm.ap.org

4. (0.990) e.thePeople : Honolulu Advertiser :
URL:www.e-thepeople.com/affiliates

5. (0.989) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

6. (0.987) Honolulu Traffic Cameras, City and
URL:www.co.honolulu.hi.us/cameras/

7. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

8. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

9. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

10. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

HubAvg

1. (1.000) Le Web des iles
www.chez.com/zanozile

2. (0.991) Please stand by..
www.sofcom.com.au

3. (0.968) Sign in - Yahoo! Groups
groups.yahoo.com/group/mauriti

4. (0.005) Microsoft bCentral - FastCounter
fastcounter.bcentral.com/fc-jo

5. (0.004) Recipes are Cooking at NetCooks!
URL:www.netcooks.com

6. (0.004) Mauritian cuisine, cooking and reci
URL:ile-maurice.tripod.com

7. (0.004) Mauritius Australia Connection
www.cjp.net

8. (0.003) Mauritius Australia Connection
www.users.bigpond.com/clancy/t

9. (0.003) SleepAngel.com - Are you snoring yo
wcpsecure.com/app/aftrack.asp?

10. (0.002) Chef Jobs Foodservice Culinary Inst
URL:chef2chef.net

Table 6.7: Hits and HubAvg for the query “recipes”
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marily exerted through the seed node. The community that contains the seed node, and

the co-citation of the seed node with the remaining nodes in the community determine the

focus of the Max algorithm. For example, in the “movies” query, the seed node is the In-

ternet Movie Database6 (IMDB), and the algorithm converges to a set of movie databases

and movie reviews sites. Similarly for the “net censorship” query, where the seed node is

the Electronic Frontier Foundation7 (EFF), the algorithm outputs highly relevant results.

In both these cases, the Max algorithm manages best to distill the relevant pages from

the community to which it converges. On the other hand, in the case of the “affirmative

action” query the seed node is a copyright page from the University of Pennsylvania, and

as a result the Max algorithm outputs a community of university home pages.

There are cases, where the seed node may belong to more than one community. Consider

for example the query “basketball”. The plot of the graph is shown in Figure 6.7. The seed

node in this case is the NBA official Web page, http://www.nba.com. This page belongs to

the basketball community, but it has the highest overlap with a community of nodes from

http://www.msn.com, which causes the Max algorithm to converge to this community.

It may also be the case that there are multiple seed nodes in the graph. For example

for the “randomized algorithms” query, there are two seeds in the graph, one on algo-

rithms, and one on computational geometry. As a result, the algorithm mixes pages of both

communities.

It is also interesting to observe the behavior of Max on the query “abortion”. Figure 6.8

shows the output of the algorithm. The seed node in the graph is the “NARAL Pro-Choice”

home page. Given that there is only light co-citation between the pro-choice and pro-life

communities, one would expect that the algorithm would converge to pro-choice pages.

However, the Max algorithm mixes pages from both communities. The third page in the

ranking of Max is the “National Right To Life” (NRTL) home page, and there are two

more in the fifth and seventh positions of the ranking. After examination of the data, we

observed that the NRTL page has the second highest in-degree in the graph. Furthermore,

its in-degree (189) is very close to that of the seed node (192), and, as we observed before,

it belongs to a tightly interconnected community. In this case, the NRTL page acts as a

secondary seed node for the algorithm, pulling pages from the pro-life community to the

6http://www.imdb.com
7http://www.eff.org
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Max

1. (1.000) NBA.com
URL:www.nba.com

2. (0.326) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14

3. (0.322) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07

4. (0.322) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08

5. (0.322) Empty title field
URL:g.msn.com/0nwenus0/AK/09

6. (0.322) MSN Search – More Useful Everyday
URL:g.msn.com/0nwenus0/AK/10

7. (0.322) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11

8. (0.322) MSN Money - More Useful Everyday
URL:g.msn.com/0nwenus0/AK/12

9. (0.322) MSN People and Chat - More Useful E
URL:g.msn.com/0nwenus0/AK/13

10. (0.319) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00

Figure 6.7: The Max algorithm for the “basketball” query

pro-life

HITS

pro-choice

HubAvg

Max

1. (1.000) NARAL: Pro-Coice America
URL:www.naral.org

2. (0.946) Planned Parenthood Federation
URL:www.plannedparenthood.org

3. (0.918) National Right to Life
URL:www.nrlc.org

4. (0.819) NAF - The Voice of Abortion Provide
URL:www.prochoice.org

5. (0.676) Priests for Life Index
URL:www.priestsforlife.org

6. (0.624) Pregnancy Centers Online
URL:www.pregnancycenters.org

7. (0.602) ProLifeInfo.org
URL:www.prolifeinfo.org

8. (0.557) Abortion Clinics OnLine
URL:www.gynpages.com

9. (0.551) After Abortion: Information on the
URL:www.afterabortion.org

10. (0.533) FEMINIST MAJORITY FOUNDATION
URL:www.feminist.org

Figure 6.8: The Max algorithm for the “abortion” query
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1. (1.000) Hitsquad.com - Musicians Web Center
URL:www.hitsquad.com

2. (0.986) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml

3. (0.986) Advertising on Hitsquad Music Indus
URL:www.hitsquad.com/advertising.s

4. (0.906) Empty title field
URL:www.vicnet.net.au/ easyjamn

5. (0.210) AMG All Music Guide
URL:www.allmusic.com

6. (0.199) Free Music Download, MP3 Music, Mus
URL:ubl.com

7. (0.179) 2000 Guitars Database
URL:dargo.vicnet.net.au/guitar/lis

8. (0.135) CDNOW
URL:www.cdnow.com/from=sr-767167

9. (0.122) Guitar Alive - GuitarAlive - guitar
URL:www.guitaralive.com

10. (0.080) OLGA - The On-Line Guitar Archive
URL:www.olga.net

Figure 6.9: The AT-med,AT-avg algorithms for the “classical guitar” query

top-10. As a result, the algorithm mixes pages from both communities.

For the AT-med, AT-avg and Norm algorithms, we observed that in most cases their

rankings are the same as either that of Hits or that of Max. The cases that deviate

from these two reveal some interesting properties of the algorithms. Consider the query

“classical guitar”. The plot of the graph and the top-10 results of the algorithms are shown

in Figure 6.9. For this graph k = 3 for AT-med, and k = 5 for AT-avg. In this query, the

AT-med, AT-avg and Norm algorithms allocate most of the weight to just four nodes,

which are ranked lower by Hits and Max. We discovered that these four nodes belong

to a complete bipartite graph pointed to by approximately 120 hubs. It appears that

the authorities in the community favored by Hits are drawn together by a set of strong

hubs. As we decrease k or increase p, the effect of the strong hubs decreases, and other

structures emerge as the most tightly connected ones. Surprisingly, the Max algorithm,

which corresponds to the extreme values of k and p, produces a set of top-10 results that are

more similar to that of Hits than to that of AT-med, AT-avg and Norm. We observed

the same phenomenon for the queries “cheese” and “amusement parks”.

In order to better understand the mechanics of the threshold algorithms, we consider the

“roswell” query. In this case the AT-avg produces the same top-4 authorities as Hits, but
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Figure 6.10: The top-10 authorities for AT-avg,and Hits for the query “roswell”

the lower part of the ranking is completely different. In this graph k = 4 for the AT-avg

algorithm. Figure 6.10 shows the plot for the top-10 authorities of both algorithms. The

middle part corresponds to the common authorities, the bottom rows are the authorities

of Hits, and the upper rows are the authorities of AT-avg. Note that the authorities of

Hits are more tightly interconnected. However, given that k = 4, all hubs receive the same

weight, since they all point to the middle authorities. These four authorities play a role

similar to that of the seed in the Max algorithm. Therefore, the authorities of AT-avg are

ranked higher because they have higher co-citation with the “seed” nodes, despite the fact

that they are not as well interconnected. It seems that as we decrease the value of k, the

importance of the in-degree increases. It is interesting that the Norm algorithm converges

to the same authorities as AT-avg, indicating that in this case for p = 2 the two algorithms

behave similarly.

An interesting query that reveals the behavior of the algorithms in extreme settings is

the “amusement parks” query. The plot of the graph for this query is shown in Figure 6.11.

In this graph, the node with the maximum in-degree is a completely isolated node. As a

result, both Max and HubAvg allocate all their weight to this node, and zero to the rest

of the nodes. The Hits algorithm escapes this component easily, and converges to the most
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Figure 6.11: The query “amusement parks”

relevant community. The AT-med, AT-avg and Norm algorithms converge again to a

small tight bipartite graph different from that of Hits.

The “amusement parks” query is one of the rare cases where the ranking of the Salsa

algorithm differs from that of InDegree. Salsa is designed to handle such situations,

that is, nodes that are very popular, but belong to weak communities, so the high in-

degree isolated node does not appear in the top-10 of the Salsa algorithm. The premise

of Salsa is interesting. It sets the weight of a node as a combination of the popularity

of the community it belongs to, and its popularity within the community. However, a

community in this case is defined as an authority connected component (ACC) of the graph.

This is a very strong definition, since if a node shares even just one hub with the ACC,

it immediately becomes part of the community. It would be interesting to experiment

with Salsa on graphs that contain multiple ACCs of comparable size, and observe how

the algorithm mixes between the different communities. In our experiments, all graphs

contain a giant ACC, and many small ACCs that do not contribute to the ranking. Thus,

the Salsa algorithm reduces to InDegree with the additional benefit of avoiding the

occasional isolated high in-degree node for the queries “amusement parks”, “automobile
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industries”, “moon landing”, “movies” and “national parks”.

The effect of different communities to the InDegree algorithm is straightforward. Com-

munities that contain nodes with high in-degree will be promoted, while communities that

do not contain “popular” nodes are not represented, regardless of how tightly intercon-

nected they are. As a result, InDegree usually mixes the results of various communities in

the top-10 results. One characteristic example is the “genetic” query, where the InDegree

algorithm is the only one to introduce a page from the Genetic Algorithms community. The

simplistic approach of the InDegree algorithm appears to work relatively well in practice.

However, it has no defense mechanism against spurious authorities, that is, nodes with high

in-degree that are not related to the query, as in the case of the “amusement parks” query.

Another such example is the “basketball” query, where the algorithm is drawn to the set of

spurious authorities from http://www.msn.com.

The BFS algorithm counteracts the effect of spurious authorities by considering the

popularity of a node in a neighborhood of larger radius. Therefore, the ranking of a node

depends on how well interconnected the node is with the nodes of the community to which

it belongs. Note that for the BFS algorithm when computing the weight of node i, we count

the number of nodes that are reachable from node i (weighted with respect to the distance

from node i). This is in contrast to the Hits algorithm, where for node i we count the

number of paths that leave node i. Highly interconnected components (i.e., components with

high reachability) influence the ranking, but tightly interconnected components (components

with large number of paths between nodes) do not have a significant effect on BFS, since

the weight of a node depends on the number of neighbors that are reachable from that node,

and not on the number of paths that lead to them. As a result, the BFS algorithm avoids

strong TKC effects and strong topic drift.

The existence of dense communities of hubs and authorities does not have a significant

effect on the PageRank algorithm, since it does not rely on mutual reinforcement for

computing authority weights. However, we observed that there are certain structures to

which the PageRank algorithm is sensitive. For example, in the query “amusement parks”,

the PageRank algorithm assigns a large weight to the isolated node with the maximum

in-degree. We observed that in general PageRank tends to favor isolated nodes of high

in-degree. In this case, the hubs that point to the isolated node transfer all their weight

directly to that node, since they do not point anywhere else, thus increasing its weight.
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p

Figure 6.12: Topic drift for PageRank

Furthermore, the PageRank algorithm favors structures like the one shown in Figure 6.12.

There exists a node p that is pointed to exclusively by a set of hubs (not necessarily many

of them), and it creates a two link cycle with one or more nodes. In this case the node

p reinforces itself, since the random walk will iterate within this cycle until it performs a

random jump. This explains the fact that in certain cases the performance of the algorithm

improves when we increase the jump probability. Note that such structures are very common

in the Web, where p may be the entry point to some Web site, and all pages within this

site point back home. They appeared very often in our experiments (even with pages that

are not in the same site), and they account for most of the topic drift of the PageRank

algorithm.

Overall, the PageRank algorithm appears to be mixing between different communities.

This should probably be attributed to the random jumps that the algorithm performs. The

random jumps are probably also responsible for the fact that the algorithm performs better

than the rest of the algorithms on very sparse graphs (like in the “jaguar” and “randomized

algorithms” queries).

6.4 Similarity and Stability

The definitions of similarity and stability in Chapter 5 are meant to capture the asymptotic

worst case behavior of the algorithms as the size of the input graph grows. Although

experiments cannot capture the asymptotic behavior of the algorithms, it is still instructive

to observe how these two properties manifest themselves in practice. In this section we
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PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS
d1 1.93 1.78 1.95 2.00 2.00 2.00 2.00 2.00 1.99
dr 0.94 0.73 0.77 0.99 0.98 0.99 0.99 0.99 0.99

(a) Distances between Hits and the remaining algorithms for the query “gun control”.

Hits PageRank InDegree Salsa AT-med AT-avg Norm BFS
d1 2.00 1.96 1.97 1.99 2.00 2.00 2.00 1.99
dr 0.97 0.95 0.83 0.86 0.97 0.95 0.97 0.98

(b)Distances between Max and HubAvg and the remaining algorithms for the query “amusement parks”.

Hits PageRank InDegree Salsa Max AT-med AT-avg Norm BFS
d1 0.08 1.92 1.49 1.51 1.99 1.99 0.17 0.06 1.97
dr 0.28 0.67 0.47 0.50 0.70 0.70 0.11 0.13 0.73

(c) Distances between HubAvg and the remaining algorithms for the query “complexity”.

Table 6.8: Instances of dissimilarity

examine how our theoretical results relate to the experimental observations.

In Appendix B we present the average values for the distance measures we considered in

this chapter. One obvious observation is that the theoretically proved dissimilarity between

Salsa and InDegree is not validated in practice. This is due to the fact that the graphs

in our experiments contain a giant authority connected component. The nodes in the giant

component receive almost the same weight by the two algorithms. As a result the distance

between the algorithms is low.

Another interesting observation is that in our experiments we often encounter highly

fragmented (although not always disconnected) graphs which are the cause for dissimilar-

ity between the algorithms in a way very similar to that we described in the proofs of

dissimilarity in Chapter 5. Consider for example the query “gun control”. As discussed

previously, for this query there exists a tightly interconnected component that is completely

disconnected from the rest of the graph. The Hits algorithm allocates all weight to this

component, while the other algorithms focus on the remainder of the graph. In particular,

Max, HubAvg, AT-med, AT-avg, and Norm allocate zero weight to the component fa-

vored by Hits. Table 6.8(a) shows the d1 and dr distances between Hits and the remaining

algorithms. We observe that in the case of the Max, HubAvg, AT-med, AT-avg, and

Norm algorithms the d1 distance is maximized.
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A similar phenomenon occurs for the Max and HubAvg algorithms for the “amusement

parks” query. In this case both algorithms allocate all weight to a single node, the node with

the highest in-degree. Table 6.8(b) shows the distances between the Max and HubAvg

algorithms and the remaining of the algorithms. Note that the d1 distance with Hits,

AT-med, and AT-avg is maximum.

The HubAvg and Max algorithms are not always close as in the case of the “amusement

parks” query. For the query “complexity” the HubAvg algorithm focuses on an isolated

component of a few nodes, while Max allocates the weight to other parts of the graph.

Table 6.8(c) shows the distances of HubAvg to the rest of the algorithms. The d1 distance

with Max, AT-med, AT-avg, Norm, and BFS is close to the maximum. All distances,

for all pairs of algorithms, all queries, and all distance measures can be found in the Web

page8 with the results.

Stability is harder to analyze experimentally, since for every graph we must identify the

links that must be added or removed from the graph to cause instability. However, in the

case that an algorithm allocates all weight to an isolated component, as it is the case for

Hits for the “gun control” query, and for Max and HubAvg for the “amusement parks”

query, we can cause the algorithm to shift its weight to a different component by removing

enough links (if necessary all) from the component the algorithm favors. For example, for

the “amusement parks” query, we can cause a shift in the weighting of the Max algorithm

by removing just 51 links. This causes the seed node to change, and the algorithm to focus

on a different component of the graph. Removing a few more links has a similar effect on

the HubAvg algorithm. We can cause a similar weight shift to the Hits algorithm, however

the number of links that need to be altered is significantly higher.

In general, for the algorithms that can be described as a linear dynamical systems (such

as Hits, HubAvg), the stability of the algorithm depends upon the eigengap of the matrix

that defines the dynamical system, that is, the difference between the first and the second

eigenvalues. It is interesting to investigate experimentally the average value of this eigengap.

This will give a good indication for the average stability of the algorithms in practice.

8http://www.cs.toronto.edu/∼tsap/experiments/thesis
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6.5 The AT(k) and Norm(p) algorithms

For the AT(k) family of algorithms, for k = 1 we obtain the Max algorithm, while for

k = dout ≤ n we obtain the Hits algorithm. Similarly for the Norm(p) algorithm, when we

set p = 1, we obtain the Hits algorithm, while for p = ∞ we obtain the Max algorithm.

An intriguing question is what happens for the intermediate values of k and p. Thus far,

we cannot even guarantee that these algorithms will converge. Furthermore, although the

algorithms are rather well understood for the extreme values of k and p, we do not know

what kind of ranking they produce for the intermediate values.

A number of initial conjectures were experimentally disproved. For example, given two

nodes i and j, such that AT(k) (or Norm(p)), ranks i above j, it is not the case that either

Max or Hits rank the pair in the same order. Furthermore, it is not the case that the

top-10 results of AT(k) or Norm(p) are a subset of the union of the top-10 of Hits and

Max.

We also observed that the transition between the Max and the Hits algorithm as we

increase the value of k is not monotone. For any of the similarity/distance measures we

consider, we found cases where increasing the value of k increases the distance of AT(k)

from Hits. Figures 6.13(a) and 6.13(b) show how the rank, and d1 distances change as we

increase k for the query “classical guitar”. The transition is neither monotone nor smooth.

In fact we were surprised to observe that in certain cases Max is more similar to Hits

than AT(k) for some k > 1. We make similar observations for the Norm(p) algorithm.

Figures 6.14(a) and 6.14(b) plot the distance of Norm(p) and Max for the query “roswell”.

Another question that remains unresolved is the relation between Norm(p) and AT(k).

For the (opposite) extreme values of k and p, the two algorithms meet. A natural question

is how the algorithms relate to each other for the other values of k and p, and whether there

are other points where the algorithms meet, or produce similar rankings. A bold conjecture

would be that for every value of k there is a value of p such that the rankings of AT(k) and

Norm(p) are the same, or at least similar. We do not have yet any experimental evidence

for that, although we were surprised that in certain cases the Norm(p) algorithm favored

the same community as the AT-avg.

121



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70 80

HITS, AT(k) rank distance

(a) Rank distance of AT(k) and Hits for the query “classical guitar”
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(b) The d1 distance of AT(k) and Hits for the query “classical guitar”

Figure 6.13: Monotonicity of the AT(k) algorithm
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(b) The d1 distance of Norm(p) and Max for the query “roswell”

Figure 6.14: Monotonicity of the Norm(p) algorithm
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6.6 Application of Max algorithm to finding related pages

The property of the Max algorithm to diffuse the weight from the seed node to the remain-

der of the graph has the effect that the pages that are ranked highly are usually “related”

to the seed node. Therefore, if we could set the seed node to some selected page, then we

could use the Max algorithm to find pages related to that page. Finding pages related to

a query Web page is a standard feature of most modern search engines. This is an active

research area with a growing literature [58, 22, 45]. The current techniques use content

analysis, link analysis, or a combination of both. We propose the use of the Max algorithm

as a tool for discovering Web pages, related to a query Web page.

The idea of using link analysis algorithms for finding related pages was fist suggested

by Kleinberg [57], and it was later extended by Dean and Henzinger [22]. In this section,

we use the terminology of Dean and Henzinger [22]. First, we note that we need a different

algorithm for constructing the hyperlink graph that will be given as input to the LAR

algorithm. Given a query page q, Dean and Henzinger propose to construct a “vicinity

graph” around q as follows. Let B denote a step that follows a link backwards, and let F

denote a step that follows a link forward. Starting from the query page q, collect a set of

pages that can be reached by following B, F , BF , and FB paths. The vicinity graph is the

underlying hyperlink graph of this set of pages. The authors then propose to run the Hits

algorithm, or other heuristics for discovering related pages.

We propose the Max algorithm as a novel alternative for discovering related pages. In

order for the algorithm to work, the query page q must be the seed of the algorithm. The

rest of the nodes will then be ranked according to their relation to q, where relation is

defined naturally by the Max algorithm. However, it may not always be the case that the

page q is the seed of the vicinity graph. In these cases, we engineer the graph, so as to make

sure that the page q has the highest in-degree. We go through the nodes of the graph and

find the node with the highest in-degree d. We then add enough extra “dummy” nodes in

the graph, that point only to node q, so that the in-degree of q becomes greater than d.

Thus the page q becomes the seed node for the Base Set. The Max algorithm will assign

maximum weight 1 to page q. Following the discussion in Chapter 4, the weight will be

diffused from the seed node to the remaining nodes of the graph, through the hubs. The

amount of weight that reaches node i will be used as a measure of its relatedness to the
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seed node.

We note that link analysis by itself is not always sufficient to produce a good set of

related pages. Obviously, for a page with no in and out links, the algorithm will fail.

Moreover, it is important that the query page has high in-degree in the vicinity graph, even

if it does not have the maximum in-degree. In this case, more weight is transferred from

the seed node to the remaining nodes, and the ranking is more meaningful. In the case of a

“weak” seed, we expect a secondary seed to take over. Hopefully, this secondary seed will

be related to the query page, and our algorithm will still be able to produce a good set of

results.

Max Hits InDegree CoCitation PageRank Google
HR R HR R HR R HR R HR R HR R

www.travelocity.com 70% 100% 40% 100% 80% 100% 70% 100% 40% 50% 100% 100%
www.allmovie.com 90% 100% 90% 100% 50% 80% 90% 100% 40% 40% 100% 100%
www.cs.toronto.edu/∼bor 100% 100% 100% 100% 90% 90% 90% 90% 100% 100% 70% 100%

Table 6.9: Relevance Statistics for Related Pages queries

In order to evaluate the performance of the Max algorithms on the task of finding re-

lated pages we perform a new experimental study. We consider three different query pages:

“www.travelocity.com” (an electronic travel agency – Table 6.10), “www.allmovie.com” (a

site with movie information and movie reviews – Table 6.11), and “www.cs.toronto.edu/∼bor”

(the home page of Allan Borodin – Table 6.12). For the construction of the vicinity graph,

for the “travelocity” and “allmovie” queries, we added one dummy node, while for the

“Borodin” query we needed to add 50 dummy nodes. Although the number of queries is

small, we believe that the study is indicative of the trends of the algorithms. An extensive

study is planned for future work.

Other than Max, we also experiment with the Hits, InDegree, and PageRank al-

gorithms. We also consider the CoCitation heuristic which is defined as follows. Given

the query page q, for each page p in the vicinity graph compute the number of hubs that

point to both q and p. Then, rank the pages according to the number of hubs that they

have in common with the query page. Furthermore, we also performed a comparison with

the actual Google9 search engine.

9http://www.google.com
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For the relevance evaluation we used our (subjective) judgment, and we classified pages

as highly related, related, and unrelated. In the tables with the results, the highly related

pages appear boldface, and the related pages appear in italics. Table 6.9 shows the high

relevance, and relevance ratios for each algorithm, for each query.

The first observation is that the link analysis algorithms perform surprisingly well. Com-

pared to the results of Google, a search engine that uses a combination of link analysis, text

analysis, and (possibly) user statistics, pure link analysis algorithms are competitive, and in

the case of the “Borodin” query (Table 6.12), they outperform Google. For this query, the

top 10 results of the Google search engine contain four (marginally) weakly related results,

while the link analysis algorithms output results of higher quality.

The Max algorithm performs well in all three queries. Although it reports some weakly

related pages in the “travelocity”10 (Table 6.10) and “allmovie” (Table 6.11) queries, it never

reports completely unrelated pages, and it consistently retrieves highly relevant pages. The

best case for the Max algorithm is the “Borodin” query (Table 6.12), where it outputs

pages on University of Toronto, a page on the book authored by Allan Borodin, pages from

ex-students (Dimitris Achlioptas, Ran El Yaniv) and collaborators of Allan Borodin, as well

as researchers with similar background and interests.

From the remaining link analysis algorithms PageRank has the worst performance.

With the exception of the “Borodin” query (Table 6.12), it outputs many unrelated and

weakly related pages. It appears that mutual reinforcement is a desirable property for this

type of queries. This is a possible explanation for the improved performance of the Hits

algorithm. We are interested in discovering dense clusters around the seed node, and these

are exactly the structures that the Hits algorithm tends to favor. However, the TKC effect

becomes obvious in the “travelocity” query (Table 6.10), where the algorithm favors (weakly

related) home pages of search engines. Also, in the “Borodin” query, Hits focuses on a set

of (related) pages of researchers in Theoretical Computer Science, missing pages like the

home page of University of Toronto, or the page for the book authored by Allan Borodin.

Another interesting observation is that the InDegree algorithm performs surprisingly

well, indicating that the Web pages with high in-degree are related to the query page.

However, the limitations of the algorithm become obvious in the “allmovie” query (Ta-

10For the “travelocity” query, the Web pages of “Yahoo”, “Excite”, “HotBot”, and “CNN” were deemed
as weakly related since all of these pages contain numerous links about travel.
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ble 6.11), where it outputs two unrelated, and many weakly related pages, indicating that

the in-degree by itself is not sufficient for determining relatedness.

The CoCitation algorithm performs well on all three queries, and follows closely the

Max algorithm. For the “travelocity” (Table 6.10) and “allmovie” (Table 6.11) queries, the

two algorithms have 100% overlap in the top 10 results. However, the qualitative difference

of the two algorithms becomes obvious in the “Borodin” query (Table 6.12). In this data set,

the seed node has very little co-citation with the remaining nodes. Namely, the maximum

amount of co-citation is 6, for the home page of Ran El Yaniv, while the home page of

University of Toronto, and that of the Department of Computer Science, have just one

hub in common with the query home page. This indicates that co-citation cannot always

produce meaningful results. At the same time, in the Max algorithm, the University of

Toronto home page acts as a secondary seed. The top-10 include both the the University of

Toronto home page and the Department of Computer Science. It appears that the algorithm

manages to combine various factors of the data set to discover related pages.

6.7 Summary and concluding Remarks

In this chapter, we performed an experimental analysis of Link Analysis Ranking. The

objective was to study the effectiveness of pure Link Analysis Ranking in identifying and

ranking high relevant documents to the query. We experimented with the Hits, PageRank,

InDegree, Salsa, HubAvg, AT(k), Norm(p), Max, and BFS algorithms on multiple

queries. The BFS and Max algorithms emerged as the best algorithms, followed by the

InDegree (and Salsa) algorithms. The Hits and PageRank algorithms exhibited the

lowest relevance ratios, followed by the HubAvg algorithm that performed only slightly

better.

In order to better understand the performance of the algorithms, we also studied how

the existence of various communities in the graphs affect the behavior of the algorithms. For

each algorithm, we tried to identify the type of graph structures that the algorithm tends

to favor. We discovered that the Hits algorithm tends to favor tightly knit communities

of hubs and authorities, which confirmed previous experimental results and the theoretical

analysis of the algorithm. The HubAvg algorithm also favors tightly knit communities, but

it also imposes the additional requirement that the hubs are exclusive to the authorities
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in the community. As a result it favors isolated components that contain nodes with high

in-degree. The PageRank algorithm is strongly affected by the existence of cycles, and

isolated nodes of high in-degree. The Max algorithm favors the community that contains the

seed node, and the ranking of the nodes is determined to a great extent by the connectivity

of the nodes with the seed node. The BFS algorithm favors popular nodes that belong to

large communities that are well interconnected (but not necessarily tightly interconnected).

The experimental analysis revealed several limitations and weaknesses of Link Analysis

Ranking. Overall, Link Analysis Ranking algorithms were not effective in retrieving the

most relevant pages in the dataset within the top few positions of the ranking. The main

reason for the shortcomings of the LAR algorithms appears to be the various community

effects that we described in Section 6.3. The structures that are promoted by the various

algorithms are usually not relevant to the query at hand. Tightly knit communities, favored

by the Hits algorithm and variants of the Hits, such as HubAvg, AT-med, AT-avg and

Norm, are usually off-topic. The same is true for isolated components or nodes, favored by

HubAvg and PageRank, as well as for nodes that belong to cycles, which accounts to some

extent for the poor behavior of the PageRank algorithm. On the other hand, although on

average 4 out of the 10 nodes with the highest in-degree are non-relevant, nodes with high

in-degree are more likely to be relevant. This explains the relatively good behavior of the

InDegree algorithm. Furthermore, relevant high degree nodes also have a positive effect

on the rankings of the Max and BFS algorithms.

Overall, we observed that the algorithms that exhibit a “mixing” behavior, that is, they

allocate the weight across different communities in the graph, tend to perform better than

more “focused” algorithms, that tend to allocate all weight to the nodes of a single commu-

nity. In our experiments, the graphs were often fragmented. As a result, focused algorithms

often produced a lopsided weighting scheme, where almost all weight was allocated to just

a few nodes. This suggests that in the future we should consider relaxations of the existing

algorithms that employ more moderate approaches. One possibility is to combine multiple

eigenvectors for computing the authority weights [1, 73].

Alternatively, we could consider improving the input graph so that it does not include

structures that cause topic drift. Our experimental study indicates that the properties of the

graph that is given as input to the LAR algorithm are critical to the quality of the output of

the LAR algorithm. Little research [40, 8] has been devoted to the problem of improving the
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algorithm that generates the input graph. During the expansion of the Root set many non-

relevant pages are introduced into the Base set. Content analysis could be applied to filter

some of the noise introduced in the graph, either by pruning some of the non-relevant pages,

or by downweighting their effect by adding weights to the links. Other approaches include

grouping similar nodes together, so as to avoid extreme TKC phenomena, as described in

the work of Roberts and Rosenthal [80]. The problem of understanding the input graph is

of fundamental importance for the study of Link Analysis Ranking.

We believe that our in-depth study of the properties of the algorithms and of the effect

of these properties on the rankings of the algorithms suggests a different approach for the

evaluation of the LAR algorithms. An LAR algorithm is a mapping from a graph to a set

of weights. Therefore, in order to evaluate an LAR algorithm we need to understand the

interplay between the graph and the algorithm, as well as the connection between graph

structures and topical relevance. For a fixed LAR algorithm, we need to understand how

the structural properties of the graph affect the ranking of the algorithm. Then, we need

to study how the relevance of the Web pages relates to these structural properties of the

graph by analyzing the statistics of the graph. For example, assume that we observe that

the graphs are likely to contain cycles. Then, we need to understand which algorithms are

affected by the existence of cycles in the graph, and how likely it is for the nodes that belong

to the cycles to be relevant to the query. Alternatively, if we know that an algorithm favors

cycles, then we need to estimate how often cycles appear in the graphs, and, again, how

likely it is to be relevant to the query. Performing such analysis will enable us to predict the

combinations of graphs and algorithms that we expect to perform well, and work towards

improving the algorithms, or the construction of the input graph. For example, we know

that the performance of the Max algorithm is strongly influenced by the quality of the

node with the highest in-degree. In our experiments, we observed that it is likely that the

node with the highest in-degree is relevant to the query. Therefore, we expect the Max

algorithm to perform well, as it is the case in practice.

The study that we performed in Section 6.3 is a first step towards such an evaluation

of LAR algorithms. Ideally, we would like to be able to characterize the structures that

an LAR algorithm favors within the theoretical framework we introduced in Chapter 5.

