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Abstract

In a system offering on-demand real-time streaming
of media files, data striping across an array of disks
can improve load balancing, allowing higher disk uti-
lization and increased system throughput. However,
it can also cause complete service disruption in the
case of a disk failure. Reliability can be improved
by adding data redundancy and reserving extra disk
bandwidth during normal operation. In this paper,
we are interested in providing fault-tolerance for me-
dia servers that support variable bit-rate encoding
formats. Higher compression efficiency with respect
to constant bit-rate encoding can significantly reduce
per-user resource requirements, at the cost of in-
creased resource management complexity. For the
first time, the interaction between storage system
fault-tolerance and variable bit-rate streaming with
deterministic QoS guarantees is investigated. We
implement into a prototype server and experimen-
tally evaluate, using detailed simulated disk models,
alternative data replication techniques and disk band-
width reservation schemes. We show that with the
minimum reservation scheme introduced here, sin-
gle disk failures can be tolerated at a cost of less
than 20% reduced throughput during normal oper-
ation, even for a disk array of moderate size. We
also examine the benefit from load balancing tech-
niques proposed for traditional storage systems and
find only limited improvement in the measured through-
put.

1 Introduction

Striping media files across multiple disks has the ad-
vantage of keeping the disks implicitly load-balanced.
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With several concurrent sessions of playback asyn-
chronously started, different parts of each file are
accessed from different disks. As a result it is no
longer necessary to replicate media files according
to their popularity, which leads to lower resource
requirements and system administration cost. The
disadvantage of disk striping is decreased system re-
liability because media files are left partially inacces-
sible when one or more disks fail. This causes service
disruption to all the users served by the disk array
at the moment of the failure. In contrast, when an
entire file is stored on a single disk, only those users
accessing files on the failed disk are negatively af-
fected.

Previous work has addressed the general problem of
disk array reliability by using data redundancy tech-
niques to allow recovery of inaccessible data [12].
Some of these techniques have been successfully ex-
tended for handling the case of striped media files as
well [6, 25]. However, all the known analytical and
experimental work on this subject is either limited
to streams of constant bit rates (CBR), or assumes
stochastic admission control [27, 29].

Variable bit-rate (VBR) encoding of video can con-
siderably reduce the size of the generated media files
when compared to constant bit-rate encoding of equiv-
alent perceptual quality [18, 22]. In addition, knowl-
edge about the resource requirements of stored streams
during transmission can be leveraged for better pre-
dicting access delays, and offering deterministic QoS
guarantees [11]. Although striping of VBR streams
has been previously studied, it remains unclear whether
increased reliability can be provided with determin-
istic QoS guarantees in cost-effective ways.

Variability in the resource requirements over time
makes efficient disk space allocation combined with
access delay predictability a challenging task. Data
striping across multiple disks with sufficient redun-



clientsserver

network
interface

client
buffer

decodernetwork
interface

server
buffer

network

disks

Figure 1: Compressed video streams are stored across
multiple disks of the media server. Multiple clients (or
proxies) can connect and start playback sessions via sep-
arate network links.

dancy to tolerate failures further aggravates the prob-
lem due to the need for keeping balanced the storage
space and bandwidth requirements across the disk
array, under both normal-operation and failed-disk
conditions. In the present paper, we describe a num-
ber of data redundancy and bandwidth reservation
schemes that can tolerate single disk failures with-
out service interruption. We experimentally evalu-
ate the cost of increased reliability in terms of re-
duced throughput during the normal operation of
the system using a video server prototype implemen-
tation and MPEG-2 streams. We also investigate the
achieved disk bandwidth utilization during normal
and failed-disk operation. Additionally, we examine
the extra benefit from retrieving data replicas stored
on the least loaded disks, and from fragmenting data
replicas across multiple disks.

The rest of this paper is organized as follows. In
Section 2, we describe basic assumptions and archi-
tectural decisions of our system. In Sections 3, 4
and 5, we introduce alternative policies for repli-
cating stream data and reserving disk bandwidth
for improved reliability. In Section 6, we briefly
present our prototype implementation and the ex-
perimentation environment that we use. In Section
7, we compare the performance of different replica-
tion techniques under alternative bandwidth reser-
vation schemes and load balancing enhancements.
In Section 8, we discuss possible improvements and
extensions, and in Section 9 we summarize our con-
clusions.

2 System Architecture

In the present section, we describe the system archi-
tecture along with important resource management
and reservation techniques that we use [2].

2.1 Overview

The operation of our media server is typical in cur-
rent system designs. Client devices submit playback
requests concurrently to the server. The system
is assumed to operate according to the server-push
model. When a playback session starts, the server
periodically sends data to the client until either the
end of the stream is reached, or the client explicitly
requests suspension of the playback. Data transfers
occur in rounds of fixed duration Tround. In each
round, an appropriate amount of data is retrieved
from the disks into a set of server buffers reserved
for each active client. Concurrently, data are sent
from the server buffers to the client through the net-
work interfaces (Figure 1). The amount of stream
data periodically sent to the client is determined by
the decoding frame rate of the stream, the buffering
constraints of the receiver, and the resource manage-
ment policy of the network. As a minimum require-
ment, the client should receive in each round the
amount of data that will be needed by the decoder
during the next round.

