
Mesh segmentation
Any spherical parameterization is expected to create some dense concentrations of faces on the
sphere due to the prominent extremities of the mesh. The extruding parts of the meshes, for
example the limbs, are usual to be mapped to relatively small regions on the sphere. This effect is
more evident when the angular distortion of the parameterization is minimized. Therefore, the
spherical embedding of a mesh contains a substantial amount of information about its geometric
shape. We have carried out a number of experiments with a region growing approach that takes
advantage of the above observation. The method starts from initial vertices (seeds) on the sphere
and expands while a threshold in the variation of the area stretch deformation is satisfied. This
results in a number of regions that represent object extremities.

Introduction
Mesh parameterization is of great importance to a broad spectrum of applications. In this work, we present a novel approach to spherical mesh
parameterization based on an iterative quadratic solver that is efficiently parallelizable on modern massively parallel architectures. We introduce a number of
heuristics that exploit various system characteristics of the underlying architectures to speed up the parallel realization of our algorithms. Furthermore, we
demonstrate the applicability of our approach to real-time feature detection, mesh decomposition and similarity-based 3D object retrieval.

1

10

100

Homer (10k)

Homer (20k)

Homer (40k)

Homer (80k)

Homer (160k)

Homer (320k)

tim
e(

se
cs

)

GTX480(cache optimized)
GTX480

i7-870(4 cores)
E6600(2 cores)

Spherical parameterization
Fast mesh parameterization is central to many applications such as remeshing, filtering, texture
mapping, compression, mesh completion and morphing. The existing spherical mesh
parameterization methods can roughly be classified into two categories:
 · Methods that attempt to extend planar methods
 · Methods that use some kind of non-linear optimization

Results
We have successfully used our scheme to parameterize meshes of up to 400K triangles on a
modern GPU in less than 25 secs. Furthermore, we have carried out a large number of
experiments to validate that our iterative method converges to the actual bijective mapping.

Future Work
 · Compare results with more sophisticated solvers (e.g. Multigrid,Krylov)
 · Extend to arbitrary genus objects
 · Implement a non linear solver for feature guided parameterizations

Software, Source and Video
http://www.cs.uoi.gr/~fudos/smi2011.html

References
[1] Th. Athanasiadis and I. Fudos - Parallel Computation of Spherical Parameterizations for Mesh
Analysis - Computers & Graphics Journal vol. 35, issue 3, special issue on Shape Modeling
International 2011

Typical methods of the former category introduce cuts in the mesh and increase the distortion of
the parameterization, an effect that may be undesirable by some applications. Therefore, it is
advantageous to directly parameterize the meshes on the spherical domain to allow seamless
continuous parameterizations of genus-0 meshes.
In the latter category the spherical parameterization problem is usually approached as an energy
minimization problem (minimizing angular or area distortion) subject to the vertices lying on the
sphere. Nevertheless, the usual approach for computing the parameterizations using non-linear
optimization has a high computation cost due to the non linearity of the constraints.

To effectively employ a fast parallelizable scheme, we model the problem as a set of equality
constrained quadratic (saddle point) problems subject to a set of linear constraints. The problems
are then solved using a sparse linear solver well suited to massively parallel architectures such as
modern GPUs [1].

Implementation
As an API for our implementation, we have used OpenCL to achieve almost direct portability of
our core source to both GPU and CPU based architectures. Moreover, we have investigated
various optimization principles optimize the performance of the proposed algorithm on the GPU:
 · Cache hit ratio - we improve it by reordering the vertices for better locality
 · Synchronization cost - we can reduce it by using a sparse residual check policy

Spherical parameterizations

Texture mapping using the parameterization results

Parameterization stretch visualization and segmentation results

0

20

40

60

80

100

L1 cache

L1 cache (opt)

L2 cache

L2 cache (opt)

ca
ch

e
hi

t r
at

e
(%

)

Homer 10k
Homer 20k

Homer 40k
Homer 80k

Shape Search
Key idea:
 · Compare signatures derived from the parameterizations
 · A signature can be a histogram of the area stretch factor
 · With uniform or random sampling the signature can become tessellation independent

0

500

1000

1500

2000

0.01 0.1 1 10
0

500

1000

1500

2000

0.01 0.1 1 10

Histograms of different elephant poses