Then, we would be able to argue formally about the performance of the LAR algorithms

on specific families of graphs.
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Although it appears that the LAR algorithms cannot always capture the true quality of

the documents, it was interesting to observe that the LAR algorithms were very successful

in discovering the “greater picture” behind the topic of the query. For example, for the

query “computational geometry”, the algorithms returned pages on math. For the query

“armstrong” we got many pages on jazz music, even if they did not contain any reference

to Louis Armstrong. For the query “globalization” the algorithms returned independent

media sites, anti-Bush sites, and workers’ movements sites. It is questionable whether the

users would like such a wide perspective of the query (and our user study proved that they

usually do not), however it is important to have a tool that can provide the “Web context”

of a query. The algorithms for finding related pages to a query page build upon exactly

this property of Link Analysis. Preliminary experiments indicate that LAR algorithms are

successful in handling such queries. Furthermore, as a result of this generalization property

of Link Analysis, LAR algorithms proved successful in finding highly related pages that do

not contain the actual query words. This was the case in the “search engines” query, the

“automobile industries” query, and the “globalization” query, where the algorithms discover

and rank highly pages like the World Trade Organization site. Despite its limitations, Link

Analysis is a useful tool for mining and understanding the Web.
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Max Hits InDegree

1 Travelocity.com Travelocity.com Travelocity.com
www.travelocity.com www.travelocity.com www.travelocity.com

2 Expedia Travel Expedia Travel Expedia Travel
www.expedia.com www.expedia.com www.expedia.com

3 MapQuest: Home MapQuest: Home MapQuest: Home
www.mapquest.com www.mapquest.com www.mapquest.com

4 Orbitz: Airline Tickets ... Yahoo! Google
www.orbitz.com www.yahoo.com www.google.com

5 Priceline.com Google Orbitz: Airline Tickets ...
www.priceline.com www.google.com www.orbitz.com

6 Google weather.com - Index Yahoo!
www.google.com www.weather.com www.yahoo.com

7 Yahoo! CNN.com weather.com - Index
www.yahoo.com www.cnn.com www.weather.com

8 weather.com – Index Lycos Lonely Planet Thorn Tree
www.weather.com www.lycos.com thorntree.lonelyplanet.com

9 CNN.com My Excite Amtrak - ... Train Travel
www.cnn.com www.excite.com www.amtrak.com

10 Trip.com HotBot Priceline.com
www.trip.com www.hotbot.com www.priceline.com

CoCitation PageRank Google

1 Travelocity.com First Click to the US Government Travelocity.com
www.travelocity.com firstgov.gov www.travelocity.com

2 Expedia Travel Travelocity.com Expedia Travel
www.expedia.com www.travelocity.com www.expedia.com

3 MapQuest: Home Travelocity: Last minute deals MapQuest: Home
www.mapquest.com travelocity.lmdeals.com www.mapquest.com

4 Orbitz: Airline Tickets ... The IT Industry Portal Priceline.com
www.orbitz.com www.earthweb.com www.priceline.com

5 Priceline.com University of Wisconsin-Madison Orbitz: Airline Tickets ...
www.priceline.com www.wisc.edu www.orbitz.com

6 Yahoo! The Industry Standard Archives Trip.com
www.yahoo.com www.thestandard.net www.trip.com

7 Google Travelocity weather.com - Index
www.google.com travelocity.lmdeals.com/... www.weather.com

8 CNN.com nz search .. .. SearchNOW.co.nz Fodor’s Travel Online
www.cnn.com searchnow.co.nz/ www.fodors.com

9 weather.com – Index U of Wisconsin-Madison Libraries Lonely Planet Online
www.weather.com www.library.wisc.edu www.lonelyplanet.com

10 Trip.com Marriott Rewards AA.com
www.trip.com www.Marriottrewards.com www.aa.com

Table 6.10: Related pages to “www.travelocity.com”
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Max Hits InDegree

1 All Movie Guide All Movie Guide All Movie Guide
www.allmovie.com www.allmovie.com www.allmovie.com

2 The Internet Movie Database The Internet Movie Database The Internet Movie Database
www.imdb.com www.imdb.com www.imdb.com

3 Movie Review Query Engine Movie Review Query Engine Movie Review Query Engine
www.mrqe.com www.mrqe.com www.mrqe.com

4 TV Guide Online - [Movies] TV Guide Online - [Movies] ABCNEWS.com: Home
www.tvguide.com/movies www.tvguide.com/movies www.abcnews.com

5 Academy of Motion Pictures The Miramax Cafe AltaVista
www.oscars.org www.miramax.com www.altavista.com

6 ABCNEWS.com: Home Academy of Motion Pictures Google
www.abcnews.com www.oscars.org www.google.com

7 Real.com - Guide FINE LINE FEATURES Academy of Motion Pictures
www.film.com www.flf.com www.oscars.org

8 TV Guide Online ABCNEWS.com: Home Real.com - Guide
www.tvguide.com www.abcnews.com www.film.com

9 Your entertainment source Paramount Pictures newspaper.info
www.hollywood.com www.paramount.com www.classifiedsatoz.com

10 The Miramax Cafe Bright Lights Film Journal find.info @ Find AtoZ.com
www.miramax.com www.brightlightsfilm.com www.FindAtoZ.com

CoCitation PageRank Google

1 All Movie Guide The Internet Movie Database All Movie Guide
www.allmovie.com www.imdb.com www.allmovie.com

2 The Internet Movie Database All Movie Guide The Internet Movie Database
www.imdb.com www.allmovie.com www.imdb.com

3 Movie Review Query Engine The Industry Desktop AMG All Music Guide
www.mrqe.com www.ifilmpro.com www.allmusic.com

4 TV Guide Online - [Movies] The Internet Movie Guide Movie Review Query Engine
www.tvguide.com/movies www.ifilm.com www.mrqe.com

5 Academy of Motion Pictures NewspapersAtoZ.com Your entertainment source
www.oscars.org www.classifiedsatoz.com www.hollywood.com

6 ABCNEWS.com: Home find.info @ Find AtoZ.com Real.com - Guide
www.abcnews.com www.FindAtoZ.com www.film.com

7 Real.com - Guide PetsAtoZ Movie Reviews
www.film.com www.PetsAtoZ.com www.rottentomatoes.com

8 TV Guide Online TravelA-Z Non Stop Festivals
www.tvguide.com www.TravelA-Z.com www.filmfestivals.com

9 Bright Lights Film Journal MoviesAtoZ The Internet Movie Database
www.brightlightsfilm.com www.moviesatoz.com www.imdb.com/search

10 FINE LINE FEATURES RealOne Player Academy of Motion Pictures
www.flf.com www.real.com www.oscars.org

Table 6.11: Related pages to “www.allmovie.com”
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Chapter 7

Conclusions

7.1 Summary of the thesis

The rapid growth of the Web, and its increasingly wide accessibility has created the need

for better and more accurate search capability. Search engines are required to produce the

web pages that the users are searching for within the first pages of results. In this setting,

the role of ranking becomes critical.

Link Analysis Ranking can be described as the use of hyperlink information for the

purpose of ranking web documents. Link Analysis Ranking operates under the assumption

that, given a collection of hyperlinked web documents, the underlying hyperlink graph

contains useful information about the authority of the pages. The goal of Link Analysis

Ranking is to extract this information, and use these latent authority values to rank the

web documents.

In this thesis we studied the problem of Link Analysis Ranking. The objectives in this

study can be summarized as follows.

1. Extend the existing techniques in order to produce new algorithms.

2. Develop a formal framework for analyzing LAR algorithms.

3. Experiment with LAR algorithms, and understand how they perform in practice.

For the first objective, we worked within the hubs and authorities paradigm, defined by

Kleinberg [58]. We proposed new ways of computing hub and authority weights, namely

the HubAvg and BFS algorithms (first presented in the collaborative work with A. Borodin,
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G. Roberts, and J. Rosenthal [10]), the AT(k) family of algorithms (also co-created with

A. Borodin, G. Roberts, and J. Rosenthal [10]), and the Norm(p) family of algorithms.

A feature of the AT(k) and Norm(p) families of algorithms is that they no longer enjoy

the linearity property of the previous definitions. As a result, it is harder to argue about

their mathematical properties. Still, for the Max algorithm, a special case of both of these

families of algorithms, we were able to prove that the algorithm converges, and we provided

a rigorous characterization of the combinatorial properties of the weights it assigns. Our

work has interesting connections with the study of discrete non-linear dynamical systems.

For our second objective, we performed a formal study of Link Analysis Ranking. We

introduced a theoretical framework that allows us to define specific properties of LAR al-

gorithms, such as monotonicity, distance, similarity, stability, and locality. The objective of

this theoretical framework is to provide the means for analyzing and comparing algorithms,

and define properties that characterize their behavior. Some of these properties, such as

stability, appear to be desirable. For other properties, such as label independence, it is not

obvious if and when they are desirable. However, they are important since they characterize

the algorithm. We were thus able to provide an axiomatic characterization of the InDe-

gree algorithm. We proved that any algorithm that is monotone, label independent, and

local produces the same ranking as the InDegree algorithm. This result indicates that

our framework and the properties we defined are both meaningful and useful.

For the third objective, we experimented with the algorithms that we proposed, as well

as some of the existing ones. We performed an extensive experimental study on multiple

queries, using user feedback. The objective of the study was to determine the quality

of the algorithms, but also to understand how the theoretically predicted properties of

the algorithms affect their ranking behavior in practice. We observed that some of these

properties (for example, the TKC effect for the Hits algorithm) were indeed prominent

in our experiments. We were surprised to discover that some of the “simpler” algorithms,

such as InDegree and BFS, appear to perform better than more sophisticated algorithms,

such as PageRank. We also examined an interesting application of the Max algorithm for

finding related pages with promising results.

One interesting observation that emerged from the experimental study was that many

of the LAR algorithms (Hits, HubAvg, AT(k), Norm(p)) act as clustering algorithms,

that is, they tend to promote a certain cluster of nodes in the graph. As a result, when the
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clusters are not related to the query at hand they fall victims to topic drift. Therefore, for an

LAR algorithm, it is important to identify the structures that it promotes, and understand

if such structures are expected to be related to the query. For example, the structures

promoted by Hits and HubAvg are most often non-relevant, while the ones favored by the

Max algorithm are usually relevant to the query at hand. Furthermore, our study poses

the problem of improving the algorithm for constructing the Base Set, so that some of the

noise is eliminated and the structures promoted by the LAR algorithms become related to

the query at hand.

Finally, in the process of defining distance measures between rankings, we provided

generalizations of distance measures between total orderings to the case of partial orderings.

Our work extends the results of Fagin et al. [34] on comparing top-k lists to the case of

rankings.

7.2 Future Work

In this section we discuss some interesting possible future research directions opened in our

research.

7.2.1 Further extensions of hubs and authorities

Extending the definitions of hubs and authorities can be carried further. One possible

extension that we plan to consider is to define a good hub as a node that has paths to

many good authorities, and a good authority as a node that is reachable from many good

hubs. Note that the authority value ai that the PageRank algorithm assigns to node i

captures the number of paths that end up at node i. This suggests the following interesting

combination of the Hits and PageRank algorithms.Run the PageRank algorithm with a

uniform “jump” probability distribution to obtain a set of authority weights. Now, invert

the links of the graph G, and run the PageRank algorithm again, this time using the

authority weights as the “jump” probability distribution. This will produce a set of hub

weights that will be used as the “jump” probability distribution for the next execution of the

PageRank algorithm on the graph G (not inverted). Iterate this process until, hopefully,

it converges.

Furthermore, the idea of treating weights preferentially can be extended further. The
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threshold operation and the Lp norm are just one possibility for enforcing this idea. We

could explore other possibilities. For example, we could apply some predetermined weighting

scheme on the weights, or we could set a threshold to the weight, instead of setting a

threshold to the number of weights we retain. Another possible generalization of hubs

and authorities, similar in spirit to the work of Roberts and Rosenthal [80], is to cluster

together nodes and apply Link Analysis Ranking on the graph of clusters. Then, the ranking

algorithm, instead of returning a ranked list of pages, will return a ranked list of clusters.

7.2.2 Study of non-linear dynamical systems

In Chapter 4 we proved that the Max algorithm converges. The Max algorithm is a special

case of Norm(p) and AT(k), for p = ∞, and k = 1 respectively. An intriguing question

that remains to be resolved is the convergence of the Norm(p) and AT(k) algorithms,

for the other values of p and k. Given that the algorithms converge for the two extreme

values of p and k, it seems reasonable that the algorithms will converge for the intermediate

values as well. However, the experimental results indicate that the algorithms do not make a

monotone transition from Hits to Max as we as we vary p and k. Therefore, their behavior

may be far less predictable than what we expect. It is an interesting research problem to

understand the properties of the algorithms for these values.

7.2.3 Theoretical analysis of LAR algorithms

We consider our theoretical framework as a first step towards the formal analysis of LAR

algorithms. There are plenty of research questions that emerge within this framework.

First, it would be interesting to consider other distance measures and understand how they

relate to the existing ones. For example, if we view the weight vectors as distributions,

then we may apply information theoretic distance measures (such as the Jensen-Shannon

divergence [68]). Furthermore, it would be interesting to define other properties for LAR

algorithms. One possible property is spam sensitivity. Spam sensitivity captures how sus-

ceptible a ranking algorithm is against a malicious node, or a coalition of malicious nodes

that want to artificially boost their ranking. This notion is closely related to stability, only

in this setting we are interested in the change to the ranking of a single node, rather than

to the whole ranking. Another notion that is interesting to define is that of focus. Given a

graph that has some underlying structure with multiple clusters, we would like to be able
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to argue about the way the algorithm distributes the weight across clusters.

We are also interested in investigating further the stability and similarity of LAR algo-

rithms. Although most of the stability and similarity results were negative, it is possible

that, if we restrict ourselves to smaller classes of graphs, we can obtain positive results. We

are interested in pursuing the following research issues.

• Consider a class of graphs Gn, and assume that there is a probability distribution

over the graphs in Gn. Extend the definition of stability and similarity to capture

similarity and stability in expectation (or with high probability).

• Consider the class of graphs Gδ that consists of the set of graphs whose adjacency

matrix has a large eigengap between the first and the second singular values. The

results of Ng, Zheng and Jordan [72] suggest that the Hits algorithm is stable on this

class. Formulate their results in our framework, and, if possible, prove that Hits is

stable on Gn if and only if Gn ⊆ Gδ.

• Consider the class of random graphs that are generated as follows. Every node i has

a predefined authority and hub value, ai and hi respectively, and a link is generated

from i to j with probability proportional to hiaj . We refer to this class of graphs

as product graphs, GP . This is a model that has received some limited attention in

the literature [1]. Combining the results of Achlioptas et al. [1] and Ng, Zheng, and

Jordan [72], it seems promising to prove that Hits is stable (in expectation) on GP .

The results of Achlioptas et al. [1] suggest that the graphs in GP are expected to have

large eigengap, and the Hits algorithm is expected to produce authority weights that

are close to the predefined authority values. Note that the expected authority weights

of the InDegree algorithm are also these predefined authority values. Therefore, it

seems possible that Hits and InDegree algorithms are similar (in expectation) on

the class GP .

Another possible research direction for obtaining some positive results for rank similarity

between LAR algorithms is to consider weaker notions of similarity. Rather than classifying

two algorithms as rank similar, or rank dissimilar, we could instead try to characterize the

degree of (dis)similarity of the two algorithms. For two algorithms A1,A2, we can define
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the similarity coefficient [59] as follows.

lim
n→∞ sup max

G∈Gn

d(1)(A1(G),A2(G))

This is the maximum fraction of pairs of nodes that are ranked in a different order by the

two algorithms. When this is o(1) the two algorithms are rank similar. If the coefficient

is constant the algorithms are rank dissimilar. An interesting problem is to identify the

degree of dissimilarity of the two algorithms. That is, identify how close to 1 the similar-

ity coefficient can be, in which case the two algorithms produce two completely reversed

rankings.

Finally, the formal study of ranking algorithms may be the forerunner for the study of

other types of algorithms. An interesting candidate is clustering where it seems reasonable

to define notions of similarity and stability for clustering algorithms.

140



Bibliography

[1] D. Achlioptas, A. Fiat, A. Karlin, and F. McSherry. Web search through hub synthesis.

In Proceedings of the 42nd Foundation of Computer Science (FOCS 2001), Las Vegas,

Nevada, 2001.

[2] D. Achlioptas and F. McSherry. Fast computation of low rank matrix approximations.

In ACM Symposium on Theory of Computing (STOC), 2001.

[3] P. Andritsos, P. Tsaparas, R. Miller, and K. Sevcik. LIMBO: Scalable clustering

of categorical data. In International Conference on Extending DataBase Technology

(EDBT), Heraklion, Crete, Greece, 2004.

[4] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data. In Pro-

ceedings of the 33rd Symposium on Theory of Computing (STOC 2001), Hersonissos,

Crete, Greece, 2001.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley-

Longman, 1999.

[6] M. W. Berry and S. T. Dumais. Using linear algebra for intelligent Information Re-

trieval. SIAM Review, 37(4):573–595, 1995.

[7] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and S. Sudarshan. Keyword search-

ing and browsing in databases using BANKS. In ICDE, 2002.

[8] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a hy-

perlinked environment. In Research and Development in Information Retrieval, pages

104–111, 1998.

141



[9] K. Bharat and G. A. Mihaila. When experts agree: Using non-affiliated experts to rank

popular topics. In Proceedings of the 10th International World Wide Web Conference,

2001.

[10] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Finding authorities

and hubs from link structures on the World Wide Web. In Proceedings of the 10th

International World Wide Web Conference, Hong Kong, 2001.

[11] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. Link analysis ranking:

Algorithms, experiments, and theory. ACM Transactions on Internet Technology, 2003.

[12] R. Botafogo, E. Rivlin, and B. Shneiderman. Structural analysis of hypertext: Iden-

tifying hierarchies and useful metrics. ACM Transactions on Information Systems,

10:142 – 180, 1992.

[13] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. In

Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia,

1998.

[14] A. Broder. Web searching technology overview. In Advanced school and Workshop on

Models and Algorithms for the World Wide Web, Udine, Italy, 2002.

[15] J. Carrière and R. Kazman. WebQuery: Searching and visualizing the Web through

connectivity. In Proceedings of the 6th International World Wide Web Conference,

1997.

[16] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan.

Automatic resource compilation by analysing hyperlink structure and associated text.

In Proceedings of the 7th International World Wide Web Conference, 1998.

[17] S. Chakrabarti, B. E. Dom, and P. Indyk. Enhanced hypertext categorization using hy-

perlinks. In Proceedings of SIGMOD, ACM International Conference on Management

of Data, Seattle, US, 1998.

[18] S. Chien, C. Dwork, R. Kumar, D. Simon, and D. Sivakumar. Towards exploiting link

evolution. In Workshop on Algorithms for the Web, Vancuver, 2002.

142



[19] D. Cohn and H. Chang. Learning to probabilistically identify authoritative documents.

In Proceedings of the 17th International Conference on Machine Learning, pages 167–

174, Stanford University, 2000.

[20] N. Craswell and D. Hawking. Overview of the TREC-11 Web track. In Proceedings of

the Eleventh Text Retrieval Conference (TREC-11), 2002.

[21] B. Davison. Recognizing nepotistic links on the web. In AAAI-2000 Workshop on

Artificial Intelligence for Web Search, Austin Texas, 2000. AAAI Press.

[22] J. Dean and M. R. Henzinger. Finding related pages in the world wide web. In

Proceedings of the Eighth International World-Wide Web Conference (WWW9), 1999.

[23] S. Deerwerster, S. T. Dumais, G. W. Furnas, T. K. Landaur, and Richard Harshman.

Indexing by Latent Semantic Analysis. Journal of American Society for Information

Science, 41(6):391–407, 1990.

[24] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977.

[25] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. W. Benjamin, New

York, 1986.

[26] P. Diaconis and R. Graham. Spearman’s footrule as a measure of disarray. Journal of

the Royal Statistical Society, 39(2):262 – 268, 1977.

[27] P. Doreian. Measuring the relative standing of disciplinary journals. Information

Processing and Management, 24:45–56, 1988.

[28] P. Doreian. A measure for standing for citation networks within a wider environment.

Information Processing and Management, 30:21–31, 1994.

[29] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs

and matrices. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999.

[30] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for

the Web. In Proceedings of the 10th International World Wide Web Conference, Hong

Kong, 2001.

143



[31] L. Eggh and R. Rousseau. Introduction to Infometrics. Elsevier, 1990.

[32] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and aggre-

gating rankings with ties, 2003. To appear.

[33] R. Fagin, R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. A. Tomlin, and D. P.

Williamson. Searching the workplace web. In Proceedings of the 12th International

World Wide Wed Conference (WWW2003), Budapest, 2003.

[34] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003.

[35] G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of Web communities.

In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Boston, MA, 2000.

[36] G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization and identifi-

cation of Web communities. IEEE Computer, 35(3), 2002.

[37] M. E. Frisse. Searching for information in a hypertext medical book. Communications

of ACM, 31(7):880–886, 1988.

[38] N. Geller. On the citation influence methodology of Pinski and Narin. Information

Processing and Management, 14:93–95, 1978.

[39] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach

based on dynamical systems. In Proceedings of the 24th Intl. Conference on Very Large

Databases (VLDB), 1998.

[40] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link topol-

ogy. In Proceedings of 9th ACM Conference on Hypertext and Hypermedia, 1998.

[41] G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd ed. Johns Hopkins

University Press, Baltimore, 1989.

[42] E. Grafield. Citation analysis as a tool in journal evaluation. Science, 178:471–479,

1972.

144



[43] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword

search over XML documents. In SIGMOD, San Diego, CA, USA, 2003.

[44] T. H. Haveliwala. Topic sensitive page rank. In Proceedings of the 11th International

Word Wide Web Conference (WWW 2002), Hawai, 2002.

[45] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Similarity search on the Web:

Evaluation and scalability considerations. In Proceedings of the 28th International

Conference on Very Large Data Bases (VLDB), 2002.

[46] D. Hawking, N. Craswell, P. Thistlewaite, and D. Harman. Results and challenges in

Web seach evaluation. In Proceedings of the Eighth International World Wide Web

Conference, 1999.

[47] D. Hawking, E. Voorhes, N. Craswell, and P. Bailey. Overview of the TREC-8 Web

track. In Proceedings of the Eighth Text Retrieval Conference (TREC-8), 1999.

[48] Thomas Hofmann. Probabilistic Latent Semantic Analysis. In Proc. of Uncertainty in

Artificial Intelligence, UAI’99, Stockholm, 1999.

[49] Thomas Hofmann. Learning probabilistic models of the web. In Proceedings of the

23rd International Conference on Research and Development in Information Retrieval

(ACM SIGIR’00), 2000.

[50] Richard A. Holmgren. A First Course in Discrete Dynamical Systems. Springer-Verlag,

Berlin, Germany, 1994.

[51] C. H. Hubbell. An input-output approach to clique identification. Sociometry, 28:377–

399, 1965.

[52] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life Information Retrieval:

A study of user queries on the Web. ACM SIGIR Forum, 32:5–17, 1998.

[53] G. Jeh and J. Widom. Scaling personalized Web search. In Proceedings of the 12th

International World Wide Wed Conference(WWW2003), Budapest, 2003.

[54] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. In

Proceedings of the 41st Foundation of Computer Science (FOCS 2000), Redondo Beach,

2000.

145



[55] L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39–

43, 1953.

[56] M. G. Kendall. Rank Correlation Methods. Griffin, London, 1970.

[57] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677, 1998.

[58] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of ACM

(JASM), 46, 1999.

[59] Jon Kleinberg. Personal communication, 2003.

[60] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in

large datasets of time sequences. In ACM SIGMOD, Tuscon, Arizona, 1997.

[61] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for

emerging cyber-communities. In Proceedings of the 8th International World Wide Web

Conference (WWW 1999), 1999.

[62] H. C. Lee. Metasearch using the co-citation graph. In Proceedings of Internet Com-

puting (IC2003), 2003.

[63] H. C. Lee and A. Borodin. Perturbation of the hyperlinked environment. In Proceedings

of the Ninth International Computing and Combinatorics Conference, 2003.

[64] R. Lempel and S. Moran. The stochastic approach for link-structure analysis (SALSA)

and the TKC effect. In Proceedings of the 9th International World Wide Web Confer-

ence, May 2000.

[65] R. Lempel and S. Moran. Rank stability and rank similarity of web link-based ranking

algorithms. Technical Report CS-2001-22, Technion - Israel Institute of Technology,

2001.

[66] R. Lempel and A. Soffer. PicASHOW: Pictorial authority search by hyperlinks on the

Web. In Proceedings of the 10th International World Wide Web Conference (WWW

2002), Hong Kong, 2001.

146



[67] L. Li, Y. Shang, and W. Zhang. Improvement of HITS-based algorithms on Web doc-

uments. In Proceedings of the 11th International Word Wide Web Conference (WWW

2002), Hawai, 2002.

[68] J. Lin. Divergence measures based on the Shannon entropy. Machine Learning,

37(1): 145–151, 1991.

[69] M. Marchiori. The quest for correct information on Web: Hyper search engines. In

Proceedings of the 6th International World Wide Web Conference, 1997.

[70] A. Mendelzon and D. Rafiei. What do the neighbours think? Computing Web page

reputations. IEEE Data Engineering Bulletin, 23(3):9–16, 2000.

[71] A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

In Advances in Neural Information Processing Systems (NIPS), 2002.

[72] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors, and stability. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

Seattle, Washington, USA, 2001.

[73] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable algorithms for link analysis. In

Proceedings of the 24th International Conference on Research and Development in In-

formation Retrieval (SIGIR 2001), New York, 2001.

[74] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:

Bringing order to the web. Technical report, Stanford Digital Library Technologies

Project, 1998.

[75] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent Semantic In-

dexing: A probabilistic analysis. In 17th Annual Symposium on Principles of Database

Systems, Seattle, 1998.

[76] G. Pinski and F. Narin. Citation influence for journal aggreagates of scientific publi-

cations: Theory with applications to the literature of physics. Information Processing

and Management, 12:297–312, 1976.

[77] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value

independence assumption. In Very Large DataBase (VLDB) Conference, 1997.

147



[78] D. Rafiei and A. Mendelzon. What is this page known for? Computing web page

reputations. In Proceedings of the 9th International World Wide Web Conference,

Amsterdam, Netherlands, 2000.

[79] M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination

of link and content information in PageRank. In Advances in Neural Information

Processing Systems (NIPS) 14, 2002.

[80] G. O. Roberts and J. S. Rosenthal. Downweighting tightly knit communities in World

Wide Web rankings. Submitted for publication, 2003.

[81] J. T. Sandefur. Discrete dynamical systems. Oxford: Clarendon Press, 1990.

[82] J. Savoy and J. Picard. Report on the TREC-8 experiment: Searching on the Web

and in distributed collections. In Proceedings of the Eighth Text Retrieval Conference

(TREC-8), Gaithersburg, Maryland, 1999.

[83] J. Savoy and Y. Rasolofo. Report on the TREC-9 experiment: Link-based retrieval

and distributed collections. In Proceedings of the Ninth Text Retrieval Conference

(TREC-9), Gaithersburg, Maryland, 2000.

[84] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very large

AltaVista query log. Technical Report 1998-014, Digital SRC, 1998.

[85] A. Singhal and M. Kaszkiel. A case study in web search using TREC algorithms. In

Proceedings of the Tenth International World Wide Web Conference, 2001.

[86] N. Slonim and N. Tishby. Agglomerative Information Bottleneck. In Advances in

Neural Information Processing Systems (NIPS), Breckenridge, CO, 1999.

[87] G. Strang. Linear Algebra. Academic Press, 1980.

[88] N. Tishby, F. C. Pereira, and W. Bialek. The Information Bottleneck method. In

37th Annual Allerton Conference on Communication, Control and Computing, Urban-

Champaign, IL, 1999.

[89] J. A. Tomlin. An entropy approach to unitrusive targeted advertising on the web.

In Proceedings of the 9th International World Wide Wed Conference (WWW2000),

Amsterdam, 2000.

148



[90] J. A. Tomlin. A new paradigm for ranking pages on the World Wide Web. In Proceed-

ings of the 12th International World Wide Wed Conference (WWW2003), Budapest,

2003.

[91] M. Turk and A. Pentland. Eigenfaces and recognition. Journal of Cognitive Neuro-

science, 3(1):71–86, 1991.

149



150



Appendix A

Supplementary material for

Chapter 5

A.1 Distance metrics and near metrics

Let D be a domain of elements, and let d : D×D → R be a distance function defined over

set D. The function d is a metric if it satisfies the following conditions.

1. For all x, y ∈ D, d(x, y) = 0 if and only if x = y (reflexivity).

2. For all x, y ∈ D, d(x, y) = d(y, x) (symmetry).

3. For all x, y, z ∈ D, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The following definitions are taken from the work of Fagin, Kumar and Sivakumar [34].

Definition A.1 (Relaxed polygonal inequality) For some c > 0, a distance function

d : D×D → R satisfies the c-polygonal inequality, if for all k > 0 and all x, y1, . . . , yk, z ∈
D, d(x, y) ≤ c(d(x, y1) + d(y1, y2) + · · · d(yk, z)).

Definition A.2 (Near Metric) A distance measure d : Rn ×Rn → R is a near metric if

it is reflexive and symmetric, and there is a constant c > 0 independent of n, such that the

distance measure d satisfies the c-polygonal inequality.

Definition A.3 (Equivalent distance measures) Two distance measures d and d′ be-

tween n-dimensional vectors are equivalent if there exist constants c1 and c2 independent of

n, such that c1d
′(w1, w2) ≤ d(w1, w2) ≤ c2d

′(w1,w2), for all vectors w1, w2.
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We now examine which of the distance measures we defined in Section 5.4 are metrics,

or near metrics.

A.1.1 The d1 distance measure

We will prove that the d1 distance measure is a near metric over the set of L1 unit vectors,

by proving that it is equivalent to the L1 distance between n-dimensional vectors.

Lemma A.1 Let w1 and w2 be two unit vectors under the L1 norm. We have that

d1(w1, w2) ≤ ‖w1 −w2‖1 ≤ 2d1(w1, w2)

Proof: For the following we use ‖ · ‖ to denote the L1 norm. Obviously, d1(w1, w2) =

minγ1,γ2≥1 ‖γ1w1−γ2w2‖ ≤ ‖w1−w2‖. We will now prove that ‖w1−w2‖1 ≤ 2d1(w1,w2).

We first prove that at least one of γ1, γ2 has to be equal to 1. Assume that this is not true.

Then, let γ∗1 , γ∗2 = arg minγ1,γ2≥1 ‖γ1w1, γ2w2‖, where γ∗1 , γ∗2 > 1. Without loss of generality

assume that γ∗1 ≥ γ∗2 . We have that

‖γ∗1w1, γ
∗
2w2‖ =

n∑

i=1

|γ∗1w1(i)−γ∗2w2(i)| = γ∗2
n∑

i=1

|γ
∗
1

γ∗2
w1(i)−w2(i)| >

n∑

i=1

|γ
∗
1

γ∗2
w1(i)−w2(i)| ,

where the last inequality follows from the fact that γ∗2 > 1. Now let γ1 = γ∗1
γ∗2

and γ2 = 1. We

have that ‖γ1w1, γ2w2‖ < ‖γ∗1w1, γ
∗
2w2‖, thus reaching a contradiction. Therefore, at least

one of γ∗1 , γ∗2 is equal to 1. Note that this is true irrespective of the fact that the vectors

are L1 unit vectors.

Now, without loss of generality assume that w1(i) ≥ w2(i) for all i = 1, . . . , k, and

that w1(i) ≤ w2(i), for all i = k + 1, . . . , n, for some k. Also let
∑k

i=1 w1(i) = X and
∑k

i=1 w2(i) = Y . Since w1 and w2 are L1 unit vectors, we have that
∑n

i=k+1 w1(i) = 1−X

and
∑n

i=k+1 w2(i) = 1− Y . We have that

‖w1 −w2‖ =
n∑

i=1

|w1(i)− w2(i)|

=
k∑

i=1

(w1(i)− w2(i)) +
n∑

i=k+1

(w2(i)− w1(i))

=
k∑

i=1

w1(i)−
k∑

i=1

w2(i) +
n∑

i=k+1

w2(i)−
n∑

i=k+1

w1(i)
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= X − Y + (1− Y )− (1−X)

= 2(X − Y )

Assume now that γ2 = 1, and let γ = arg minγ≥1 ‖γw1, w2‖. Then

d1(w1, w2) =
n∑

i=1

|γw1(i)− w2(i)|

=
k∑

i=1

|γw1(i)− w2(i)|+
n∑

i=k+1

|γw1(i)− w2(i)|

≥
k∑

i=1

|γw1(i)− w2(i)|

=
k∑

i=1

(γw1(i)− w2(i))

= γ

k∑

i=1

w1(i)−
k∑

i=1

w2(i) = γX − Y

≥ X − Y

The proof works similarly if we assume that γ1 = 1. In this case it is easy to see that

d1(w1, w2) ≥ γ(1−Y )−(1−X), and the proof follows. Therefore, ‖w1−w2‖ ≤ 2d1(w1, w2).

2

A.1.2 Rank distance measures

It is obvious that d
(0)
r = K(0) is not a metric, or a near metric, since all vectors have distance

zero from the uniform vector, that assigns the same weight to all nodes. The Hausdorff

distance measure is well known to be a metric. For K(p) we prove the following theorem.

Lemma A.2 For p ≥ 1/2 the K(p) rank distance satisfies the triangle inequality. For

p < 1/2, K(p) distance measure does not satisfy the triangle inequality.

Proof: Let a1,a2, and a3 denote three authority weight vectors. Let X1 = X (a1, a2),

X2 = X (a2, a3) and X3 = X (a1,a3). We use similar indices for the sets E ,U ,Y, and Z.

First, we will prove that if p < 1/2 then K(p) does not satisfy the triangle inequality.

Consider two vectors a1 and a3 that assign distinct weights to all nodes, and produce the

reverse rankings. Then, we have that K(p)(a1, a3) = n(n− 1)/2. Consider now a vector a2
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that assigns the same weight to all nodes. Then, we have that K(p)(a1, a2) = pn(n− 1)/2,

and K(p)(a2, a3) = pn(n−1)/2. If p < 1/2 then K(p)(a1, a3) > K(p)(a1,a2)+K(p)(a2,a3).

Assume now that p ≥ 1/2. We have that K(p)(a1, a3) = |X3| + p(|Y3| + |Z3|). For all

{i, j} ∈ Y3, a1(i) = a1(j) and a3(i) 6= a3(j), and I(p)
a1a3

(i, j) = p. If a2(i) = a2(j) then

{i, j} ∈ Y2, and I(p)
a2a3

(i, j) = p. If a2(i) 6= a2(j) then {i, j} ∈ Y1, and I(p)
a1a2

(i, j) = p.

Thus, in all cases, I(p)
a1a2

(i, j) + I(p)
a2a3

(i, j) ≥ I(p)
a1a3

(i, j).

For all {i, j} ∈ Z3, a1(i) 6= a1(j) and a3(i) = a3(j), and I(p)
a1a3

(i, j) = p. If a2(i) 6= a2(j)

then {i, j} ∈ Z2, and I(p)
a2a3

(i, j) = p. If a2(i) = a2(j) then {i, j} ∈ Z1, and I(p)
a1a2

(i, j) = p.

Thus, in all cases, I(p)
a1a2

(i, j) + I(p)
a2a3

(i, j) ≥ I(p)
a1a3

(i, j).

For all {i, j} ∈ X3, without loss of generality assume that a1(i) < a1(j) and a3(i) > a3(j).

The other case is treated symmetrically. For all {i, j} ∈ X3 we have that I(p)
a1a3

(i, j) = 1.

If a2(i) 6= a2(j) then {i, j} ∈ X1 ∪ X2, and I(p)
a1a2

(i, j) + I(p)
a2a3

(i, j) = 1. If a2(i) = a2(j)

then {i, j} ∈ Z1 ∪ Y2, and I(p)
a1a2

(i, j) + I(p)
a2a3

(i, j) = 2p. Since p ≥ 1/2, it follows that

I(p)
a1a2

(i, j) + I(p)
a2a3

(i, j) ≥ Ia1a3(i, j).

Therefore, K(p)(a1,a2) + K(p)(a2,a3) ≥ K(p)(a1, a3), so K(p) satisfies the triangle

inequality. 2

We now prove the following theorem.

Theorem A.1 The K(p) distance measure is a metric for all p ≥ 1/2.

Proof: In order to prove that K(p) satisfies the reflexive property we need to redefine the

domain of K(p). Obviously, if K(p) is defined over R × R, there are vectors that are not

equal, yet they produce the same ranking. Every vector defines a partial ordering of the

nodes in P . Let OP denote the set of all possible partial orderings of the elements in P .

A partial ordering can be represented as a DAG, or the topological sort of the elements

of the DAG. We define the K(p) over OP × OP . For two partial orderings O1, O2 ∈ OP ,

K(p)(O1, O2) = 0 if and only if O1 = O2. 2

For p < 1/2, K(p) is obviously not a metric, since it does not satisfy the triangle

inequality. However, we can prove the following theorem.

Theorem A.2 For p < 1/2, such that p = Θ(1), K(p) is a near metric.
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Proof: From Theorem 5.3, we have that for any vectors w1,w2,

K(p)(w1, w2) ≤ K(1/2)(w1, w2) ≤ 1
2p

K(p)(w1, w2) .

