
Modular and Efficient Resource Management
in the Exedra Media Server

Stergios V. Anastasiadis∗ Kenneth C. Sevcik∗ Michael Stumm†

∗Department of Computer Science
†Department of Electrical and Computer Engineering

University of Toronto
{stergios@cs,kcs@cs,stumm@eecg}.toronto.edu

Abstract

Explosive growth in online services has recently re-
newed the interest for building modular and efficient
network server systems. System design complica-
tions coupled with excessive expectations from tech-
nological progress previously discouraged the devel-
opment of media servers efficiently supporting video
streams with variable bit rates. In this paper, we de-
scribe the design of a distributed media server archi-
tecture, and the implementation details of a proto-
type. Native support is provided for variable bit rate
streams, by considering their special features in the
resource management policies. We identify several
problems, and propose new approaches for schedul-
ing the playback requests, organizing the memory
buffers, allocating the storage space, and structuring
the disk metadata. We justify several of our deci-
sions with comparative performance measurements
using both synthetic benchmarks and actual experi-
ments with variable bit rate MPEG-2 streams over
SCSI disks.

1 Introduction

Variable Bit Rate (VBR) video streams are esti-
mated to be smaller (by 40% or more) than Con-
stant Bit Rate (CBR) streams of comparable quality
[10, 13]. Correspondingly, media servers supporting
VBR streams can be expected to concurrently serve
more users than their CBR counterparts, due to re-
duced requirements for disk space, disk bandwidth,
buffer space, and network bandwidth.

Nevertheless, most of the existing experimental
or commercial media servers we are aware of can
only support CBR streams [3, 12]. Alternatively
they store VBR streams using either peak rate re-
source reservations that may reduce resource utiliza-
tion but not increase server capacity, or statistical
QoS guarantees that allow the system to occasion-

ally be overloaded and discard data [14, 18, 24]. The
approach of retrieving VBR streams using constant
rates, popular with lower bit rate streaming appli-
cations, might not solve the general problem either
due to arbitrarily large playback initiation latency
or client buffer space that it can require with higher
quality streams [20, 23].

We believe that the above issues remain unre-
solved, because the feasibility and potential advan-
tages of deterministically supporting VBR streams
over multiple disks have not been demonstrated yet.
In this paper we describe Exedra, a video server we
designed and built, that uniquely combines the fol-
lowing key features:

1. native support for VBR streams with deter-
ministic QoS guarantees,

2. striping of stream data across multiple disks,

3. detailed reservation of system resources over
time.

In describing our prototype, we focus on impor-
tant design tradeoffs with respect to dispatching the
playback requests, organizing the memory buffers,
allocating the storage space, and structuring the
disk metadata. We justify several of our design deci-
sions with comparative performance evaluation us-
ing our implementation with synthetic benchmarks
and actual variable bit rate MPEG-2 streams over
SCSI disks.

The remainder of the paper is structured as fol-
lows. In Sections 2 and 3, we go over the compo-
nents of the proposed media server architecture and
our prototype, as well as related design alternatives.
In Section 4 we introduce the experimentation en-
vironment that we used. In Section 5, we present
the results of our performance experiments. In Sec-
tion 6, we compare our system with previous related
work, and in Section 7 we summarize our conclu-
sions.



2 Server Architecture

In this section we give a high-level overview of an ar-
chitecture, and describe the underlying assumptions
of the system operation. In addition, we introduce
the components of the server and their functional-
ity, a method for efficiently allocating the disk space,
and the model for reserving resources at the server
side.

2.1 Overview

Exedra1 is a distributed media server system based
on standard off-the-self components for data storage
and transfer. Video streams are stored on multiple
disks, compressed according to the MPEG-2 speci-
fication, with constant quality quantization param-
eters and variable bit rates. Multiple clients with
appropriate stream decoding capability send play-
back requests to the server and receive stream data
via a high-speed network, as shown in Figure 1.

We assume that the system operates using the
server-push model. When a playback session starts,
the server periodically sends data to the client until
either the end of the stream is reached, or the client
explicitly requests suspension of the playback. The
server-push model facilitates quality of service en-
forcement at the server side, when compared to a
client-pull model [25]. We also assume that data
transfers occur in rounds of fixed duration Tround.
In each round, an appropriate amount of data is re-
trieved from the disks into a set of server buffers re-
served for each active client. Concurrently, data are
sent from the server buffers to the client through the
network interfaces. Round-based operation is typi-
cally used in media servers in order to keep the reser-
vation of the resources and the scheduling-related
bookkeeping of the data transfers manageable.

The large amount of network bandwidth needed
for this kind of service requires that the server con-
sists of multiple components, connected to the high-
speed network through different network interfaces
[3]. The amount of stream data periodically sent to
the client is determined by the decoding frame rate
of the stream and the resource management policy
of the network. A reasonable policy would send to
the client during each round the amount of data
that will be needed for the decoding process of the
next round; any other policy that does not violate
the timing requirements and buffering constraints of
the decoding client would also be acceptable.

1Exedra: architectural term meaning semicircular or rect-
angular niche (orig. Greek).

server
buffer

network
interfaces

data
stream

admission
control nodes

interconnect
storage

client
local-area
network

high-speed
network

clients

requests

server

nodes
transfer

schedule
descriptors

Figure 1: In the Exedra media server, stream data are
retrieved from the disks and sent to the clients through
the Transfer Nodes. Both the admission control and the
data transfers make use of stream scheduling informa-
tion maintained as a set of schedule descriptors.