The streams are compressed according to any encod-
ing scheme that supports constant quality quantiza-
tion parameters and variable bit rates. Playback re-
quests arriving from the clients are initially directed
to an admission control module, where it is deter-
mined whether enough resources exist to activate
the requested playback session either immediately
or within a limited number of rounds. A schedule
database maintains for each stream information on
how much data needs to be accessed from each disk
in any given round, the amount of server buffer space
required, and how much data needs to be transferred
to the client. This scheduling information is gener-
ated when the media stream is first stored, and is
used for both admission control and transfer of data
during playback.

2.2 Stride-Based Disk Space Allocation

In our experiments, we use a method called stride-
based allocation for allocating disk space [3]. In
stride-based allocation, disk space is allocated in
large, fixed-sized chunks called strides. The strides
are chosen larger than the maximum stream request
size per disk during a round. This size is known
a priori, since stored streams are accessed sequen-
tially according to a predefined (generally variable)
rate. A stride may contain data of more than one
round. When a stream is retrieved, only the re-
quested amount of data is fetched to memory during
a round, and not the entire stride.



Stride-based allocation eliminates external fragmen-
tation due to the fixed-size strides. Internal frag-
mentation remains negligible because of the large
size of the streams relative to strides. Another ad-
vantage of stride-based allocation is that it sets an
upper-bound on the estimated disk access overhead
during retrieval. Since the size of a stream request
never exceeds the stride size during a round, at most
two partial stride accesses will be required to serve
the request of a round on each disk.

2.3 Reservation of Server Resources

A mathematical abstraction of the resource require-
ments is necessary for scheduling streams. We con-
sider a system with D functionally equivalent disks.
Data of each stream are stored as sequences of strides
on each disk. Each stride comprises an integer num-
ber of consecutive logical blocks with fixed size Bl.
The logical block size is a multiple of the physical
sector size Bp of the disk. Both the disk transfer re-
quests and the memory buffer reservations are spec-
ified in multiples of the block size Bl. The Disk
Striping Sequence Sd of length Ld determines the
amount of data Sd(i, k), 0 ≤ i ≤ Ld − 1, that are
retrieved from disk k, 0 ≤ k ≤ D − 1, in round i.

We assume that each disk has edge to edge seek time
TfullSeek, single-track seek time TtrackSeek, average
rotational latency TavgRot, and minimum internal
transfer rate Rdisk. The stride-based disk space al-
location policy enforces an upper bound of at most
two disk arm movements per disk for each client per
round. The total seek distance can also be limited
using a Circular SCAN disk scheduling policy. Let
Mi be the number of active streams during round i of
the system operation, and lj the round of system op-
eration that the playback of stream j, 1 ≤ j ≤ Mi,
started. Then, the total access time on disk k in
round i of the system operation can be approximated
by the following expression:

Tdisk(i, k) =2TfullSeek + 2Mi · (TtrackSeek + TavgRot)

+
Mi∑

j=1

Sj
d(i− lj , k)/Rdisk

where Sj
d is the disk striping sequence of client j.

The parameter TfullSeek is counted twice due to the
disk arm movement from the C-SCAN policy, while
the factor two in the second term is due to the
stride-based allocation scheme we use. The first
term should be accounted for only once in the time
reservation of each disk, but each client j incurs an

extra access time of

T j
disk(i, k) = 2 · (TtrackSeek + TavgRot)

+ Sj
d(i− lj , k)/Rdisk

on disk k during round i, when Sj
d(i − lj , k) > 0,

and zero otherwise. Reservations of network band-
width and buffer space are more straightforward,
and based on the network and buffer sequence of
each accepted playback request, respectively.

2.4 Variable-Grain Striping

For striping stream data across multiple disks, we
use the Variable-Grain Striping policy. Data con-
sumed by a client during a playback round is stored
on (and accessed from) a single disk, while differ-
ent disks are visited in round-robin fashion during
successive rounds of a stream playback. When com-
pared against alternative striping techniques, variable-
grain striping demonstrates significant performance
advantage due to i) reduced disk access overhead
from accessing at most one disk per stream in a
round, and ii) improved disk bandwidth utilization
by statistically multiplexing I/O requests of different
sizes from concurrently served streams [2].

3 Data Redundancy Policies

Due to the large number of components involved,
it is necessary to assume device failures during the
lifetime of a typical commercial server installation.
With the estimated Mean Time To Failure of a mod-
ern disk at about MTTFdisk = 1, 200, 000 hours,
combining D = 1024 disks results in MTTFarray =
MTTFdisk

D = 49 days, assuming failure independence
among different devices [26].1 A typical system with
1024 drives could support about 51, 000 concurrent
playbacks of 5 Mbit/s average bit rate each.2 Al-
though the disks are likely to be distributed across
multiple independent servers, building a single large
disk array from distributed components has also been
demonstrated in the past for media streaming ser-
vices [9, 19].

In order to provide higher system reliability, data re-
dundancy techniques can be used. However, a prac-
tical solution should minimize the extra computa-

1The calculation assumes Seagate Cheetah 18GB Ultra160
SCSI disks with 31 MB/s formatted minimum internal trans-
fer rate [28].

2These numbers are realistic in light of the popularity of
similar services. For example, the number of cable television
subscribers in 1998 was estimated to exceed 65 million in the
US alone [13].
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Figure 2: Deterministic Replica Placement. Data
of a media file stored consecutively on disk 0 and re-
trieved during different playback rounds are replicated
round-robin across the other disks. The primary data of
the other disks are replicated in a similar way.

tion, storage and bandwidth requirements with re-
spect to the non-redundant case. The present study
focuses on single disk failures which are the most
common. Multiple disk failures are less likely to oc-
cur simultaneously [12], and possible ways for han-
dling them are described briefly later.

