Parallel Computation of Spherical Parameterizations for Mesh Analysis

Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Introduction

Mesh parameterization is a powerful geometry processing tool

Applications

- Remeshing
- Texture mapping
- Segmentation
- Shape search
- Morphing

Conclusion: fast mesh parameterization is central to many applications

Parameterization definitions

Ω

- Parameter domain $\Omega \in \mathbb{R}^2$
- Bijective Mapping $f: S \to \Omega$ and $f^{-1}: \Omega \to S$

(one-to-one correspondence between Ω and S)

Planar parameterization bijectivity

If we map the boundary vertices to a convex polygon with the same order and express the interior vertices as a convex combination of their neighbors:

$$w_i = \sum_{j \in N_i} w_{ij} v_j$$
$$\sum_{j \in N_i} w_{ij} = 1$$

 $w_{ij} > 0$

- Then the map is bijective (without foldovers).
- This can be expressed as a linear system of equations
- The weights can affect the distortion of the parameterization (e.g. minimize the angular distortion)

Parameterization deformation

The constants affect the deformation of the parameterization

$$w_{i0} = \cot \beta_{i-1} + \cot \gamma_i$$

Physical interpretation

- Consider the edges of the triangle mesh as springs that are connected at the vertices
- If we fix the boundary of the spring network in the plane, then the interior will relax in the energetically most efficient configuration
- If we assume each spring to have potential energy $1/2wl^2$, where w is a spring constant and l is the length of the spring, then the overall spring energy of the mesh is minimized

$$f(v_1, v_2, ..., v_n) = \sum_{(v_i, v_j) \in E} w_{ij} ||v_i - v_j||^2$$

University of Ioannina

Planar parameterization extensions

- Planar parameterization is well suited for meshes with a boundary but can be extended to genus-0 objects:
 - Cut a path between two selected poles
 - Remove a triangle from the mesh and map the mesh on the unit triangle

Problems:

- Undesirable distortion is introduced by the cuts
- Unit triangle tends to cluster the remaining vertices in the center

Spherical parameterization

- Express each vertex of S as a convex combination of its neighbors:
- $v_{i} = \frac{\sum_{j \in N_{i}} \lambda_{ij} v_{j}}{\|\sum_{j \in N_{i}} \lambda_{ij} v_{j}\|}$ $\sum_{j \in N_{i}} \lambda_{ij} = 1$ $\lambda_{ij} = \lambda_{ji}$ $\lambda_{ij} > 0$

The above can also be expressed as a set of non linear equations:

SMI'I I, Herzliya, Israel

Solutions

- We can directly try to solve the problem with non linear optimization techniques
- Problems
 - Degenerate solutions exist (e.g. collapsed solution)
 - Non linear constraints
 - High computation cost

Our approach

Solve an easier problem with only linear constraints

Observation (spherical tangent planes):

$$f(\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}) \le f(v_1, \dots, v_n) \qquad \qquad \frac{\|\frac{v_i}{\|v_i\|} - \frac{v_j}{\|v_j\|}\|^2 \le ||v_i - v_j||^2}{\|v_i\| \ge 1, ||v_j\| \ge 1}$$

- The solution to this problem does not lie on the spherical domain. Nevertheless, after normalizing the vertices the spring energy is decreased
- The solution space is constrained and we avoid many degenerate configurations due to the constraints

Algorithm overview

The equality constrained energy minimization problem is a saddle point problem:

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} r \\ q \end{pmatrix}$$

- $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix containing symmetric weights (e.g. barycentric)
- $B \in \mathbb{R}^{n \times m}$ is a matrix containing the original coordinates (tangential planes normals)
- $r \in \mathbb{R}^n$ is a matrix related to the fixed vertices (if we have any)

•
$$q = 1, ..., 1^{T}, q \in \mathbb{R}^{m}$$
 contains the plane distances

Algorithm overview

• What we gain:

- The problem is easier to solve
- Requires only a sparse linear solver
- Certain degenerate solutions are avoided

What we lose:

- Potentially slower convergence speed (in terms of iterations)
- We do not directly solve the problem but the procedure converges to the original problem solution
- Certain degenerate solutions can still occur

Implementation details

- The problem is sparse and therefore more difficult to efficiently map on the GPU
- Better mathematical solvers are often poor GPU candidates (e.g. ILU)
- The challenge is trading off performance with iteration count
- It can be shown that under certain conditions the Jacobi converges to the solution of the saddle point problem
- Further implementation challenges
 - GPU host synchronization
 - Cache hit ratio

Implementation challenges

Synchronization cost

Can be reduced by using a sparse residual check policy (requires a synchronization)

Cache efficiency

- The algorithm is vertex-bound
- Can be improved by reordering the vertices for better locality
- Finding the optimal reordering is an NP-complete problem but heuristic based algorithms usually provide substantial speed gains

Parameterizations

University of Ioannina

SMI'II, Herzliya, Israel

23/6/2011

Applications

- Spherical parameterization applications
 - Texture mapping
 - Mesh segmentation
 - Shape search

Applications - Texture mapping

 Texture mapping (Least squares planar conformal parameterization) of Blender modeler

 Seamless, continuous texture mapping of Genus-0 models (conformal parameterization) with our approach.