2.2 System Components

The stream data are stored across multiple disks. As
shown in Figure 1, each disk is connected to a par-
ticular Transfer Node through the Storage Intercon-
nect, which could be either i) standard I/O channel
(e.g. Small Computer System Interface), ii) network
storage equipment (e.g. Fibre-Channel [6]), or iii) a
general purpose network (as with Network-Attached
Secure Disks [9]). Recent research has demonstrated
that it is possible to offload file server functionality
to network-attached disks [9]. Although we believe
that our design could be extended in a similar way,
we leave the study of this issue for future work.

The Transfer Nodes are standard, off-the-shelf
computers responsible for scheduling and initiating
all data transfers from the attached disks to the
clients. Data arriving from the disks are temporarily
staged in the Server Buffer memory of the Transfer
Node before being sent to the clients. We assume
that the system bus bandwidth (such as the Periph-
eral Component Interconnect) is a critical resource
within each Transfer Node that essentially restricts
the number and the capacity of the attached net-
work and I/O channel interfaces.

Playback requests arriving from the clients are
initially directed to an Admission Control Node, where



it is decided whether sufficient resources exist to ac-
tivate the requested playback session either imme-
diately or within a few rounds. The computational
complexity of the general stream scheduling prob-
lem is combinatorial in the number of streams con-
sidered for activation and the number of reserved re-
sources [8]. However, we make the practical assump-
tion that the users can only wait a limited number
of rounds before actual playback starts. This limits
the number of future rounds considered for playback
initiation, and permits us to use a simpler schedul-
ing algorithm with complexity linear in the number
of rounds of each stream and the number of reserved
resources.

For example, we can assume rounds of one sec-
ond, a two hour stream, and a single node system
with two disks and one network interface. Then,
the maximum number of numerical comparisons re-
quired is equal to the stream length (7200) multi-
plied by the number of resources (4). This computa-
tion requirement corresponds to a worst case general
case. It can be significantly relaxed for the partic-
ular data striping method we use in practice, since
not all the resources are involved in each round. If
the test fails, it has to be repeated for each extra fu-
ture round considered for playback inititiation. De-
pending on the expected load and the required detail
of resource reservation, the admission control pro-
cess might still become a bottleneck. In that case,
the admission control could be distributed across
multiple processors as shown in Figure 1, taking into
account non-trivial concurrency control issues that
arise. If a new playback request is accepted, com-
mands are sent to the Transfer Nodes to begin the
appropriate data accesses and transfers.

The amount of stream data that needs to be re-
trieved during each round from each disk is stored in
a Schedule Descriptor. The descriptor also specifies
the buffer space required and the amount of data
sent to the client by the Transfer Nodes during each
round. It is possible that two or more schedule de-
scriptors are available for the same stream with dis-
tinct requirements. The scheduling information is
generated when a stream is first stored and is used
for both admission control and for controlling data
transfers during playback. Since this information
changes infrequently, it can be replicated to avoid
potential bottlenecks.

2.3 Stride-Based Disk Space Alloca-
tion

In our system, we use a new form of disk space al-
location, called stride-based allocation [1], in which

stream stride index

i i+1 i+2 i+3 i+4 i+5disk strides

Request j+2Request j+1Request j Request j+3

Figure 2: The stride-based allocation of disk space is shown
on one disk. A stream is stored in a sequence of generally non-
consecutive fixed-size strides with a stride possibly containing
data of more than one round. Sequential requests of one
round are smaller than the stride size and thus require at
most two partial stride accesses.

disk space is allocated in large, fixed-sized chunks
(strides) that are sequentially allocated on the disk
surfaces. Strides are chosen larger than the maxi-
mum stream request size per disk during a round.
(This size is known in advance for stored streams.)

Stride-based allocation has a number of advan-
tages over schemes that are used in other systems
[5, 16, 24]. It sets an upper-bound on the estimated
disk access overhead, since at most two partial stride
accesses will be required to serve the request of a
stream on each disk in a round. It eliminates ex-
ternal fragmentation, while keeping internal frag-
mentation negligible because of the large size of the
streams, and because a stride may contain data of
more than one round (see Figure 2). When a stream
is retrieved, only the requested amount of data is
fetched to memory and not the entire stride.

2.4 Reservation of Server Resources

A mathematical abstraction of the resource require-
ments is necessary for scheduling purposes. Con-
sider a system consisting of N network interfaces,
D disks, and Q transfer nodes.

The stream Network Striping Sequence, Sn, of
length Ln defines the amount of data, Sn(i, u), 1 ≤
i ≤ Ln, 0 ≤ u ≤ N − 1, that the server sends to
a particular client through network interface u dur-
ing round i. Similarly, the Buffer Striping Sequence
Sb of length Lb = Ln + 1 defines the server buffer
space required on node q, Sb(i, q), 0 ≤ i ≤ Lb, 0 ≤
q ≤ Q− 1 during round i. Each stride is a sequence
of logical blocks with fixed size Bl, which is multi-
ple of the physical sector size Bp of the disk. Both
disk transfer requests and memory buffer reserva-
tions are specified in multiples of the block size Bl.
The Disk Striping Sequence Sd of length Ld = Ln

determines the amount of data, Sd(i, k), that are



retrieved from disk k, 0 ≤ k ≤ D − 1, in round i,
0 ≤ i ≤ Ld − 1.