In the past, several parity-based techniques have
been proposed that store error-correcting code for
the data blocks of different disks [12]. When a disk
fails, redundant information available on the surviv-
ing disks is used to recover the missing data blocks.
Parity-based techniques trade extra disk bandwidth
or memory buffer requirements for reduced storage
space. Since disk storage space currently has the
lowest cost of the three resources, it has been sug-
gested that replication rather than parity is the pre-
ferred technique for tolerating disk failures [10, 17].
Furthermore, implementation of parity-based data
recovery in a distributed architecture requires addi-
tional data traffic among different nodes [9]. This
can introduce significant extra complexity and re-
source requirements in terms of network bandwidth
and buffer space. For the above reasons, we do not
consider parity-based techniques any further here.

With mirroring techniques, the data of each disk are
replicated on one or more different disks. We refer
to the original copy of the data as primary and the
additional copy as backup. Although the two copies
can be used symmetrically, distinct placement poli-
cies can be applied to each of them as we describe
shortly. When one disk fails, its data remain avail-
able by retrieving their backup replicas from the rest
of the disks. The required storage space is roughly
doubled and the needed bandwidth from each disk is
at most twice that of the non-redundant case. The
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Figure 3: Random Replica Placement. Data of a
media file stored consecutively on disk 0 and retrieved
during different playback rounds are replicated on ran-
domly chosen disks 1 to 3. The primary data copies of
disks 1 to 3 are replicated in a similar way.

backup replica of each data block can be stored in
its entirety on a different disk, which requires only
one access in the case of failure and minimizes the
access overhead. The alternative of declustering a
backup replica across multiple disks can potentially
better balance the extra access load, but incurs the
additional overhead of multiple accesses in the case
of a disk failure.

3.1 Deterministic Replica Placement

In previous work, we have demonstrated that variable-
grain striping of media files leads to equally utilized
disks under sequential playback workloads [2]. Al-
though mirroring has previously been only used with
data striped using fixed-size blocks, in principle it
could be applied to variable-grain striping as well.
During sequential playback of a media file with no
failed disks, each disk is accessed every D rounds,
where D is the total number of disks. In order to pre-
serve the load-balancing property when a disk fails,
data of a media file stored consecutively on each disk
could be replicated round-robin across the remaining
disks (or a subset of them). The unit of replication
corresponds to data retrieved by a client during one
round of playback.We call this mirroring approach
Deterministic Replica Placement. In Figure 2, for
example, disk 0 is shown to store stream data re-
quested during rounds k ·D, (k+1)·D, (k+2)·D and
(k + 3) · D. The respective replicas are distributed
round-robin among disks 1, 2 and 3.

3.2 Random Replica Placement

Intuitively, having replicas of one disk’s primary data
distributed round-robin across the rest of the disks
can keep the surviving disks equally utilized when
one disk fails. An alternative replication approach
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Figure 4: Mirroring Reservation. For each disk,
there is a separate vector indexed by round number that
accumulates the total estimated access time for retriev-
ing primary and backup data in each round.

would use some pseudo-random sequence for speci-
fying the disks that store the backup copies of one
disk’s primary data. An obvious constraint is that
primary and backup copies are stored on different
devices. The unit of replication corresponds to the
data of a media file requested by a client in one round
of playback. We call this mirroring technique Ran-
dom Replica Placement.

An example is shown in Figure 3, where backup
copies of data requested in rounds k · D, . . . , (k +
3) · D are randomly placed on disks 1 to 3. It has
been previously suggested that random placement of
primary and backup replicas across different disks
is applicable to a wider range of workload types
and can outperform striping policies with round-
robin placement [27]. In a later section, we examine
this argument in the particular case of variable bit-
rate streams by comparing it against deterministic
replica placement.

4 Disk Bandwidth Reservation

Our goal in this section is to allocate resources in
such a manner that service to accepted requests will
not be interrupted during (single) disk failures. Re-
trieving backup replicas of data stored on a failed
disk requires extra bandwidth to be reserved in ad-
vance across the surviving disks. This implies that
the system will normally have to operate below full
capacity. Alternatively, when a disk fails and no
extra bandwidth has been reserved, service will be-
come unavailable for a number of active users with
aggregate bandwidth requirements no less than the
transfer capacity of one disk, assuming that data
have been replicated as described previously.

The net benefit from uninterrupted service during
disk failures is equal to the difference between two
measures. One is the cost of having users frustrated
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Figure 5: Minimum Reservation. For each disk, we
maintain D separate vectors indexed by round number.
One of them accumulates access delays for retrieving pri-
mary data. The remaining D − 1 vectors accumulate
access delays for retrieving backup replicas that corre-
spond to primary data stored on each of the other D−1
disks. In each round, the sum of the primary data access
time and the maximum of the backup data access times
is reserved on each disk.

due to interrupted service from a failed disk. Its
quantification would require determining the min-
imum number of users negatively affected when a
disk fails. Detailed study of this issue is left for fu-
ture work. The other measure is the cost of rejecting
user requests due to additionally reserved disk band-
width during normal operation. In the rest of this
paper, we describe alternative approaches for reserv-
ing disk bandwidth (or equivalently access time) and
improving reliability in media servers that support
variable bit-rate streams. Subsequently, we experi-
mentally evaluate the actual cost of these approaches
in terms of reduced system throughput during nor-
mal system operation.