Therefore, for p = Θ(1), K(p) is equivalent to K(1/2). Since K(1/2) is a metric, K(p) is a

near metric. 2

A.2 Norms and vectors

In this section we prove a useful lemma relating different norms. We also compute the max-

imum Lq-distance between any two Lp-unit vectors. We first prove the following auxiliary

lemma.

Lemma A.3 Let v be a vector of length n, and suppose 1 ≤ p < q ≤ ∞. Then ‖v‖p ≤
‖v‖qn

1/p−1/q.

Proof: Assume first that s < ∞. We use Hölder’s inequality, which states that for any p

and q such that 1 < r, s < ∞ and 1/r + 1/s = 1, if x and y are two n-dimensional vectors,

then
n∑

i=1

|xiyi| ≤
(

n∑

i=1

|xi|r
)1/r (

n∑

i=1

|yi|s
)1/s

.

Set r = q/p and s = 1/(1− 1/r). Also, set xi = vr
i and yi ≡ 1, and let ‖v‖p

p denote (‖v‖p)
p,

and ‖v‖p
q denote (‖v‖q)

p. We have that

‖v‖p
p =

n∑

i=1

|vi|p =
n∑

i=1

|vi|p 1

≤
(

n∑

i=1

(|vi|p)r

)1/r (
n∑

i=1

1s

)1/s

=

(
n∑

i=1

|vi|p(q/p)

)1/(q/p)

n1/s

= ‖v‖p
qn

1−1/(q/p) = ‖v‖p
qn

1−p/q .

Taking p-th roots of both sides, we obtain ‖v‖p ≤ ‖v‖qn
1/p−1/q, as claimed.
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For the case q = ∞, we compute that

‖v‖p
p =

n∑

i=1

|vi|p ≤
n∑

i=1

max
i
|vi|p = n max

i
|vi|p = n‖v‖p

∞ .

Thus, ‖v‖p ≤ n1/p‖v‖∞. 2

Lemma A.4 The maximum Lq-distance dq, between two Lp-unit n-dimensional vectors is

Θ(n1/q−1/p), if q ≤ p, and Θ(1) if q > p.

Proof: Let w1, w2 be two n-dimensional Lp-unit vectors.

dq(w1,w2) = min
γ1,γ2

‖γ1w1 − γ2w2‖q ≤ ‖w1 −w2‖q

≤ ‖w1‖q + ‖w2‖q

The last inequality follows from the triangle inequality. From Lemma A.3, we have that

if q ≤ p, then ‖w1‖q ≤ n1/q−1/p. Thus, dq(w1, w2) = O(n1/q−1/p). This upper bound is

achieved if w1 and w2 are uniform vectors with opposing values.

If q > p then ‖w1‖q ≤ ‖w1‖p = 1. Therefore, dq(w1, w2) ≤ 2. This upper bound is

achieved if the vectors are two different standard basis vectors. 2
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Appendix B

Similarity measures

In this appendix we present the average values for all the similarity measures that we

consider.

Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS
Hits 10.0 1.1 4.1 4.1 3.4 4.3 3.9 5.2 6.6 2.8
PageRank 1.1 10.0 3.2 3.1 2.2 2.1 2.1 1.8 1.6 2.2
InDegree 4.1 3.2 10.0 9.8 5.2 6.3 6.2 6.0 5.2 5.6
Salsa 4.1 3.1 9.8 10.0 5.1 6.3 6.2 5.9 5.2 5.6
HubAvg 3.4 2.2 5.2 5.1 10.0 5.5 6.2 6.5 5.6 3.3
Max 4.3 2.1 6.3 6.3 5.5 10.0 8.7 6.7 6.3 5.5
AT-med 3.9 2.1 6.2 6.2 6.2 8.7 10.0 7.5 6.8 5.0
AT-avg 5.2 1.8 6.0 5.9 6.5 6.7 7.5 10.0 8.3 4.1
Norm 6.6 1.6 5.2 5.2 5.6 6.3 6.8 8.3 10.0 3.4
BFS 2.8 2.2 5.6 5.6 3.3 5.5 5.0 4.1 3.4 10.0

Table B.1: Average Intersections over top-10
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Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS
Hits 10.0 1.0 3.7 3.6 3.3 4.2 3.7 5.2 6.6 2.9
PageRank 1.0 10.0 2.8 2.7 2.2 2.1 2.0 1.5 1.4 1.6
InDegree 3.7 2.8 10.0 9.7 5.1 7.2 6.8 5.9 5.2 5.6
Salsa 3.6 2.7 9.7 10.0 5.0 7.1 6.9 5.8 5.2 5.6
HubAvg 3.3 2.2 5.1 5.0 10.0 5.2 5.9 6.2 5.4 2.7
Max 4.2 2.1 7.2 7.1 5.2 10.0 8.8 6.6 6.3 5.1
AT-med 3.7 2.0 6.8 6.9 5.9 8.8 10.0 7.4 6.7 4.7
AT-avg 5.2 1.5 5.9 5.8 6.2 6.6 7.4 10.0 8.2 4.0
Norm 6.6 1.4 5.2 5.2 5.4 6.3 6.7 8.2 10.0 3.5
BFS 2.9 1.6 5.6 5.6 2.7 5.1 4.7 4.0 3.5 10.0

Table B.2: Average Weighted Intersections over top-10

Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS
Hits 0.00 0.53 0.42 0.45 0.34 0.24 0.20 0.16 0.14 0.24
PageRank 0.53 0.00 0.32 0.30 0.49 0.45 0.44 0.46 0.46 0.46
InDegree 0.42 0.32 0.00 0.08 0.42 0.36 0.36 0.37 0.37 0.39
Salsa 0.45 0.30 0.08 0.00 0.46 0.40 0.40 0.41 0.41 0.42
HubAvg 0.34 0.49 0.42 0.46 0.00 0.25 0.27 0.25 0.26 0.38
Max 0.24 0.45 0.36 0.40 0.25 0.00 0.07 0.13 0.13 0.19
AT-med 0.20 0.44 0.36 0.40 0.27 0.07 0.00 0.08 0.08 0.16
AT-avg 0.16 0.46 0.37 0.41 0.25 0.13 0.08 0.00 0.04 0.19
Norm 0.14 0.46 0.37 0.41 0.26 0.13 0.08 0.04 0.00 0.20
BFS 0.24 0.46 0.39 0.42 0.38 0.19 0.16 0.19 0.20 0.00

Table B.3: Average Rank distances

Hits PageRank InDegree Salsa HubAvg Max AT-med AT-avg Norm BFS
Hits 0.00 1.64 1.22 1.25 1.32 1.11 1.12 0.84 0.61 1.46
PageRank 1.64 0.00 0.94 0.93 1.64 1.38 1.38 1.49 1.54 1.13
InDegree 1.22 0.94 0.00 0.11 1.42 0.86 0.87 1.01 1.09 0.96
Salsa 1.25 0.93 0.11 0.00 1.43 0.89 0.89 1.03 1.11 0.96
HubAvg 1.32 1.64 1.42 1.43 0.00 1.07 1.06 0.97 1.02 1.67
Max 1.11 1.38 0.86 0.89 1.07 0.00 0.21 0.57 0.65 1.19
AT-med 1.12 1.38 0.87 0.89 1.06 0.21 0.00 0.42 0.55 1.20
AT-avg 0.84 1.49 1.01 1.03 0.97 0.57 0.42 0.00 0.27 1.35
Norm 0.61 1.54 1.09 1.11 1.02 0.65 0.55 0.27 0.00 1.42
BFS 1.46 1.13 0.96 0.96 1.67 1.19 1.20 1.35 1.42 0.00

Table B.4: Average d1 distances
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Hits
1. (1.000) Priests for Life Index
URL:www.priestsforlife.org
2. (0.997) National Right to Life
URL:www.nrlc.org
3. (0.994) After Abortion: Information o
URL:www.afterabortion.org
4. (0.994) ProLifeInfo.org
URL:www.prolifeinfo.org
5. (0.990) Pregnancy Centers Online
URL:www.pregnancycenters.org
6. (0.989) Human Life International
URL:www.hli.org
7. (0.987) Abortion - Breast Cancer Link –
URL:www.abortioncancer.com
8. (0.985) Abortion facts and informatio
URL:www.abortionfacts.com
9. (0.981) Campaign Life Coalition British C
URL:www.clcbc.org
10. (0.975) Empty title field
URL:www.heritagehouse76.com

PageRank
1. (1.000) WCLA Feedback
URL:www.janeylee.com/wcla
2. (0.911) Planned Parenthood Action Net
URL:www.ppaction.org/ppaction/prof
3. (0.837) Welcome to the Westchester Coalit
URL:www.wcla.org
4. (0.714) Planned Parenthood Federation of
URL:www.plannedparenthood.org
5. (0.633) GeneTree.com Page Not Found
URL:www.qksrv.net/click-1248625-91
6. (0.630) Bible.com Prayer Room
URL:www.bibleprayerroom.com
7. (0.609) United States Department of Healt
URL:www.dhhs.gov
8. (0.538) Pregnancy Centers Online
URL:www.pregnancycenters.org
9. (0.517) Bible.com Online World
URL:bible.com
10. (0.516) National Organization for Women
URL:www.now.org

InDegree
1. (1.000) prochoiceamerica.org : NARAL
URL:www.naral.org
2. (0.984) National Right to Life
URL:www.nrlc.org
3. (0.969) Planned Parenthood Federation of
URL:www.plannedparenthood.org
4. (0.865) NAF - The Voice of Abortion
URL:www.prochoice.org
5. (0.823) Priests for Life Index
URL:www.priestsforlife.org
6. (0.807) Pregnancy Centers Online
URL:www.pregnancycenters.org
7. (0.740) ProLifeInfo.org
URL:www.prolifeinfo.org
8. (0.734) After Abortion: Information o
URL:www.afterabortion.org
9. (0.672) Abortion Clinics OnLine
URL:www.gynpages.com
10. (0.625) Abortion - Breast Cancer Link –
URL:www.abortioncancer.com

HubAvg
1. (1.000) prochoiceamerica.org : NARAL
URL:www.naral.org
2. (0.935) Planned Parenthood Federation of
URL:www.plannedparenthood.org
3. (0.921) NAF - The Voice of Abortion
URL:www.prochoice.org
4. (0.625) Abortion Clinics OnLine
URL:www.gynpages.com
5. (0.516) FEMINIST MAJORITY
URL:www.feminist.org
6. (0.484) The Alan Guttmacher Institute: Ho
URL:www.guttmacher.org
7. (0.439) center for reproductive right
URL:www.crlp.org
8. (0.416) The Religious Coalition for Repro
URL:www.rcrc.org
9. (0.415) National Organization for Women
URL:www.now.org
10. (0.408) Medical Students for Choice
URL:www.ms4c.org

Max
1. (1.000) prochoiceamerica.org : NARAL
URL:www.naral.org
2. (0.946) Planned Parenthood Federation of
URL:www.plannedparenthood.org
3. (0.918) National Right to Life
URL:www.nrlc.org
4. (0.819) NAF - The Voice of Abortion
URL:www.prochoice.org
5. (0.676) Priests for Life Index
URL:www.priestsforlife.org
6. (0.624) Pregnancy Centers Online
URL:www.pregnancycenters.org
7. (0.602) ProLifeInfo.org
URL:www.prolifeinfo.org
8. (0.557) Abortion Clinics OnLine
URL:www.gynpages.com
9. (0.551) After Abortion: Information o
URL:www.afterabortion.org
10. (0.533) FEMINIST MAJORITY
URL:www.feminist.org

AT-med
1. (1.000) prochoiceamerica.org : NARAL
URL:www.naral.org
2. (0.933) Planned Parenthood Federation of
URL:www.plannedparenthood.org
3. (0.837) NAF - The Voice of Abortion
URL:www.prochoice.org
4. (0.717) National Right to Life
URL:www.nrlc.org
5. (0.552) FEMINIST MAJORITY
URL:www.feminist.org
6. (0.545) Abortion Clinics OnLine
URL:www.gynpages.com
7. (0.538) The Alan Guttmacher Institute: Ho
URL:www.guttmacher.org
8. (0.523) center for reproductive right
URL:www.crlp.org
9. (0.518) Priests for Life Index
URL:www.priestsforlife.org
10. (0.478) The Religious Coalition for Repro
URL:www.rcrc.org

AT-avg
1. (1.000) National Right to Life
URL:www.nrlc.org
2. (0.905) Priests for Life Index
URL:www.priestsforlife.org
3. (0.844) ProLifeInfo.org
URL:www.prolifeinfo.org
4. (0.785) Pregnancy Centers Online
URL:www.pregnancycenters.org
5. (0.778) After Abortion: Information o
URL:www.afterabortion.org
6. (0.777) prochoiceamerica.org : NARAL
URL:www.naral.org
7. (0.741) Human Life International
URL:www.hli.org
8. (0.704) Planned Parenthood Federation of
URL:www.plannedparenthood.org
9. (0.683) Abortion facts and informatio
URL:www.abortionfacts.com
10. (0.677) Abortion - Breast Cancer Link –
URL:www.abortioncancer.com

Norm
1. (1.000) National Right to Life
URL:www.nrlc.org
2. (0.966) Priests for Life Index
URL:www.priestsforlife.org
3. (0.929) Pregnancy Centers Online
URL:www.pregnancycenters.org
4. (0.927) ProLifeInfo.org
URL:www.prolifeinfo.org
5. (0.914) After Abortion: Information o
URL:www.afterabortion.org
6. (0.865) Human Life International
URL:www.hli.org
7. (0.860) Abortion - Breast Cancer Link –
URL:www.abortioncancer.com
8. (0.848) Abortion facts and informatio
URL:www.abortionfacts.com
9. (0.825) Campaign Life Coalition British C
URL:www.clcbc.org
10. (0.787) Coalition on Abortion/Breast
URL:www.abortionbreastcancer.com

BFS
1. (1.000) National Right to Life
URL:www.nrlc.org
2. (0.930) Priests for Life Index
URL:www.priestsforlife.org
3. (0.928) After Abortion: Information o
URL:www.afterabortion.org
4. (0.905) Pro-life news and information fro
URL:www.all.org
5. (0.893) ProLifeInfo.org
URL:www.prolifeinfo.org
6. (0.869) Pregnancy Centers Online
URL:www.pregnancycenters.org
7. (0.860) Human Life International
URL:www.hli.org
8. (0.852) Abortion facts and informatio
URL:www.abortionfacts.com
9. (0.847) prochoiceamerica.org : NARAL
URL:www.naral.org
10. (0.839) Planned Parenthood Federation of
URL:www.plannedparenthood.org

Table C.1: Query “abortion”
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Hits
1. (1.000) Affirmative Action and Divers
URL:aad.english.ucsb.edu
2. (0.719) American Association for Affi
URL:www.affirmativeaction.org
3. (0.700) U.S. Equal Employment
URL:www.eeoc.gov
4. (0.428) National Organization for Women
URL:www.now.org
5. (0.339) The United States Department of L
URL:www.dol.gov
6. (0.326) DiversityWeb - A Resource Hub for
URL:www.diversityweb.org
7. (0.315) Diversity Database, University of
URL:www.inform.umd.edu/EdRes/Topic
8. (0.285) Site Meter - Counter and Statis
URL:sm6.sitemeter.com/stats.asp?si
9. (0.285) Free web counter - Site access
URL:cqcounter.com/? id=nsnewman l
10. (0.285) Free web counter - Site access
URL:cqcounter.com

PageRank
1. (1.000) TEXT
URL:www.eoaa.vt.edu
2. (0.814) Faculty Jobs
URL:www.ps.vt.edu/employment/facjo
3. (0.752) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
4. (0.696) National Organization for Women
URL:www.now.org
5. (0.507) Copyright Information
URL:www.psu.edu/copyright.html
6. (0.468) The United States Department of L
URL:www.dol.gov
7. (0.421) Bureau of Labor Statistics Home P
URL:www.bls.gov
8. (0.389) Search at SMSU
URL:www.search.smsu.edu
9. (0.375) National Organization for Women
URL:www.nowpacs.org
10. (0.337) The Truth About George W. Bush
URL:www.thetruthaboutgeorge.com

InDegree
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.875) Affirmative Action and Divers
URL:aad.english.ucsb.edu
3. (0.852) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
4. (0.716) U.S. Equal Employment
URL:www.eeoc.gov
5. (0.682) American Association for Affi
URL:www.affirmativeaction.org
6. (0.568) Site Meter - Counter and Statis
URL:sm6.sitemeter.com/stats.asp?si
7. (0.568) Free web counter - Site access
URL:cqcounter.com/? id=nsnewman l
8. (0.568) Free web counter - Site access
URL:cqcounter.com
9. (0.545) National Organization for Women
URL:www.now.org
10. (0.534) Affirmative Action Register
URL:www.aar-eeo.com

HubAvg
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.310) PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice
3. (0.193) Welcome to Penn State’s Home on
URL:www.psu.edu
4. (0.001) PSU Office for Disability Servi
URL:www.lions.psu.edu/ods
5. (0.000) University of Illinois
URL:www.uiuc.edu
6. (0.000) Purdue University-West Lafayett
URL:www.purdue.edu
7. (0.000) University of Michigan
URL:www.umich.edu
8. (0.000) UC Berkeley home page
URL:www.berkeley.edu
9. (0.000) The University of Arizona
URL:www.arizona.edu
10. (0.000) The University of Iowa Homepage
URL:www.uiowa.edu

Max
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.447) PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice
3. (0.314) Welcome to Penn State’s Home on
URL:www.psu.edu
4. (0.010) University of Illinois
URL:www.uiuc.edu
5. (0.009) Purdue University-West Lafayett
URL:www.purdue.edu
6. (0.008) UC Berkeley home page
URL:www.berkeley.edu
7. (0.008) University of Michigan
URL:www.umich.edu
8. (0.008) The University of Arizona
URL:www.arizona.edu
9. (0.008) The University of Iowa Homepage
URL:www.uiowa.edu
10. (0.008) Penn: University of Pennsylvani
URL:www.upenn.edu

AT-med
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.447) PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice
3. (0.314) Welcome to Penn State’s Home on
URL:www.psu.edu
4. (0.010) University of Illinois
URL:www.uiuc.edu
5. (0.009) Purdue University-West Lafayett
URL:www.purdue.edu
6. (0.008) UC Berkeley home page
URL:www.berkeley.edu
7. (0.008) University of Michigan
URL:www.umich.edu
8. (0.008) The University of Arizona
URL:www.arizona.edu
9. (0.008) The University of Iowa Homepage
URL:www.uiowa.edu
10. (0.008) Penn: University of Pennsylvani
URL:www.upenn.edu

AT-avg
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.568) PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice
3. (0.396) Welcome to Penn State’s Home on
URL:www.psu.edu
4. (0.010) University of Illinois
URL:www.uiuc.edu
5. (0.009) Purdue University-West Lafayett
URL:www.purdue.edu
6. (0.008) UC Berkeley home page
URL:www.berkeley.edu
7. (0.008) University of Michigan
URL:www.umich.edu
8. (0.008) The University of Arizona
URL:www.arizona.edu
9. (0.008) The University of Iowa Homepage
URL:www.uiowa.edu
10. (0.008) Penn: University of Pennsylvani
URL:www.upenn.edu

Norm
1. (1.000) Copyright Information
URL:www.psu.edu/copyright.html
2. (0.484) PSU Affirmative Action
URL:www.psu.edu/dept/aaoffice
3. (0.343) Welcome to Penn State’s Home on
URL:www.psu.edu
4. (0.011) University of Illinois
URL:www.uiuc.edu
5. (0.009) Purdue University-West Lafayett
URL:www.purdue.edu
6. (0.009) UC Berkeley home page
URL:www.berkeley.edu
7. (0.008) University of Michigan
URL:www.umich.edu
8. (0.008) The University of Arizona
URL:www.arizona.edu
9. (0.008) The University of Iowa Homepage
URL:www.uiowa.edu
10. (0.008) Penn: University of Pennsylvani
URL:www.upenn.edu

BFS
1. (1.000) Affirmative Action and Divers
URL:aad.english.ucsb.edu
2. (0.845) American Association for Affi
URL:www.affirmativeaction.org
3. (0.780) U.S. Equal Employment
URL:www.eeoc.gov
4. (0.737) National Organization for Women
URL:www.now.org
5. (0.727) Empty title field
URL:www.auaa.org
6. (0.700) Welcome to aadap.org. Here y
URL:www.aadap.org
7. (0.689) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
8. (0.687) CIR Home
URL:www.cir-usa.org
9. (0.661) DiversityWeb - A Resource Hub for
URL:www.diversityweb.org
10. (0.657) CAA
URL:www.caasf.org

Table C.2: Query “affirmative action”
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Hits
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.904) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.794) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.703) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.548) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.502) Join Together Online - Take Actio
URL:www.jointogether.org
7. (0.475) National Council on Alcoholis
URL:www.ncadd.org
8. (0.460) Welcome to the Office of Nation
URL:www.whitehousedrugpolicy.gov
9. (0.454) Center on Alcohol Marketing a
URL:camy.org
10. (0.443) Al-Anon/Alateen
URL:www.al-anon.org

PageRank
1. (1.000) FirstGov 8212; Your First Cli
URL:www.firstgov.gov
2. (0.555) United States Department of Healt
URL:www.os.dhhs.gov
3. (0.432) Alice!gear: Go Ask Alice’s Onli
URL:www.alicegear.com
4. (0.382) National Institute on Alcohol
URL:www.niaaa.nih.gov
5. (0.372) Go Ask Alice! Home Page
URL:www.goaskalice.columbia.edu
6. (0.295) National Institutes of Health (
URL:www.nih.gov
7. (0.285) NCADI: SAMHSA’s The
URL:www.health.org
8. (0.268) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
9. (0.254) The Substance Abuse and Mental
URL:www.samhsa.gov
10. (0.228) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org

InDegree
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.834) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.811) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.612) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.528) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.478) Welcome to APOLNET
URL:www.apolnet.org
7. (0.432) Centers for Disease Control and
URL:www.cdc.gov
8. (0.426) ETOH Home Page
URL:etoh.niaaa.nih.gov
9. (0.382) Center on Alcohol Marketing a
URL:camy.org
10. (0.377) United States Department of Healt
URL:www.os.dhhs.gov

HubAvg
1. (1.000) The Substance Abuse and Mental
URL:www.samhsa.gov
2. (0.870) NCADI: SAMHSA’s The
URL:www.health.org
3. (0.693) National Institute on Alcohol
URL:www.niaaa.nih.gov
4. (0.667) ETOH Home Page
URL:etoh.niaaa.nih.gov
5. (0.595) SAMHSA Web: Center for
URL:www.samhsa.gov/centers/csap/cs
6. (0.559) Facility Locator
URL:findtreatment.samhsa.gov/facil
7. (0.544) SAMHSA Web: Center for
URL:www.samhsa.gov/centers/csat200
8. (0.530) SAMHSA Web: Center for Mental
URL:www.samhsa.gov/centers/cmhs/cm
9. (0.479) National Institute on Drug Abuse
URL:www.nida.nih.gov
10. (0.320) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org

Max
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.739) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.661) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.526) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.389) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.313) Join Together Online - Take Actio
URL:www.jointogether.org
7. (0.290) National Council on Alcoholis
URL:www.ncadd.org
8. (0.287) Centers for Disease Control and
URL:www.cdc.gov
9. (0.283) Welcome to the Office of Nation
URL:www.whitehousedrugpolicy.gov
10. (0.275) Higher Education Center for
URL:www.edc.org/hec

AT-med
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.825) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.716) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.590) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.426) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.347) Join Together Online - Take Actio
URL:www.jointogether.org
7. (0.326) National Council on Alcoholis
URL:www.ncadd.org
8. (0.318) Centers for Disease Control and
URL:www.cdc.gov
9. (0.316) Welcome to the Office of Nation
URL:www.whitehousedrugpolicy.gov
10. (0.306) Higher Education Center for
URL:www.edc.org/hec

AT-avg
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.863) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.794) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.644) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.454) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.387) Join Together Online - Take Actio
URL:www.jointogether.org
7. (0.363) National Council on Alcoholis
URL:www.ncadd.org
8. (0.356) Welcome to the Office of Nation
URL:www.whitehousedrugpolicy.gov
9. (0.343) Centers for Disease Control and
URL:www.cdc.gov
10. (0.340) Center on Alcohol Marketing
URL:camy.org

Norm
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.831) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.748) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.607) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.446) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.374) Join Together Online - Take Actio
URL:www.jointogether.org
7. (0.351) National Council on Alcoholis
URL:www.ncadd.org
8. (0.342) Welcome to the Office of Nation
URL:www.whitehousedrugpolicy.gov
9. (0.332) Center on Alcohol Marketing a
URL:camy.org
10. (0.330) Centers for Disease Control and
URL:www.cdc.gov

BFS
1. (1.000) NCADI: SAMHSA’s The
URL:www.health.org
2. (0.963) National Institute on Alcohol
URL:www.niaaa.nih.gov
3. (0.894) The Substance Abuse and Mental
URL:www.samhsa.gov
4. (0.863) National Institute on Drug Abuse
URL:www.nida.nih.gov
5. (0.855) Alcoholics Anonymous
URL:www.alcoholics-anonymous.org
6. (0.834) Welcome to APOLNET
URL:www.apolnet.org
7. (0.796) Centers for Disease Control and
URL:www.cdc.gov
8. (0.787) National Council on Alcoholis
URL:www.ncadd.org
9. (0.775) Al-Anon/Alateen
URL:www.al-anon.org
10. (0.767) Center on Alcohol Marketing
URL:camy.org

Table C.3: Query “alcohol”

162



Hits
1. (1.000) Welcome to RENOLDI rides
URL:www.renoldi.com
2. (0.933) IAAPA
URL:www.iaapa.org
3. (0.834) Knott’s
URL:www.knotts.com
4. (0.799) Traditional Amusement parks of th
URL:www.tradition.cjb.net
5. (0.788) HUSS
URL:www.hussrides.com
6. (0.779) Empty title field
URL:www.aimsintl.org
7. (0.772) Screamscape
URL:www.screamscape.com
8. (0.770) REVERCHON : HOME PAGE
URL:www.reverchon.com
9. (0.769) Empty title field
URL:www.zierer.com
10. (0.767) DE
URL:www.drewexpo.com

PageRank
1. (1.000) HONcode: Principles
URL:www.hon.ch/HONcode/Conduct.htm
2. (0.495) abc,Inflatable,moonwalk,moon bo
URL:www.adventure-bounce.com
3. (0.335) Local Business Listings Beachco
URL:business.beachcomberii.com
4. (0.332) NAARSO National Association
URL:www.naarso.com
5. (0.332) AttorneyPages Helps You Find th
URL:attorneypages.com
6. (0.332) Do It Yourself Home Improvement
URL:doityourself.com
7. (0.321) Theme Parks Classifieds
URL:adlistings.themeparks.about.co
8. (0.317) FreeFind Site Search
URL:search.freefind.com/find.html?
9. (0.315) Free Legal Advice in 100+ Law T
URL:freeadvice.com
10. (0.303) IAAPA
URL:www.iaapa.org

InDegree
1. (1.000) HONcode: Principles
URL:www.hon.ch/HONcode/Conduct.htm
2. (0.645) Empty title field
URL:www.sixflags.com
3. (0.589) Busch Gardens Adventure
URL:www.buschgardens.com
4. (0.567) IAAPA
URL:www.iaapa.org
5. (0.560) Free Legal Advice in 100+ Law T
URL:freeadvice.com
6. (0.560) AttorneyPages Helps You Find th
URL:attorneypages.com
7. (0.560) Do It Yourself Home Improvement
URL:doityourself.com
8. (0.532) ExpertPages.com - Books, Tapes
URL:expert-pages.com/books.htm
9. (0.489) Empty title field
URL:imgserv.adbutler.com/go2/;ID=1
10. (0.489) Empty title field
URL:imgserv.adbutler.com/go2/;ID=1

HubAvg
1. (1.000) HONcode: Principles
URL:www.hon.ch/HONcode/Conduct.htm
2. (0.000) AttorneyPages Helps You Find th
URL:attorneypages.com
3. (0.000) Do It Yourself Home Improvement
URL:doityourself.com
4. (0.000) Free Legal Advice in 100+ Law T
URL:freeadvice.com
5. (0.000) ExpertPages.com - Books, Tapes
URL:expert-pages.com/books.htm
6. (0.000) Accidents Happen - Why are Lawy
URL:law.freeadvice.com/resources/c
7. (0.000) Empty title field
URL:imgserv.adbutler.com/go2/;ID=1
8. (0.000) Empty title field
URL:imgserv.adbutler.com/go2/;ID=1
9. (0.000) Site Meter - Counter and Statis
URL:s10.sitemeter.com/stats.asp?si
10. (0.000) Empty title field
URL:imgserv.adbutler.com/go2/;ID=1

Max
1. (1.000) HONcode: Principles
URL:www.hon.ch/HONcode/Conduct.htm
2. (0.000) Empty title field
URL:www.sixflags.com
3. (0.000) Busch Gardens Adventure
URL:www.buschgardens.com
4. (0.000) Cedar Point Amusement Park
URL:www.cedarpoint.com
5. (0.000) IAAPA
URL:www.iaapa.org
6. (0.000) Knott’s
URL:www.knotts.com
7. (0.000) Universal Studios
URL:www.usf.com
8. (0.000) Welcome to RENOLDI rides
URL:www.renoldi.com
9. (0.000) Kennywood : America’s Finest
URL:www.kennywood.com
10. (0.000) Exhibits Collection – Amusement
URL:www.learner.org/exhibits/parkp

AT-med
1. (1.000) AttorneyPages Helps You Find th
URL:attorneypages.com
2. (1.000) Do It Yourself Home Improvement
URL:doityourself.com
3. (0.987) Free Legal Advice in 100+ Law T
URL:freeadvice.com
4. (0.949) ExpertPages.com - Books, Tapes
URL:expert-pages.com/books.htm
5. (0.866) Accidents Happen - Why are Lawy
URL:law.freeadvice.com/resources/c
6. (0.032) Expert Witness Directory — Fore
URL:expertpages.com
7. (0.017) Get Your Discount Card Today
URL:www.usaphonetime.com
8. (0.016) MapQuest: Home
URL:www.mapquest.com
9. (0.014) Adventure travel outdoor recr
URL:www.outsidemag.com
10. (0.013) Disneyland Resort - The offi
URL:www.disneyland.com

AT-avg
1. (1.000) AttorneyPages Helps You Find th
URL:attorneypages.com
2. (1.000) Do It Yourself Home Improvement
URL:doityourself.com
3. (0.995) Free Legal Advice in 100+ Law T
URL:freeadvice.com
4. (0.973) ExpertPages.com - Books, Tapes
URL:expert-pages.com/books.htm
5. (0.900) Accidents Happen - Why are Lawy
URL:law.freeadvice.com/resources/c
6. (0.016) Expert Witness Directory — Fore
URL:expertpages.com
7. (0.012) Get Your Discount Card Today
URL:www.usaphonetime.com
8. (0.008) The Expert Pages - About Advice
URL:expertpages.com/about.htm
9. (0.008) Terms amp; Conditions at Exper
URL:expertpages.com/conditions.htm
10. (0.008) Expert Pages Privacy Policy
URL:expertpages.com/privacy.htm

Norm
1. (1.000) AttorneyPages Helps You Find th
URL:attorneypages.com
2. (1.000) Do It Yourself Home Improvement
URL:doityourself.com
3. (0.995) Free Legal Advice in 100+ Law T
URL:freeadvice.com
4. (0.962) ExpertPages.com - Books, Tapes
URL:expert-pages.com/books.htm
5. (0.885) Accidents Happen - Why are Lawy
URL:law.freeadvice.com/resources/c
6. (0.025) Expert Witness Directory — Fore
URL:expertpages.com
7. (0.015) Get Your Discount Card Today
URL:www.usaphonetime.com
8. (0.011) MapQuest: Home
URL:www.mapquest.com
9. (0.010) The Expert Pages - About Advice
URL:expertpages.com/about.htm
10. (0.010) Terms amp; Conditions at Exper
URL:expertpages.com/conditions.htm

BFS
1. (1.000) Knott’s
URL:www.knotts.com
2. (0.910) Welcome to Gillette Shows
URL:www.gilletteshows.biz
3. (0.885) Welcome to RENOLDI rides
URL:www.renoldi.com
4. (0.884) IAAPA
URL:www.iaapa.org
5. (0.881) e-musementparkstore.com
URL:www.e-musementparkstore.com
6. (0.879) Great Adventure Source
URL:greatadventure.8m.com
7. (0.868) Web Page Under Construction
URL:www.carousel.org
8. (0.854) amutech
URL:amutech.homestead.com
9. (0.850) Joyrides - Amusement Park
URL:www.joyrides.com
10. (0.849) Pharaohs Lost Kingdom
URL:www.pharaohslostkingdom.com

Table C.4: Query “amusement parks”
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Hits
1. (1.000) All Conferences . Com
URL:www.allconferences.com
2. (0.996) Castles of the World Tours
URL:www.castlesoftheworld.com
3. (0.937) Affordable Globus Tours 11% Dis
URL:www.affordableglobustours.com
4. (0.935) Trafalgar Tours: 12% Discount o
URL:www.affordableTrafalgartours.c
5. (0.935) Contiki Tours: 5% discount on C
URL:www.affordableContikitours.com
6. (0.935) Ireland Tours: 5% Off CIE Tours
URL:www.affordableIrelandtours.com
7. (0.935) Collette Vacations: 5% discount
URL:www.affordablecollettetours.co
8. (0.931) Affordable Resorts - Discounts
URL:www.affordableresorts.com
9. (0.931) Club Med Resorts- Discounted Cl
URL:www.affordableclubmedresorts.c
10. (0.931) Disney Vacation - Disney Vacati
URL:www.affordabledisneyresorts.co

PageRank
1. (1.000) Virginia Tech
URL:www.vt.edu
2. (0.808) University Libraries at Virgini
URL:www.lib.vt.edu
3. (0.574) Archeire - Irish Architecture
URL:www.archeire.com
4. (0.338) Architecture Classifieds
URL:adlistings.architecture.about.
5. (0.319) AIFIA — Asilomar Institute for In
URL:www.aifia.org
6. (0.315) Architecture Ring
URL:archring.hypermart.net
7. (0.309) Hirst Arts Fantasy Architecture.
URL:www.hirstarts.com
8. (0.307) Welcome to Isfahan!
URL:www.anglia.ac.uk/∼trochford/is
9. (0.306) The Source for Java Technology
URL:java.sun.com
10. (0.305) Medieval France Home Page
URL:www.pitt.edu/∼medart/menufra