We assume that disk k, 0 ≤ k ≤ D− 1, has edge
to edge seek time T k

fullSeek, single track seek time
T k

trackSeek, average rotational latency T k
avgRot, and

minimum internal transfer rate Rk
disk. The stride-

based disk space allocation policy enforces an upper
bound of at most two disk arm movements per disk
for each client per round. The total seek distance
can also be limited using a CSCAN disk schedul-
ing policy. We assume that seek latency is always a
linear function of the seek distance.2 Head settling
time is accounted for through the single-track seek
time parameter of the disk specification. We quan-
tify later the accuracy of these approximations.

Let Mi be the number of active streams during
round i of the system operation. Also the playback
of stream j, 1 ≤ j ≤ Mi, is initiated at round lj
of system operation. Then, the total access time on
disk k in round i of the system operation will have
an upper-bound of:

Tdisk(i, k) =2T k
fullSeek + 2Mi · (T k

trackSeek + T k
avgRot)

+
Mi∑
j=1

Sj
d(i− lj , k)/Rk

disk (1)

where Sj
d is the disk striping sequence of client j.

T k
fullSeek is counted twice due to the disk arm move-

ment from the CSCAN policy, while the factor two
in the second term is due to the stride-based allo-
cation. The reservations of transfer time on each
network interface and buffer space on each trans-
fer node are more straightforward, and are based on
the Network Striping Sequence and Buffer Striping
Sequence, respectively.

2.5 Variable-Grain Striping

With Variable-Grain Striping, stream files are stored
on disks such that the data retrieved during a round
for a client are always accessed from a single disk
round-robin. Comparison with alternative striping
techniques has shown significant performance ben-
efits when using Variable-Grain Striping [1, 5, 21],
and this is the method that we use in the present
study.

3 Prototype Implementation

We have designed and built a single-node multiple-
disk media server prototype in order to evaluate the

2For short seeks, seek latency is known to depend on the
square root of the seek distance though [22].

Admission
Control

sche
dules

Buffer
Manager

Disk

Metadata
Managers

Managers

Manager
Stream Dispatcher

Data
Disks

Network
InterfaceMemory

System

requests
stream

Figure 3: System modules in the Exedra prototype imple-
mentation.

resource requirements of alternative stream schedul-
ing techniques. The modules are implemented in
about 12,000 lines of C++/ Pthreads code on AIX4.2.
The code can be linked to the University of Michi-
gan DiskSim disk simulation package [7], which in-
corporates advanced features of modern disks, such
as on-disk cache and zones, for obtaining disk access
time measurements. The code can also directly use
hardware disks through their raw interface for full
data transfers. The stream indexing metadata are
stored in the Unix file system as regular files, and
during operation are kept in main memory.

The basic responsibilities of the media server in-
clude file naming, resource reservation, admission
control, logical to physical metadata mapping, buffer
management, and disk and network transfer schedul-
ing (Figure 3). With appropriate configuration pa-
rameters, the system can operate in several modes
to allow different levels of detail in our evaluation
analysis. In Admission Control mode, the system
receives playback requests, does admission control
and resource reservation, but no actual data trans-
fers take place. In Simulated Disk mode, all the
modules become functional, and disk request pro-
cessing takes place using the specified DiskSim [7]
disk array.3 In Full Operation mode, the system ac-

3This mode is not used in the current study.



offset
round

dispatch
queues

i i+1 j

Figure 4: A circular vector of dispatch queues keeps track
of admitted streams yet to be activated. The dispatch queue
consists of notification records for activating the streams in
the corresponding rounds.

cesses hardware disks and transfers data to clients.
We now describe in more detail the modules

from our implementation that are responsible for
admission control, metadata management, disk sche-
duling, and buffer management.

3.1 Admission Control and Dispatch-
ing

The admission control module uses circular vectors
of sufficient length to represent the allocated disk
time, network time, and buffer space, respectively.
On system startup, all elements of disk time vec-
tors are initialized to 2 ·TfullSeek, while the network
time and buffer space vector elements are set to zero.
When a new stream request arrives, the admission
control is performed by checking the requirements
of the stream against currently available resources.
In particular, the total service time of each disk in
any round may not exceed the round duration, the
total network service time on any network interface
may not exceed the round duration, and the total
occupied buffer space on any transfer node may be
no larger than the corresponding server buffer ca-
pacity.

If the admission control test is passed, then the
resource sequences of the stream are added to the
corresponding system vectors managed by the mod-
ule, and the stream is scheduled for playback. In
addition, notification records for the accepted re-
quest are inserted into the corresponding dispatch
queues (generally residing on each transfer node)
at the appropriate offset from the current round.
When an upcoming round becomes current, the no-
tification records are used for activating the stream
and starting its data transfers (Figure 4).