In what we call Mirroring Reservation, disk band-
width is reserved for both the primary and backup
replicas of a media file during its playback (Fig-
ure 4). At first glance, this seems to be a rea-
sonable approach for guaranteeing timely access to
backup replicas during a single disk failure. How-
ever, when compared to the non-redundant case, it
doubles the bandwidth requirements of each stream
and halves the maximum system throughput, as-
suming disk bandwidth is the bottleneck resource in
the system. Indeed, we would prefer that the load
normally handled by a failed disk is equally divided
among the D − 1 surviving disks. Thus, tolerat-
ing one disk failure should require that the extra



Replica Disk Bandwidth Reservation
Placement Mirroring Minimum
Deterministic √ √
Random √ √

Table 1: The replica placement policies can be orthogonally
combined with the disk bandwidth reservation schemes.

bandwidth reserved on each disk be equal to 1
D−1

its bandwidth capacity. Instead, mirroring reserva-
tion reserves extra bandwidth on each disk equal to
half its bandwidth capacity.

Essentially, it is wasteful to reserve on a disk extra
bandwidth for accessing backup replicas of primary
data stored on more than one other disk. When
a disk fails, we only need an estimate of the addi-
tional access load incurred on every surviving disk.
In order to know that, the access time of the backup
replicas stored on one disk can be accumulated sep-
arately for every disk that stores the corresponding
primary data. Then, the additional access time that
has to be reserved on a disk in each round is equal
to the maximum time required for retrieving backup
replicas for another disk that has failed. The max-
imum across every other disk is reserved, since we
don’t know in advance which other disk is going to
fail.

For each disk, our implementation maintains D vec-
tors, indexed by round number of system operation.
One of the vectors keeps track of the total access
time required for retrieving primary data. The re-
maining D−1 vectors keep track of access delays due
to backup data corresponding to primary data of the
remaining disks. For every disk, we reserve the sum
of the primary data access time and the maximum of
the backup data access times required in each round.
We refer to this more efficient scheme as Minimum
Reservation. An example with four disks is illus-
trated in Figure 5. In a later section, we discuss
ways for limiting the additional computational and
memory requirements of this approach.

The two disk bandwidth reservation schemes that we
just described can be orthogonally combined with
the two replica placement policies that we intro-
duced previously, as it is shown in Table 1.

5 Load Balancing Enhancements

The load of a failed disk could possibly be shared
more fairly among the surviving disks if each backup
replica was declustered across multiple devices. There-
fore, we break each backup replica into blocks of

fixed size Bd, and we call this load balancing tech-
nique Backup Replica Declustering. We choose Bd

to be an integer multiple of the logical block size Bl,
introduced previously. We allow the last fragment
of the replica to have a size that is smaller than Bd

but integer multiple of Bl.

The backup replica blocks corresponding to the pri-
mary data of each disk are distributed either round-
robin or pseudo-randomly across the rest of the disks,
depending on whether deterministic or random replica
placement is used. In the case of random replica
placement, we improve block distribution by avoid-
ing reusing the same disk for storing multiple replica
blocks of the same file in one round unless we are
running out of disks. When multiple blocks of size
Bd are retrieved from a disk during one round of a
file playback, the minimum required number of read
requests is submitted to the disk, instead of one per
block.

Alternatively, during normal operation we could take
advantage of multiple available data replicas by dy-
namically deciding to retrieve the replica stored on
the disk expected to be the least loaded. The disk
choice could be based on access time estimations
available through resource reservations that are made
during admission control. We use the term Dynamic
Balancing for this technique. It can be fully applied
when all the disks are functional and is expected to
reduce the load of the most heavily utilized disks in
each round.

Both these two techniques have previously been found
to improve performance when applied to traditional
transaction processing workloads [23]. Replica declus-
tering has also been tried with constant bit-rate stream
playback [9, 15]. Due to the potential for load im-
balance and reduced device utilization introduced by
variable bit-rate streams, we investigate the benefit
from load-balancing techniques in that context.

6 Experimentation Environment

In order to keep our presentation complete, we briefly
describe here important aspects of our prototype im-
plementation, the characteristics of our benchmarks,
and the performance evaluation method that we use
for our experiments [2].

6.1 Prototype Overview

We have designed and built a media server experi-
mentation platform, in order to evaluate the resource
requirements of alternative disk replication policies
[2]. The different modules are implemented in about
17,000 lines of C++/ Pthreads code on AIX4.1. The



Seagate Cheetah ST-34501N
Data Bytes per Drive 4.55 GB
Average Sectors per Track 170
Data Cylinders 6,526
Data Surfaces 8
Zones 7
Buffer Size 512KB
Track to Track Seek(read/write) 0.98/1.24 msec
Maximum Seek(read/write) 18.2/19.2 msec
Average Rotational Latency 2.99 msec
Internal Transfer Rate
Inner Zone to Outer Zone Burst 122 to 177 Mbit/s
Inner Zone to Outer Zone Sustained 11.3 to 16.8 MB/s

Table 2: Features of the Seagate SCSI disk assumed in our
experiments.

code is linked either to the University of Michigan
DiskSim disk simulation package [16], which incor-
porates advanced features of modern disks such as
on-disk cache and zones for simulated disk access
time measurements, or to hardware disks through
their raw device interfaces. The indexing metadata
are stored as regular Unix files, and during operation
are kept in main memory.