InDegree
1. (1.000) - - totemweb.com
URL:www.totemweb.com
2. (0.932) Architecture Design Images Hi
URL:www.greatbuildings.com
3. (0.828) Google
URL:www.google.com
4. (0.818) Empty title field
URL:www.aia.org
5. (0.813) ADAM, the Art, Design
URL:adam.ac.uk
6. (0.776) Architecture.com
URL:www.architecture.com
7. (0.766) e-Architect
URL:www.e-architect.com
8. (0.703) Architecture Centre Bristol
URL:www.arch-centre.demon.co.uk
9. (0.682) ReSources Home Page
URL:www.resources.com
10. (0.662) The Institute of Classical A
URL:www.classicist.org

HubAvg
1. (1.000) All Conferences . Com
URL:www.allconferences.com
2. (0.961) Castles of the World Tours
URL:www.castlesoftheworld.com
3. (0.750) Crosses.org
URL:www.crosses.org
4. (0.703) Castles Hotels
URL:www.castles-hotels.com
5. (0.703) Castles For Sale
URL:www.castles-for-sale.com
6. (0.648) Past Tours from Castles of the
URL:www.castlesoftheworld.com/Past
7. (0.620) Affordable Globus Tours 11% Dis
URL:www.affordableglobustours.com
8. (0.608) Trafalgar Tours: 12% Discount o
URL:www.affordableTrafalgartours.c
9. (0.608) Contiki Tours: 5% discount on C
URL:www.affordableContikitours.com
10. (0.608) Ireland Tours: 5% Off CIE Tours
URL:www.affordableIrelandtours.com

Max
1. (1.000) - - totemweb.com
URL:www.totemweb.com
2. (0.567) Architecture Design Images Hi
URL:www.greatbuildings.com
3. (0.465) Empty title field
URL:www.aia.org
4. (0.406) Google
URL:www.google.com
5. (0.384) e-Architect
URL:www.e-architect.com
6. (0.378) ADAM, the Art, Design
URL:adam.ac.uk
7. (0.372) ReSources Home Page
URL:www.resources.com
8. (0.365) Architecture.com
URL:www.architecture.com
9. (0.351) What You Need to Know About84
URL:www.about.com
10. (0.318) Architecture Centre Bristol
URL:www.arch-centre.demon.co.uk

AT-med
1. (1.000) - - totemweb.com
URL:www.totemweb.com
2. (0.980) Architecture Design Images Hi
URL:www.greatbuildings.com
3. (0.839) ADAM, the Art, Design
URL:adam.ac.uk
4. (0.773) Empty title field
URL:www.aia.org
5. (0.770) e-Architect
URL:www.e-architect.com
6. (0.766) Architecture.com
URL:www.architecture.com
7. (0.622) Fine Art - World Wide Arts Resour
URL:wwar.com
8. (0.558) Architecture Web Resources
URL:library.nevada.edu/arch/rsrce/
9. (0.549) ReSources Home Page
URL:www.resources.com
10. (0.546) What You Need to Know About84
URL:www.about.com

AT-avg
1. (1.000) All Conferences . Com
URL:www.allconferences.com
2. (0.940) Castles of the World Tours
URL:www.castlesoftheworld.com
3. (0.743) Crosses.org
URL:www.crosses.org
4. (0.704) Affordable Globus Tours 11% Dis
URL:www.affordableglobustours.com
5. (0.695) Collette Vacations: 5% discount
URL:www.affordablecollettetours.co
6. (0.695) Trafalgar Tours: 12% Discount o
URL:www.affordableTrafalgartours.c
7. (0.695) Contiki Tours: 5% discount on C
URL:www.affordableContikitours.com
8. (0.695) Ireland Tours: 5% Off CIE Tours
URL:www.affordableIrelandtours.com
9. (0.686) Affordable Tours - Discounts on
URL:www.AffordableTours.com
10. (0.686) Affordable Resorts - Discounts
URL:www.affordableresorts.com

Norm
1. (1.000) All Conferences . Com
URL:www.allconferences.com
2. (0.969) Castles of the World Tours
URL:www.castlesoftheworld.com
3. (0.828) Affordable Globus Tours 11% Dis
URL:www.affordableglobustours.com
4. (0.823) Trafalgar Tours: 12% Discount o
URL:www.affordableTrafalgartours.c
5. (0.823) Contiki Tours: 5% discount on C
URL:www.affordableContikitours.com
6. (0.823) Ireland Tours: 5% Off CIE Tours
URL:www.affordableIrelandtours.com
7. (0.823) Collette Vacations: 5% discount
URL:www.affordablecollettetours.co
8. (0.817) Affordable Resorts - Discounts
URL:www.affordableresorts.com
9. (0.817) Club Med Resorts- Discounted Cl
URL:www.affordableclubmedresorts.c
10. (0.817) Disney Vacation - Disney Vacati
URL:www.affordabledisneyresorts.co

BFS
1. (1.000) - - totemweb.com
URL:www.totemweb.com
2. (0.956) ReSources Home Page
URL:www.resources.com
3. (0.956) What You Need to Know About84
URL:www.about.com
4. (0.949) Architecture Centre Bristol
URL:www.arch-centre.demon.co.uk
5. (0.948) ADAM, the Art, Design
URL:adam.ac.uk
6. (0.948) Empty title field
URL:www.aia.org
7. (0.941) e-Architect
URL:www.e-architect.com
8. (0.936) The Institute of Classical Ar
URL:www.classicist.org
9. (0.931) AIFIA — Asilomar Institute for In
URL:www.aifia.org
10. (0.929) SourceNom.com
URL:www.p-pub.com

Table C.5: Query “architecture”
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Hits
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.995) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.995) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.995) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.995) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.995) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.215) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.012) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.012) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.001) Empty title field
URL:www.townhall.com

PageRank
1. (1.000) WETA TV 26/ 90.9 FM
URL:www.weta.org
2. (0.850) PBS - JAZZ A Film By Ken Burns
URL:www.pbs.org/jazz
3. (0.662) Armstrong International, Inc. - s
URL:www.armstrong-intl.com
4. (0.458) Armstrong Atlantic State Univers
URL:www.armstrong.edu
5. (0.458) GraphicSmiths - Innovative, Pro
URL:www.graphicsmith.com/gs
6. (0.410) Town Hall Book Service
URL:www.thbookservice.com
7. (0.405) Armstrong International European
URL:www.armstrong.be
8. (0.393) Board of Regents of the Univers
URL:www.usg.edu
9. (0.378) Welcome To Timeless Records
URL:www.timeless-records.com
10. (0.375) FIETSEN TEGEN KANKER
URL:www.fietsentegenkanker.org

InDegree
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.970) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.970) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.970) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.970) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.970) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.958) FIETSEN TEGEN KANKER
URL:www.fietsentegenkanker.org
8. (0.928) Herbert W. Armstrong Library and
URL:www.herbertwarmstrong.org
9. (0.737) Biblical Evidence for Catholici
URL:www.biblicalcatholic.com
10. (0.719) R.V. Armstrong amp Associates
URL:www.rvarmstrong.com

HubAvg
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.972) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.972) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.972) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.972) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.972) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.185) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.010) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.010) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.003) Empty title field
URL:www.townhall.com

Max
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.970) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.970) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.970) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.970) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.970) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.204) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.012) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.012) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.006) Empty title field
URL:www.townhall.com

AT-med
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.985) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.985) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.985) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.985) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.985) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.207) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.012) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.012) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.003) Empty title field
URL:www.townhall.com

AT-avg
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.990) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.990) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.990) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.990) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.990) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.208) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.012) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.012) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.002) Empty title field
URL:www.townhall.com

Norm
1. (1.000) Town Hall Book Service
URL:www.thbookservice.com
2. (0.987) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
3. (0.987) Town Hall - Letter from David L
URL:cf.heritage.org/rd.cfm?id=36
4. (0.987) World Vision
URL:etools.ncol.com/a/jgroup/bg wo
5. (0.987) Patterson, Colonel Robert: Dere
URL:www.thbookservice.com/BookPage
6. (0.987) Welcome to the Alexa Toolbar Do
URL:cf.heritage.org/rd.cfm?id=286
7. (0.208) Amazon.com: Books: Letters to
URL:www.amazon.com/exec/obidos/tg/
8. (0.012) Amazon.com: Books: Letters to a
URL:www.amazon.com/exec/obidos/ASI
9. (0.012) Amazon.com: Books: Beyond
URL:www.amazon.com/exec/obidos/ASI
10. (0.003) Empty title field
URL:www.townhall.com

BFS
1. (1.000) FIETSEN TEGEN KANKER
URL:www.fietsentegenkanker.org
2. (0.973) Herbert W. Armstrong Library and
URL:www.herbertwarmstrong.org
3. (0.942) Biblical Evidence for Catholici
URL:www.biblicalcatholic.com
4. (0.887) R.V. Armstrong amp Associates IS
URL:www.rvarmstrong.com
5. (0.855) Geist: Canadian Ideas, Canadian
URL:geist.com
6. (0.821) CleanReg by Armstrong’s Systems
URL:www.cleanreg.com
7. (0.791) The Unofficial Lance Armstrong Fa
URL:www.lancearmstrongfanclub.com
8. (0.746) Visual Escapes - artist directo
URL:surrealities.cjb.net
9. (0.734) brushstroke.tv
URL:www.brushstroke.tv
10. (0.725) Bienvenidos a la Municipalidad de
URL:www.armstrong.gov.ar

Table C.6: Query “armstrong”
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Hits
1. (1.000) E Business Solutions,Website Pr
URL:www.intermesh.net/advertis.htm
2. (0.979) Empty title field
URL:auto.indiamart.com
3. (0.978) Empty title field
URL:www.indiamart.com
4. (0.975) Empty title field
URL:www.indiangiftsportal.com
5. (0.972) Jewelry Box, Jewelry Gift Box,
URL:www.indiangiftsportal.com/indi
6. (0.972) Birthday Gifts,Birthday Gift Id
URL:www.indiangiftsportal.com/indi
7. (0.972) Anniversary Gifts,Wedding Anniv
URL:www.indiangiftsportal.com/indi
8. (0.972) Wedding Gifts,Wedding Anniversa
URL:www.indiangiftsportal.com/indi
9. (0.972) Mixed Bag, Exclusives, Indian G
URL:www.indiangiftsportal.com/indi
10. (0.972) Business Solutions,Ecommerce Bu
URL:www.intermesh.net

PageRank
1. (1.000) Hoovers Online Job Postings
URL:RecruitingCenter.net/clients/H
2. (0.680) twp home page
URL:www.worldpages.com/TWP/twpwebs
3. (0.585) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
4. (0.554) Government of Canada Site — Sit
URL:canada.gc.ca
5. (0.431) The National Academies
URL:www.nationalacademies.org
6. (0.425) Introduction au site Web offici
URL:www.canada.gc.ca/main f.html
7. (0.414) Empty title field
URL:www.indiantravelportal.com/taj
8. (0.359) National Academies Press
URL:www.nap.edu
9. (0.318) Empty title field
URL:www.aiacanada.com
10. (0.311) Group Goldwire, Complete Intern
URL:www.goldwire.com

InDegree
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.873) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.618) Government of Canada Site — Sit
URL:canada.gc.ca
4. (0.578) twp home page
URL:www.worldpages.com/TWP/twpwebs
5. (0.510) Empty title field
URL:www.bombaymotor.com
6. (0.471) Empty title field
URL:www.indiantravelportal.com/ind
7. (0.461) Mesurer et analyser l’audience
URL:www.xiti.com/xiti.asp?s=27855
8. (0.461) HitBoxCentral - HitBox Central
URL:rd1.hitbox.com/rd?acct=WQ50071
9. (0.451) Weborama leader europen de la
URL:www.weborama.com
10. (0.431) Automotive Industries
URL:www.ai-online.com

HubAvg
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.841) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.525) Empty title field
URL:www.indiantravelportal.com/ind
4. (0.400) Empty title field
URL:www.bombaymotor.com
5. (0.220) Adventure Tour Travel,India Adv
URL:www.indiantravelportal.com/adv
6. (0.121) Himalayas,Himalaya,India Himala
URL:www.indiantravelportal.com/him
7. (0.095) Empty title field
URL:www.indiantravelportal.com/tre
8. (0.050) Empty title field
URL:www.indiantravelportal.com/fai
9. (0.050) Empty title field
URL:www.indiantravelportal.com/fes
10. (0.012) Tripura,Tripura India,Tourism i
URL:www.indiantravelportal.com/tri

Max
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.873) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.505) Empty title field
URL:www.bombaymotor.com
4. (0.471) Empty title field
URL:www.indiantravelportal.com/ind
5. (0.284) Adventure Tour Travel,India Adv
URL:www.indiantravelportal.com/adv
6. (0.206) Himalayas,Himalaya,India Himala
URL:www.indiantravelportal.com/him
7. (0.147) Empty title field
URL:www.indiantravelportal.com/tre
8. (0.098) Empty title field
URL:www.indiantravelportal.com/fai
9. (0.098) Empty title field
URL:www.indiantravelportal.com/fes
10. (0.029) Tripura,Tripura India,Tourism i
URL:www.indiantravelportal.com/tri

AT-med
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.917) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.524) Empty title field
URL:www.bombaymotor.com
4. (0.485) Empty title field
URL:www.indiantravelportal.com/ind
5. (0.299) Adventure Tour Travel,India Adv
URL:www.indiantravelportal.com/adv
6. (0.216) Himalayas,Himalaya,India Himala
URL:www.indiantravelportal.com/him
7. (0.154) Empty title field
URL:www.indiantravelportal.com/tre
8. (0.103) Empty title field
URL:www.indiantravelportal.com/fai
9. (0.103) Empty title field
URL:www.indiantravelportal.com/fes
10. (0.031) Tripura,Tripura India,Tourism i
URL:www.indiantravelportal.com/tri

AT-avg
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.935) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.564) Empty title field
URL:www.bombaymotor.com
4. (0.462) Empty title field
URL:www.indiantravelportal.com/ind
5. (0.334) Adventure Tour Travel,India Adv
URL:www.indiantravelportal.com/adv
6. (0.239) Himalayas,Himalaya,India Himala
URL:www.indiantravelportal.com/him
7. (0.172) Empty title field
URL:www.indiantravelportal.com/tre
8. (0.113) Empty title field
URL:www.indiantravelportal.com/fai
9. (0.113) Empty title field
URL:www.indiantravelportal.com/fes
10. (0.035) Tripura,Tripura India,Tourism i
URL:www.indiantravelportal.com/tri

Norm
1. (1.000) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
2. (0.905) Empty title field
URL:www.indiantravelportal.com/taj
3. (0.526) Empty title field
URL:www.bombaymotor.com
4. (0.473) Empty title field
URL:www.indiantravelportal.com/ind
5. (0.302) Adventure Tour Travel,India Adv
URL:www.indiantravelportal.com/adv
6. (0.219) Himalayas,Himalaya,India Himala
URL:www.indiantravelportal.com/him
7. (0.158) Empty title field
URL:www.indiantravelportal.com/tre
8. (0.104) Empty title field
URL:www.indiantravelportal.com/fai
9. (0.104) Empty title field
URL:www.indiantravelportal.com/fes
10. (0.032) Tripura,Tripura India,Tourism i
URL:www.indiantravelportal.com/tri

BFS
1. (1.000) The Ontario Neurotrauma Foundat
URL:www.onf.org
2. (0.836) Automotive Industries
URL:www.ai-online.com
3. (0.812) Ward’s Dealer Business
URL:wdb.wardsauto.com
4. (0.787) Travel - India Travel,Tourism I
URL:www.indiantravelportal.com
5. (0.751) Automobile Magazine
URL:www.automobilemag.com
6. (0.739) Empty title field
URL:www.neoliteppi.com
7. (0.734) DaimlerChrysler
URL:www.daimlerchrysler.com
8. (0.733) Empty title field
URL:www.auto.com
9. (0.717) Empty title field
URL:www.indiantravelportal.com/taj
10. (0.715) Empty title field
URL:www.ford.com

Table C.7: Query “automobile industries”

166



Hits
1. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
2. (0.994) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
3. (0.994) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
4. (0.994) Empty title field
URL:g.msn.com/0nwenus0/AK/09
5. (0.994) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
6. (0.994) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
7. (0.994) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/12
8. (0.994) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/13
9. (0.988) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00
10. (0.988) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/01

PageRank
1. (1.000) Student Advantage Discount Card
URL:www.studentadvantage.com
2. (0.630) NBA.com
URL:www.nba.com
3. (0.362) Knight Ridder Corporate Web sit
URL:www.knightridder.com
4. (0.329) NCAA Online
URL:www.ncaa.org
5. (0.313) FIBA - International Basketba
URL:www.fiba.com
6. (0.234) National Basketball League
URL:www.nbl.com.au
7. (0.227) National Association of Basketbal
URL:www.nabc.com
8. (0.223) Realcities.com
URL:www.realcities.com
9. (0.214) Index of /
URL:www.internationalbasketball.co
10. (0.204) The Official Web Site of the
URL:www.hoophall.com

InDegree
1. (1.000) NBA.com
URL:www.nba.com
2. (0.996) Student Advantage Discount Card
URL:www.studentadvantage.com
3. (0.425) FIBA - International Basketba
URL:www.fiba.com
4. (0.392) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
5. (0.387) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
6. (0.387) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
7. (0.387) Empty title field
URL:g.msn.com/0nwenus0/AK/09
8. (0.387) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
9. (0.387) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
10. (0.387) MSN Money - More Useful
URL:g.msn.com/0nwenus0/AK/12

HubAvg
1. (1.000) Student Advantage Discount Card
URL:www.studentadvantage.com
2. (0.103) The University of North Carolin
URL:www.unc.edu
3. (0.103) University of North Carolina -
URL:www.mediateamlink.com/oas/unc
4. (0.095) UNC Rams Club
URL:www.ramsclub.org/home/5805.asp
5. (0.076) Florida State University Varsit
URL:www.fsuvarsityclub.org
6. (0.074) www.seminole-boosters.com
URL:www.seminole-boosters.com
7. (0.074) Tallahassee Map
URL:www.fsu.edu/Welcome/tallymaps/
8. (0.072) Welcome to Duke University Stor
URL:www.dukestore.com
9. (0.071) Empty title field
URL:netstile.evenue.net/evenue/se/
10. (0.067) University of Notre Dame
URL:www.nd.edu

Max
1. (1.000) NBA.com
URL:www.nba.com
2. (0.326) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
3. (0.322) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
4. (0.322) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
5. (0.322) Empty title field
URL:g.msn.com/0nwenus0/AK/09
6. (0.322) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
7. (0.322) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
8. (0.322) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/12
9. (0.322) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/13
10. (0.319) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00

AT-med
1. (1.000) NBA.com
URL:www.nba.com
2. (0.532) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
3. (0.526) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
4. (0.526) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
5. (0.526) Empty title field
URL:g.msn.com/0nwenus0/AK/09
6. (0.526) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
7. (0.526) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
8. (0.526) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/12
9. (0.526) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/13
10. (0.521) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00

AT-avg
1. (1.000) NBA.com
URL:www.nba.com
2. (0.783) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
3. (0.775) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
4. (0.775) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
5. (0.775) Empty title field
URL:g.msn.com/0nwenus0/AK/09
6. (0.775) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
7. (0.775) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
8. (0.775) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/12
9. (0.775) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/13
10. (0.766) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00

Norm
1. (1.000) NBA.com
URL:www.nba.com
2. (0.715) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
3. (0.709) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
4. (0.709) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08
5. (0.709) Empty title field
URL:g.msn.com/0nwenus0/AK/09
6. (0.709) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/10
7. (0.709) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/11
8. (0.709) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/12
9. (0.709) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/13
10. (0.703) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00

BFS
1. (1.000) NBA.com
URL:www.nba.com
2. (0.842) FIBA - International Basketba
URL:www.fiba.com
3. (0.788) NCAA Online
URL:www.ncaa.org
4. (0.762) The Official Site of USA Bask
URL:www.usabasketball.com
5. (0.753) Men’s Basketball - NCAA
URL:www.finalfour.net
6. (0.743) ESPN.com
URL:www.espn.com
7. (0.723) Winning Hoops Basketball
URL:www.winninghoops.com
8. (0.723) Rivals.com
URL:www.rivals.com
9. (0.715) The Official Web Site of the
URL:www.hoophall.com
10. (0.712) Duke University Blue Devils - Off
URL:www.goduke.com

Table C.8: Query “basketball”
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Hits
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.927) WebRing: addsite login
URL:l.webring.com/wrman?ring=blues
3. (0.890) A Cyber Blues Society for mus
URL:www.bluessociety.net
4. (0.866) Google Search:
URL:www.google.com/search
5. (0.863) BluesSociety.net - for musici
URL:sitebuilder.bluessociety.net
6. (0.855) Your Mailinglist Provider
URL:www.yourmailinglistprovider.co
7. (0.850) BluesSociety.net - Free Email S
URL:mail.bluessociety.net
8. (0.847) A Cyber Blues Society Blues L
URL:www.bluessociety.net/links03.h
9. (0.847) A Cyber Blues Society Blues L
URL:www.bluessociety.net/links05.h
10. (0.847) Blues Biographies - Artist o
URL:www.bluessociety.net/greats.

PageRank
1. (1.000) Vivendi Universal
URL:www.vivendiuniversal.com
2. (0.876) MP3.com: THE destination for digi
URL:www.mp3.com
3. (0.664) The Blues Foundation. Your
URL:www.blues.org
4. (0.566) Rob Hutten’s Home Page
URL:www.hutten.org/rob
5. (0.504) BluesNet home page
URL:bluesnet.hub.org
6. (0.445) Lily Sazz
URL:www.lilysazz.com
7. (0.430) FestivalFinder: Music Festivals o
URL:www.festivalfinder.com
8. (0.413) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
9. (0.393) YEAR OF THE BLUES 2003
URL:www.yearoftheblues.org
10. (0.334) Southwest Blues
URL:www.southwestblues.com

InDegree
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.864) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
3. (0.713) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
4. (0.691) The Blue Highway
URL:www.thebluehighway.com
5. (0.662) home
URL:www.fargobluesfest.com
6. (0.656) stantonanderson.com
URL:www.stantonanderson.com
7. (0.634) Dan’s Police Page
URL:danspolice.8m.com
8. (0.520) Blues On Stage, your complete
URL:www.mnblues.com
9. (0.502) A Cyber Blues Society for mus
URL:www.bluessociety.net
10. (0.495) Empty title field
URL:www.letthegoodtimesroll.com

HubAvg
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.687) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
3. (0.568) The Blue Highway
URL:www.thebluehighway.com
4. (0.524) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
5. (0.445) home
URL:www.fargobluesfest.com
6. (0.432) stantonanderson.com
URL:www.stantonanderson.com
7. (0.400) Dan’s Police Page
URL:danspolice.8m.com
8. (0.319) Blues On Stage, your complete
URL:www.mnblues.com
9. (0.315) A Cyber Blues Society for mus
URL:www.bluessociety.net
10. (0.299) BLUES WORLD
URL:www.bluesworld.com

Max
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.500) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
3. (0.413) The Blue Highway
URL:www.thebluehighway.com
4. (0.386) A Cyber Blues Society for mus
URL:www.bluessociety.net
5. (0.316) WebRing: addsite login
URL:l.webring.com/wrman?ring=blues
6. (0.310) BluesSociety.net - for musici
URL:sitebuilder.bluessociety.net
7. (0.302) Google Search:
URL:www.google.com/search
8. (0.292) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
9. (0.287) Blues On Stage, your complete
URL:www.mnblues.com
10. (0.276) BluesSociety.net - Free Email S
URL:mail.bluessociety.net

AT-med
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.703) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
3. (0.566) The Blue Highway
URL:www.thebluehighway.com
4. (0.452) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
5. (0.429) A Cyber Blues Society for mus
URL:www.bluessociety.net
6. (0.428) home
URL:www.fargobluesfest.com
7. (0.423) stantonanderson.com
URL:www.stantonanderson.com
8. (0.400) Dan’s Police Page
URL:danspolice.8m.com
9. (0.386) Blues On Stage, your complete
URL:www.mnblues.com
10. (0.342) BluesSociety.net - for music
URL:sitebuilder.bluessociety.net

AT-avg
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.789) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
3. (0.608) The Blue Highway
URL:www.thebluehighway.com
4. (0.589) home
URL:www.fargobluesfest.com
5. (0.582) stantonanderson.com
URL:www.stantonanderson.com
6. (0.566) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
7. (0.548) Dan’s Police Page
URL:danspolice.8m.com
8. (0.521) A Cyber Blues Society for mus
URL:www.bluessociety.net
9. (0.478) Blues On Stage, your complete
URL:www.mnblues.com
10. (0.438) Natchel’ Blues Network
URL:www.natchelblues.org

Norm
1. (1.000) The Blues Foundation. Your
URL:www.blues.org
2. (0.594) A Cyber Blues Society for mus
URL:www.bluessociety.net
3. (0.533) WebRing: addsite login
URL:l.webring.com/wrman?ring=blues
4. (0.515) BluesSociety.net - for musici
URL:sitebuilder.bluessociety.net
5. (0.502) Google Search:
URL:www.google.com/search
6. (0.476) BluesSociety.net - Free Email S
URL:mail.bluessociety.net
7. (0.473) Your Mailinglist Provider
URL:www.yourmailinglistprovider.co
8. (0.466) A Cyber Blues Society Blues L
URL:www.bluessociety.net/links03.h
9. (0.466) A Cyber Blues Society Blues L
URL:www.bluessociety.net/links05.h
10. (0.466) Blues Biographies - Artist o
URL:www.bluessociety.net/greats.

BFS
1. (1.000) Harry’s Blues Lyrics Online, Home
URL:blueslinks.tripod.com
2. (0.958) home
URL:www.fargobluesfest.com
3. (0.954) Delta Blues - DeltaBlues - delt
URL:www.deltablues.com
4. (0.952) The Blues Foundation. Your
URL:www.blues.org
5. (0.935) stantonanderson.com
URL:www.stantonanderson.com
6. (0.927) Dan’s Police Page
URL:danspolice.8m.com
7. (0.917) The Blue Highway
URL:www.thebluehighway.com
8. (0.906) Empty title field
URL:www.letthegoodtimesroll.com
9. (0.898) Dallas Blues Society Records
URL:www.dallasbluessociety.com
10. (0.883) Paul Pelletier - Book Publisher
URL:www.brightguy.demon.co.uk

Table C.9: Query “blues”
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Hits
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.874) wrongwaygoback : dynamic ribbon
URL:www.wrongwaygoback.com
3. (0.861) Boing Boing: A Directory of Won
URL:www.boingboing.net
4. (0.847) movabletype.org
URL:www.movabletype.org
5. (0.846) Izzle! Izzle pfaff!
URL:www.izzlepfaff.com
6. (0.843) Parasyte: Insanity of the Mind
URL:parasyte.pitas.com
7. (0.823) harrumph! still crazy.
URL:www.harrumph.com
8. (0.815) guestofbeth.diaryland.com
URL:guestofbeth.diaryland.com
9. (0.815) ::: wood s lot ::: ”fictive th
URL:www.ncf.ca/∼ek867/wood s lot.h
10. (0.814) Caterina.net
URL:caterina.net

PageRank
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.993) iGourmet.com Customer Reviews
URL:www.bizrate.com/merchant/repor
3. (0.977) Southern U.S. Cuisine Classifie
URL:adlistings.southernfood.about.
4. (0.903) movabletype.org
URL:www.movabletype.org
5. (0.888) 800cheesecake.com
URL:www.800cheesecake.com
6. (0.842) Gawker
URL:www.gawker.com
7. (0.742) BBBOnLine Seal Verification
URL:www.bbbonline.org/cks.asp?id=1
8. (0.726) G R I L L E D C H E E S E (.) C
URL:www.grilledcheese.com
9. (0.697) Luminee : Northern California W
URL:www.luminee.com
10. (0.684) Cheese of the month club — cheese
URL:www.cheeseexpress.com

InDegree
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.761) 800cheesecake.com
URL:www.800cheesecake.com
3. (0.685) Coming Soon...
URL:www.cheesegiftbasket.net
4. (0.674) Cheese of the month club — cheese
URL:www.cheeseexpress.com
5. (0.674) movabletype.org
URL:www.movabletype.org
6. (0.614) Ethnic art : African dance and
URL:www.ethnicarts.org
7. (0.582) Half Moon Bay Bed and Breakfast
URL:www.millroseinn.com
8. (0.582) Snowboard Boots for sale at Sno
URL:www.snowboard-boots.com
9. (0.560) Empty title field
URL:www.cheese-express.com
10. (0.538) Say Cheese - SayCheese - sayche
URL:www.saycheese.net

HubAvg
1. (1.000) Coming Soon...
URL:www.cheesegiftbasket.net
2. (0.942) Ethnic art : African dance and
URL:www.ethnicarts.org
3. (0.934) Snowboard Boots for sale at Sno
URL:www.snowboard-boots.com
4. (0.931) Half Moon Bay Bed and Breakfast
URL:www.millroseinn.com
5. (0.911) Empty title field
URL:www.cheese-express.com
6. (0.236) Empty title field
URL:www.santacruzwebdesign.com
7. (0.235) Small business merchant account
URL:www.ikorb.com
8. (0.227) Cookie gifts : cookie delivery
URL:www.pacificcookie.com
9. (0.216) Bushrods BBQ Equipment
URL:www.bushrods.com
10. (0.212) b.firm Skin Care Products - Try
URL:www.tobfirm.com

Max
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.559) movabletype.org
URL:www.movabletype.org
3. (0.419) wrongwaygoback : dynamic ribbon
URL:www.wrongwaygoback.com
4. (0.371) Boing Boing: A Directory of Won
URL:www.boingboing.net
5. (0.371) Izzle! Izzle pfaff!
URL:www.izzlepfaff.com
6. (0.358) guestofbeth.diaryland.com
URL:guestofbeth.diaryland.com
7. (0.325) Parasyte: Insanity of the Mind
URL:parasyte.pitas.com
8. (0.272) harrumph! still crazy.
URL:www.harrumph.com
9. (0.270) kottke.org :: home of fine hype
URL:kottke.org
10. (0.267) anil dash - New York Still Love
URL:dashes.com/anil

AT-med
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.595) movabletype.org
URL:www.movabletype.org
3. (0.457) wrongwaygoback : dynamic ribbon
URL:www.wrongwaygoback.com
4. (0.403) Izzle! Izzle pfaff!
URL:www.izzlepfaff.com
5. (0.400) Boing Boing: A Directory of Won
URL:www.boingboing.net
6. (0.389) guestofbeth.diaryland.com
URL:guestofbeth.diaryland.com
7. (0.345) Parasyte: Insanity of the Mind
URL:parasyte.pitas.com
8. (0.299) harrumph! still crazy.
URL:www.harrumph.com
9. (0.298) kottke.org :: home of fine hype
URL:kottke.org
10. (0.295) anil dash - New York Still Love
URL:dashes.com/anil

AT-avg
1. (1.000) Coming Soon...
URL:www.cheesegiftbasket.net
2. (0.985) Ethnic art : African dance and
URL:www.ethnicarts.org
3. (0.968) Snowboard Boots for sale at Sno
URL:www.snowboard-boots.com
4. (0.961) Half Moon Bay Bed and Breakfast
URL:www.millroseinn.com
5. (0.925) Empty title field
URL:www.cheese-express.com
6. (0.363) Empty title field
URL:www.santacruzwebdesign.com
7. (0.359) Small business merchant account
URL:www.ikorb.com
8. (0.350) Cookie gifts : cookie delivery
URL:www.pacificcookie.com
9. (0.333) Bushrods BBQ Equipment
URL:www.bushrods.com
10. (0.329) b.firm Skin Care Products - Try
URL:www.tobfirm.com

Norm
1. (1.000) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
2. (0.664) movabletype.org
URL:www.movabletype.org
3. (0.596) wrongwaygoback : dynamic ribbon
URL:www.wrongwaygoback.com
4. (0.551) Boing Boing: A Directory of Won
URL:www.boingboing.net
5. (0.543) Izzle! Izzle pfaff!
URL:www.izzlepfaff.com
6. (0.519) guestofbeth.diaryland.com
URL:guestofbeth.diaryland.com
7. (0.508) Parasyte: Insanity of the Mind
URL:parasyte.pitas.com
8. (0.466) harrumph! still crazy.
URL:www.harrumph.com
9. (0.456) anil dash - New York Still Love
URL:dashes.com/anil
10. (0.451) Travelers Diagram...an apprecia
URL:www.travelersdiagram.com

BFS
1. (1.000) Cheese of the month club — cheese
URL:www.cheeseexpress.com
2. (0.940) 800cheesecake.com
URL:www.800cheesecake.com
3. (0.881) Say Cheese - SayCheese - sayche
URL:www.saycheese.net
4. (0.858) floor4.org
URL:floor4.org
5. (0.843) nbsp; nbsp; nbsp; nbsp; (ca
URL:caffeinediary.blogspot.com
6. (0.811) littlebarnfarm.com
URL:www.littlebarnfarm.com
7. (0.793) CHEESE.COM - All about
URL:www.cheese.com
8. (0.789) Cheese Racing
URL:www.cheeseracing.org
9. (0.755) Ask Jesus - askjesus.8k.com
URL:www.askjesus.8k.com
10. (0.753) Entertaining
URL:cheese.about.com

Table C.10: Query “cheese”
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Hits
1. (1.000) earlyromanticguitar.com
URL:www.earlyromanticguitar.com
2. (0.927) Empty title field
URL:classicalguitar.freehosting.ne
3. (0.889) Adirondack Spruce.com
URL:adirondackspruce.com
4. (0.766) The Classical Guitar Homepage of
URL:www.ak-c.demon.nl
5. (0.732) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
6. (0.681) Empty title field
URL:www.guitarfoundation.org
7. (0.676) GUITAR REVIEW
URL:www.guitarreview.com
8. (0.644) Avi Afriat - Classical guitar hom
URL:afriat.tripod.com
9. (0.605) The Classical Guitar Home Pag
URL:www.guitarist.com/cg/cg.htm
10. (0.586) Empty title field
URL:www.duolenz.com

PageRank
1. (1.000) Take Note Publishing Limited fo
URL:www.takenote.co.uk
2. (0.724) Guitar music, guitar books and so
URL:www.booksforguitar.com
3. (0.588) Registry of Guitar Tutors
URL:www.registryofguitartutors.com
4. (0.528) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
5. (0.416) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
6. (0.413) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
7. (0.413) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
8. (0.387) Empty title field
URL:www.guitarfoundation.org
9. (0.343) Guitar Foundation of America:
URL:64.78.54.231
10. (0.322) Vivendi Universal
URL:www.vivendiuniversal.com