3.2 Metadata Management

Stream metadata management is organized in a layer
above disk scheduling. It is responsible for disk
space allocation during stream recording, and for
translating stream file offsets to physical block lo-

cations during playback. The stream metadata are
maintained as regular files in the host OS (of each
transfer node, in the general case), while stream
data are stored separately on dedicated disks. The
storage space of the data disks is organized in strides,
with a bitmap that has a separate bit for each stride.
A single-level directory is used for mapping the iden-
tifier of each recorded stream into a direct index of
the corresponding allocated strides. A separate di-
rectory of this form exists for each disk.

When a stream is striped across multiple disks, a
stream file is created on each data disk. Each trans-
fer request received by the metadata manager spec-
ifies the starting offset in the corresponding stream
file and the number of logical blocks to be accessed.
With the help of the stream index, each such re-
quest is translated to a sequence of contiguous disk
transfers, each specifying the starting physical block
location and the number of blocks. From the stride-
based disk space allocation, it follows that each logi-
cal request will be translated into at most two phys-
ical contiguous disk transfers.

The decision to create a separate metadata man-
ager for each disk was motivated by our intention to
experiment with general disk array organizations,
including those consisting of heterogeneous disks.
Although the handling of heterogeneous devices may
not be necessary in limited size traditional storage
systems, it might prove crucial for the incremen-
tal growth and survivability of large scalable media
storage installations. In our prototype implementa-
tion, this feature is fully implemented in a relatively
straightforward way as described above.

In order to keep system performance predictable
and unbiased from particular disk geometry features,
we exercise some control on the disk space alloca-
tion pattern. In particular, disk zoning could possi-
bly lead to excessively optimistic or pessimistic data
access delays, if we mostly allocated the outer or in-
ner cylinders of the disks. Similarly, contiguous al-
location could lead to lower than expected delays in
some special cases (such as when streams are stored
on a single disk with a very large on-disk cache).
However, low-level disk geometry is generally not
disclosed by the disk manufacturers, and the above
features are not explicitly considered by the system
in any sophisticated way. Therefore, when we allo-
cate strides for a stream within each disk, we try to
distribute them across all the zones of the disk.

3.3 Disk Scheduling

The disk management layer is responsible for pass-
ing data transfer requests to the disks, after the



necessary translation from logical stream offsets to
physical block locations in the above layers.

In the dual-queue CSCAN disk scheduling that
we use, the operation of each disk is managed by
a separate pair of priority queues, called Request
Queue and Service Queue, respectively. The two
queues, although structurally equivalent, play dif-
ferent roles during each round. At the beginning of
each round, data transfer requests for the current
round are added asynchronously into the request
queue of each disk, where they are kept sorted in
increasing order of their starting sector location.

When all the requests have been gathered (and
the corresponding disk transfers of the previous round
completed), the request queue of each disk is swapped
with the corresponding service queue. Subsequently,
requests from the service queue are synchronously
submitted to the raw disk interface for the corre-
sponding data transfers to occur. The two-queue
scheme prevents new requests from getting service
before those of the previous round complete. This
keeps the system operation more stable in the rare
(yet possible) case that the disk busy time in a round
slightly exceeds the round duration.

3.4 Buffer Management

The buffer management module keeps the server
memory organized in fixed size blocks of Bl bytes
each, where Bl is the logical block size introduced
earlier. Buffer space is allocated in groups of consec-
utive blocks. From experiments with raw interface
disk accesses, we found that non-contiguity of the
memory buffers could penalize disk bandwidth sig-
nificantly on some systems. Although this might be
attributed to the way that scatter/gather features
of the disk controller are used by these systems, we
found the allocation contiguity easy to enforce.

For the allocation of buffer blocks we used a
bitmap structure with an interface that can support
block group requests. Deallocations are allowed on
a block by block basis, even though entire block
groups are acquired during allocation. This last fea-
ture allows more aggressive deallocations.

In our design, we do not cache previously ac-
cessed data, as is typically done in traditional file
and database systems. Although related research
has developed data caching algorithms for constant
rate streams, we found that similar support for vari-
able bit rate streams would introduce several com-
plications, especially in the admission control pro-
cess. Instead, we assume that data transfers are
done independently for each different playback [3].

Paging of buffer space is prevented by locking

Seagate Cheetah ST-34501W
Data Bytes per Drive 4.55 GB
Average Sectors per Track 170
Data Cylinders 6,526
Data Surfaces 8
Zones 7
Buffer Size 0.5 MB
Track to Track Seek(read/write) 0.98/1.24 msec
Maximum Seek(read/write) 18.2/19.2 msec
Average Rotational Latency 2.99 msec
Internal Transfer Rate
Inner Zone to Outer Zone Burst 122 to 177 Mbit/s
Inner Zone to Outer Zone Sustained 11.3 to 16.8 MB/s
External Transfer Rate 40 MB/s

Table 1: Features of the SCSI disks used in our experiments.

Content Avg Bytes Max Bytes CoV
Type per rnd per rnd per rnd
Science Fiction 624935 1201221 0.383
Music Clip 624728 1201221 0.366
Action 624194 1201221 0.245
Talk Show 624729 1201221 0.234
Adventure 624658 1201221 0.201
Documentary 625062 625786 0.028

Table 2: We used six MPEG-2 video streams of 30 minutes
duration each. The coefficient of variation shown in the last
column changes according to the content type.

the corresponding pages in main memory. Although
several Unix versions (e.g. HP-UX, Irix, Solaris)
and Linux make the mlock system call available for
this purpose, AIX does not. Instead, we exported
the pinu kernel service through a loadable kernel
module and used that.