The basic responsibilities of the media server include
file naming, resource reservation, admission control,
logical to physical metadata mapping, buffer man-
agement, and disk and network transfer scheduling.

With appropriate configuration parameters, the sys-
tem can operate at different levels of detail. In Ad-
mission Control mode, the system receives playback
requests, does admission control and resource reser-
vation, but no actual data transfers take place. In
Simulated Disk mode, most modules become func-
tional and disk request processing is simulated using
the specified DiskSim disk array. Techniques for file
system simulation similar to those previously pro-
posed are used for integrating the simulated disks
with our media server prototype [31]. There is also
the Full Operation mode, where the system accesses
hardware disks and transfers data to fixed client net-
work addresses. For the experiments in the current
study, we used both the Admission Control and the
Simulated Disk Mode.

6.2 Performance Evaluation Method

We assume that playback initiation requests arrive
independently of one another, according to a Poisson
process. The system load can be controlled through
the arrival rate λ of playback initiation requests. As-
suming that the disk transfers are the bottleneck, we
consider a “perfectly efficient system” that incurs no
disk overhead when accessing data. Then, we choose
the maximum arrival rate λ = λmax of playback re-

Content Avg Bytes Max Bytes CoV
Type per Round per Round per Round
Science Fiction 624,935 1,201,221 0.383
Music Clip 624,728 1,201,221 0.366
Action 624,194 1,201,221 0.245
Talk Show 624,729 1,201,221 0.234
Adventure 624,658 1,201,221 0.201
Documentary 625,062 625,786 0.028

Table 3: We used six MPEG-2 video streams of 30 minutes
duration each. The coefficient of variation shown in the last
column changes according to the content type.

quests equal to the mean stream completion rate in
that perfectly efficient system. This creates enough
system load to show the performance benefit of ar-
bitrarily efficient data striping policies. The mean
stream completion rate µ, expressed in streams per
round, for streams of average data size Stot bytes
becomes:

µ =
D ·Rdisk · Tround

Stot

streams

round
. (1)

The corresponding system load becomes: ρ = λ
µ ≤ 1,

where λ ≤ λmax = µ.

For each playback request that arrives, the admis-
sion control module checks whether available resources
exist for every round during playback. The test
considers the data transfer requirements of the re-
quested playback for every round and also the corre-
sponding available disk transfer time, network trans-
fer time and buffer space in the system. If the re-
quest cannot be initiated in the next round, the test
is repeated for each round up to d 1

λe rounds into
the future, until the first round is found where the
requested playback can be started with guaranteed
sufficiency of resources. Checking d 1

λe rounds into
the future achieves most of the potential system ca-
pacity as was shown previously [2]. If not accepted,
the request is rejected rather than being kept in a
queue.

6.3 Experimentation Setup

We used six different VBR MPEG-2 streams of 30
minutes duration each. Every stream has 54,000
frames with a resolution of 720x480 and 24 bit color
depth, 30 frames per second frequency, and a IB2PB2

PB2PB2PB2 15 frame Group of Pictures structure.
The encoding hardware that we use generates bit
rates between 1 Mbit/s and 9.6 Mbit/s. The statis-
tical characteristics of the clips are given in Table
3. The coefficients of variation of bytes per round
lie between 0.028 and 0.383, depending on the con-
tent type. In the mixed benchmark, the six different
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Figure 6: The mirroring reservation scheme reduces the
number of streams supported by a factor of two compared
to the no-replication case. Deterministic replica placement
sustains an advantage of 25% or more relative to random
replica placement under the mixed stream workload.
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Figure 7: With minimum reservation and number of disks
increasing from 4 to 32, the throughput advantage of deter-
ministic over random replica placement drops from 15% to
3%. The corresponding throughput disadvantage of deter-
ministic placement with respect to no replication drops from
28% to 17%.

streams are submitted round-robin. Where appro-
priate, experimental results from individual stream
types are also shown.

The disks assumed in our experiments are Seagate
Cheetah with ultra-wide SCSI interface and the fea-
tures shown in Table 2. Such disks were state of
the art about three years ago, and have all the ba-
sic architectural characteristics of today’s high-end
drives. The logical block size Bl was set to 16KB
bytes, while the physical sector size Bp was equal
to 512 bytes. The stride size Bs in the disk space
allocation was set to 2 MB. The server memory is
organized in buffers of fixed size Bl = 16KB bytes
each, with space of 64 MB for every extra disk. The
available network bandwidth was assumed to be in-
finite, leaving contention for the network outside the
scope of the current work.

In our experiments, the round time was set equal to
one second. We found this round length to achieve
most of the system capacity with tolerable initiation
latency. This choice also facilitates comparison with
previous work in which one second rounds were used.
We used a warmup period of 3,000 rounds and cal-
culated the average number of active streams from
round 3,000 to round 9,000. The measurements were
repeated until the half-length of the 95% confidence
interval was within 5% of the estimated mean value
of the number of active streams. The system load
was fixed at ρ = 80%, which allows the system to
reach its capacity while keeping the playback startup

latency limited [2].

7 Experimental Evaluation

We compare the data replication and bandwidth reser-
vation techniques that we introduced with respect to
the average number of active playback sessions that
can be supported by the server. The objective is to
make this number as high as possible. We provide
supplementary performance intuition with statistics
on reserved and utilized disk access time across dif-
ferent stream types and numbers of disks.