InDegree
1. (1.000) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
2. (0.895) earlyromanticguitar.com
URL:www.earlyromanticguitar.com
3. (0.889) Empty title field
URL:www.guitarfoundation.org
4. (0.882) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
5. (0.850) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
6. (0.850) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
7. (0.784) Adirondack Spruce.com
URL:adirondackspruce.com
8. (0.778) Empty title field
URL:classicalguitar.freehosting.ne
9. (0.765) Empty title field
URL:www.vicnet.net.au/∼easyjamn
10. (0.739) The Classical Guitar Homepage of
URL:www.ak-c.demon.nl

HubAvg
1. (1.000) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
2. (0.995) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
3. (0.995) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
4. (0.856) Empty title field
URL:www.vicnet.net.au/∼easyjamn
5. (0.135) AMG All Music Guide
URL:www.allmusic.com
6. (0.132) Free Music Download, MP3 Music,
URL:ubl.com
7. (0.130) 2000 Guitars Database
URL:dargo.vicnet.net.au/guitar/lis
8. (0.115) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
9. (0.096) CDNOW
URL:www.cdnow.com/from=sr-767167
10. (0.056) OLGA - The On-Line Guitar
URL:www.olga.net

Max
1. (1.000) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
2. (0.619) earlyromanticguitar.com
URL:www.earlyromanticguitar.com
3. (0.506) Empty title field
URL:www.guitarfoundation.org
4. (0.451) Adirondack Spruce.com
URL:adirondackspruce.com
5. (0.441) Empty title field
URL:classicalguitar.freehosting.ne
6. (0.378) GUITAR REVIEW
URL:www.guitarreview.com
7. (0.377) The Classical Guitar Homepage of
URL:www.ak-c.demon.nl
8. (0.371) The Classical Guitar Home Pag
URL:www.guitarist.com/cg/cg.htm
9. (0.336) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
10. (0.312) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml

AT-med
1. (1.000) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
2. (0.983) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
3. (0.983) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
4. (0.880) Empty title field
URL:www.vicnet.net.au/∼easyjamn
5. (0.205) AMG All Music Guide
URL:www.allmusic.com
6. (0.193) Free Music Download, MP3 Music,
URL:ubl.com
7. (0.169) 2000 Guitars Database
URL:dargo.vicnet.net.au/guitar/lis
8. (0.132) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
9. (0.129) CDNOW
URL:www.cdnow.com/from=sr-767167
10. (0.082) OLGA - The On-Line Guitar
URL:www.olga.net

AT-avg
1. (1.000) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
2. (0.986) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
3. (0.986) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
4. (0.906) Empty title field
URL:www.vicnet.net.au/∼easyjamn
5. (0.210) AMG All Music Guide
URL:www.allmusic.com
6. (0.199) Free Music Download, MP3 Music,
URL:ubl.com
7. (0.179) 2000 Guitars Database
URL:dargo.vicnet.net.au/guitar/lis
8. (0.135) CDNOW
URL:www.cdnow.com/from=sr-767167
9. (0.122) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
10. (0.080) OLGA - The On-Line Guitar
URL:www.olga.net

Norm
1. (1.000) Hitsquad.com - Musicians Web
URL:www.hitsquad.com
2. (0.979) Hitsquad Privacy Policy
URL:www.hitsquad.com/privacy.shtml
3. (0.979) Advertising on Hitsquad Music I
URL:www.hitsquad.com/advertising.s
4. (0.889) Empty title field
URL:www.vicnet.net.au/∼easyjamn
5. (0.218) AMG All Music Guide
URL:www.allmusic.com
6. (0.202) Free Music Download, MP3 Music,
URL:ubl.com
7. (0.185) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
8. (0.172) 2000 Guitars Database
URL:dargo.vicnet.net.au/guitar/lis
9. (0.130) CDNOW
URL:www.cdnow.com/from=sr-767167
10. (0.118) earlyromanticguitar.com
URL:www.earlyromanticguitar.com

BFS
1. (1.000) Empty title field
URL:classicalguitar.freehosting.ne
2. (0.991) earlyromanticguitar.com
URL:www.earlyromanticguitar.com
3. (0.974) Adirondack Spruce.com
URL:adirondackspruce.com
4. (0.962) Empty title field
URL:www.guitarfoundation.org
5. (0.945) Guitar Alive - GuitarAlive - gu
URL:www.guitaralive.com
6. (0.933) The Classical Guitar Homepage of
URL:www.ak-c.demon.nl
7. (0.917) The Classical Guitar Home Pag
URL:www.guitarist.com/cg/cg.htm
8. (0.898) Avi Afriat - Classical guitar hom
URL:afriat.tripod.com
9. (0.889) GUITAR REVIEW
URL:www.guitarreview.com
10. (0.881) Empty title field
URL:www.duolenz.com

Table C.11: Query “classical guitar”
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Hits
1. (1.000) Ziff Davis Media — Home
URL:www.ziffdavis.com
2. (0.998) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
3. (0.998) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
4. (0.950) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
5. (0.950) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
6. (0.950) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
7. (0.934) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/rlist?t
8. (0.934) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/detail?
9. (0.934) eWeek Research Library: How to
URL:eweek.bitpipe.com/data/detail?
10. (0.934) eWeek Research Library: The CIO
URL:eweek.bitpipe.com/data/detail?

PageRank
1. (1.000) Manchester Metropolitan Univers
URL:www.mmu.ac.uk
2. (0.727) SFI Home Page
URL:www.santafe.edu
3. (0.703) Complexity Digest
URL:www.comdig.org
4. (0.685) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
5. (0.653) Holistic Politics
URL:www.holisticpolitics.com
6. (0.639) Artificial Life VIII The 8th Inte
URL:alife8.alife.org
7. (0.565) Google
URL:www.google.com
8. (0.563) KMNetwork: World’s most reputed
URL:www.kmnetwork.com
9. (0.551) Business, Technology, and Knowl
URL:www.kmnetwork.com/ken/jobs.htm
10. (0.530) Fractal 2004: International
URL:www.kingston.ac.uk/fractal

InDegree
1. (1.000) SFI Home Page
URL:www.santafe.edu
2. (0.863) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
3. (0.601) Ziff Davis Media — Home
URL:www.ziffdavis.com
4. (0.595) Artificial Life VIII The 8th Inte
URL:alife8.alife.org
5. (0.583) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
6. (0.583) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
7. (0.577) Google
URL:www.google.com
8. (0.554) Complexity Digest
URL:www.comdig.org
9. (0.470) Empty title field
URL:www.ams.org
10. (0.440) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda

HubAvg
1. (1.000) Ziff Davis Media — Home
URL:www.ziffdavis.com
2. (0.981) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
3. (0.981) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
4. (0.894) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
5. (0.894) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
6. (0.894) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
7. (0.866) Ziff Davis Media — About
URL:www.ziffdavis.com/about/index.
8. (0.835) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/rlist?t
9. (0.835) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/detail?
10. (0.835) eWeek Research Library: How to
URL:eweek.bitpipe.com/data/detail?

Max
1. (1.000) SFI Home Page
URL:www.santafe.edu
2. (0.325) New England Complex
URL:necsi.org
3. (0.304) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
4. (0.251) Complexity Digest
URL:www.comdig.org
5. (0.234) Artificial Life VIII The 8th Inte
URL:alife8.alife.org
6. (0.216) The Complexity and Artificial
URL:www.calresco.org
7. (0.205) Google
URL:www.google.com
8. (0.186) Complexity, Self Adaptive
URL:www.brint.com/Systems.htm
9. (0.186) CCSR Homepage
URL:www.ccsr.uiuc.edu
10. (0.182) Emergence - A Journal of
URL:www.emergence.org

AT-med
1. (1.000) SFI Home Page
URL:www.santafe.edu
2. (0.489) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
3. (0.362) New England Complex
URL:necsi.org
4. (0.338) Complexity Digest
URL:www.comdig.org
5. (0.321) Artificial Life VIII The 8th Inte
URL:alife8.alife.org
6. (0.288) Google
URL:www.google.com
7. (0.248) The Complexity and Artificial
URL:www.calresco.org
8. (0.241) The Collection of Computer Scienc
URL:liinwww.ira.uka.de/bibliograph
9. (0.222) Empty title field
URL:www.ams.org
10. (0.211) Complexity, Self Adaptive
URL:www.brint.com/Systems.htm

AT-avg
1. (1.000) Ziff Davis Media — Home
URL:www.ziffdavis.com
2. (0.989) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
3. (0.989) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
4. (0.773) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
5. (0.773) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
6. (0.773) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
7. (0.754) Ziff Davis Media — About
URL:www.ziffdavis.com/about/index.
8. (0.731) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/rlist?t
9. (0.731) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/detail?
10. (0.731) eWeek Research Library: How to
URL:eweek.bitpipe.com/data/detail?

Norm
1. (1.000) Ziff Davis Media — Home
URL:www.ziffdavis.com
2. (0.991) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
3. (0.991) Ziff Davis Media — Privacy Poli
URL:www.ziffdavis.com/terms/index.
4. (0.872) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
5. (0.872) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
6. (0.872) :::::::::::::::::::: Registrati
URL:webevents.broadcast.com/ziffda
7. (0.848) Ziff Davis Media — About
URL:www.ziffdavis.com/about/index.
8. (0.843) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/rlist?t
9. (0.843) eWeek Research Library: Wireles
URL:eweek.bitpipe.com/data/detail?
10. (0.843) eWeek Research Library: How to
URL:eweek.bitpipe.com/data/detail?

BFS
1. (1.000) SFI Home Page
URL:www.santafe.edu
2. (0.921) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
3. (0.854) Google
URL:www.google.com
4. (0.832) The Collection of Computer Scienc
URL:liinwww.ira.uka.de/bibliograph
5. (0.812) Complexity, Self Adaptive
URL:www.brint.com/Systems.htm
6. (0.805) New England Complex
URL:necsi.org
7. (0.771) The Complexity and Artificial
URL:www.calresco.org
8. (0.768) Complexity International
URL:www.csu.edu.au/ci
9. (0.766) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
10. (0.762) Artificial Life VIII The 8th Inte
URL:alife8.alife.org

Table C.12: Query “complexity”
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Hits
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.323) ACM: Association for Computing
URL:www.acm.org
3. (0.288) The Electronic Journal of Combina
URL:www.combinatorics.org
4. (0.287) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
5. (0.273) Springer Link - Publication
URL:link.springer-ny.com/link/serv
6. (0.205) IEEE Computer Society
URL:computer.org
7. (0.202) European Association for Theoreti
URL:www.eatcs.org
8. (0.197) Complexity People
URL:eccc.uni-trier.de/eccc/info/pe
9. (0.163) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexity
10. (0.157) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs

PageRank
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.985) My Computational Complexity Web
URL:www.fortnow.com/lance/complog
3. (0.877) Computational Complexity
URL:computationalcomplexity.org
4. (0.635) European Association for Theoreti
URL:www.eatcs.org
5. (0.570) Welcome to Springer, springer-v
URL:www.springer.de
6. (0.564) Volume on Computational
URL:www.c3.lanl.gov/∼percus/volume
7. (0.542) The Hyper Bulletin of the EATCS
URL:www.liacs.nl/∼beatcs
8. (0.480) Springer Link - Publication
URL:link.springer-ny.com/link/serv
9. (0.474) gillespiefox web design
URL:www.gillespiefox.com
10. (0.455) University of Illinois
URL:www.uiuc.edu

InDegree
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.517) My Computational Complexity Web
URL:www.fortnow.com/lance/complog
3. (0.415) Springer Link - Publication
URL:link.springer-ny.com/link/serv
4. (0.305) ACM: Association for Computing
URL:www.acm.org
5. (0.297) The Electronic Journal of Combina
URL:www.combinatorics.org
6. (0.271) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexity
7. (0.263) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
8. (0.229) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
9. (0.229) IEEE Computer Society
URL:computer.org
10. (0.220) Computational Complexity
URL:computationalcomplexity.org

HubAvg
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.771) My Computational Complexity Web
URL:www.fortnow.com/lance/complog
3. (0.196) Springer Link - Publication
URL:link.springer-ny.com/link/serv
4. (0.149) The Electronic Journal of Combina
URL:www.combinatorics.org
5. (0.131) ACM: Association for Computing
URL:www.acm.org
6. (0.128) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
7. (0.113) CC Published by Birkhauml;us
URL:www.birkhauser.ch/journals/370
8. (0.108) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexity
9. (0.103) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
10. (0.085) Complexity People
URL:eccc.uni-trier.de/eccc/info/

Max
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.225) Springer Link - Publication
URL:link.springer-ny.com/link/serv
3. (0.219) ACM: Association for Computing
URL:www.acm.org
4. (0.210) The Electronic Journal of Combina
URL:www.combinatorics.org
5. (0.195) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
6. (0.142) Complexity People
URL:eccc.uni-trier.de/eccc/info/pe
7. (0.138) IEEE Computer Society
URL:computer.org
8. (0.135) European Association for Theoreti
URL:www.eatcs.org
9. (0.134) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
10. (0.125) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexi

AT-med
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.249) Springer Link - Publication
URL:link.springer-ny.com/link/serv
3. (0.244) ACM: Association for Computing
URL:www.acm.org
4. (0.238) The Electronic Journal of Combina
URL:www.combinatorics.org
5. (0.217) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
6. (0.160) IEEE Computer Society
URL:computer.org
7. (0.154) Complexity People
URL:eccc.uni-trier.de/eccc/info/pe
8. (0.145) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
9. (0.144) European Association for Theoreti
URL:www.eatcs.org
10. (0.136) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexi

AT-avg
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.265) ACM: Association for Computing
URL:www.acm.org
3. (0.262) Springer Link - Publication
URL:link.springer-ny.com/link/serv
4. (0.255) The Electronic Journal of Combina
URL:www.combinatorics.org
5. (0.236) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
6. (0.175) IEEE Computer Society
URL:computer.org
7. (0.164) Complexity People
URL:eccc.uni-trier.de/eccc/info/pe
8. (0.156) European Association for Theoreti
URL:www.eatcs.org
9. (0.150) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
10. (0.142) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexi

Norm
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.235) Springer Link - Publication
URL:link.springer-ny.com/link/serv
3. (0.232) ACM: Association for Computing
URL:www.acm.org
4. (0.223) The Electronic Journal of Combina
URL:www.combinatorics.org
5. (0.208) Center for Discrete Mathematics a
URL:dimacs.rutgers.edu
6. (0.149) IEEE Computer Society
URL:computer.org
7. (0.149) Complexity People
URL:eccc.uni-trier.de/eccc/info/pe
8. (0.142) European Association for Theoreti
URL:www.eatcs.org
9. (0.139) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
10. (0.132) IEEE Conference on Comp
URL:cs.utep.edu/longpre/complexi

BFS
1. (1.000) ECCC - The Electronic
URL:eccc.uni-trier.de/eccc
2. (0.715) Lance Fortnow
URL:www.neci.nj.nec.com/homepages/
3. (0.698) Springer Link - Publication
URL:link.springer-ny.com/link/serv
4. (0.648) Computer Science Papers NEC
URL:citeseer.nj.nec.com/cs
5. (0.642) The Electronic Journal of Combina
URL:www.combinatorics.org
6. (0.639) Jiri Sgall
URL:www.math.cas.cz/∼sgall
7. (0.639) ACM: Association for Computing
URL:www.acm.org
8. (0.638) My Computational Complexity Web
URL:www.fortnow.com/lance/complog
9. (0.636) Paul Beame
URL:www.cs.washington.edu/homes/be
10. (0.632) Complexity People
URL:eccc.uni-trier.de/eccc/info/

Table C.13: Query “computational complexity”

172



Hits
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.745) The former CGAL home page
URL:www.cs.uu.nl/CGAL
3. (0.665) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.618) David Eppstein
URL:www.ics.uci.edu/∼eppstein
5. (0.608) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
6. (0.556) Joseph O’Rourke
URL:cs.smith.edu/∼orourke
7. (0.529) Springer Link - Publication
URL:link.springer.de/link/service/
8. (0.516) LEDA moved to Algorithmic Sol
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
9. (0.452) The compgeom mailing lists
URL:netlib.bell-labs.com/netlib/co
10. (0.446) Gnter M. Ziegler
URL:www.math.tu-berlin.de/∼ziegler

PageRank
1. (1.000) University of California, Irvin
URL:www.uci.edu
2. (0.719) BertelsmannSpringer Science+Bus
URL:www.bertelsmannspringer.de
3. (0.702) The CGAL Home Page
URL:www.cgal.org
4. (0.663) ACM: Association for Computing
URL:www.acm.org
5. (0.537) Validation Results
URL:validator.w3.org/check/referer
6. (0.517) Google
URL:www.google.com
7. (0.472) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
8. (0.460) ScienceDirect - Computational
URL:www.sciencedirect.com/science/
9. (0.429) DREXEL UNIVERSITY
URL:www.drexel.edu
10. (0.429) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum

InDegree
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.681) The former CGAL home page
URL:www.cs.uu.nl/CGAL
3. (0.632) ACM: Association for Computing
URL:www.acm.org
4. (0.618) WebCT.com
URL:www.webct.com
5. (0.590) DREXEL UNIVERSITY
URL:www.drexel.edu
6. (0.590) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum
7. (0.535) Springer Link - Publication
URL:link.springer.de/link/service/
8. (0.472) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
9. (0.458) Computational Geometry
URL:www.elsevier.nl/locate/comgeo
10. (0.458) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/ju

HubAvg
1. (1.000) WebCT.com
URL:www.webct.com
2. (0.944) DREXEL UNIVERSITY
URL:www.drexel.edu
3. (0.944) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum
4. (0.129) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
5. (0.095) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
6. (0.094) The CGAL Home Page
URL:www.cgal.org
7. (0.083) Joseph O’Rourke
URL:cs.smith.edu/∼orourke
8. (0.081) Fast Robust Predicates for Comput
URL:www.cs.cmu.edu/∼quake/robust.h
9. (0.080) Computational Geometry
URL:www.uiuc.edu/ph/www/jeffe/comp
10. (0.074) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/ju

Max
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.459) The former CGAL home page
URL:www.cs.uu.nl/CGAL
3. (0.377) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.346) Computational Geometr
URL:www.scs.carleton.ca/∼csgs/reso
5. (0.283) Computational Geometry
URL:compgeom.cs.uiuc.edu/∼jeffe/co
6. (0.220) David Eppstein
URL:www.ics.uci.edu/∼eppstein
7. (0.210) ACM: Association for Computing
URL:www.acm.org
8. (0.205) Springer Link - Publication
URL:link.springer.de/link/service/
9. (0.194) The Stony Brook Algorithm Reposit
URL:www.cs.sunysb.edu/∼algorith
10. (0.191) MathWorld
URL:mathworld.wolfram.com

AT-med
1. (1.000) WebCT.com
URL:www.webct.com
2. (0.986) DREXEL UNIVERSITY
URL:www.drexel.edu
3. (0.986) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum
4. (0.467) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
5. (0.257) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
6. (0.256) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
7. (0.220) The former CGAL home page
URL:www.cs.uu.nl/CGAL
8. (0.205) Joseph O’Rourke
URL:cs.smith.edu/∼orourke
9. (0.165) Computational Geometry
URL:compgeom.cs.uiuc.edu/∼jeffe/co
10. (0.150) The CGAL Home Page
URL:www.cgal.org

AT-avg
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.899) WebCT.com
URL:www.webct.com
3. (0.885) DREXEL UNIVERSITY
URL:www.drexel.edu
4. (0.885) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum
5. (0.533) The former CGAL home page
URL:www.cs.uu.nl/CGAL
6. (0.502) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
7. (0.486) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
8. (0.356) Computational Geometry
URL:compgeom.cs.uiuc.edu/∼jeffe/co
9. (0.316) Joseph O’Rourke
URL:cs.smith.edu/∼orourke
10. (0.284) Springer Link - Publication
URL:link.springer.de/link/service/

Norm
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.507) The former CGAL home page
URL:www.cs.uu.nl/CGAL
3. (0.420) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.393) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
5. (0.339) WebCT.com
URL:www.webct.com
6. (0.327) DREXEL UNIVERSITY
URL:www.drexel.edu
7. (0.327) A Virtual Math Community
URL:www.drexel.edu/ia/mathforum
8. (0.313) Computational Geometry
URL:compgeom.cs.uiuc.edu/∼jeffe/co
9. (0.250) Springer Link - Publication
URL:link.springer.de/link/service/
10. (0.250) ACM: Association for Computing
URL:www.acm.org

BFS
1. (1.000) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
2. (0.898) The former CGAL home page
URL:www.cs.uu.nl/CGAL
3. (0.841) Springer Link - Publication
URL:link.springer.de/link/service/
4. (0.836) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
5. (0.815) LEDA moved to Algorithmic Sol
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
6. (0.814) David Eppstein
URL:www.ics.uci.edu/∼eppstein
7. (0.808) Joseph O’Rourke
URL:cs.smith.edu/∼orourke
8. (0.802) Computational Geometry
URL:www.scs.carleton.ca/∼csgs/reso
9. (0.752) The Stony Brook Algorithm Reposit
URL:www.cs.sunysb.edu/∼algorith
10. (0.734) The compgeom mailing lists
URL:netlib.bell-labs.com/netlib/

Table C.14: Query “computational geometry”
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Hits
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.968) NCADP - National Coalition
URL:www.ncadp.org
3. (0.904) CUADP: For Alternatives to
URL:www.cuadp.org
4. (0.896) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
5. (0.893) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
6. (0.890) Death Penalty Focus
URL:www.deathpenalty.org
7. (0.887) Campaign To End The Death
URL:www.nodeathpenalty.org
8. (0.878) Death Penalty Links
URL:www.derechos.org/dp
9. (0.865) Virginians for Alternatives to
URL:www.vadp.org
10. (0.863) Ohioans To Stop Executions
URL:www.otse.org

PageRank
1. (1.000) Moratorium Campaign – Current
URL:www.capwiz.com/moratorium/issu
2. (0.954) CBS.SportsLine.com
URL:cbs.sportsline.com
3. (0.912) Empty title field
URL:www.ncadp2.org
4. (0.746) Office of Justice Programs Home
URL:www.ojp.usdoj.gov
5. (0.710) NCADP - National Coalition
URL:www.ncadp.org
6. (0.623) Office of Juvenile Justice and
URL:www.ojjdp.ncjrs.org
7. (0.430) Juvenile Campaign
URL:www.ncadp.org/html/juvenile ca
8. (0.429) Death Penalty Information
URL:www.deathpenaltyinfo.org
9. (0.418) Pro Death Penalty.com Discussio
URL:prodp.proboards18.com
10. (0.407) Human Rights Watch
URL:store.yahoo.com/hrwpubs

InDegree
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.807) NCADP - National Coalition
URL:www.ncadp.org
3. (0.522) Pro-death penalty.com
URL:www.prodeathpenalty.com
4. (0.454) CBS.SportsLine.com
URL:cbs.sportsline.com
5. (0.424) CUADP: For Alternatives to
URL:www.cuadp.org
6. (0.397) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
7. (0.383) American Civil Liberties Union
URL:www.aclu.org
8. (0.380) Campaign To End The Death
URL:www.nodeathpenalty.org
9. (0.373) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
10. (0.369) Death Penalty Links
URL:www.derechos.org/dp

HubAvg
1. (1.000) CBS.SportsLine.com
URL:cbs.sportsline.com
2. (0.008) TDCJ - Statistics - Home Page
URL:www.tdcj.state.tx.us/statistic
3. (0.004) CBSNews.com
URL:www.cbsnews.com
4. (0.002) Death Penalty Information
URL:www.deathpenaltyinfo.org
5. (0.002) Pro-death penalty.com
URL:www.prodeathpenalty.com
6. (0.002) Campaign To End The Death
URL:www.nodeathpenalty.org
7. (0.001) American Civil Liberties Unio
URL:www.aclu.org/death-penalty
8. (0.001) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
9. (0.001) LII: Law about...the Death Pe
URL:www.law.cornell.edu/topics/dea
10. (0.001) ABCNEWS.com: Home
URL:www.abcnews.com

Max
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.661) NCADP - National Coalition
URL:www.ncadp.org
3. (0.388) Pro-death penalty.com
URL:www.prodeathpenalty.com
4. (0.324) CUADP: For Alternatives to
URL:www.cuadp.org
5. (0.277) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
6. (0.268) Death Penalty Links
URL:www.derechos.org/dp
7. (0.259) Campaign To End The Death
URL:www.nodeathpenalty.org
8. (0.244) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
9. (0.227) Murder Victims Families for Rec
URL:www.mvfr.org
10. (0.222) American Civil Liberties Uni
URL:www.aclu.org/death-penalty

AT-med
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.774) NCADP - National Coalition
URL:www.ncadp.org
3. (0.444) Pro-death penalty.com
URL:www.prodeathpenalty.com
4. (0.401) CUADP: For Alternatives to
URL:www.cuadp.org
5. (0.348) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
6. (0.329) Death Penalty Links
URL:www.derechos.org/dp
7. (0.323) Campaign To End The Death
URL:www.nodeathpenalty.org
8. (0.306) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
9. (0.278) Murder Victims Families for Rec
URL:www.mvfr.org
10. (0.277) American Civil Liberties Uni
URL:www.aclu.org/death-penalty

AT-avg
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.830) NCADP - National Coalition
URL:www.ncadp.org
3. (0.472) CUADP: For Alternatives to
URL:www.cuadp.org
4. (0.448) Pro-death penalty.com
URL:www.prodeathpenalty.com
5. (0.418) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
6. (0.386) Campaign To End The Death
URL:www.nodeathpenalty.org
7. (0.384) Death Penalty Links
URL:www.derechos.org/dp
8. (0.380) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
9. (0.332) Death Penalty Focus
URL:www.deathpenalty.org
10. (0.325) Murder Victims Families for Rec
URL:www.mvfr.org

Norm
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.768) NCADP - National Coalition
URL:www.ncadp.org
3. (0.436) Pro-death penalty.com
URL:www.prodeathpenalty.com
4. (0.412) CUADP: For Alternatives to
URL:www.cuadp.org
5. (0.364) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
6. (0.344) Campaign To End The Death
URL:www.nodeathpenalty.org
7. (0.343) Death Penalty Links
URL:www.derechos.org/dp
8. (0.333) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
9. (0.294) Death Penalty Focus
URL:www.deathpenalty.org
10. (0.290) Murder Victims Families for Rec
URL:www.mvfr.org

BFS
1. (1.000) Death Penalty Information
URL:www.deathpenaltyinfo.org
2. (0.899) NCADP - National Coalition
URL:www.ncadp.org
3. (0.867) Pro-death penalty.com
URL:www.prodeathpenalty.com
4. (0.843) Death Penalty : Sister Helen Pr
URL:www.moratorium2000.org
5. (0.838) Death Penalty Information (fr
URL:sun.soci.niu.edu/∼critcrim/dp/
6. (0.824) CUADP: For Alternatives to
URL:www.cuadp.org
7. (0.816) Death Penalty Links
URL:www.derechos.org/dp
8. (0.811) Campaign To End The Death
URL:www.nodeathpenalty.org
9. (0.801) Amnesty International
URL:www.web.amnesty.org/rmp/dplibr
10. (0.798) Murder Victims Families for Rec
URL:www.mvfr.org

Table C.15: Query “death penalty”
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Hits
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.656) The Genome Database
URL:www.gdb.org
3. (0.644) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
4. (0.565) The Institute for Genomic Res
URL:www.tigr.org
5. (0.545) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
6. (0.537) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu
7. (0.502) www.genome.gov
URL:www.nhgri.nih.gov
8. (0.491) National Institutes of Health (
URL:www.nih.gov
9. (0.482) European Bioinformatics Insti
URL:www.ebi.ac.uk
10. (0.478) UK MRC HGMP-RC
URL:www.hgmp.mrc.ac.uk

PageRank
1. (1.000) National Institutes of Health (
URL:www.nih.gov
2. (0.958) National Institute of General M
URL:www.nigms.nih.gov
3. (0.565) All Conferences . Com
URL:www.allconferences.net
4. (0.555) Castles of the World
URL:www.castles.org
5. (0.549) The Jackson Laboratory- Advanci
URL:www.jax.org
6. (0.547) MGI 2.96nbsp;-nbsp;Mouse Ge
URL:www.informatics.jax.org
7. (0.484) Crosses.org
URL:www.crosses.org
8. (0.476) U.S. National Library of Medici
URL:www.nlm.nih.gov
9. (0.386) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
10. (0.337) Office of Science
URL:www.er.doe.gov

InDegree
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.640) National Institutes of Health (
URL:www.nih.gov
3. (0.541) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
4. (0.497) www.genome.gov
URL:www.nhgri.nih.gov
5. (0.451) The Genome Database
URL:www.gdb.org
6. (0.409) Genetic Alliance, Inc.
URL:www.geneticalliance.org
7. (0.396) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
8. (0.390) U.S. National Library of Medici
URL:www.nlm.nih.gov
9. (0.376) The Genetic Algorithms
URL:www.aic.nrl.navy.mil/galist
10. (0.352) The Institute for Genomic Re
URL:www.tigr.org

HubAvg
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.767) National Institutes of Health (
URL:www.nih.gov
3. (0.432) U.S. National Library of Medici
URL:www.nlm.nih.gov
4. (0.368) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
5. (0.339) www.genome.gov
URL:www.nhgri.nih.gov
6. (0.302) The Genome Database
URL:www.gdb.org
7. (0.261) Genetic Alliance, Inc.
URL:www.geneticalliance.org
8. (0.218) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
9. (0.209) Entrez-PubMed
URL:www4.ncbi.nlm.nih.gov/PubMed
10. (0.208) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu

Max
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.361) National Institutes of Health (
URL:www.nih.gov
3. (0.338) The Genome Database
URL:www.gdb.org
4. (0.316) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
5. (0.284) www.genome.gov
URL:www.nhgri.nih.gov
6. (0.277) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
7. (0.256) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu
8. (0.251) The Institute for Genomic Res
URL:www.tigr.org
9. (0.224) European Bioinformatics Insti
URL:www.ebi.ac.uk
10. (0.210) U.S. National Library of Medici
URL:www.nlm.nih.gov

AT-med
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.450) National Institutes of Health (
URL:www.nih.gov
3. (0.391) The Genome Database
URL:www.gdb.org
4. (0.384) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
5. (0.348) www.genome.gov
URL:www.nhgri.nih.gov
6. (0.320) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
7. (0.286) The Institute for Genomic Res
URL:www.tigr.org
8. (0.280) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu
9. (0.269) U.S. National Library of Medici
URL:www.nlm.nih.gov
10. (0.245) European Bioinformatics Inst
URL:www.ebi.ac.uk

AT-avg
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.467) National Institutes of Health (
URL:www.nih.gov
3. (0.454) The Genome Database
URL:www.gdb.org
4. (0.438) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
5. (0.395) www.genome.gov
URL:www.nhgri.nih.gov
6. (0.379) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
7. (0.331) The Institute for Genomic Res
URL:www.tigr.org
8. (0.317) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu
9. (0.284) U.S. National Library of Medici
URL:www.nlm.nih.gov
10. (0.278) European Bioinformatics Inst
URL:www.ebi.ac.uk

Norm
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.431) National Institutes of Health (
URL:www.nih.gov
3. (0.412) The Genome Database
URL:www.gdb.org
4. (0.395) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
5. (0.357) www.genome.gov
URL:www.nhgri.nih.gov
6. (0.349) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk
7. (0.309) The Institute for Genomic Res
URL:www.tigr.org
8. (0.302) Whitehead Institute/MIT
URL:www-genome.wi.mit.edu
9. (0.265) European Bioinformatics Insti
URL:www.ebi.ac.uk
10. (0.257) U.S. National Library of Medici
URL:www.nlm.nih.gov

BFS
1. (1.000) NCBI HomePage
URL:www.ncbi.nlm.nih.gov
2. (0.901) OMIM Home Page – Online
URL:www3.ncbi.nlm.nih.gov/Omim
3. (0.866) National Institutes of Health (
URL:www.nih.gov
4. (0.841) www.genome.gov
URL:www.nhgri.nih.gov
5. (0.821) GeneTests Home Page
URL:www.geneclinics.org
6. (0.819) U.S. National Library of Medici
URL:www.nlm.nih.gov
7. (0.813) The Genome Database
URL:www.gdb.org
8. (0.810) Darren Fisher nbsp; Computer A
URL:www.dazzy-d.demon.co.uk
9. (0.809) The Institute for Genomic Res
URL:www.tigr.org
10. (0.806) The Wellcome Trust Sanger Insti
URL:www.sanger.ac.uk

Table C.16: Query “genetic”
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Hits
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.628) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.610) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.446) MathWorld
URL:mathworld.wolfram.com
5. (0.404) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
6. (0.373) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
7. (0.336) The Math Forum Home Page
URL:mathforum.org
8. (0.300) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/referenc
9. (0.262) Wolfram Research, Inc.
URL:www.wri.com
10. (0.258) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli

PageRank
1. (1.000) WebCT.com
URL:www.webct.com
2. (0.931) University of California, Irvin
URL:www.uci.edu
3. (0.791) Site Meter - Counter and Statis
URL:sm2.sitemeter.com/stats.asp?si
4. (0.644) Medieval Art, History and Archi
URL:www.newyorkcarver.com
5. (0.618) WebEQ has moved
URL:www.webeq.com
6. (0.593) The Geometry Center
URL:freeabel.geom.umn.edu
7. (0.583) Design Science - How Science Co
URL:www.dessci.com
8. (0.438) The Interactive Geometry Softwa
URL:www.cinderella.de
9. (0.436) National Science Foundation (NS
URL:www.nsf.gov
10. (0.415) Knowledge Management Software
URL:math.askme.com/op

InDegree
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.876) WebCT.com
URL:www.webct.com
3. (0.618) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
4. (0.560) MathWorld
URL:mathworld.wolfram.com
5. (0.537) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
6. (0.452) Geometry and Topology
URL:www.maths.warwick.ac.uk/gt
7. (0.452) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
8. (0.436) SpringerLink - Publication
URL:link.springer.de/link/service/
9. (0.417) The Math Forum Home Page
URL:mathforum.org
10. (0.386) Empty title field
URL:www.ams.org/ecgd