4 Experimentation Setup

Our performance measurements were made on an
IBM RS/6000 two-way SMP workstation with 233
MHz PowerPC processors running AIX4.2. The sys-
tem was configured with 256 MB physical memory,
and a fast wide SCSI controller to which a single
2GB disk was attached, containing both the system
and paging partitions. The stream data are stored
on two 4.5GB Seagate Cheetah ST-34501W disks
(Table 1) attached to a separate ultra wide SCSI
controller.4 Although storage capacity can reach
73GB in the latest models, the performance num-
bers of the above two disks are typical of today’s
high-end drives.

We used six different variable bit rate MPEG-2
streams of 30 minutes duration each. Each stream

4Note that one megabyte (megabit) is considered equal to
220 bytes (bits), except for the measurement of transmission
rates and disk storage capacities where it is assumed to be
equal to 106 bytes (bits) instead [11].



has 54,000 frames with a resolution of 720x480 and
24 bit color depth, 30 frames per second frequency,
and a IB2PB2 PB2PB2PB2 15 frame group of pic-
tures structure. The encoding hardware that we
used allows the generated bit rate to take values
between 1Mbit/s and 9.6Mbit/s. Statistical char-
acteristics of the clips are given in Table 2, where
the coefficients of variation (of bytes per round) lie
between 0.028 and 0.383, depending on the con-
tent type. We used the MPEG-2 decoder from the
MPEG Software Simulation Group for stream frame
size identification [17].

Unless otherwise stated, the logical block size
Bl was set equal to 16 KB, while the physical sector
size Bp was 512 bytes. The stride size Bs in the disk
space allocation was set to 2 MB. The total memory
buffer size was set to 64 MB, organized in fixed size
blocks of 16 KB. In our experiments, data retrieved
from the disks are discarded (copied from the buffer
to the null device at the appropriate round), leaving
protocol processing and contention for the network
outside the scope of the present study.5 The round
time was set equal to one second.

We assume that playback initiation requests ar-
rive independently of one another, according to a
Poisson process. The system load can be controlled
by setting the mean arrival rate λ of playback initia-
tion requests. The maximum possible service rate µ,
expressed in streams per round for streams of data
size Stot bytes, is equal to µ = D·Rdisk·Tround

Stot
. Corre-

spondingly, the system load ρ, is equal to ρ = λ
µ ≤ 1,

where λ ≤ λmax = µ. The definition of ρ is used by
the experiments that follow, and is justified in more
detail elsewhere [1].

When a playback request arrives, the admission
control module checks whether available resources
exist for every round during playback. The test
considers the exact data transfers of the requested
playback for every round and also the corresponding
available disk transfer time, network transfer time
and buffer space in the system. If the request cannot
be initiated in the next round, the test is repeated
for each round up to d 1

λe rounds into the future,
until the first round is found, where the requested
playback can be started with guaranteed sufficiency
of resources. Checking d 1

λe rounds into the future
achieves most of the potential system capacity as
was shown previously [1]. If not accepted, the re-
quest is discarded rather than being kept in a queue.

5Not including the network protocol overhead in the mea-
surements that follow, allowed us to demonstrate the exact
cost of the disk transfers involved, which is our main focus
here. On the other hand, experiments that we did using the
loopback interface gave results within 5% of those reported.

The experiments are repeated until the half-length
of the 95% confidence interval on the performance
measure of interest lies within 5% of the estimated
mean value. Our basic performance objective is to
maximize the average number of active playback
sessions that can be concurrently supported by the
server.

5 Performance Evaluation

We begin our experiments by examining the poten-
tial effects of our buffer organization on the disk
throughput. We also investigate implications of the
disk space allocation parameters to the disk band-
width utilization, and compare resource reservation
statistics to actual utilization measurements. Fi-
nally, we demonstrate that system throughput scales
linearly with the amount of resources made avail-
able, under the disk striping policy that we use.

5.1 Contiguity of Buffer Allocation

We evaluate the performance of the buffer allo-
cation policy using a synthetic benchmark that we
developed for this purpose. We measure the disk
throughput for different sizes of I/O requests and
degrees of contiguity in the buffer space allocated
for each request. Disk requests of a specific size are
initiated at different locations uniformly distributed
across the disk space. Data are transferred through
the raw disk interface to pinned memory organized
in blocks of fixed size Bl, similar to our prototype.

In Figure 5(a), we depict the average through-
put, when a separate read() call is invoked for each
buffer block corresponding to a request. We vary
both the block size and the size of the request. When
the block size is increased from 4 KB to 64 KB, disk
throughput changes by a factor of three across the
different request sizes. When the request size varies
from 64 KB to 4 MB for a particular block size, the
throughput increases by more than a factor of two.