We start with a performance comparison between
the deterministic and random replica placement poli-
cies under the mirroring reservation scheme. Sub-
sequently, we examine the improvement to the two
placement policies when minimum reservation is ap-
plied. We also investigate the benefit of dynamic
balancing assuming that disk bandwidth in each round
is reserved for only one data replica out of the two
available. Finally, we consider declustering the backup
replica of each stream across multiple disks and allo-
cating bandwidth according to the minimum reser-
vation scheme.

7.1 Replica Placement Comparison

We use the mixed stream workload to compare the
performance of alternative replica placement policies
under the mirroring reservation scheme (Figure 6).
With the number of disks varying between 4 and 32,
the measured throughput of replicated disk striping
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Figure 9: During normal operation, the
average disk access time that is measured
in each round remains within 6-8% below
the time reserved for primary data accesses.
When a disk fails, the measured access time
is 13-14% lower than the total reserved.

is less than half of what is achieved with no repli-
cation. In addition, deterministic replica placement
achieves a throughput advantage of 25% or more rel-
ative to random replica placement.

From measurements that we did (not shown here),
we found that about half of the average disk time
reserved in the replicated case is wasted for the pos-
sibility that the backup data will be retrieved. Fur-
thermore, the access time reserved on each disk by
random replica placement is about 15%-25% less
than that of deterministic placement. Pseudo ran-
dom choice of the disk that stores a backup replica
does not completely eliminate the possibility of one
disk storing more replicas than another, especially
with small disk arrays. The probability of that oc-
curring drops as the size of the disk array increases,
though. However, deterministic placement is more
consistent in fairly distributing the access load across
the disk array devices.

When a disk fails, about 25-30% of the reserved disk
bandwidth remains unused under both placement
policies. This is not surprising, since the mirror-
ing reservation scheme allocates disk bandwidth for
both the primary and backup replicas of each ac-
cepted stream. We see how this inefficiency is al-
leviated by the minimum reservation scheme in the
following subsection.

7.2 Minimizing Reserved Bandwidth

The minimum reservation scheme improves disk uti-
lization by allocating on each disk the extra time re-

quired for accessing backup replicas of only one other
disk. In order to ensure that any single disk failure
can be handled properly, each disk keeps track and
reserves the maximum additional time required for
handling potential failure of any other disk. This
maximum requirement is calculated separately and
is generally expected to be different for each disk in
each round.

Figure 7 compares the throughput of the different
replica placement policies under minimum reserva-
tion. At eight disks, the number of streams sup-
ported by deterministic placement is only 21% lower
than that with no replication. This difference be-
comes 18% and 17%, respectively, with sixteen and
thirty two disks. From the way that the disk band-
width is allocated in the minimum reservation scheme,
we would expect the total bandwidth that remains
unutilized during normal operation to be equal to
the bandwidth capacity of one disk. Therefore, the
percentage of unused throughput with respect to the
non-replicated case should be decreasing proportion-
ally with the number of disks in the system. For
example, ideally with 16 disks only the 1

16 = 6.25%
of the total disk bandwidth should remain unused
during normal operation.

However, in practice, the percentage of the total un-
used bandwidth of each disk does not change pro-
portionally with the number of disks (Figures 8).
This effect can be explained by the MAX() operator
that is applied over the estimated time for accessing
the backup replicas of different disks, in combina-



tion with the relatively large size (more than half
megabyte on average) of the data retrieved for a
stream in each round. We explore later the poten-
tial improvement from declustering backup replicas
across multiple disks.

Additionally, the difference between deterministic
and random replica placement becomes less signif-
icant than the statistical uncertainty at thirty two
disks. Not surprisingly, deterministic placement main-
tains a clear advantage (of about 15%) for smaller
disk array sizes due to the more regular way of dis-
tributing the backup replica access load across the
different devices. These observations are consistent
with the average access time reserved on each disk
across different stream types and disk array sizes
shown in Figure 8.

In Figure 9, we show the measured disk busy time.
Under normal disk operation, we observe that deter-
ministic placement keeps the disks busy an amount
of time that is 6% lower than what is reserved for
primary data.3 When one disk fails, the remaining
disks are busy 14% time less than the total reserved.
With random replica placement, the corresponding
difference becomes 13% of the round length. This
is a significant improvement in comparison to the
25-30% difference between reserved and measured
time that we reported for mirroring reservation. We
should keep in mind that, with disk array size equal
to four, about one third of each disk’s bandwidth has
to be reserved for the case that one disk fails, and
this fraction drops as the disk array size increases to
sixteen (Figure 8).

It is interesting that, when the reserved backup ac-
cess time is put into use due to a disk failure, the
difference between reserved and utilized access time
increases from 6-8% to 13-14%. At first glance this
discrepancy appears as reduced accuracy in access
time estimation. In fact it is due to the MAX()
operator that we apply to the backup access times
corresponding to different disks in each round. This
reserves enough access time to ensure uninterrupted
system operation for any particular failed disk. How-
ever, the reported measured time is taken when the
disk 0 is assumed inaccessible (Figure 2). Overall,
we believe that some limited discrepancy between
predicted and measured access time leaves a reason-
able cushion space for stable operation. This makes
the system operation more robust, and guards it
against nondeterministic factors, such as the sys-

3In previous work [3], we reported similar differences be-
tween the average reserved time and the access time measured
when using the hardware disks of Table 2, instead of their
simulated models.
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Figure 10: During normal operation, accessing the replica
of the least loaded disk improves the throughput by about 5-
10% with respect to the non-replicated case. The gain tends
to increase as the disk array size increases.

tem bus contention due to network transfers, not
included in the previous measurements.