HubAvg
1. (1.000) WebCT.com
URL:www.webct.com
2. (0.069) The Geometry Center
URL:freeabel.geom.umn.edu
3. (0.056) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.042) Connected Geometry Home Page
URL:www.edc.org/LTT/ConnGeo
5. (0.038) Cynthia Lanius’ Lessons: Geomet
URL:math.rice.edu/∼lanius/Geom
6. (0.032) Dynamic Geometry Home
URL:www.edc.org/LTT/DG
7. (0.032) C.a.R.
URL:mathsrv.ku-eichstaett.de/MGF/h
8. (0.031) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
9. (0.031) Geometry Step by Step from
URL:agutie.homestead.com
10. (0.031) The Interactive Geometry Softwa
URL:www.cinderella.de

Max
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.349) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.329) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.237) MathWorld
URL:mathworld.wolfram.com
5. (0.231) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
6. (0.227) WebCT.com
URL:www.webct.com
7. (0.226) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
8. (0.225) The Math Forum Home Page
URL:mathforum.org
9. (0.175) GANG — Geometry Analysis
URL:www.gang.umass.edu
10. (0.161) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/refere

AT-med
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.466) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.439) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.333) MathWorld
URL:mathworld.wolfram.com
5. (0.285) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
6. (0.278) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
7. (0.277) WebCT.com
URL:www.webct.com
8. (0.275) The Math Forum Home Page
URL:mathforum.org
9. (0.198) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/referenc
10. (0.197) GANG — Geometry Analysis
URL:www.gang.umass.edu

AT-avg
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.542) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.509) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.389) MathWorld
URL:mathworld.wolfram.com
5. (0.336) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
6. (0.323) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
7. (0.319) The Math Forum Home Page
URL:mathforum.org
8. (0.252) WebCT.com
URL:www.webct.com
9. (0.229) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/referenc
10. (0.215) National Council of Teachers of
URL:www.nctm.org

Norm
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.429) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.405) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.307) MathWorld
URL:mathworld.wolfram.com
5. (0.275) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
6. (0.271) WebCT.com
URL:www.webct.com
7. (0.266) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
8. (0.263) The Math Forum Home Page
URL:mathforum.org
9. (0.192) GANG — Geometry Analysis
URL:www.gang.umass.edu
10. (0.188) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/refere

BFS
1. (1.000) The Geometry Center
URL:freeabel.geom.umn.edu
2. (0.898) Geometry in Action
URL:www.ics.uci.edu/∼eppstein/geom
3. (0.891) The Geometry Junkyard
URL:www.ics.uci.edu/∼eppstein/junk
4. (0.838) MathWorld
URL:mathworld.wolfram.com
5. (0.816) A Gallery of Interactive On-L
URL:www.geom.umn.edu/apps/gallery.
6. (0.812) Geometry Formulas and Facts
URL:www.geom.umn.edu/docs/referenc
7. (0.801) Euclid’s Elements, Introducti
URL:aleph0.clarku.edu/∼djoyce/java
8. (0.798) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
9. (0.789) WebCT.com
URL:www.webct.com
10. (0.788) Native American Geometry
URL:www.earthmeasure.com

Table C.17: Query “geometry”
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Hits
1. (1.000) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
2. (0.999) Baltimore Independent Media Cen
URL:baltimoreimc.org
3. (0.994) Empty title field
URL:sdimc.org
4. (0.991) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
5. (0.989) Urbana-Champaign Independent
URL:www.ucimc.org
6. (0.988) Danbury, CT Independent Media
URL:www.madhattersimc.org
7. (0.987) IndyMedia Center -
URL:indymedia.org.il
8. (0.984) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
9. (0.983) Vaikuttava Tietotoimisto (VAI)
URL:www.vaikuttava.net
10. (0.981) Adelaide indymedia - webcast ne
URL:adelaide.indymedia.org.au

PageRank
1. (1.000) Welcome to Harvard University
URL:www.harvard.edu
2. (0.602) Harvard Business School
URL:www.hbs.edu
3. (0.465) Center for International Develo
URL:www.cid.harvard.edu
4. (0.235) OneWorld.net -
URL:www.oneworld.net
5. (0.215) Globalization Issues Classifi
URL:adlistings.globalization.about
6. (0.197) Foreign Affairs - Home
URL:www.foreignaffairs.org
7. (0.193) The Globalization Website
URL:www.emory.edu/SOC/globalizatio
8. (0.192) Council on Foreign Relations
URL:www.cfr.org
9. (0.190) CFR
URL:www.cfr.org/about/mission.php
10. (0.190) IDG.net — The Global IT Network
URL:www.idg.net

InDegree
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.793) indymedia uk
URL:www.indymedia.org.uk
3. (0.756) International Forum on Global
URL:www.ifg.org
4. (0.695) WTO — Welcome to the WTO
URL:www.wto.org
5. (0.690) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
6. (0.681) The Institute for Deep Ecology:
URL:www.deep-ecology.org
7. (0.653) The World Bank Group
URL:www.worldbank.org
8. (0.638) Baltimore Independent Media Cen
URL:baltimoreimc.org
9. (0.629) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
10. (0.629) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org

HubAvg
1. (1.000) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
2. (0.998) Independent Media Center -
URL:www.indymedia.org
3. (0.985) Baltimore Independent Media Cen
URL:baltimoreimc.org
4. (0.982) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
5. (0.980) Urbana-Champaign Independent
URL:www.ucimc.org
6. (0.979) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
7. (0.973) Empty title field
URL:sdimc.org
8. (0.973) Danbury, CT Independent Media
URL:www.madhattersimc.org
9. (0.968) IndyMedia Center -
URL:indymedia.org.il
10. (0.966) Adelaide indymedia - webcast ne
URL:adelaide.indymedia.org.au

Max
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.723) indymedia uk
URL:www.indymedia.org.uk
3. (0.618) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
4. (0.585) Baltimore Independent Media Cen
URL:baltimoreimc.org
5. (0.575) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
6. (0.573) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
7. (0.568) Urbana-Champaign Independent
URL:www.ucimc.org
8. (0.564) IndyMedia Center -
URL:indymedia.org.il
9. (0.564) Empty title field
URL:sdimc.org
10. (0.563) Danbury, CT Independent Media
URL:www.madhattersimc.org

AT-med
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.788) indymedia uk
URL:www.indymedia.org.uk
3. (0.698) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
4. (0.668) Baltimore Independent Media Cen
URL:baltimoreimc.org
5. (0.657) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
6. (0.653) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
7. (0.650) Urbana-Champaign Independent
URL:www.ucimc.org
8. (0.645) IndyMedia Center -
URL:indymedia.org.il
9. (0.645) Empty title field
URL:sdimc.org
10. (0.644) Danbury, CT Independent Media
URL:www.madhattersimc.org

AT-avg
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.930) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
3. (0.916) Baltimore Independent Media Cen
URL:baltimoreimc.org
4. (0.906) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
5. (0.899) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
6. (0.895) Urbana-Champaign Independent
URL:www.ucimc.org
7. (0.892) Empty title field
URL:sdimc.org
8. (0.892) Danbury, CT Independent Media
URL:www.madhattersimc.org
9. (0.890) IndyMedia Center -
URL:indymedia.org.il
10. (0.885) Adelaide indymedia - webcast ne
URL:adelaide.indymedia.org.au

Norm
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.956) INDYMEDIA TIJUANA :: centro
URL:www.tijuanaimc.org
3. (0.943) Baltimore Independent Media Cen
URL:baltimoreimc.org
4. (0.934) Melbourne Independent Media Cen
URL:www.melbourne.indymedia.org
5. (0.929) Empty title field
URL:sdimc.org
6. (0.929) Urbana-Champaign Independent
URL:www.ucimc.org
7. (0.929) Indymedia - news - Aotearoa Ind
URL:www.indymedia.org.nz
8. (0.926) Danbury, CT Independent Media
URL:www.madhattersimc.org
9. (0.925) IndyMedia Center -
URL:indymedia.org.il
10. (0.919) Adelaide indymedia - webcast ne
URL:adelaide.indymedia.org.au

BFS
1. (1.000) Independent Media Center -
URL:www.indymedia.org
2. (0.917) WTO — Welcome to the WTO
URL:www.wto.org
3. (0.906) The Institute for Deep Ecology:
URL:www.deep-ecology.org
4. (0.892) International Forum on Global
URL:www.ifg.org
5. (0.847) IMF – International Monetary
URL:www.imf.org
6. (0.838) The World Bank Group
URL:www.worldbank.org
7. (0.823) indymedia uk
URL:www.indymedia.org.uk
8. (0.819) Bretton Woods Project
URL:www.brettonwoodsproject.org
9. (0.815) Welcome to the UN. It’s your wo
URL:www.un.org
10. (0.789) Landless Workers’ Movement
URL:www.mstbrazil.org

Table C.18: Query “globalization”
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Hits
1. (1.000) Coffee Club
URL:www.batavia-rof.com
2. (0.982) Hotel and Travel
URL:www.bwdriftwood.com
3. (0.935) Basement Writers
URL:www.basement-writers.com
4. (0.935) Before Today
URL:www.beforetoday.com
5. (0.935) Bennett Boxing
URL:www.bennettboxing.com
6. (0.935) Boeing Mail
URL:www.boeingmail.com
7. (0.935) Burdan USA
URL:www.burdanusa.com
8. (0.935) British Jokes
URL:www.callusforfun.com
9. (0.917) Religious Happenings
URL:www.bellbrook-umc.com
10. (0.917) Blade Liners
URL:www.bladeliners.com

PageRank
1. (1.000) Yahoo! Groups : Educate-Yoursel
URL:groups.yahoo.com/group/Educate
2. (0.811) Empty title field
URL:educate-yourself.org
3. (0.562) Empty title field
URL:www.cafeshops.com/cp/store.asp
4. (0.541) Legislative Action Center - G
URL:capwiz.com/jointogether
5. (0.472) Gun Violence Home Page
URL:www.jointogether.org/gv
6. (0.427) Empty title field
URL:www.cafepress.com/esrgun
7. (0.392) National Rifle Association -
URL:www.nra.org
8. (0.389) The Brady Campaign to
URL:www.handguncontrol.org
9. (0.271) Keep and Bear Armsnbsp;-nbs
URL:www.keepandbeararms.com
10. (0.267) NewsMax.com - America’s News
URL:www.newsmax.com

InDegree
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.782) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.628) Gun Owners of America
URL:www.gunowners.org
4. (0.504) The Violence Policy Center
URL:www.vpc.org
5. (0.474) Jews for the Preservation of Fi
URL:www.jpfo.org
6. (0.457) Coalition to Stop Gun Violenc
URL:www.gunfree.org
7. (0.457) CCRKBA Home Page
URL:www.ccrkba.org
8. (0.385) Women Against Gun Control
URL:www.wagc.com
9. (0.355) GunTruths: The truth about
URL:www.guntruths.com
10. (0.346) GunCite: gun control and Sec
URL:www.guncite.com

HubAvg
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.771) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.360) Gun Owners of America
URL:www.gunowners.org
4. (0.328) The Violence Policy Center
URL:www.vpc.org
5. (0.297) CCRKBA Home Page
URL:www.ccrkba.org
6. (0.289) Coalition to Stop Gun Violenc
URL:www.gunfree.org
7. (0.270) Jews for the Preservation of Fi
URL:www.jpfo.org
8. (0.199) Women Against Gun Control
URL:www.wagc.com
9. (0.178) GunCite: gun control and Seco
URL:www.guncite.com
10. (0.171) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org

Max
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.651) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.537) Gun Owners of America
URL:www.gunowners.org
4. (0.419) The Violence Policy Center
URL:www.vpc.org
5. (0.415) CCRKBA Home Page
URL:www.ccrkba.org
6. (0.387) Jews for the Preservation of Fi
URL:www.jpfo.org
7. (0.334) Coalition to Stop Gun Violenc
URL:www.gunfree.org
8. (0.298) Women Against Gun Control
URL:www.wagc.com
9. (0.266) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org
10. (0.245) GunCite: gun control and Sec
URL:www.guncite.com

AT-med
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.703) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.620) Gun Owners of America
URL:www.gunowners.org
4. (0.488) The Violence Policy Center
URL:www.vpc.org
5. (0.486) CCRKBA Home Page
URL:www.ccrkba.org
6. (0.444) Jews for the Preservation of Fi
URL:www.jpfo.org
7. (0.388) Coalition to Stop Gun Violenc
URL:www.gunfree.org
8. (0.346) Women Against Gun Control
URL:www.wagc.com
9. (0.308) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org
10. (0.276) GunCite: gun control and Sec
URL:www.guncite.com

AT-avg
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.703) Gun Owners of America
URL:www.gunowners.org
3. (0.671) The Brady Campaign to
URL:www.handguncontrol.org
4. (0.567) CCRKBA Home Page
URL:www.ccrkba.org
5. (0.509) Jews for the Preservation of Fi
URL:www.jpfo.org
6. (0.509) The Violence Policy Center
URL:www.vpc.org
7. (0.404) Coalition to Stop Gun Violenc
URL:www.gunfree.org
8. (0.391) Women Against Gun Control
URL:www.wagc.com
9. (0.355) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org
10. (0.311) Keep and Bear Armsnbsp;-nb
URL:www.keepandbeararms.com

Norm
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.685) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.606) Gun Owners of America
URL:www.gunowners.org
4. (0.478) CCRKBA Home Page
URL:www.ccrkba.org
5. (0.469) The Violence Policy Center
URL:www.vpc.org
6. (0.439) Jews for the Preservation of Fi
URL:www.jpfo.org
7. (0.374) Coalition to Stop Gun Violenc
URL:www.gunfree.org
8. (0.339) Women Against Gun Control
URL:www.wagc.com
9. (0.302) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org
10. (0.275) GunCite: gun control and Sec
URL:www.guncite.com

BFS
1. (1.000) National Rifle Association -
URL:www.nra.org
2. (0.922) The Brady Campaign to
URL:www.handguncontrol.org
3. (0.888) Gun Owners of America
URL:www.gunowners.org
4. (0.826) The Violence Policy Center
URL:www.vpc.org
5. (0.811) Jews for the Preservation of Fi
URL:www.jpfo.org
6. (0.798) CCRKBA Home Page
URL:www.ccrkba.org
7. (0.757) GunCite: gun control and Seco
URL:www.guncite.com
8. (0.745) Coalition to Stop Gun Violenc
URL:www.gunfree.org
9. (0.735) Women Against Gun Control
URL:www.wagc.com
10. (0.729) Second Amendment Sisters’, Inc.
URL:www.sas-aim.org

Table C.19: Query “gun control”
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Hits
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.979) Moreover Technologies - Welcome
URL:www.moreover.com
3. (0.977) ThePaperboy.com — Online
URL:www.thepaperboy.com
4. (0.974) NewsLink
URL:www.newslink.org/news.html
5. (0.960) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.955) Welcome - Roam International
URL:www.roamintl.com
7. (0.184) Abu Dhabi News - current events
URL:www.abudhabi.com
8. (0.181) Where is Raed ?
URL:dear raed.blogspot.com
9. (0.158) UNMOVIC
URL:www.un.org/Depts/unmovic
10. (0.156) Iraq Liberated - U.S. Departmen
URL:usinfo.state.gov/regional/nea/

PageRank
1. (1.000) CBS.SportsLine.com
URL:cbs.sportsline.com
2. (0.855) Support UNICEF: A Project of th
URL:www.supportunicef.org
3. (0.849) Welcome to the White House
URL:www.whitehouse.gov
4. (0.815) Gannett Company, Inc.
URL:www.gannett.com
5. (0.765) USATODAY.com - News Info
URL:www.usatoday.com
6. (0.711) UNICEF - Iraq
URL:www.unicef.org/noteworthy/iraq
7. (0.681) The New York Times: Theater Dir
URL:www.nytbroadway.com/?thtrtx
8. (0.560) AlterNet: Top Stories
URL:www.alternet.org
9. (0.472) CBC/Radio-Canada
URL:cbc.radio-canada.ca
10. (0.472) Radio-Canada.ca
URL:www.radio-canada.ca

InDegree
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.950) Moreover Technologies - Welcome
URL:www.moreover.com
3. (0.899) ThePaperboy.com — Online
URL:www.thepaperboy.com
4. (0.893) NewsLink
URL:www.newslink.org/news.html
5. (0.868) United for Peace
URL:www.unitedforpeace.org
6. (0.868) Kidon Media-Link
URL:www.kidon.com/media-link
7. (0.862) Welcome - Roam International
URL:www.roamintl.com
8. (0.837) Welcome to the White House
URL:www.whitehouse.gov
9. (0.742) International A.N.S.W.E.R.
URL:www.internationalanswer.org
10. (0.685) Where is Raed ?
URL:dear raed.blogspot.com

HubAvg
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.952) Moreover Technologies - Welcome
URL:www.moreover.com
3. (0.930) ThePaperboy.com — Online
URL:www.thepaperboy.com
4. (0.930) NewsLink
URL:www.newslink.org/news.html
5. (0.910) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.903) Welcome - Roam International
URL:www.roamintl.com
7. (0.042) Top Breaking News Headlines Fro
URL:www.1stheadlines.com
8. (0.038) Google News
URL:news.google.com
9. (0.038) Yahoo! UK Ireland News
URL:uk.news.yahoo.com
10. (0.021) Yahoo! UK Ireland
URL:uk.yahoo.com

Max
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.945) Moreover Technologies - Welcome
URL:www.moreover.com
3. (0.899) ThePaperboy.com — Online
URL:www.thepaperboy.com
4. (0.893) NewsLink
URL:www.newslink.org/news.html
5. (0.868) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.862) Welcome - Roam International
URL:www.roamintl.com
7. (0.085) United for Peace
URL:www.unitedforpeace.org
8. (0.080) Google News
URL:news.google.com
9. (0.074) Welcome to the White House
URL:www.whitehouse.gov
10. (0.063) Where is Raed ?
URL:dear raed.blogspot.com

AT-med
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.960) ThePaperboy.com — Online
URL:www.thepaperboy.com
3. (0.958) Moreover Technologies - Welcome
URL:www.moreover.com
4. (0.957) NewsLink
URL:www.newslink.org/news.html
5. (0.930) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.924) Welcome - Roam International
URL:www.roamintl.com
7. (0.067) Google News
URL:news.google.com
8. (0.061) Yahoo! UK Ireland News
URL:uk.news.yahoo.com
9. (0.061) Top Breaking News Headlines Fro
URL:www.1stheadlines.com
10. (0.038) Yahoo! News - Front Page
URL:news.yahoo.com

AT-avg
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.979) ThePaperboy.com — Online
URL:www.thepaperboy.com
3. (0.978) NewsLink
URL:www.newslink.org/news.html
4. (0.977) Moreover Technologies - Welcome
URL:www.moreover.com
5. (0.963) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.959) Welcome - Roam International
URL:www.roamintl.com
7. (0.063) Top Breaking News Headlines Fro
URL:www.1stheadlines.com
8. (0.053) Yahoo! UK Ireland News
URL:uk.news.yahoo.com
9. (0.053) Google News
URL:news.google.com
10. (0.036) Venezuela
URL:venezuela.newstrove.com

Norm
1. (1.000) Google Search:
URL:www.google.com/search
2. (0.965) Moreover Technologies - Welcome
URL:www.moreover.com
3. (0.952) ThePaperboy.com — Online
URL:www.thepaperboy.com
4. (0.950) NewsLink
URL:www.newslink.org/news.html
5. (0.930) Kidon Media-Link
URL:www.kidon.com/media-link
6. (0.925) Welcome - Roam International
URL:www.roamintl.com
7. (0.062) Google News
URL:news.google.com
8. (0.061) Top Breaking News Headlines Fro
URL:www.1stheadlines.com
9. (0.056) Yahoo! UK Ireland News
URL:uk.news.yahoo.com
10. (0.038) Yahoo! News - Front Page
URL:news.yahoo.com

BFS
1. (1.000) Where is Raed ?
URL:dear raed.blogspot.com
2. (0.968) United for Peace
URL:www.unitedforpeace.org
3. (0.954) International A.N.S.W.E.R.
URL:www.internationalanswer.org
4. (0.941) Iraq Body Count
URL:www.iraqbodycount.net
5. (0.907) Antiwar.com
URL:www.antiwar.com
6. (0.903) BBC NEWS — In Depth
URL:news.bbc.co.uk/2/hi/in depth/m
7. (0.896) The Nation
URL:www.thenation.com/directory/vi
8. (0.894) Abu Dhabi News - current events
URL:www.abudhabi.com
9. (0.892) DefenseLINK - Official Web Site
URL:www.defenselink.mil
10. (0.890) Welcome to the White House
URL:www.whitehouse.gov

Table C.20: Query “iraq war”
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Hits
1. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
2. (1.000) Apple iTunes 4.0 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
3. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
4. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
5. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
6. (1.000) PHP 4.3.2RC2 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
7. (1.000) Palm Desktop 4.1 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
8. (1.000) Apple - Games - Trailers
URL:www.apple.com/games/trailers
9. (0.976) Dantz Retrospect 5.0 Driver Upd
URL:www.VersionTracker.com/dyn/mor
10. (0.976) iView MediaPro 1.5.7 - VersionT
URL:www.VersionTracker.com/dyn/mor

PageRank
1. (1.000) Apple .Mac Welcome
URL:www.mac.com
2. (0.563) Apple - Mac OS X
URL:www.apple.com/macosx
3. (0.561) Apple
URL:www.apple.com
4. (0.509) AO Sunglasses for Military Pilo
URL:aosunglasses.com
5. (0.461) Bolle Coyote Serengeti Sunglass
URL:123SUNGLASSES.COM
6. (0.266) Griffman’s OS X Collection
URL:homepage.mac.com/rgriff
7. (0.221) Save the Jaguar
URL:www.savethejaguar.com
8. (0.202) Empty title field
URL:www.cafepress.com/wcsjaguar
9. (0.155) Amazon Honor System
URL:s1.amazon.com/exec/varzea/pay/
10. (0.154) Jaguar World Monthly Online
URL:www.jagweb.com/jagworld

InDegree
1. (1.000) Apple .Mac Welcome
URL:www.mac.com
2. (0.901) Griffman’s OS X Collection
URL:homepage.mac.com/rgriff
3. (0.744) Apple
URL:www.apple.com
4. (0.719) Apple - Mac OS X
URL:www.apple.com/macosx
5. (0.686) Apple
URL:www.apple.com/legal
6. (0.686) Empty title field
URL:www.gamesarchiv.com/Layout/?id
7. (0.669) ThinkGeek :: O’Reilly Store
URL:www.thinkgeek.com/oreilly
8. (0.661) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
9. (0.661) Apple iTunes 4.0 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
10. (0.661) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor

HubAvg
1. (1.000) Griffman’s OS X Collection
URL:homepage.mac.com/rgriff
2. (0.558) Amazon Honor System
URL:s1.amazon.com/exec/varzea/pay/
3. (0.018) Apple .Mac Welcome
URL:www.mac.com
4. (0.011) Fink - Home
URL:fink.sourceforge.net
5. (0.009) Apple - Mac OS X
URL:www.apple.com/macosx
6. (0.006) Apple
URL:www.apple.com
7. (0.006) Apple - Discussions - Welcome
URL:discussions.info.apple.com
8. (0.006) LinuxPrinting.org
URL:www.linuxprinting.org
9. (0.006) Jaguar Gimp-Print
URL:www.allosx.com/1030154694/inde
10. (0.006) Xamba
URL:xamba.sourceforge.net/ssp

Max
1. (1.000) Apple .Mac Welcome
URL:www.mac.com
2. (0.603) Apple
URL:www.apple.com
3. (0.584) Apple - Mac OS X
URL:www.apple.com/macosx
4. (0.548) Apple
URL:www.apple.com/legal
5. (0.393) Apple - Apple Customer Privacy
URL:www.apple.com/legal/privacy
6. (0.169) The Apple Store (Japan)
URL:www.apple.com/japanstore
7. (0.114) Fink - Home
URL:fink.sourceforge.net
8. (0.085) Griffman’s OS X Collection
URL:homepage.mac.com/rgriff
9. (0.085) macosxhints - Get the most from
URL:www.macosxhints.com
10. (0.081) Apple - fxbp
URL:developer.apple.com/ja

AT-med
1. (1.000) Apple .Mac Welcome
URL:www.mac.com
2. (0.859) Apple
URL:www.apple.com
3. (0.849) Apple - Mac OS X
URL:www.apple.com/macosx
4. (0.753) Apple
URL:www.apple.com/legal
5. (0.549) Apple - Apple Customer Privacy
URL:www.apple.com/legal/privacy
6. (0.330) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
7. (0.330) Apple iTunes 4.0 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
8. (0.330) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
9. (0.330) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
10. (0.330) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor

AT-avg
1. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
2. (1.000) Apple iTunes 4.0 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
3. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
4. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
5. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
6. (1.000) PHP 4.3.2RC2 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
7. (1.000) Palm Desktop 4.1 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
8. (1.000) Apple - Games - Trailers
URL:www.apple.com/games/trailers
9. (0.975) Dantz Retrospect 5.0 Driver Upd
URL:www.VersionTracker.com/dyn/mor
10. (0.975) iView MediaPro 1.5.7 - VersionT
URL:www.VersionTracker.com/dyn/mor

Norm
1. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
2. (1.000) Apple iTunes 4.0 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
3. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
4. (1.000) VueScan 7.6.34 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
5. (1.000) Apple iPod Updater 1.3 - Versio
URL:www.VersionTracker.com/dyn/mor
6. (1.000) PHP 4.3.2RC2 - VersionTracker
URL:www.VersionTracker.com/dyn/mor
7. (1.000) Palm Desktop 4.1 - VersionTrack
URL:www.VersionTracker.com/dyn/mor
8. (1.000) Apple - Games - Trailers
URL:www.apple.com/games/trailers
9. (0.976) Dantz Retrospect 5.0 Driver Upd
URL:www.VersionTracker.com/dyn/mor
10. (0.976) iView MediaPro 1.5.7 - VersionT
URL:www.VersionTracker.com/dyn/mor

BFS
1. (1.000) Team Franglais Home-Page (Anglo
URL:franglais.8k.com
2. (0.983) The Atari Files
URL:atarifiles.tripod.com
3. (0.977) OSJI: ORIGINAL SPEC
URL:www.osjimic.com
4. (0.959) The Atarian Atmosphere
URL:atmosphere.atariansun.com
5. (0.925) Fink - Home
URL:fink.sourceforge.net
6. (0.921) Apple
URL:www.apple.com
7. (0.913) Dreamweaver Templates - Fast -
URL:www.dreamweaver-templates.net
8. (0.904) Emulation 4ever: The Emulation
URL:emulation4ever.cjb.net
9. (0.857) Apple - Mac OS X
URL:www.apple.com/macosx
10. (0.833) NoName Scriptware151;AppleScr
URL:www.nonamescriptware.com

Table C.21: Query “jaguar”
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Hits
1. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00
2. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/01
3. (1.000) Empty title field
URL:g.msn.com/0nwenus0/AK/02
4. (1.000) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/03
5. (1.000) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/04
6. (1.000) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/05
7. (1.000) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/06
8. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
9. (0.974) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
10. (0.974) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08

PageRank
1. (1.000) Jordan Rudess : Feeding The Web
URL:www.jordanrudess.com
2. (0.965) Jordan Tourism Board North
URL:www.seejordan.org
3. (0.882) Jordan Tourism Board
URL:www.see-jordan.com
4. (0.814) Site Meter - Counter and Statis
URL:sm4.sitemeter.com/stats.asp?si
5. (0.787) Site Ask - What’s your question
URL:s12.sitemeter.com/stats.asp?si
6. (0.585) Yahoo!
URL:www.yahoo.com
7. (0.485) TheCounter.com: The Full-Featur
URL:www.TheCounter.com
8. (0.465) Jordan Export Development
URL:www.jedco.gov.jo
9. (0.454) Empty title field
URL:www.bigbearvalleygallery.com
10. (0.452) Multitasking - multitasking.co
URL:www.multitasking.com

InDegree
1. (1.000) Jordan Tourism Board
URL:www.see-jordan.com
2. (0.707) Multitasking - multitasking.co
URL:www.multitasking.com
3. (0.697) rowaq.com hosted at HostSave, t
URL:www.rowaq.com
4. (0.678) The Royal Autombile Club of Jor
URL:www.racj.com
5. (0.606) National Information Center
URL:www.nic.gov.jo
6. (0.596) jordanzed.com
URL:www.jordanzed.com
7. (0.572) Home Page
URL:www.lawtownmusic.8k.com
8. (0.558) SheilaJordanJazz.com
URL:www.sheilajordanjazz.com
9. (0.558) Empty title field
URL:www.bigbearvalleygallery.com
10. (0.505) stamps-by-year
URL:stamps-of-jordan.tripod.com

HubAvg
1. (1.000) Yahoo! Directory
URL:us.rd.yahoo.com/dir/yahoo/*htt
2. (1.000) Yahoo!
URL:us.rd.yahoo.com/dir/yahoo/*htt
3. (1.000) Yahoo! Help - nbsp;
URL:us.rd.yahoo.com/dir/help/*http
4. (0.032) Yahoo! Advanced Directory Searc
URL:search.yahoo.com/dir/advanced
5. (0.006) Yahoo! Suggest a Site
URL:us.rd.yahoo.com/dir/suggest/*h
6. (0.006) Empty title field
URL:us.rd.yahoo.com/dir/email/*htt
7. (0.000) Jordan Tourism Board
URL:www.see-jordan.com
8. (0.000) The Royal Autombile Club of Jor
URL:www.racj.com
9. (0.000) National Information Center
URL:www.nic.gov.jo
10. (0.000) rowaq.com hosted at HostSave, t
URL:www.rowaq.com

Max
1. (1.000) Jordan Tourism Board
URL:www.see-jordan.com
2. (0.468) The Royal Autombile Club of Jor
URL:www.racj.com
3. (0.429) National Information Center
URL:www.nic.gov.jo
4. (0.262) Jordan Embassy - U.S.A.
URL:www.jordanembassyus.org
5. (0.242) Central Bank of Jordan Home Pag
URL:www.cbj.gov.jo
6. (0.223) Welcome to HIS ROYAL
URL:www.princehassan.gov.jo
7. (0.200) RJ HOME
URL:www.rja.com.jo
8. (0.193) Department Of Statistics
URL:www.dos.gov.jo
9. (0.189) The University of Jordan’s home
URL:www.ju.edu.jo
10. (0.180) nbsp; – Jordan C
URL:www.customs.gov.jo

AT-med
1. (1.000) Jordan Tourism Board
URL:www.see-jordan.com
2. (0.566) The Royal Autombile Club of Jor
URL:www.racj.com
3. (0.522) National Information Center
URL:www.nic.gov.jo
4. (0.313) Jordan Embassy - U.S.A.
URL:www.jordanembassyus.org
5. (0.292) Central Bank of Jordan Home Pag
URL:www.cbj.gov.jo
6. (0.272) Welcome to HIS ROYAL
URL:www.princehassan.gov.jo
7. (0.234) Department Of Statistics
URL:www.dos.gov.jo
8. (0.221) RJ HOME
URL:www.rja.com.jo
9. (0.219) nbsp; – Jordan C
URL:www.customs.gov.jo
10. (0.211) The University of Jordan’s home
URL:www.ju.edu.jo

AT-avg
1. (1.000) Jordan Tourism Board
URL:www.see-jordan.com
2. (0.619) The Royal Autombile Club of Jor
URL:www.racj.com
3. (0.583) National Information Center
URL:www.nic.gov.jo
4. (0.355) Jordan Embassy - U.S.A.
URL:www.jordanembassyus.org
5. (0.330) Central Bank of Jordan Home Pag
URL:www.cbj.gov.jo
6. (0.311) Welcome to HIS ROYAL
URL:www.princehassan.gov.jo
7. (0.265) Department Of Statistics
URL:www.dos.gov.jo
8. (0.247) nbsp; – Jordan C
URL:www.customs.gov.jo
9. (0.235) The University of Jordan’s home
URL:www.ju.edu.jo
10. (0.234) RJ HOME
URL:www.rja.com.jo

Norm
1. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/00
2. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/01
3. (1.000) Empty title field
URL:g.msn.com/0nwenus0/AK/02
4. (1.000) MSN Search – More Useful Every
URL:g.msn.com/0nwenus0/AK/03
5. (1.000) Welcome to MSN Shopping
URL:g.msn.com/0nwenus0/AK/04
6. (1.000) MSN Money - More Useful Everyda
URL:g.msn.com/0nwenus0/AK/05
7. (1.000) MSN People and Chat - More Usef
URL:g.msn.com/0nwenus0/AK/06
8. (1.000) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/14
9. (0.965) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/07
10. (0.965) Welcome to MSN.com
URL:g.msn.com/0nwenus0/AK/08

BFS
1. (1.000) Home Page
URL:www.lawtownmusic.8k.com
2. (0.974) Multitasking - multitasking.co
URL:www.multitasking.com
3. (0.956) Jordan Tourism Board
URL:www.see-jordan.com
4. (0.938) rowaq.com hosted at HostSave, t
URL:www.rowaq.com
5. (0.892) Empty title field
URL:www.bigbearvalleygallery.com
6. (0.889) The Royal Autombile Club of Jor
URL:www.racj.com
7. (0.885) jordanzed.com
URL:www.jordanzed.com
8. (0.878) SheilaJordanJazz.com
URL:www.sheilajordanjazz.com
9. (0.864) National Information Center
URL:www.nic.gov.jo
10. (0.836) Jordan Embassy - U.S.A.
URL:www.jordanembassyus.org

Table C.22: Query “jordan”
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Hits
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.893) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.892) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.892) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.892) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.892) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.892) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.892) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.892) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.126) Exchange-it - Free Banner Excha
URL:www.exchange-it.com/link.go?b1

PageRank
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.849) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.501) Empty title field
URL:www.nasa.gov
4. (0.226) Bushwhacked: Inside Stories of
URL:www.conspiracydigest.com/urisb
5. (0.220) Gannett Company, Inc.
URL:www.gannett.com
6. (0.203) Real Estate Australia - Propert
URL:www.realestate.com.au
7. (0.164) Yahoo! Privacy
URL:privacy.yahoo.com/privacy/aa
8. (0.145) 1662;1585;1583;1607;
URL:pardeh.blogspot.com
9. (0.142) Phil Plait’s Bad Astronomy: B
URL:www.badastronomy.com/bad/tv/fo
10. (0.141) Moon Hoax Index
URL:www.redzero.demon.co.uk/moon

InDegree
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.803) Empty title field
URL:www.nasa.gov
3. (0.631) Real Estate Australia - Propert
URL:www.realestate.com.au
4. (0.549) Moon Hoax Index
URL:www.redzero.demon.co.uk/moonho
5. (0.533) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
6. (0.525) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
7. (0.525) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
8. (0.525) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
9. (0.525) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
10. (0.525) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap

HubAvg
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.416) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.410) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.410) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.410) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.410) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.410) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.410) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.410) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.375) Name a Star - International Sta
URL:click.linksynergy.com/fs-bin/s