In Figure 5(b), we repeat the previous measure-
ments by using the readv() system call instead.
It takes as parameters the pointer to an array of
address-length buffer descriptors along with the size
of the array. The array size is typically limited to a
small number of buffer descriptors (e.g. IOV MAX
= 16 in AIX and Solaris). For each I/O request, the
required number of readv() calls is used, with the
array entries initialized to the address and length of
each buffer block. Although we expected improved
performance due to the increased amount of infor-
mation supplied with each readv() call to the OS,
the measured throughput was less than half of what



0 1 2 3 4

Request Size (MB)

0

2

4

6

8

10

12

14
D

is
k 

T
hr

ou
gh

pu
t 

(M
B

/s
)

Buffer Allocation

Bl=64KB
Bl=16KB
Bl=4KB

(a) multiple read’s

0 1 2 3 4

Request Size (MB)

0

2

4

6

8

10

12

14

D
is

k 
T

hr
ou

gh
pu

t 
(M

B
/s

)

Buffer Allocation

Bl=64KB
Bl=16KB
Bl=4KB

(b) multiple readv’s

0 1 2 3 4

Request Size (MB)

0

2

4

6

8

10

12

14

D
is

k 
T

hr
ou

gh
pu

t 
(M

B
/s

)

Buffer Allocation

Bl=64KB
Bl=16KB
Bl=4KB

(c) single read

Figure 5: a). When we use a separate disk transfer for each buffer block, disk throughput depends critically on the block size.
b) Grouping multiple block transfers into a single call by using readv() cuts by more than 50% the achieved disk throughput.
c) Invoking a single read() for each request keeps disk throughput consistently high, independently of the buffer block size.

we measured with read(). Proper explanation for
this would probably require internal knowledge of
the AIX device drivers that we didn’t have. An
additional limit is also imposed to the I/O perfor-
mance due to the small value of the IOV MAX.

In Figure 5(c), we repeated the previous exper-
iments, by using only a single read() call for each
request, similar to the way I/O requests are served
in our prototype.6 This policy requires contigu-
ously located buffer blocks in the virtual address
space. As expected the sensitivity to the block size
Bl disappears. Note that the achieved performance
is only slightly higher than that of figure 5(a) with
large blocks. However, the block size itself cannot be
arbitrarily large; otherwise the benefit from multi-
plexing requests of different sizes drops, which even-
tually reduces the number of accepted streams [1].
Since the average size of the disk transfers is about
625,000 bytes in our MPEG-2 clips, from these ex-
periments we can expect the disks to operate at av-
erage throughput higher than 11 MB/s, which is
consistent with the achievable sustained rate of 11.3
MB/s advertised in the disk specification.

We conclude (for this system) that contiguity in
the buffer space allows a relatively small block size
to be chosen that guarantees both the support of a
large number of streams and efficient disk transfers.
This simplifies the performance tuning of the sys-
tem. One disadvantage is the complexity introduced
by having to manage buffer block ranges instead of
fixed buffers. In addition, buffer space fragmenta-
tion requires a number of buffers to remain unused
(no more than 10-15% of the total buffer space, in

6The logical block size still determines the granularity of
the disk transfer sizes and the buffer space (de)allocation.

our experiments).

5.2 Contiguity of Disk Space Alloca-
tion

Arguably, disk access efficiency would improve if the
disk space corresponding to each request were al-
located contiguously, requiring a single disk head
movement instead of a maximum of two as incurred
by stride-based allocation. We investigate this issue
by measuring disk bandwidth utilization when re-
trieving streams allocated on a disk using different
stride sizes, while still keeping the stride size larger
than the stream requests in a round (as per our orig-
inal constraint). The achieved stream throughput
is based on the resource reservations of Section 2.4,
and remains the same across different stride sizes.
As was explained before, the stream strides are ap-
proximately uniformly distributed across the disk
space in order to prevent disk geometry biases.

Figure 6 shows the measured bandwidth utiliza-
tion of a single disk configuration when retrieving
different streams. The system load was set equal
to ρ = 80%, and the statistics were gathered over
a period of 2,000 rounds after an initial warmup of
500 rounds. One important observation from these
plots is that disk utilization drops as the stride size
is increased from 2 MB to 16 MB. This is not sur-
prising, since a larger stride size reduces disk head
movements, and improves disk efficiency overall.

However, Figure 6 shows that the total improve-
ment in disk utilization does not exceed 2-3%. This
percentage does not justify using larger strides (and
increasing the unused storage space at the last stride
of each stream). Instead, it indicates that stream



0 4 8 12 16

Stride Size (MB)

40

50

60

70

80

D
is

k 
B

an
dw

id
th

 U
ti

liz
at

io
n 

(%
)

Disk Space Allocation

Documentary
Talk Show
Action
Adventure
Music Clip
Science Fiction

Figure 6: Increasing the stride size from 2 MB to 16 MB
reduces only marginally (2-3%) the disk bandwidth utiliza-
tion across different stream types. Therefore, the expected
benefit from either large strides, or contiguous disk space al-
location, would be limited. A single-disk configuration was
used with load ρ = 80%.

disk accesses are dominated by useful data transfers
rather than mechanical overhead. More generally, in
an environment of multiple streams striped across
several disks, the expected benefit from contiguous
disk space allocation would be limited. Reduction
in disk actuator overhead as a result of technology
advances will only make this argument stronger.

5.3 Resource Reservation Efficiency

For the following experiments we fix the buffer block
size to Bl = 16KB and the stride size to Bs =
2MB. In a system with 2 disks and 64 MB buffer
memory, we compare the reserved and measured
resource utilizations across different stream types.7

We set the system load to 80%, and gather statis-
tics for a period of 2,000 rounds after a warmup of
500 rounds. Higher loads would only lead to more
rejected streams (not shown here), and would not
significantly increase the system utilization. The
average number of active streams in the above mea-
surement period was roughly between 20 and 25 de-
pending on the stream type.