University of Ioannina

SMI'l I, Herzliya, Israel

23/6/2011

Applications

- Spherical parameterization applications
 - Texture mapping
 - Mesh segmentation
 - Shape search

Mesh analysis motivation

- Idea: the spherical embedding represents a pose invariant representation of the mesh.
- Observation: due to the prominent extremities any, spherical embedding is expected to create some dense concentrations of faces.

SMI'l I, Herzliya, Israel

Mesh segmentation algorithm

- Compute the Area stretch factor A(vi) of each vertex vi (average area stretch deformation of its adjacent faces).
- Region growing approach that starts from seeds and expands while a threshold in the variation of the area stretch factor is satisfied.
- A seed is a vertex if and only if A(vi) exhibits a local minimum or maximum at vi.

Mesh segmentation stretch visualization

- Visualization of the ratio between the mapped area and the original surface and the final segmentation.
- Red means that a very small spherical area is assigned to a large area in the original model

Advantages - Limitations

Advantages

- Simple metric (geometric path from sphere)
- Suitable for models with limbs
- Fast even for large meshes (> 100k triangles)
- No need for decimation to reduce the segmentation cost

Disadvantages

 Post processing must be used for application specific meshsegment refinement (e.g. for mechanical objects)

Applications

- Spherical parameterization applications
 - Texture mapping
 - Mesh segmentation
 - Shape search

Shape search

- Key idea:
 - Compare signatures derived from the parameterizations
 - A signature can be a histogram of the area stretch factor
 - The signature can be tessellation independent with uniform or random sampling

Results

Table 1: Numerical results for finding a spherical parameterization on the GPU with different models												
model	map	# vertices	# faces	# iterations	$L_2 \text{ res} (\times 10^{-8})$	time (secs)						
Suzanne	Barycentric	7573	15142	4	5	0.575						
Suzanne	Conformal	7573	15142	3	5	0.589						
Gargoyle	Barycentric	24990	49976	4	2	1.706						
Gargoyle	Conformal	24990	49976	3	6	2.326						
Igea	Barycentric	25586	51168	3	4	0.908						
Igea	Conformal	25586	51168	2	3	0.936						
Lion Vase	Barycentric	38952	77900	3	3	1.567						
Lion Vase	Conformal	38952	77900	3	3	2.053						
Homer	Barycentric	78850	157696	3	1	4.923						
Homer	Conformal	78850	157696	3	4	10.920						
Buste	Barycentric	183580	367156	3	1	13.759						
Buste	Conformal	183580	367156	2	1	22.667						

Table 3: Comparison of running times (in secs) between GPU and CPU with different core configurations.

model	map	# vertices	# faces	# iterations	GTX 480	i7-870 (4)	i7-870 (2)	i7-870 (1)
Gargoyle	Barycentric	10002	20000	4	0.946	1.186	1.950	3.135
Gargoyle	Conformal	10002	20000	4	0.949	1.045	1.685	2.714
Torso	Barycentric	11362	22720	4	0.718	1.107	1.731	2.808
Torso	Conformal	11362	22720	3	0.870	1.123	1.747	2.745
Skull	Barycentric	20002	40000	3	0.649	1.076	1.719	2.904
Skull	Conformal	20002	40000	2	0.643	0.920	1.373	2.230
Bunny	Barycentric	67038	134074	3	1.217	3.616	6.635	12.038
Bunny	Conformal	67038	134074	2	2.158	3.778	7.737	14.118

time(secs)

Conclusions and future work

- We have presented a fast spherical parameterization algorithm for genus-0 meshes with application in mesh analysis
- Arbitrary genus meshes
- Different types of parameterizations (e.g. authalic)

Shape search evaluation (in terms of hit and misses)

Thank You

Questions:

thathana@cs.uoi.gr

fudos@cs.uoi.gr

Software:

www.cs.uoi.gr/~fudos/smi2011.html

University of Ioannina

SMI'I I, Herzliya, Israel

23/6/2011