7.3 Improving Load Balancing

With multiple data replicas available, better load
balancing can be achieved by choosing the replica
stored on the least loaded disk during admission con-
trol. In this case, we leverage data replication for
improving the system throughput, rather than tol-
erating disk failures. We use the accumulated disk
access time estimations in order to choose the least
loaded disk. Making this choice based on actual
measurement of the disk access load is not a feasible
alternative, due to the round-based operation that
prevents access load propagation from one round to
the next.

From Figure 10, we see that, when this load bal-
ancing scheme is used, both replica placement poli-
cies can support 5-10% more streams than the non-
replicated case. The difference between the two place-
ment policies is statistically insignificant, however,
since the gain from the dynamic replica access ex-
ceeds the improved load balancing of deterministic
placement. Determining during admission control
which disk will be used for each data access is a
reasonable policy for removing hot spots in the disk
array. However, under sequential workloads the dif-
ferent disks are equally utilized already, and only
a limited additional performance benefit can be ac-
crued with the above policy.

In Figure 11, we consider the case of declustering
backup replicas across multiple disks using a fixed
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block size Bd. This approach is expected to let the
failed-disk load be more fairly shared among the sur-
viving disks. With small block sizes, better load bal-
ancing leads into some limited throughput improve-
ment. As the block size becomes larger, load bal-
ancing gets successively worse and throughput de-
creases, because declustering creates fragments with
sizes increasingly different.

We also anticipate that, with larger block sizes, the
number of disks accessed for each stream drops and
the total head movement overhead becomes lower.
On the other hand, our stride-based allocation scheme
ensures that at most two head movements are re-
quired per stream on each disk regardless of how
small the block size is. This keeps limited the neg-
ative effect of access overhead to throughput. Fi-
nally, we observe a threshold behavior around Bd =
1.2 ·106 bytes. This is the maximum amount of data
retrieved in one round for each stream and originates
from the bit-rate parameters used during encoding
(Table 3). Effectively, beyond this point there is no
declustering.

These observations are also verified by Figure 12,
that shows the average difference between the ac-
cess times of the most and least loaded disk in each
round. Since the reserved access time of the most
heavily loaded disk is typically 99% in each round,
the plots in Figure 12 essentially indicate the ac-
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length percentage) in the reserved access times between the
most and least loaded disk in each round varies according to
the declustering block size. This difference can be interpreted
as one measure of load imbalance within each round. From
the shape, we see that it has a significant effect to the achieved
throughput shown in Figure 11.

cess time requirements of the least loaded one. It
is remarkable how the shape of the plots is reflected
to those tracking the system throughput in Figure
11. We conclude that even the least loaded disk is
expected to remain more than 80% utilized under
deterministic replica placement with no decluster-
ing (equivalently, with declustering block size larger
than 1.2 · 106).

In summary, declustering is only worthwhile with
small declustering block sizes, and its overall ben-
efit is found to be limited in the media streaming
case (less than 3% with eight disks). Moreover, the
throughput of random replica placement never ex-
ceeds that of deterministic.

8 Discussion

We considered data replication and bandwidth allo-
cation schemes that allow tolerating single disk fail-
ures in disk arrays storing variable bit-rate streams.
When using simple schemes for reserving disk band-
width, more than half of the maximum achievable
throughput is wasted during normal (i.e. no failure)
operation. Instead, using the minimum reservation
scheme for accommodating a single disk failure re-
sults only in throughput reduction of less than 20%
at disk array sizes sixteen or larger.

The minimum reservation scheme requires maintain-
ing number of vectors equal to the square of the



number of disks. Each vector is accessed in a circu-
lar fashion and has minimum length equal to that of
the longest stream expressed in numbers of rounds.
When using large disk arrays, this might raise con-
cerns regarding the computational and memory re-
quirements involved. In practice, the reduction in
unused bandwidth is diminishing as the number of
disks increases beyond sixteen. Therefore, it makes
sense to apply the data replication within disk groups
of limited size, when the disk array size becomes
larger. This keeps the bookkeeping overhead limited
and preserves the scalability of our method when
stream data are striped across large disk arrays.

In previous work, we found that striping data us-
ing fixed-size blocks achieves lower throughput than
when using variable-grain striping [2]. The backup
replica declustering should not be confused with fixed-
size block striping, since the primary data still use
variable-grain striping. This maintains some benefit
from multiplexing requests of different transfer sizes
in each round, and absorbs correlations that oth-
erwise would create maximum requirements much
higher than the average.

Provisioning for VCR functionality is an important
issue that we don’t consider extensively in the present
paper. In general, such flexibility would require deal-
location of previously reserved resources, when a
stream playback is suspended or stopped earlier than
its normal termination. This can done in a straight-
forward way, when accumulating disk access delays
separately for primary and backup data replicas, as
was already described above.

The techniques we presented here could be extended
in straightforward ways for handling multiple disk
failures. That would require storing multiple backup
replicas, and making bandwidth reservations for more
than one failed disk. In servers consisting of multiple
nodes, failure of an entire node can also be handled
gracefully, by keeping each disk of a node in a sep-
arate disk group and limiting the replication within
each group. When a node fails, inaccessible data
for each of its disks can be retrieved using replicas
available on other disks of the corresponding groups
[9, 15].