Typically, the measured busy time in each round
was less than or within a few milliseconds of the to-
tal disk time reserved. In only a small percentage
of rounds (less than 1%) the discrepancy would be
higher, and this is hard to avoid completely, due to
mechanical and other kinds of unexpected overhead.
However, all the discrepancies could be hidden from

7The resource reservations are based on the analytical es-
timations of Section 2.4, and are intended to be accurate
predictors of the corresponding measurements in the system.

0

20

40

60

80

D
is

k 
B

an
dw

id
th

 U
ti

liz
at

io
n(

%
)

Disk Time Reservation Efficiency

Science Fiction

M
usic Clip

Action

Talk Show

Adventure

Docum
entary

Disk 0-Reserved
Disk 0-Measured

Disk 1-Reserved
Disk 1-Measured

Figure 7: In a two-disk configuration with load ρ = 80%,
the measured disk utilization is balanced between the two
disks. On each disk, the reserved disk utilization bounds
relatively tightly (is only higher by about 5%) the measured
disk utilization.

the client with an extra round added to the playback
initiation latency. Other than that, we achieved sta-
ble prolonged system operation at high loads. The
corresponding processor utilization hardly exceeded
5% on our SMP system. (We expect the proces-
sor utilization to get higher when network protocol
processing is included.)

In Figure 7, we illustrate the fraction of the mea-
surement period, during which each of the two disks
was busy, and the corresponding fraction of reserved
time. We notice that the load is equally balanced
across the two disks. (This observation remained
valid when striping streams across larger disk ar-
rays as well, which has important scalability im-
plications.) In addition, the reserved busy fraction
does not exceed by more than 5% the corresponding
measured busy time. Hence, our admission control
procedure offers quality of service guarantees, with-
out disk bandwidth underutilization.

Each of the buffer blocks allocated for a data
transfer is marked busy at the beginning of the round
when the disk access occurs. It is not released until
its last byte is sent over the network, in some sub-
sequent round. On the other hand, resource reser-
vation during admission control reserves the size of
each buffer for the duration of the rounds that it
spans. In general, depending on the speed of the
network subsystem and the network scheduling pol-
icy, we expect the measured buffer utilization to lie



0 5 10 15

Number of Disks

0

50

100

150

200

250

300

N
um

be
r 

of
 S

tr
ea

m
s

System Scaling

Documentary
Talk Show
Adventure
Action
Music Clip
Science Fiction

Figure 8: The number of accepted streams is projected to
increase linearly as more disks are added to the system and
the rest of the hardware resources increase proportionally.
For these experiments, we run the system in Admission Con-
trol mode with the load at ρ = 80%.

somewhere between the half and the total reserved
buffer space fraction.

5.4 Disk Striping Efficiency

In order to speculate about the scaling properties
of our design, we used our system in Admission
Control mode, where resource reservation occurs as
with our previous experiments, but without any cor-
responding data transfers. This allows the study
of system performance scalability, when additional
system resources are available in the assumed hard-
ware configuration.

Figure 8 shows the sustained number of active
streams that can be supported with increasing num-
ber of disks across different stream types. The statis-
tics were gathered during 6,000 rounds following a
warmup period of 3,000 rounds. The figure shows
that the number of streams increases in proportion
to the number of disks used. This is a direct conse-
quence of the load balancing property of Variable-
Grain Striping. In addition, Figure 8 shows how
performance also depends on the variability of data
transfers across different rounds, which is different
for each stream type (Table 2). A more extensive
scalability analysis of alternative disk striping poli-
cies is presented elsewhere [1].

6 Related Work

One of the better known media servers is the Tiger
fault-tolerant video fileserver by Bolosky et al. It
supports distributed storage of streams with con-
stant bit rates only [3]. The Fellini storage system

by Martin et al. uses a client-pull model for ac-
cessing CBR/VBR stream data and does resource
reservation based on the worst case requirements of
each stream [14].

In the continuous media file server proposed by
Neufeld et al., detailed resource reservation is done
for each round, but the study focuses on storing
data of an entire stream on a single disk [19]. The
Symphony multimedia file system by Shenoy et al.
integrates data of different types on the same plat-
form [24], with admission control based on peak rate
assumptions. Our design, instead, is customized for
storage of stream data in order to maximize effi-
ciency.

The RIO storage system by Muntz et al. is de-
signed to handle several different data types, in-
cluding video streams [18]. The admission control
is based on statistics, and the stream blocks are
randomly distributed across different disks for load
balancing. Instead, we use deterministic admission
control in order to achieve both balanced load and
high bandwidth utilization across multiple disks, as
we demonstrate using actual MPEG-2 streams over
SCSI disks.

An early design of distributed data striping is
described by Cabrera and Long [4]. Their data
striping and resource reservation policies do not take
into account special requirements of variable bit rate
streams, however. In addition, striped data pass
through an intermediate node before being sent to
the clients. We avoid such an approach for improved
scalability. Keeping the metadata management of
each disk separate relates in several ways to the de-
sign of the backing store server for traditional data
by Birrel and Needham [2].