Max
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.529) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.525) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.525) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.525) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.525) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.525) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.525) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.525) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.355) Name a Star - International Sta
URL:click.linksynergy.com/fs-bin/s

AT-med
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.590) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.586) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.586) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.586) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.586) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.586) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.586) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.586) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.338) Name a Star - International Sta
URL:click.linksynergy.com/fs-bin/s

AT-avg
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.758) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.756) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.756) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.756) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.756) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.756) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.756) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.756) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.214) Name a Star - International Sta
URL:click.linksynergy.com/fs-bin/s

Norm
1. (1.000) Long Distance Rate Finder .com
URL:www.longdistanceratefinder.com
2. (0.711) Cognigen: Worldwide Telecommuni
URL:longdist.net/?apl
3. (0.708) BILLZilla - The Best Long Dista
URL:www.billzilla.com/apl
4. (0.708) Talk America Local And Long Dis
URL:cognigen.net/talkamerica/?apl
5. (0.708) OneStar Communications - Long D
URL:cognigen.net/onestar/?apl
6. (0.708) CogniDial Discount Internationa
URL:www.cognidial.com/dial-around/
7. (0.708) Speakeasy High Speed Internet S
URL:www.cognigen.net/speakeasy/?ap
8. (0.708) DISH Network e-Store
URL:cognigen.net/dish/?apl
9. (0.708) Cognigen: Worldwide Telecommuni
URL:ld.net/?apl
10. (0.238) Name a Star - International Sta
URL:click.linksynergy.com/fs-bin/s

BFS
1. (1.000) Empty title field
URL:www.nasa.gov
2. (0.862) Moon Hoax Index
URL:www.redzero.demon.co.uk/moonho
3. (0.831) Phil Plait’s Bad Astronomy: H
URL:www.badastronomy.com
4. (0.828) Phil Plait’s Bad Astronomy: B
URL:www.badastronomy.com/bad/tv/fo
5. (0.799) The Moon Shots Were Faked
URL:batesmotel.8m.com
6. (0.723) NASA Apollo 11 30th
URL:www.hq.nasa.gov/office/pao/His
7. (0.716) The Great Moon Hoax
URL:science.nasa.gov/headlines/y20
8. (0.705) Faked Moon Landings?
URL:www.apollo-hoax.co.uk
9. (0.705) Funny Thing Happened on the Way
URL:www.moonmovie.com
10. (0.700) The Moon Landings Were
URL:pirlwww.lpl.arizona.edu/∼jsc

Table C.23: Query “moon landing”
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Hits
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.883) DHTML Lab: HierMenus
URL:www.hiermenuscentral.com
3. (0.796) internet.com: the Internet and
URL:www.internet.com
4. (0.779) WebReference.com - The Webmaste
URL:webreference.com
5. (0.767) Welcome to internet.com’s Devel
URL:www.internet.com/sections/webd
6. (0.757) Jupitermedia Corporation Web Si
URL:www.internet.com/corporate/leg
7. (0.757) Jupitermedia Privacy Policy
URL:www.internet.com/corporate/pri
8. (0.757) internet.com Commerce Partners
URL:www.internet.com/partners
9. (0.757) Search Internet.com
URL:search.internet.com
10. (0.754) internet.com Media Kit
URL:www.internet.com/mediakit

PageRank
1. (1.000) Amazon.com–Earth’s Biggest Sel
URL:www.amazon.com/exec/obidos/red
2. (0.326) The Internet Movie Database
URL:www.imdb.com
3. (0.261) Knight Ridder Corporate Web sit
URL:www.knightridder.com
4. (0.255) AllPosters.com Affiliates Home
URL:affiliates.allposters.com/link
5. (0.224) Google
URL:www.google.com
6. (0.217) Gannett Company, Inc.
URL:www.gannett.com
7. (0.214) CapeWeek: Arts Entertainment
URL:www.capeweek.com
8. (0.205) Yahoo! Terms of Service
URL:docs.yahoo.com/info/terms
9. (0.200) EarthWeb.com: The IT Industry P
URL:www.earthweb.com
10. (0.165) Apple .Mac Welcome
URL:www.mac.com

InDegree
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.565) Google
URL:www.google.com
3. (0.534) Signs on DVD
URL:www.signs.movies.com
4. (0.471) Amazon.com–Earth’s Biggest Sel
URL:www.amazon.com/exec/obidos/red
5. (0.365) Get Wild - GetWild - getwild.co
URL:www.getwild.com
6. (0.321) Gannett Company, Inc.
URL:www.gannett.com
7. (0.308) Empty title field
URL:www.film.com
8. (0.296) Hollywood.com - Your entertai
URL:www.hollywood.com
9. (0.275) Knight Ridder Corporate Web sit
URL:www.knightridder.com
10. (0.272) A Beautiful Mind
URL:abeautifulmind.com

HubAvg
1. (1.000) Amazon.com–Earth’s Biggest Sel
URL:www.amazon.com/exec/obidos/red
2. (0.000) The Internet Movie Database
URL:www.imdb.com
3. (0.000) Google
URL:www.google.com
4. (0.000) CNI Newspapers: News Front Page
URL:www.cninewsonline.com
5. (0.000) JS Online: General Information
URL:graphics.jsonline.com/adsectio
6. (0.000) Signs on DVD
URL:www.signs.movies.com
7. (0.000) Hollywood.com - Your entertai
URL:www.hollywood.com
8. (0.000) Empty title field
URL:www.film.com
9. (0.000) ROTTEN TOMATOES: Movie
URL:www.rottentomatoes.com
10. (0.000) Get Wild - GetWild - getwild.co
URL:www.getwild.com

Max
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.296) Signs on DVD
URL:www.signs.movies.com
3. (0.253) Google
URL:www.google.com
4. (0.219) Hollywood.com - Your entertai
URL:www.hollywood.com
5. (0.211) Empty title field
URL:www.film.com
6. (0.174) Get Wild - GetWild - getwild.co
URL:www.getwild.com
7. (0.161) All Movie Guide
URL:www.allmovie.com
8. (0.159) Movie Review Query Engine
URL:www.mrqe.com
9. (0.159) ROTTEN TOMATOES: Movie
URL:www.rottentomatoes.com
10. (0.142) Greatest Films
URL:www.filmsite.org

AT-med
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.366) Signs on DVD
URL:www.signs.movies.com
3. (0.309) Google
URL:www.google.com
4. (0.248) Hollywood.com - Your entertai
URL:www.hollywood.com
5. (0.241) Empty title field
URL:www.film.com
6. (0.208) Get Wild - GetWild - getwild.co
URL:www.getwild.com
7. (0.170) All Movie Guide
URL:www.allmovie.com
8. (0.168) ROTTEN TOMATOES: Movie
URL:www.rottentomatoes.com
9. (0.168) Movie Review Query Engine
URL:www.mrqe.com
10. (0.154) Greatest Films
URL:www.filmsite.org

AT-avg
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.426) Signs on DVD
URL:www.signs.movies.com
3. (0.335) Google
URL:www.google.com
4. (0.288) Hollywood.com - Your entertai
URL:www.hollywood.com
5. (0.279) Empty title field
URL:www.film.com
6. (0.243) Get Wild - GetWild - getwild.co
URL:www.getwild.com
7. (0.186) All Movie Guide
URL:www.allmovie.com
8. (0.181) ROTTEN TOMATOES: Movie
URL:www.rottentomatoes.com
9. (0.180) Movie Review Query Engine
URL:www.mrqe.com
10. (0.173) Paramount Pictures
URL:www.paramount.com

Norm
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.343) Signs on DVD
URL:www.signs.movies.com
3. (0.283) Google
URL:www.google.com
4. (0.244) Hollywood.com - Your entertai
URL:www.hollywood.com
5. (0.234) Empty title field
URL:www.film.com
6. (0.202) Get Wild - GetWild - getwild.co
URL:www.getwild.com
7. (0.170) All Movie Guide
URL:www.allmovie.com
8. (0.167) ROTTEN TOMATOES: Movie
URL:www.rottentomatoes.com
9. (0.167) Movie Review Query Engine
URL:www.mrqe.com
10. (0.153) Greatest Films
URL:www.filmsite.org

BFS
1. (1.000) The Internet Movie Database
URL:www.imdb.com
2. (0.901) Signs on DVD
URL:www.signs.movies.com
3. (0.832) A Beautiful Mind
URL:abeautifulmind.com
4. (0.821) Get Wild - GetWild - getwild.co
URL:www.getwild.com
5. (0.814) Google
URL:www.google.com
6. (0.776) New Line Cinema
URL:www.newline.com
7. (0.746) Spider-Man Movie From Columbia
URL:www.spiderman.sonypictures.com
8. (0.731) Poor Roger’s Home Page - Nothin
URL:www.poorroger.com
9. (0.730) Hollywood.com - Your entertai
URL:www.hollywood.com
10. (0.730) Empty title field
URL:www.film.com

Table C.24: Query “movies”
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Hits
1. (1.000) E Business Solutions,Website Pr
URL:www.intermesh.net/advertis.htm
2. (0.998) Empty title field
URL:www.indiangiftsportal.com
3. (0.998) Business Solutions,Ecommerce Bu
URL:www.intermesh.net
4. (0.998) Empty title field
URL:news.indiamart.com
5. (0.997) Empty title field
URL:www.indiamart.com
6. (0.997) Empty title field
URL:apparel.indiamart.com
7. (0.997) Empty title field
URL:handicraft.indiamart.com
8. (0.997) India Finance and Investment Gu
URL:finance.indiamart.com
9. (0.997) Empty title field
URL:health.indiamart.com
10. (0.997) Empty title field
URL:auto.indiamart.com

PageRank
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.560) FirstGov 8212; Your First Cli
URL:www.firstgov.gov
3. (0.375) Welcome to the White House
URL:www.whitehouse.gov
4. (0.271) egov – The Official Web Site o
URL:egov.gov
5. (0.243) NatureNet: The National Park
URL:www.nature.nps.gov
6. (0.219) National Recreation and Park
URL:www.nrpa.org
7. (0.213) Take Pride In America - Home
URL:www.takepride.gov
8. (0.206) Western National Parks Assoca
URL:www.wnpa.org
9. (0.199) CoolWorks.com Summer Jobs
URL:www.coolworks.com
10. (0.196) Links to the Past: National
URL:www.cr.nps.gov

InDegree
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.358) E Business Solutions,Website Pr
URL:www.intermesh.net/advertis.htm
3. (0.358) Empty title field
URL:news.indiamart.com
4. (0.356) Empty title field
URL:www.indiamart.com
5. (0.356) Empty title field
URL:apparel.indiamart.com
6. (0.356) Empty title field
URL:www.indiangiftsportal.com
7. (0.356) Empty title field
URL:handicraft.indiamart.com
8. (0.356) India Finance and Investment Gu
URL:finance.indiamart.com
9. (0.356) Empty title field
URL:health.indiamart.com
10. (0.356) Empty title field
URL:auto.indiamart.com

HubAvg
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.138) Privacy Statement, National Par
URL:www.nps.gov/privacy.htm
3. (0.065) Park Geology Tour - Geologic Fe
URL:www.nature.nps.gov/grd/tour
4. (0.058) USGS Western Earth Surface Proc
URL:wrgis.wr.usgs.gov/wgmt
5. (0.054) NPS Search Portal
URL:www.nps.gov/search.htm
6. (0.051) NatureNet: The National Park
URL:www.nature.nps.gov
7. (0.042) GORP.com-adventure travel-hikin
URL:www.gorp.com
8. (0.025) National Park Guide
URL:www.nps.gov/parks.html
9. (0.021) National Parks Conservation A
URL:www.npca.org
10. (0.016) L.L.Bean - Park Search
URL:www.llbean.com/parksearch

Max
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.165) Privacy Statement, National Par
URL:www.nps.gov/privacy.htm
3. (0.101) GORP.com-adventure travel-hikin
URL:www.gorp.com
4. (0.101) Park Geology Tour - Geologic Fe
URL:www.nature.nps.gov/grd/tour
5. (0.088) USGS Western Earth Surface Proc
URL:wrgis.wr.usgs.gov/wgmt
6. (0.084) NPS Search Portal
URL:www.nps.gov/search.htm
7. (0.071) National Park Guide
URL:www.nps.gov/parks.html
8. (0.061) NatureNet: The National Park
URL:www.nature.nps.gov
9. (0.055) National Parks Conservation A
URL:www.npca.org
10. (0.052) L.L.Bean - Park Search
URL:www.llbean.com/parksearch

AT-med
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.183) Privacy Statement, National Par
URL:www.nps.gov/privacy.htm
3. (0.110) GORP.com-adventure travel-hikin
URL:www.gorp.com
4. (0.105) Park Geology Tour - Geologic Fe
URL:www.nature.nps.gov/grd/tour
5. (0.093) NPS Search Portal
URL:www.nps.gov/search.htm
6. (0.092) USGS Western Earth Surface Proc
URL:wrgis.wr.usgs.gov/wgmt
7. (0.078) National Park Guide
URL:www.nps.gov/parks.html
8. (0.061) NatureNet: The National Park
URL:www.nature.nps.gov
9. (0.058) National Parks Conservation A
URL:www.npca.org
10. (0.054) L.L.Bean - Park Search
URL:www.llbean.com/parksearch

AT-avg
1. (1.000) E Business Solutions,Website Pr
URL:www.intermesh.net/advertis.htm
2. (0.996) Empty title field
URL:news.indiamart.com
3. (0.994) Empty title field
URL:www.indiamart.com
4. (0.994) Empty title field
URL:apparel.indiamart.com
5. (0.994) Empty title field
URL:handicraft.indiamart.com
6. (0.994) India Finance and Investment Gu
URL:finance.indiamart.com
7. (0.994) Empty title field
URL:health.indiamart.com
8. (0.994) Empty title field
URL:auto.indiamart.com
9. (0.994) Empty title field
URL:www.indiangiftsportal.com
10. (0.994) Business Solutions,Ecommerce Bu
URL:www.intermesh.net

Norm
1. (1.000) E Business Solutions,Website Pr
URL:www.intermesh.net/advertis.htm
2. (0.997) Empty title field
URL:news.indiamart.com
3. (0.996) Empty title field
URL:www.indiangiftsportal.com
4. (0.996) Business Solutions,Ecommerce Bu
URL:www.intermesh.net
5. (0.996) Empty title field
URL:www.indiamart.com
6. (0.996) Empty title field
URL:apparel.indiamart.com
7. (0.996) Empty title field
URL:handicraft.indiamart.com
8. (0.996) India Finance and Investment Gu
URL:finance.indiamart.com
9. (0.996) Empty title field
URL:health.indiamart.com
10. (0.996) Empty title field
URL:auto.indiamart.com

BFS
1. (1.000) National Park Service - Exper
URL:www.nps.gov
2. (0.733) Sw Parks - SwParks - swparks.co
URL:www.swparks.com
3. (0.665) U.S. National Parks - Welcome
URL:www.us-national-parks.net
4. (0.664) National Parks Conservation A
URL:www.npca.org
5. (0.659) The EnviroLink Network
URL:www.envirolink.org
6. (0.659) Yahoo!
URL:www.yahoo.com
7. (0.644) GORP.com-adventure travel-hikin
URL:www.gorp.com
8. (0.642) National Park Guide
URL:www.nps.gov/parks.html
9. (0.640) One stop shopping for residenti
URL:www.jasperrealestate.ab.ca
10. (0.628) Australian Alps national par
URL:www.australianalps.environme

Table C.25: Query “national parks”

184



Hits
1. (1.000) movabletype.org
URL:www.movabletype.org
2. (0.952) Boing Boing: A Directory of Won
URL:boingboing.net
3. (0.947) Metafilter — Community Weblog
URL:www.metafilter.com
4. (0.931) Wired News
URL:www.wired.com
5. (0.930) The Doc Searls Weblog : Sunday,
URL:doc.weblogs.com
6. (0.924) what’s in rebecca’s pocket?
URL:www.rebeccablood.net
7. (0.911) InstaPundit.Com
URL:www.instapundit.com
8. (0.910) blogdex - the weblog diffusion
URL:blogdex.media.mit.edu
9. (0.910) kottke.org :: home of fine hype
URL:www.kottke.org
10. (0.907) kuro5hin.org —— technology and
URL:www.kuro5hin.org

PageRank
1. (1.000) ArticleCentral - Content and Ar
URL:articlecentral.com
2. (0.867) Newspapers OnLine
URL:adsearch.chron.com
3. (0.726) EFF: Homepage
URL:www.eff.org
4. (0.708) HoustonChronicle.com - News
URL:www.houstonchronicle.com
5. (0.536) H2K2
URL:www.h2k2.net
6. (0.533) Index on Censorship: Latest New
URL:www.indexonline.org
7. (0.502) movabletype.org
URL:www.movabletype.org
8. (0.472) Free-Market.Net ... Information
URL:www.free-market.net
9. (0.468) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.454) H2K2 - HOPE 2002
URL:store.2600.com/h2k2hope2002.ht

InDegree
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.656) Internet Free Expression Alli
URL:www.ifea.net
3. (0.632) American Civil Liberties Unio
URL:www.aclu.org
4. (0.620) The Center for Democracy and
URL:www.cdt.org
5. (0.571) P E A C E F I R E
URL:www.peacefire.org
6. (0.564) Vtw Directory Page
URL:www.vtw.org
7. (0.546) movabletype.org
URL:www.movabletype.org
8. (0.448) libertus.net: about censorshi
URL:libertus.net
9. (0.429) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.380) Global Internet Liberty Camp
URL:www.gilc.org

HubAvg
1. (1.000) ArticleCentral - Content and Ar
URL:articlecentral.com
2. (0.016) Microsoft Corporation
URL:www.microsoft.com
3. (0.009) EFF: Homepage
URL:www.eff.org
4. (0.007) NabaviOnline
URL:www.nabavionline.com
5. (0.004) Vtw Directory Page
URL:www.vtw.org
6. (0.003) Internet Free Expression Alli
URL:www.ifea.net
7. (0.003) The Center for Democracy and
URL:www.cdt.org
8. (0.003) American Civil Liberties Unio
URL:www.aclu.org
9. (0.002) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.002) P E A C E F I R E
URL:www.peacefire.org

Max
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.541) Internet Free Expression Alli
URL:www.ifea.net
3. (0.517) The Center for Democracy and
URL:www.cdt.org
4. (0.517) American Civil Liberties Unio
URL:www.aclu.org
5. (0.386) Vtw Directory Page
URL:www.vtw.org
6. (0.357) P E A C E F I R E
URL:www.peacefire.org
7. (0.277) Global Internet Liberty Campa
URL:www.gilc.org
8. (0.254) libertus.net: about censorshi
URL:libertus.net
9. (0.196) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.144) The Freedom Forum
URL:www.freedomforum.org

AT-med
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.631) Internet Free Expression Alli
URL:www.ifea.net
3. (0.606) The Center for Democracy and
URL:www.cdt.org
4. (0.600) American Civil Liberties Unio
URL:www.aclu.org
5. (0.421) Vtw Directory Page
URL:www.vtw.org
6. (0.388) P E A C E F I R E
URL:www.peacefire.org
7. (0.313) Global Internet Liberty Campa
URL:www.gilc.org
8. (0.276) libertus.net: about censorshi
URL:libertus.net
9. (0.212) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.165) The Freedom Forum
URL:www.freedomforum.org

AT-avg
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.716) Internet Free Expression Alli
URL:www.ifea.net
3. (0.712) The Center for Democracy and
URL:www.cdt.org
4. (0.676) American Civil Liberties Unio
URL:www.aclu.org
5. (0.457) Vtw Directory Page
URL:www.vtw.org
6. (0.414) P E A C E F I R E
URL:www.peacefire.org
7. (0.359) Global Internet Liberty Campa
URL:www.gilc.org
8. (0.308) libertus.net: about censorshi
URL:libertus.net
9. (0.214) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.198) The Freedom Forum
URL:www.freedomforum.org

Norm
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.623) Internet Free Expression Alli
URL:www.ifea.net
3. (0.607) The Center for Democracy and
URL:www.cdt.org
4. (0.594) American Civil Liberties Unio
URL:www.aclu.org
5. (0.419) Vtw Directory Page
URL:www.vtw.org
6. (0.388) P E A C E F I R E
URL:www.peacefire.org
7. (0.312) Global Internet Liberty Campa
URL:www.gilc.org
8. (0.281) libertus.net: about censorshi
URL:libertus.net
9. (0.208) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.169) The Freedom Forum
URL:www.freedomforum.org

BFS
1. (1.000) EFF: Homepage
URL:www.eff.org
2. (0.945) American Civil Liberties Unio
URL:www.aclu.org
3. (0.910) Internet Free Expression Alli
URL:www.ifea.net
4. (0.869) The Center for Democracy and
URL:www.cdt.org
5. (0.846) P E A C E F I R E
URL:www.peacefire.org
6. (0.801) Vtw Directory Page
URL:www.vtw.org
7. (0.796) libertus.net: about censorshi
URL:libertus.net
8. (0.791) Global Internet Liberty Campa
URL:www.gilc.org
9. (0.730) EFF Blue Ribbon Campaign
URL:www.eff.org/blueribbon.html
10. (0.677) Google
URL:www.google.com

Table C.26: Query “net censorship”

185



Hits
1. (1.000) SpringerLink: Lecture Notes in
URL:link.springer.de/link/service/
2. (1.000) SpringerLink: Lecture Notes in
URL:link.springer.de/link/service/
3. (1.000) SpringerLink: Lecture Notes in
URL:link.springer.de/link/service/
4. (0.989) ALGO 2002
URL:www.dis.uniroma1.it/∼algo02
5. (0.301) Welcome to Springer, springer-v
URL:www.springer.de
6. (0.148) Mark Overmars Homepage
URL:www.cs.uu.nl/people/markov
7. (0.135) Pankaj K. Agarwal’s Home Page
URL:www.cs.duke.edu/∼pankaj
8. (0.132) Thomas H. Cormen
URL:www.cs.dartmouth.edu/∼thc
9. (0.086) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
10. (0.070) WAE ’98
URL:www.mpi-sb.mpg.de/∼wae98

PageRank
1. (1.000) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
2. (0.988) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.884) The Digital Object Identifier
URL:www.doi.org
4. (0.738) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
5. (0.735) RAND-APX Thematic Net
URL:www.maths.ox.ac.uk/rand-apx
6. (0.704) Home Page for RAND-APX
URL:www.cs.lth.se/home/Andrzej Lin
7. (0.653) MHHE: INTRODUCTION TO
URL:www.mhhe.com/catalogs/00701315
8. (0.643) HTML redirection
URL:cui.unige.ch/tcs/random-approx
9. (0.614) APPROX 2001 + RANDOM
URL:www.cs.princeton.edu/random-ap
10. (0.610) ERCIM, The European Research
URL:www.ercim.org

InDegree
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (1.000) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.878) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
4. (0.780) HTML redirection
URL:cui.unige.ch/tcs/random-approx
5. (0.537) MHHE: INTRODUCTION TO
URL:www.mhhe.com/catalogs/00701315
6. (0.537) The Digital Object Identifier
URL:www.doi.org
7. (0.512) Masaryk University Brno
URL:www.muni.cz
8. (0.488) ALGO 2002
URL:www.dis.uniroma1.it/∼algo02
9. (0.463) SpringerLink: Lecture Notes in
URL:link.springer.de/link/service/
10. (0.463) SpringerLink: Lecture Notes in
URL:link.springer.de/link/service/

HubAvg
1. (1.000) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
2. (0.117) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
3. (0.068) The former CGAL home page
URL:www.cs.uu.nl/CGAL
4. (0.046) Welcome to Springer, springer-v
URL:www.springer.de
5. (0.039) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
6. (0.038) CMSC 754 - Comp Geom
URL:www.cs.umd.edu/∼mount/754
7. (0.031) Mark Overmars Homepage
URL:www.cs.uu.nl/people/markov
8. (0.024) Cormen/Leiserson/Rivest/Stein:
URL:theory.lcs.mit.edu/∼clr
9. (0.024) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
10. (0.017) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook/geom.html

Max
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (1.000) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.270) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
4. (0.258) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
5. (0.257) ANALYSIS of ALGORITHMS
URL:pauillac.inria.fr/algo/AofA
6. (0.237) IEEE Computer Society
URL:computer.org
7. (0.205) Center for Discrete Mathematics
URL:dimacs.rutgers.edu
8. (0.183) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
9. (0.182) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
10. (0.178) Welcome to Springer, springer-v
URL:www.springer.de

AT-med
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (1.000) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.270) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
4. (0.258) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
5. (0.257) ANALYSIS of ALGORITHMS
URL:pauillac.inria.fr/algo/AofA
6. (0.237) IEEE Computer Society
URL:computer.org
7. (0.205) Center for Discrete Mathematics
URL:dimacs.rutgers.edu
8. (0.183) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
9. (0.182) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
10. (0.178) Welcome to Springer, springer-v
URL:www.springer.de

AT-avg
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (0.417) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.306) ANALYSIS of ALGORITHMS
URL:pauillac.inria.fr/algo/AofA
4. (0.280) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
5. (0.267) IEEE Computer Society
URL:computer.org
6. (0.248) Center for Discrete Mathematics
URL:dimacs.rutgers.edu
7. (0.218) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
8. (0.215) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
9. (0.198) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
10. (0.175) CiteSeer: The NEC Research Inst
URL:citeseer.org

Norm
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (0.444) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook
3. (0.287) ANALYSIS of ALGORITHMS
URL:pauillac.inria.fr/algo/AofA
4. (0.261) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
5. (0.255) IEEE Computer Society
URL:computer.org
6. (0.233) Center for Discrete Mathematics
URL:dimacs.rutgers.edu
7. (0.230) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
8. (0.193) Directory of Computational Geom
URL:www.geom.umn.edu/software/cgli
9. (0.186) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
10. (0.168) CiteSeer: The NEC Research Inst
URL:citeseer.org

BFS
1. (1.000) Algorithms Courses on the WWW
URL:www.cs.pitt.edu/∼kirk/algorith
2. (0.956) ANALYSIS of ALGORITHMS
URL:pauillac.inria.fr/algo/AofA
3. (0.907) Computer Science Papers NEC Res
URL:citeseer.nj.nec.com/cs
4. (0.901) Center for Discrete Mathematics
URL:dimacs.rutgers.edu
5. (0.865) HTML redirection
URL:cui.unige.ch/tcs/random-approx
6. (0.849) Welcome to Springer, springer-v
URL:www.springer.de
7. (0.848) MFCS’98 home page
URL:www.fi.muni.cz/mfcs98
8. (0.831) LEDA moved to Algorithmic Solut
URL:www.mpi-sb.mpg.de/LEDA/leda.ht
9. (0.747) CiteSeer: The NEC Research Inst
URL:citeseer.org
10. (0.739) Computational Geometry, Algorit
URL:www.cs.uu.nl/geobook

Table C.27: Query “randomized algorithms”
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Hits
1. (1.000) HonoluluAdvertiser.com gt; Haw
URL:www.hawaiisclassifieds.com
2. (0.999) Gannett Company, Inc.
URL:www.gannett.com
3. (0.998) AP MoneyWire
URL:apmoneywire.mm.ap.org
4. (0.990) e.thePeople : Honolulu Advertis
URL:www.e-thepeople.com/affiliates
5. (0.989) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
6. (0.987) Honolulu Traffic Cameras, City
URL:www.co.honolulu.hi.us/cameras/
7. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
8. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
9. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
10. (0.987) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

PageRank
1. (1.000) Low-Fat Recipes - Home
URL:www.low-fat-recipes.com
2. (0.627) Cookingaffiliates.com Home
URL:www.cookingaffiliates.com
3. (0.613) Cutting-edge natural health tre
URL:www.youngagain.com
4. (0.557) Shopping at Cooking.com: Find s
URL:www.cooking.com
5. (0.535) The Honolulu Advertiser - Hawai
URL:www.honoluluadvertiser.com
6. (0.507) National Honey Board@-I
URL:www.nhb.jp
7. (0.484) Food Network
URL:www.foodtv.com
8. (0.470) Natural Progesterone Cream, 2 o
URL:www.youngagain.com/progcream10
9. (0.417) Honey Locator
URL:www.honeylocator.com
10. (0.404) Empty title field
URL:iparentingstore.com

InDegree
1. (1.000) EPICURIOUS: WORLD’S
URL:www.epicurious.com
2. (0.886) Food Network
URL:www.foodtv.com
3. (0.847) All Recipes — Recipes
URL:www.allrecipes.com
4. (0.792) RecipeSource: Your Source for
URL:www.recipesource.com
5. (0.699) What You Need to Know About84
URL:www.about.com
6. (0.682) VegWeb - Vegan/Vegetarian
URL:www.vegweb.com
7. (0.669) FATFREE: The Low Fat
URL:www.fatfree.com
8. (0.669) Cutting-edge natural health tre
URL:www.youngagain.com
9. (0.631) Top Secret Recipes on the Web
URL:www.topsecretrecipes.com
10. (0.631) Le Web des icirc;les
URL:www.chez.com/zanozile

HubAvg
1. (1.000) Le Web des icirc;les
URL:www.chez.com/zanozile
2. (0.991) Please stand by..
URL:www.sofcom.com.au
3. (0.968) Sign in - Yahoo! Groups
URL:groups.yahoo.com/group/mauriti
4. (0.005) Microsoft bCentral - FastCounte
URL:fastcounter.bcentral.com/fc-jo
5. (0.004) Recipes are Cooking at NetCoo
URL:www.netcooks.com
6. (0.004) Mauritian cuisine, cooking and
URL:ile-maurice.tripod.com
7. (0.004) Mauritius Australia Connection
URL:www.cjp.net
8. (0.003) Mauritius Australia Connection
URL:www.users.bigpond.com/clancy/t
9. (0.003) SleepAngel.com - Are you snorin
URL:wcpsecure.com/app/aftrack.asp?
10. (0.002) Chef Jobs Foodservice Culinary
URL:chef2chef.net

Max
1. (1.000) EPICURIOUS: WORLD’S
URL:www.epicurious.com
2. (0.777) Food Network
URL:www.foodtv.com
3. (0.709) All Recipes — Recipes
URL:www.allrecipes.com
4. (0.623) RecipeSource: Your Source for
URL:www.recipesource.com
5. (0.490) Top Secret Recipes on the Web
URL:www.topsecretrecipes.com
6. (0.480) Find Lost Recipes atnbsp; Reci
URL:www.recipelink.com
7. (0.440) www.BettyCrocker.com
URL:www.bettycrocker.com
8. (0.431) VegWeb - Vegan/Vegetarian
URL:www.vegweb.com
9. (0.430) FATFREE: The Low Fat
URL:www.fatfree.com
10. (0.421) What You Need to Know About84
URL:www.about.com

AT-med
1. (1.000) EPICURIOUS: WORLD’S
URL:www.epicurious.com
2. (0.820) Food Network
URL:www.foodtv.com
3. (0.796) All Recipes — Recipes
URL:www.allrecipes.com
4. (0.674) RecipeSource: Your Source for
URL:www.recipesource.com
5. (0.550) Top Secret Recipes on the Web
URL:www.topsecretrecipes.com
6. (0.543) Find Lost Recipes atnbsp; Reci
URL:www.recipelink.com
7. (0.495) www.BettyCrocker.com
URL:www.bettycrocker.com
8. (0.482) FATFREE: The Low Fat
URL:www.fatfree.com
9. (0.472) VegWeb - Vegan/Vegetarian
URL:www.vegweb.com
10. (0.461) What You Need to Know About84
URL:www.about.com

AT-avg
1. (1.000) EPICURIOUS: WORLD’S
URL:www.epicurious.com
2. (0.861) All Recipes — Recipes
URL:www.allrecipes.com
3. (0.847) Food Network
URL:www.foodtv.com
4. (0.715) RecipeSource: Your Source for
URL:www.recipesource.com
5. (0.606) Top Secret Recipes on the Web
URL:www.topsecretrecipes.com
6. (0.599) Find Lost Recipes atnbsp; Reci
URL:www.recipelink.com
7. (0.542) www.BettyCrocker.com
URL:www.bettycrocker.com
8. (0.502) FATFREE: The Low Fat
URL:www.fatfree.com
9. (0.477) VegWeb - Vegan/Vegetarian
URL:www.vegweb.com
10. (0.468) Meals For You - Thousands
URL:www.mealsforyou.com

Norm
1. (1.000) HonoluluAdvertiser.com gt; Haw
URL:www.hawaiisclassifieds.com
2. (0.999) Gannett Company, Inc.
URL:www.gannett.com
3. (0.996) AP MoneyWire
URL:apmoneywire.mm.ap.org
4. (0.982) e.thePeople : Honolulu Advertis
URL:www.e-thepeople.com/affiliates
5. (0.980) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
6. (0.976) Honolulu Traffic Cameras, City
URL:www.co.honolulu.hi.us/cameras/
7. (0.976) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
8. (0.976) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
9. (0.976) News From The Associated Press
URL:customwire.ap.org/dynamic/fron
10. (0.976) News From The Associated Press
URL:customwire.ap.org/dynamic/fron

BFS
1. (1.000) EPICURIOUS: WORLD’S
URL:www.epicurious.com
2. (1.000) Cutting-edge natural health tre
URL:www.youngagain.com
3. (0.997) Food Network
URL:www.foodtv.com
4. (0.985) What You Need to Know About84
URL:www.about.com
5. (0.981) All Recipes — Recipes
URL:www.allrecipes.com
6. (0.977) RecipeSource: Your Source for
URL:www.recipesource.com
7. (0.962) Mauritian cuisine, cooking and
URL:ile-maurice.tripod.com
8. (0.956) Top Secret Recipes on the Web
URL:www.topsecretrecipes.com
9. (0.953) VegWeb - Vegan/Vegetarian
URL:www.vegweb.com
10. (0.953) Find Lost Recipes atnbsp; Reci
URL:www.recipelink.com

Table C.28: Query “recipes”
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Hits
1. (1.000) Site Meter - Counter and Statis
URL:www.sitemeter.com/stats.asp?si
2. (0.998) Dreambook - Camarila’s Image Ga
URL:books.dreambook.com/camarila/a
3. (0.998) Camarila’s Image Galleries’s Dr
URL:books.dreambook.com/camarila/m
4. (0.998) Camarila’s Image Galleries of F
URL:books.dreambook.com/camarila/a
5. (0.530) Camarila’s Fantasy Image Galler
URL:members.fortunecity.com/camari
6. (0.530) Camarila’s Sci-Fi Image Galleri
URL:members.fortunecity.com/camari
7. (0.530) Camarila’s Horror Image Galleri
URL:members.fortunecity.com/camari
8. (0.530) Camarila’s Artists Gallery List
URL:members.fortunecity.com/camari
9. (0.530) MIDI PAGE
URL:rivendell.fortunecity.com/redg
10. (0.530) Camarila’s X-Files Pages -9 sea
URL:members.fortunecity.com/camari