9 Related Work

Most of the previous work on disk array fault-tolerance
has been done in the context of traditional file server
and transaction processing workloads. Bitton and
Gray show that mirrored disks can improve I/O per-
formance in addition to providing enhanced reliabil-
ity [8]. Hsiao and DeWitt describe chained declus-

tering that replicates each database relation on two
consecutive disks, while the workload is balanced
across the system using a static load balancing algo-
rithm [21]. Merchant and Yu propose using different
stripe sizes for different data replicas [23]. Thus, sys-
tem operation can be efficient with both small trans-
action requests and ad hoc queries on large parts of
a relation.

In our previous work, we found the throughput mea-
sured with disk striping of variable bit-rate streams
to increase linearly as a function of the number of
disks [1, 2]. We also described several design de-
cisions of our server prototype implementation [3].
The system throughput is further improved when
the disk bandwidth requirements of individual streams
are smoothed across different playback rounds [4],
and high disk bandwidth utilization is achieved across
both homogeneous and heterogeneous disks. System
reliability is a crucial issue when building infrastruc-
ture for commercial services. Addressing this issue
creates a strong case for storage of variable bit-rate
streams, and makes the results of the present paper
indispensable part of our previous published work.

The related work from media server research is mostly
focused on fault-tolerance techniques when striping
constant bit-rate streams [5, 6, 32]. Disks are grouped
into clusters, and data blocks from separate disks
in each cluster are combined with a parity block to
form parity groups. The blocks of a parity group are
considered to be retrieved and transmitted in one or
multiple rounds, and the parity blocks are stored on
data disks or dedicated parity disks. For improving
overall efficiency, certain data blocks are not trans-
mitted in a transition period following a disk failure.

Ozden et al. propose reading ahead the data blocks
of an entire parity group prior to their transmission
to the client [25]. When a data block cannot be ac-
cessed, it can be reconstructed using a parity block
that is read instead. Alternatively, an entire parity
group is retrieved each time a block cannot be ac-
cessed. Balanced incomplete block designs are used
for constructing parity groups that keep the load of
the disk array balanced [20, 25]. The dynamic reser-
vation scheme that they introduce minimizes the ex-
tra bandwidth that has to be reserved on a disk for
reconstructing failed-disk data blocks.

Gafsi and Biersack compare several performance mea-
sures of alternative data-mirroring and parity-based
techniques for tolerating disk and node failures in
distributed video servers [15]. When entire data
blocks of one disk are replicated on different disks,
half of the total bandwidth of each disk is reserved



for handling the disk failure case. The wasted through-
put is critically reduced with the minimum reserva-
tion scheme that we propose here.

Tewari et al. study parity-based redundancy tech-
niques for tolerating disk and node failures in clus-
tered servers [30]. By distributing the parity blocks
of an object on a random permutation of certain
disks they can keep balanced the system load when a
disk fails. Alternatively, Flynn and Tetzlaff replicate
data blocks across non-intersecting permutations of
disk groups [14]. Multiple available data blocks can
be used for dynamic balancing of disk bandwidth
utilization across different devices. Instead, Birk ex-
amines selectively accessing parity blocks of video
streams for better balancing the system load across
multiple disks [7].

For failures in video servers supporting variable bit-
rate streams, Shenoy and Vin apply lossy data re-
covery techniques that rely on the inherent redun-
dancy in video streams rather than error-correcting
codes. Alternatively, they propose taking advantage
of the sequential block accesses during playback and
reconstructing missing data from surrounding avail-
able blocks, at the cost of an initial playback latency,
or temporary disruption when a failure occurs [29].

Bolosky et al. decluster the block replicas of one
disk across d other disks. In case of disk failure,
the extra bandwidth required for retrieving the data
of the failed disk is shared among the d other disks
[9]. In later work, they also consider providing fault-
tolerant support for multiple streams with different
bit rates [10]. In our experience, declustering does
not add significant improvement with respect to the
case of replicating the data blocks of one disk in their
entirety on different disks.

Mourad describes the doubly-striped disk mirroring
technique that distributes replica blocks of one disk
round-robin across the rest of the disks [24]. The
system load is equally distributed across the sur-
viving disks in case of a disk failure. The deter-
ministic replica placement that we describe extends
doubly-striped mirroring for handling variable bit-
rate streams and the reduced device utilization that
they potentially introduce.

Santos et al. compare disk striping against data
replication on randomly chosen disks [27]. Using
constant bit-rate streams, they conclude that ran-
dom replication can outperform disk striping with
no replication. In our comparison using variable bit-
rate streams instead, we found an advantage of de-
terministic replication over random replication that

diminishes as the number of disks increases.

10 Conclusions

We studied issues related to data replication of vari-
able bit-rate streams striped across multiple disks for
improving system reliability and performance. We
introduced the minimum reservation scheme that
minimized the wasted throughput required for keep-
ing accepted playbacks uninterrupted during a disk
failure. At moderate disk array sizes, the through-
put is less than 20% lower than what is achieved with
no replication. Deterministic placement of backup
data is found to achieve better performance than
random placement across the different disks, although
the advantage becomes insignificant as the number
of disks increases. Retrieving the data replica of
each stream stored on the least loaded disk adds
an improvement of no more than 10% with respect
to the non-replicated case. Finally, declustering the
backup replicas across multiple disks does not seem
to considerably improve the performance achieved
with deterministic replica placement.
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