PageRank
1. (1.000) Fan Forum: Entertainment 4 Fans
URL:www.fanforum.com
2. (0.244) Weather Underground: Roswell, N
URL:www.wunderground.com/US/NM/Ros
3. (0.208) San Antonio Express-News Archiv
URL:archives.newsbank.com/saenews
4. (0.207) Rackspace Managed Hosting - Ded
URL:www.rackspace.com/?supbid=mysa
5. (0.179) Forums 4 Fans
URL:www.forums4fans.com
6. (0.178) Roswell, NM
URL:www.roswellnm.org
7. (0.173) Crashdown.com
URL:www.crashdown.com
8. (0.165) Fan Forum: Contact Fan Forum
URL:www.e4fans.com/fanforum/contac
9. (0.165) Fan Forum: Advertising
URL:www.e4fans.com/fanforum/advert
10. (0.165) Fan Forum: Privacy Policy
URL:www.e4fans.com/fanforum/privac

InDegree
1. (1.000) Roswell, NM
URL:www.roswellnm.org
2. (0.822) Welcome to Roswell Rods.com
URL:www.roswellrods.com
3. (0.813) Fan Forum: Entertainment 4 Fans
URL:www.fanforum.com
4. (0.738) general5
URL:www.roswellproof.homestead.com
5. (0.710) ———————Welcome to
URL:roswell land.tripod.com
6. (0.673) San Antonio Express-News Archiv
URL:archives.newsbank.com/saenews
7. (0.673) Site Meter - Counter and Statis
URL:www.sitemeter.com/stats.asp?si
8. (0.664) Rackspace Managed Hosting - Ded
URL:www.rackspace.com/?supbid=mysa
9. (0.664) Dreambook - Camarila’s Image Ga
URL:books.dreambook.com/camarila/a
10. (0.664) Camarila’s Image Galleries’s Dr
URL:books.dreambook.com/camarila/m

HubAvg
1. (1.000) Fan Forum: Entertainment 4 Fans
URL:www.fanforum.com
2. (0.248) Forums 4 Fans: Roswell (1)
URL:www.forums4fans.com/ultimatebb
3. (0.140) Crashdown.com
URL:www.crashdown.com
4. (0.016) Welcome to Roswell Rods.com
URL:www.roswellrods.com
5. (0.012) William Sadler - Wild on the We
URL:www.williamsadler.com
6. (0.009) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
7. (0.007) ———————Welcome to
URL:roswell land.tripod.com
8. (0.007) Roswell Movie [Campaign]
URL:www.roswellmovie.net
9. (0.006) Roswell: Crashdown (Episodes)
URL:www.crashdown.com/episodes
10. (0.006) general5
URL:www.roswellproof.homestead.com

Max
1. (1.000) Roswell, NM
URL:www.roswellnm.org
2. (0.548) Welcome to Roswell Rods.com
URL:www.roswellrods.com
3. (0.345) Welcome to Adobe GoLive 6
URL:www.roswell.org
4. (0.332) general5
URL:www.roswellproof.homestead.com
5. (0.285) ———————Welcome to
URL:roswell land.tripod.com
6. (0.251) Roswell UFO Crash of July 194
URL:www.roswellufocrash.com
7. (0.238) The Chaparral Rockhounds Gem
URL:www.chaparralrockhounds.com
8. (0.233) MP3.com: Lights Over Roswell
URL:www.lightsoverroswell.com
9. (0.227) Empty title field
URL:www.mufon.com
10. (0.195) Empty title field
URL:www.roswellsearch.com

AT-med
1. (1.000) Roswell, NM
URL:www.roswellnm.org
2. (0.717) Welcome to Roswell Rods.com
URL:www.roswellrods.com
3. (0.624) general5
URL:www.roswellproof.homestead.com
4. (0.541) ———————Welcome to
URL:roswell land.tripod.com
5. (0.505) The Chaparral Rockhounds Gem
URL:www.chaparralrockhounds.com
6. (0.467) MP3.com: Lights Over Roswell
URL:www.lightsoverroswell.com
7. (0.461) Roswell UFO Crash of July 194
URL:www.roswellufocrash.com
8. (0.429) Empty title field
URL:www.roswellsearch.com
9. (0.397) Welcome to Adobe GoLive 6
URL:www.roswell.org
10. (0.374) Church Christ - ChurchChrist -
URL:www.churchchrist.org

AT-avg
1. (1.000) Site Meter - Counter and Statis
URL:www.sitemeter.com/stats.asp?si
2. (0.996) Dreambook - Camarila’s Image Ga
URL:books.dreambook.com/camarila/a
3. (0.996) Camarila’s Image Galleries’s Dr
URL:books.dreambook.com/camarila/m
4. (0.996) Camarila’s Image Galleries of F
URL:books.dreambook.com/camarila/a
5. (0.617) Ampira Hosting - web hosting, d
URL:www.ampira.com
6. (0.604) Edward Gorey, amphigorey
URL:www.geocities.com/SoHo/Canvas/
7. (0.589) Camarila’s Angels and Fairies P
URL:www.geocities.com/gabriella66/
8. (0.463) Smallville Pages, Episode Guide
URL:www.geocities.com/gabriella66/
9. (0.463) Camarila’s Total Recall-2070 Ep
URL:www.geocities.com/camarilasout
10. (0.421) Highlander Pages-6 seasons epis
URL:www.geocities.com/akasha7 7/hi

Norm
1. (1.000) Site Meter - Counter and Statis
URL:www.sitemeter.com/stats.asp?si
2. (0.994) Dreambook - Camarila’s Image Ga
URL:books.dreambook.com/camarila/a
3. (0.994) Camarila’s Image Galleries’s Dr
URL:books.dreambook.com/camarila/m
4. (0.994) Camarila’s Image Galleries of F
URL:books.dreambook.com/camarila/a
5. (0.616) Ampira Hosting - web hosting, d
URL:www.ampira.com
6. (0.595) Edward Gorey, amphigorey
URL:www.geocities.com/SoHo/Canvas/
7. (0.582) Camarila’s Angels and Fairies P
URL:www.geocities.com/gabriella66/
8. (0.463) Smallville Pages, Episode Guide
URL:www.geocities.com/gabriella66/
9. (0.463) Camarila’s Total Recall-2070 Ep
URL:www.geocities.com/camarilasout
10. (0.421) Highlander Pages-6 seasons epis
URL:www.geocities.com/akasha7 7/hi

BFS
1. (1.000) Roswell, NM
URL:www.roswellnm.org
2. (0.969) general5
URL:www.roswellproof.homestead.com
3. (0.964) Church Christ - ChurchChrist -
URL:www.churchchrist.org
4. (0.958) Geography Home Page
URL:geography.miningco.com
5. (0.949) Paris PC Consult - MapInfo GIS
URL:www.paris-pc-gis.com
6. (0.938) The Chaparral Rockhounds Gem
URL:www.chaparralrockhounds.com
7. (0.936) Roswell UFO Crash of July 194
URL:www.roswellufocrash.com
8. (0.926) ———————Welcome to
URL:roswell land.tripod.com
9. (0.915) Index of /
URL:www.roswell-record.com
10. (0.883) MP3.com: Lights Over Roswell
URL:www.lightsoverroswell.com

Table C.29: Query “roswell”
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Hits
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.981) Ego Surf - EgoSurf - egosurf.co
URL:www.egosurf.com
3. (0.979) Yahoo! Danmark
URL:www.yahoo.dk
4. (0.973) AltaVista Text-Only Search
URL:ragingsearch.altavista.com
5. (0.972) Euroseek
URL:euroseek.net
6. (0.972) Your Search Engine Internet dir
URL:www.searchpalm.com
7. (0.971) About Web Search - Guide to
URL:websearch.about.com
8. (0.970) Abacho - THE POWERFUL
URL:www.abacho.co.uk
9. (0.970) careerhighway.com
URL:www.careerhighway.com
10. (0.970) Ananzi South Africa - Search
URL:www.ananzi.co.za

PageRank
1. (1.000) Google Groups
URL:www.dejanews.com
2. (0.975) Lycos Zone
URL:www.terralycos.com
3. (0.958) Google
URL:www.google.com
4. (0.761) Yahoo!
URL:www.yahoo.com
5. (0.756) bruceclay.com - Web Site Promot
URL:www.bruceclay.com
6. (0.743) AltaVista
URL:www.altavista.com
7. (0.612) iSleuth Meta Crawler Freebies
URL:myfreebies.com/?a=cd42313
8. (0.588) CNET.com
URL:www.cnet.com/frontdoor/0-1.htm
9. (0.551) My Excite
URL:www.excite.com
10. (0.535) Lycos Home Page
URL:www.lycos.com

InDegree
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.885) Yahoo!
URL:www.yahoo.com
3. (0.885) Google
URL:www.google.com
4. (0.727) Lycos Home Page
URL:www.lycos.com
5. (0.710) Homepage HotBot Web Search
URL:www.hotbot.com
6. (0.700) Dogpile. Unleash the power of
URL:www.dogpile.com
7. (0.672) My Excite
URL:www.excite.com
8. (0.580) WebCrawler Index
URL:www.webcrawler.com
9. (0.480) Northern Light
URL:www.northernlight.com
10. (0.470) AlltheWeb.com
URL:www.alltheweb.com

HubAvg
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.980) Yahoo!
URL:www.yahoo.com
3. (0.961) Google
URL:www.google.com
4. (0.789) Lycos Home Page
URL:www.lycos.com
5. (0.745) My Excite
URL:www.excite.com
6. (0.742) Homepage HotBot Web Search
URL:www.hotbot.com
7. (0.643) Dogpile. Unleash the power of
URL:www.dogpile.com
8. (0.582) WebCrawler Index
URL:www.webcrawler.com
9. (0.453) Northern Light
URL:www.northernlight.com
10. (0.415) AlltheWeb.com
URL:www.alltheweb.com

Max
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.851) Yahoo!
URL:www.yahoo.com
3. (0.844) Google
URL:www.google.com
4. (0.699) Lycos Home Page
URL:www.lycos.com
5. (0.682) Homepage HotBot Web Search
URL:www.hotbot.com
6. (0.653) Dogpile. Unleash the power of
URL:www.dogpile.com
7. (0.642) My Excite
URL:www.excite.com
8. (0.550) WebCrawler Index
URL:www.webcrawler.com
9. (0.458) Northern Light
URL:www.northernlight.com
10. (0.439) AlltheWeb.com
URL:www.alltheweb.com

AT-med
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.932) Yahoo!
URL:www.yahoo.com
3. (0.866) Google
URL:www.google.com
4. (0.800) Lycos Home Page
URL:www.lycos.com
5. (0.784) Homepage HotBot Web Search
URL:www.hotbot.com
6. (0.738) My Excite
URL:www.excite.com
7. (0.728) Dogpile. Unleash the power of
URL:www.dogpile.com
8. (0.630) WebCrawler Index
URL:www.webcrawler.com
9. (0.524) Northern Light
URL:www.northernlight.com
10. (0.483) AlltheWeb.com
URL:www.alltheweb.com

AT-avg
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.887) Yahoo!
URL:www.yahoo.com
3. (0.827) Google
URL:www.google.com
4. (0.801) Lycos Home Page
URL:www.lycos.com
5. (0.797) Homepage HotBot Web Search
URL:www.hotbot.com
6. (0.763) Dogpile. Unleash the power of
URL:www.dogpile.com
7. (0.752) My Excite
URL:www.excite.com
8. (0.656) WebCrawler Index
URL:www.webcrawler.com
9. (0.573) Northern Light
URL:www.northernlight.com
10. (0.522) Search.com
URL:www.search.com

Norm
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.713) Ego Surf - EgoSurf - egosurf.co
URL:www.egosurf.com
3. (0.670) Yahoo! Danmark
URL:www.yahoo.dk
4. (0.666) About Web Search - Guide to
URL:websearch.about.com
5. (0.638) AltaVista Text-Only Search
URL:ragingsearch.altavista.com
6. (0.637) Empty title field
URL:www.portalhub.com
7. (0.629) Euroseek
URL:euroseek.net
8. (0.628) Your Search Engine Internet dir
URL:www.searchpalm.com
9. (0.621) careerhighway.com
URL:www.careerhighway.com
10. (0.619) CIA - The World Factbook 2002
URL:www.odci.gov/cia/publications/

BFS
1. (1.000) AltaVista
URL:www.altavista.com
2. (0.981) Google
URL:www.google.com
3. (0.931) Lycos Home Page
URL:www.lycos.com
4. (0.918) Yahoo!
URL:www.yahoo.com
5. (0.865) Homepage HotBot Web Search
URL:www.hotbot.com
6. (0.859) Dogpile. Unleash the power of
URL:www.dogpile.com
7. (0.857) My Excite
URL:www.excite.com
8. (0.852) Ego Surf - EgoSurf - egosurf.co
URL:www.egosurf.com
9. (0.842) Search Engine Watch: Tips
URL:searchenginewatch.com
10. (0.841) Northern Light
URL:www.northernlight.com

Table C.30: Query “search engines”
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Hits
1. (1.000) The Oregon Shakespeare Festival
URL:www.orshakes.org
2. (0.895) Shakespeare Company
URL:www.shakespeare-company.org
3. (0.870) Idaho Shakespeare Festival
URL:www.idahoshakespeare.org
4. (0.832) Welcome to the Utah Shakespeare
URL:www.bard.org
5. (0.811) The Shakespeare Theatre
URL:www.shakespearedc.org
6. (0.800) Alabama Shakespeare Festival
URL:www.asf.net
7. (0.784) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
8. (0.777) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org
9. (0.773) Welcome to Georgia Shakespeare
URL:www.gashakespeare.org
10. (0.771) Kentucky Shakespeare Festival W
URL:www.kyshakes.org

PageRank
1. (1.000) Forbes.com Best of the Web
URL:www.forbes.com/bow
2. (0.983) Alabama Shakespeare Festival
URL:www.asf.net
3. (0.742) Yahoo!
URL:www.yahoo.com
4. (0.738) The University of Birmingham
URL:www.bham.ac.uk
5. (0.625) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org
6. (0.618) Shakespeare Fishing Tackle
URL:www.shakespeare-fishing.com
7. (0.584) Shakespeare Composites and Elec
URL:www.shakespeare-ce.com
8. (0.569) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
9. (0.546) Shakespeare’s Plays and Sonne
URL:www.allshakespeare.com
10. (0.502) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare

InDegree
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.807) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.765) shakespeare.com home
URL:www.shakespeare.com
4. (0.735) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
5. (0.597) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
6. (0.542) RSC - Royal Shakespeare Company
URL:www.rsc.org.uk
7. (0.513) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.508) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org
9. (0.492) Shakespeare Navigators
URL:www.clicknotes.com
10. (0.487) Shakespeare: Internet Editio
URL:web.uvic.ca/shakespeare

HubAvg
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.900) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.693) shakespeare.com home
URL:www.shakespeare.com
4. (0.620) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
5. (0.422) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
6. (0.327) RSC - Royal Shakespeare Company
URL:www.rsc.org.uk
7. (0.324) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.322) Shakespeare Magazine
URL:www.shakespearemag.com
9. (0.306) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
10. (0.302) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org

Max
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.578) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.507) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
4. (0.503) shakespeare.com home
URL:www.shakespeare.com
5. (0.371) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
6. (0.340) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
7. (0.303) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.296) Shakespeare Magazine
URL:www.shakespearemag.com
9. (0.248) Shakespeare Resource Center
URL:www.bardweb.net
10. (0.246) The Shakespeare Birthplace T
URL:www.shakespeare.org.uk

AT-med
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.662) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.617) shakespeare.com home
URL:www.shakespeare.com
4. (0.600) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
5. (0.417) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
6. (0.397) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
7. (0.352) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.337) Shakespeare Magazine
URL:www.shakespearemag.com
9. (0.286) The Shakespeare Birthplace Tr
URL:www.shakespeare.org.uk
10. (0.285) Shakespeare Resource Center
URL:www.bardweb.net

AT-avg
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.661) shakespeare.com home
URL:www.shakespeare.com
3. (0.655) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
4. (0.650) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
5. (0.457) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
6. (0.444) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
7. (0.400) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.379) Shakespeare Magazine
URL:www.shakespearemag.com
9. (0.324) Shakespeare Resource Center
URL:www.bardweb.net
10. (0.321) The Shakespeare Birthplace T
URL:www.shakespeare.org.uk

Norm
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.641) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.637) shakespeare.com home
URL:www.shakespeare.com
4. (0.616) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
5. (0.423) The Complete Works of
URL:the-tech.mit.edu/Shakespeare
6. (0.423) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
7. (0.381) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
8. (0.360) Shakespeare Magazine
URL:www.shakespearemag.com
9. (0.318) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org
10. (0.315) The Shakespeare Birthplace T
URL:www.shakespeare.org.uk

BFS
1. (1.000) Mr. William Shakespeare and the
URL:daphne.palomar.edu/shakespeare
2. (0.955) The Complete Works of
URL:the-tech.mit.edu/Shakespeare/w
3. (0.948) shakespeare.com home
URL:www.shakespeare.com
4. (0.924) Shakespeare Oxford Society Home
URL:www.shakespeare-oxford.com
5. (0.921) Shakespeare’s Globe Theatre
URL:www.rdg.ac.uk/globe
6. (0.917) Shakespeare Resource Center
URL:www.bardweb.net
7. (0.893) Shakespeare’s Globe Theatre, Ba
URL:www.shakespeares-globe.org
8. (0.890) Shakespeare Navigators
URL:www.clicknotes.com
9. (0.877) Shakespeare: Internet Edition
URL:web.uvic.ca/shakespeare
10. (0.866) The Shakespeare Birthplace T
URL:www.shakespeare.org.uk

Table C.31: Query “shakespeare”
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Hits
1. (1.000) ITTF
URL:www.ittf.com
2. (0.600) Empty title field
URL:www.usatt.org
3. (0.599) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.480) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.268) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
6. (0.265) What You Need to Know About84
URL:www.about.com
7. (0.260) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
8. (0.257) BS Table Tennis
URL:bstt.cjb.net
9. (0.252) Table Tennis / Ping-Pong
URL:www.megaspin.net
10. (0.239) TABLE TENNIS CANADA
URL:www.ctta.ca

PageRank
1. (1.000) Tibhar-HomePage
URL:www.tibhar.de
2. (0.969) ITTF
URL:www.ittf.com
3. (0.899) Table Tennis/Ping-Pong Classifi
URL:adlistings.tabletennis.about.c
4. (0.741) Adobe Acrobat Reader - Download
URL:www.adobe.com/products/acrobat
5. (0.737)
URL:www.people.com.cn
6. (0.662) ITTF HANDBOOK
URL:www.ittf.com/Regulations/Regul
7. (0.637) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
8. (0.633) Empty title field
URL:www.usatt.org
9. (0.626) TheCounter.com: The Full-Featur
URL:www.TheCounter.com
10. (0.554) WebSTAT
URL:hits.webstat.com

InDegree
1. (1.000) ITTF
URL:www.ittf.com
2. (0.608) Empty title field
URL:www.usatt.org
3. (0.446) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.412) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
5. (0.392) ETTA: English Table Tennis As
URL:www.etta.co.uk
6. (0.348) Tibhar-HomePage
URL:www.tibhar.de
7. (0.265) BS Table Tennis
URL:bstt.cjb.net
8. (0.255) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
9. (0.255) TABLE TENNIS CANADA
URL:www.ctta.ca
10. (0.255) Welcome to Sweden Table Tennis
URL:www.tabletennis.se

HubAvg
1. (1.000) ITTF
URL:www.ittf.com
2. (0.392) Empty title field
URL:www.usatt.org
3. (0.280) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.184) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.157) Tibhar-HomePage
URL:www.tibhar.de
6. (0.142) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
7. (0.096) TABLE TENNIS CANADA
URL:www.ctta.ca
8. (0.093) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
9. (0.092) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
10. (0.080) What You Need to Know About84
URL:www.about.com

Max
1. (1.000) ITTF
URL:www.ittf.com
2. (0.456) Empty title field
URL:www.usatt.org
3. (0.409) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.302) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.162) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
6. (0.152) What You Need to Know About84
URL:www.about.com
7. (0.148) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
8. (0.147) Table Tennis / Ping-Pong
URL:www.megaspin.net
9. (0.136) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
10. (0.134) TABLE TENNIS CANADA
URL:www.ctta.ca

AT-med
1. (1.000) ITTF
URL:www.ittf.com
2. (0.500) Empty title field
URL:www.usatt.org
3. (0.460) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.327) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.179) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
6. (0.172) What You Need to Know About84
URL:www.about.com
7. (0.166) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
8. (0.163) Table Tennis / Ping-Pong
URL:www.megaspin.net
9. (0.148) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
10. (0.148) TABLE TENNIS CANADA
URL:www.ctta.ca

AT-avg
1. (1.000) ITTF
URL:www.ittf.com
2. (0.541) Empty title field
URL:www.usatt.org
3. (0.512) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.374) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.204) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
6. (0.194) What You Need to Know About84
URL:www.about.com
7. (0.188) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
8. (0.187) Table Tennis / Ping-Pong
URL:www.megaspin.net
9. (0.175) TABLE TENNIS CANADA
URL:www.ctta.ca
10. (0.164) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com

Norm
1. (1.000) ITTF
URL:www.ittf.com
2. (0.489) Empty title field
URL:www.usatt.org
3. (0.443) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.324) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.178) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
6. (0.168) What You Need to Know About84
URL:www.about.com
7. (0.164) Welcome to Sweden Table Tennis
URL:www.tabletennis.se
8. (0.162) Table Tennis / Ping-Pong
URL:www.megaspin.net
9. (0.153) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
10. (0.151) TABLE TENNIS CANADA
URL:www.ctta.ca

BFS
1. (1.000) ITTF
URL:www.ittf.com
2. (0.860) Empty title field
URL:www.usatt.org
3. (0.832) ETTU - European Table Tennis
URL:www.ettu.org
4. (0.781) ETTA: English Table Tennis As
URL:www.etta.co.uk
5. (0.773) What You Need to Know About84
URL:www.about.com
6. (0.767) Table Tennis and Ping Pong Acce
URL:www.butterflyonline.com
7. (0.761) BS Table Tennis
URL:bstt.cjb.net
8. (0.736) Leamington amp; District Table
URL:leamingtontt.tripod.com
9. (0.731) Denis’ Table Tennis / Ping-Pong
URL:www.tabletennis.gr
10. (0.709) Welcome to Sweden Table Tennis
URL:www.tabletennis.se

Table C.32: Query “table tennis”

191



Hits
1. (1.000) NOAA - National Weather
URL:www.nws.noaa.gov
2. (0.986) NOAA Home Page
URL:www.noaa.gov
3. (0.473) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.425) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
5. (0.403) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
6. (0.363) weather.com
URL:www.weather.com
7. (0.358) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
8. (0.293) Intellicast - Weather For Act
URL:www.intellicast.com
9. (0.259) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
10. (0.243) Weather Underground
URL:www.wunderground.com

PageRank
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.611) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.490) New York Times Company
URL:www.nytco.com
4. (0.443) The New York Times: Travel
URL:www.nytimes.com/pages/travel
5. (0.361) Department of Commerce Home
URL:www.doc.gov
6. (0.325) FirstGov – Your First Click to
URL:www.firstgov.gov
7. (0.233) NESDIS Home Page
URL:www.nesdis.noaa.gov
8. (0.213) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
9. (0.207) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
10. (0.199) GEOSTATIONARY SATELLITE
URL:www.goes.noaa.gov

InDegree
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.973) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.547) weather.com
URL:www.weather.com
4. (0.469) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
5. (0.399) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
6. (0.375) Intellicast - Weather For Act
URL:www.intellicast.com
7. (0.343) Weather Underground
URL:www.wunderground.com
8. (0.333) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
9. (0.304) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
10. (0.286) UM Weather
URL:cirrus.sprl.umich.edu/wxnet

HubAvg
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.872) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.460) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.297) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
5. (0.194) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
6. (0.183) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
7. (0.171) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
8. (0.152) Department of Commerce Home
URL:www.doc.gov
9. (0.151) NOAA - National Weather Service
URL:www.nws.noaa.gov/pa
10. (0.151) NOAA - National Weather Service
URL:www.nws.noaa.gov/notice.html

Max
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.958) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.394) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.354) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
5. (0.308) weather.com
URL:www.weather.com
6. (0.302) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
7. (0.301) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
8. (0.228) Intellicast - Weather For Act
URL:www.intellicast.com
9. (0.212) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
10. (0.191) Weather Underground
URL:www.wunderground.com

AT-med
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.984) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.483) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.345) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
5. (0.337) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
6. (0.335) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
7. (0.266) weather.com
URL:www.weather.com
8. (0.233) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
9. (0.203) Intellicast - Weather For Act
URL:www.intellicast.com
10. (0.199) NOAA - National Weather Service
URL:www.nws.noaa.gov/pa

AT-avg
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.991) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.504) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.371) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
5. (0.361) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
6. (0.350) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
7. (0.277) weather.com
URL:www.weather.com
8. (0.252) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
9. (0.218) NOAA - National Weather Service
URL:www.nws.noaa.gov/pa
10. (0.214) Intellicast - Weather For Ac
URL:www.intellicast.com

Norm
1. (1.000) NOAA Home Page
URL:www.noaa.gov
2. (0.975) NOAA - National Weather
URL:www.nws.noaa.gov
3. (0.445) NOAA - National Weather Service
URL:www.nws.noaa.gov/disclaimer.ht
4. (0.343) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
5. (0.327) NOAA Home Page - Privacy amp;
URL:www.noaa.gov/privacy.html
6. (0.324) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
7. (0.282) weather.com
URL:www.weather.com
8. (0.225) NWS page
URL:www.wrh.noaa.gov/wrhq/nwspage.
9. (0.214) Intellicast - Weather For Act
URL:www.intellicast.com
10. (0.189) NOAA - National Weather Service
URL:www.nws.noaa.gov/pa

BFS
1. (1.000) NOAA - National Weather
URL:www.nws.noaa.gov
2. (0.983) NOAA Home Page
URL:www.noaa.gov
3. (0.888) weather.com
URL:www.weather.com
4. (0.855) National Hurricane Center / Tro
URL:www.nhc.noaa.gov
5. (0.820) Weather Underground
URL:www.wunderground.com
6. (0.813) Intellicast - Weather For Act
URL:www.intellicast.com
7. (0.793) UM Weather
URL:cirrus.sprl.umich.edu/wxnet
8. (0.752) Google
URL:www.google.com
9. (0.744) Climate Prediction Center
URL:www.cpc.ncep.noaa.gov
10. (0.738) CNN.com - Weather
URL:www.cnn.com/WEATHER

Table C.33: Query “weather”
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Hits
1. (1.000) Yahoo!
URL:www.yahoo.com
2. (0.976) Yahoo! Terms of Service
URL:docs.yahoo.com/info/terms
3. (0.972) Yahoo! Autos
URL:autos.yahoo.com
4. (0.959) Yahoo! - Autos
URL:help.yahoo.com/help/autos
5. (0.958) Yahoo! Autos Sell Your Car
URL:classifieds.autos.yahoo.com/cl
6. (0.958) Sign in - Yahoo! Companion
URL:us.edit.companion.yahoo.com/co
7. (0.944) Yahoo! Privacy
URL:privacy.yahoo.com
8. (0.941) Yahoo! Classifieds
URL:classifieds.yahoo.com
9. (0.937) Yahoo! Shopping
URL:shopping.yahoo.com
10. (0.936) Yahoo! Media Relations
URL:docs.yahoo.com/info/copyright/

PageRank
1. (1.000) Crain Communications, Inc.
URL:www.crain.com
2. (0.616) AutoWeek - Premier Source for A
URL:www.autoweek.com
3. (0.523) TimeZone
URL:www.timezone.com
4. (0.414) Online Casino - www.888.com - t
URL:rd1.hitbox.com/rd?acct=WQ52083
5. (0.391) TheCounter.com: The Full-Featur
URL:www.TheCounter.com
6. (0.373) Motivational Posters and Inspir
URL:www.motivatepost.com
7. (0.369) Crain Communications Inc.
URL:www.elasesor.com.mx
8. (0.367) SEJOONG NAMO
URL:www.namo.com
9. (0.362) CarePackages.com: Care Packages
URL:collegeclub.carepackages.com
10. (0.330) Animal Posters and Prints
URL:www.animalposterz.com

InDegree
1. (1.000) MCSCCpix
URL:www.mcsccpix.homestead.com
2. (0.949) Awesome Dodge Chargers for sale
URL:martinpacker.com
3. (0.735) VINTAGE POSTCARDS
URL:vintagepostcards1.tripod.com
4. (0.721) Home,die-cast-models, vintage
URL:www.vintagediecast.com
5. (0.706) Classic Car Classifieds from
URL:www.hemmings.com
6. (0.706) Yahoo!
URL:www.yahoo.com
7. (0.684) F1 is Web F1 - Formula One News
URL:www.webf1.net
8. (0.618) Classic Car - ClassicCar.com
URL:www.classicar.com
9. (0.610) AutoWeek - Premier Source for A
URL:www.autoweek.com
10. (0.588) Yahoo! Autos Sell Your Car
URL:classifieds.autos.yahoo.com/cl

HubAvg
1. (1.000) Yahoo!
URL:www.yahoo.com
2. (0.919) Yahoo! Terms of Service
URL:docs.yahoo.com/info/terms
3. (0.891) Yahoo! Autos Sell Your Car
URL:classifieds.autos.yahoo.com/cl
4. (0.891) Sign in - Yahoo! Companion
URL:us.edit.companion.yahoo.com/co
5. (0.890) Yahoo! Autos
URL:autos.yahoo.com
6. (0.808) Yahoo! - Autos
URL:help.yahoo.com/help/autos
7. (0.804) Yahoo! Privacy
URL:privacy.yahoo.com
8. (0.762) Yahoo! Media Relations
URL:docs.yahoo.com/info/copyright/
9. (0.742) Yahoo! Classifieds
URL:classifieds.yahoo.com
10. (0.722) Yahoo! Shopping
URL:shopping.yahoo.com

Max
1. (1.000) MCSCCpix
URL:www.mcsccpix.homestead.com
2. (0.833) Awesome Dodge Chargers for sale
URL:martinpacker.com
3. (0.577) VINTAGE POSTCARDS
URL:vintagepostcards1.tripod.com
4. (0.568) Home,die-cast-models, vintage
URL:www.vintagediecast.com
5. (0.513) F1 is Web F1 - Formula One News
URL:www.webf1.net
6. (0.391) Classic Car Classifieds from
URL:www.hemmings.com
7. (0.350) infoclassic - auto d’epoca -
URL:www.infoclassic.net
8. (0.322) Welcome to Barn Hill Minis
URL:www.barnhillminisusa.com
9. (0.320) BuyDomains.com ‘
URL:www.vintageracing.net
10. (0.315) Pacific Coast Alfa Romeo Owners
URL:alfaowners.cjb.net

AT-med
1. (1.000) MCSCCpix
URL:www.mcsccpix.homestead.com
2. (0.955) Awesome Dodge Chargers for sale
URL:martinpacker.com
3. (0.732) Home,die-cast-models, vintage
URL:www.vintagediecast.com
4. (0.662) VINTAGE POSTCARDS
URL:vintagepostcards1.tripod.com
5. (0.650) F1 is Web F1 - Formula One News
URL:www.webf1.net
6. (0.492) Classic Car Classifieds from
URL:www.hemmings.com
7. (0.444) infoclassic - auto d’epoca -
URL:www.infoclassic.net
8. (0.414) BuyDomains.com ‘
URL:www.vintageracing.net
9. (0.414) Welcome to Barn Hill Minis
URL:www.barnhillminisusa.com
10. (0.396) Owens Export Services, Inc.
URL:www.militaryjeep.com

AT-avg
1. (1.000) Yahoo!
URL:www.yahoo.com
2. (0.916) Yahoo! Terms of Service
URL:docs.yahoo.com/info/terms
3. (0.910) Yahoo! Autos
URL:autos.yahoo.com
4. (0.910) Yahoo! Autos Sell Your Car
URL:classifieds.autos.yahoo.com/cl
5. (0.910) Sign in - Yahoo! Companion
URL:us.edit.companion.yahoo.com/co
6. (0.872) Yahoo! - Autos
URL:help.yahoo.com/help/autos
7. (0.849) Yahoo! Privacy
URL:privacy.yahoo.com
8. (0.828) Yahoo! Media Relations
URL:docs.yahoo.com/info/copyright/
9. (0.825) Yahoo! Classifieds
URL:classifieds.yahoo.com
10. (0.815) Yahoo! Shopping
URL:shopping.yahoo.com

Norm
1. (1.000) Yahoo!
URL:www.yahoo.com
2. (0.916) Yahoo! Autos Sell Your Car
URL:classifieds.autos.yahoo.com/cl
3. (0.916) Sign in - Yahoo! Companion
URL:us.edit.companion.yahoo.com/co
4. (0.905) Yahoo! Autos
URL:autos.yahoo.com
5. (0.904) Yahoo! Terms of Service
URL:docs.yahoo.com/info/terms
6. (0.863) Yahoo! - Autos
URL:help.yahoo.com/help/autos
7. (0.849) Yahoo! Privacy
URL:privacy.yahoo.com
8. (0.832) Yahoo! Media Relations
URL:docs.yahoo.com/info/copyright/
9. (0.830) Yahoo! Classifieds
URL:classifieds.yahoo.com
10. (0.822) Yahoo! Shopping
URL:shopping.yahoo.com

BFS
1. (1.000) MCSCCpix
URL:www.mcsccpix.homestead.com
2. (0.985) Awesome Dodge Chargers for sale
URL:martinpacker.com
3. (0.977) infoclassic - auto d’epoca -
URL:www.infoclassic.net
4. (0.942) Shared Top Border
URL:www.calgaryvintageracing.com
5. (0.915) Welcome to Barn Hill Minis
URL:www.barnhillminisusa.com
6. (0.905) VINTAGE POSTCARDS
URL:vintagepostcards1.tripod.com
7. (0.904) Home,die-cast-models, vintage
URL:www.vintagediecast.com
8. (0.898) Pacific Coast Alfa Romeo Owners
URL:alfaowners.cjb.net
9. (0.889) World Wide Wheels Classifieds o
URL:www.specialcar.com
10. (0.881) BuyDomains.com ‘
URL:www.vintageracing.net

Table C.34: Query “vintage cars”
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