The idea of grouping together buffer blocks is
not new either. In the design of FFS, McKusick
et al. argue that chaining together kernel buffers
would allow accessing contiguous blocks in a sin-
gle disk transaction, and more than double the disk
throughput [15]. At that time, throughput was lim-
ited by processor speed however, and changes in the
device drivers were also necessary for adding this
feature.

Although stride-based allocation seems similar
to extent-based [16] and other allocation methods
[5, 24], one basic difference is that strides have fixed
size. More importantly, when a stream is retrieved,
only the requested amount of data is fetched to
memory and not the entire stride, which is sequen-
tially allocated on the disk surfaces.



7 Conclusions and Future Work

We introduced the Exedra distributed media server
architecture, and described the details of a single-
node multiple-disk prototype that we have imple-
mented. We found the separation of metadata man-
agement for each disk to greatly simplify the struc-
ture of the system, and capable of handling the case
of heterogeneous disks. The dual-queue CSCAN
disk scheduling method added stability to the sys-
tem operation. Contiguous allocation of memory
buffers simplified performance tuning, while stride-
based allocation kept the disk bandwidth utilization
high without adding the complexity that contiguous
disk space allocation would require. Our resource
reservation scheme matched relatively tightly the
measured resource utilization. The sustained num-
ber of active streams increased linearly as more re-
sources were added in the assumed configuration.

Our next step will be to extend our system to
run on multiple nodes. Another important issue is
tolerance of component failures through appropriate
replication.

Acknowledgments

Thanks to Ben Gamsa for a useful discussion, and
helpful comments on an earlier draft of this paper.

References

[1] Anastasiadis, S. V., Sevcik, K. C., and Stumm,
M. Disk Striping Scalability in the Exedra Me-
dia Server. In ACM/SPIE Multimedia Com-
puting and Networking Conf. (San Jose, CA,
Jan. 2001). (to appear).

[2] Birrel, A. D., and Needham, R. M. A Univer-
sal File Server. IEEE Transaction on Software
Engineering 6, 5 (Sept. 1980), 450–453.

[3] Bolosky, W. J., Barrera, J. S., Draves, R. P.,
Fitzgerald, R. P., Gibson, G. A., Jones, M. B.,
Levi, S. P., Myhrvold, N. P., and Rashid, R. F.
The Tiger Video Fileserver. In Intl. Work.
on Network and Operating System Support for
Digital Audio and Video (Zushi, Japan, Apr.
1996), pp. 97–104.

[4] Cabrera, L.-F., and Long, D. D. E. Swift: Us-
ing Distributed Disk Striping to Provide High
I/O Data Rates. Computing Systems 4, 4
(1991), 405–436.

[5] Chang, E., and Zakhor, A. Cost Analyses for
VBR Video Servers. IEEE Multimedia (Wint.
1996), 56–71.

[6] Clark, T. Designing Storage Area Networks.
Addison-Wesley, Reading, Mass., 1999.

[7] Ganger, G. R., Worthington, B. L., and Patt,
Y. N. The DiskSim Simulation Environment:
Version 2.0 Reference Manual. Tech. Rep. CSE-
TR-358-98, Department of Electrical Engineer-
ing and Computer Science, University of Michi-
gan, Ann Arbor, Michigan, Dec. 1999.

[8] Garofalakis, M. N., Ioannidis, Y. E., and Oz-
den, B. Resource Scheduling for Composite
Multimedia Objects. In Very Large Data Bases
Conf. (New York, NY, Aug. 1998), pp. 74–85.

[9] Gibson, G. A., Nagle, D. F., Amiri, K., But-
ler, J., Chang, F. W., Gobioff, H., Hardin, C.,
Riedel, E., Rochberg, D., and Zelenka, J. A
Cost-Effective, High-Bandwidth Storage Archi-
tecture. In Conf. Architectural Support for Pro-
gramming Languages and Operating Systems
(San Jose, CA, Oct. 1998), pp. 92–103.

[10] Gringeri, S., Shuaib, K., Egorov, R., Lewis,
A., Khasnabish, B., and Basch, B. Traf-
fic Shaping, Bandwidth Allocation, and Qual-
ity Assessment for MPEG Video Distribution
over Broadband Networks. IEEE Network, 6
(Nov/Dec 1998), 94–107.

[11] The IBM Dictionary of Computing. McGraw-
Hill, New York, NY, 1994.

[12] Jones, M. B. The Microsoft Interactive TV
System: An Experience Report. Tech. Rep.
MSR-TR-97-18, Microsoft Research, 1997.
ftp://ftp.research.microsoft.com/pub/tr/tr-
97-18/tr-97-18.html.

[13] Lakshman, T. V., Ortega, A., and Reibman,
A. R. VBR Video: Tradeoffs and Potentials.
Proceedings of the IEEE 86, 5 (May 1998),
952–973.

[14] Martin, C., Narayanan, P. S., Ozden, B., Ras-
togi, R., and Silberschatz, A. The Fellini Multi-
media Storage System. In Multimedia Informa-
tion Storage and Management (Boston, MA,
1996), S.M.Chung, Ed., Kluwer Academic Pub-
lishers.

[15] McKusick, M. K., Joy, W. N., Leffler, S., and
Fabry, R. S. A Fast File System for UNIX.
ACM Transactions on Computer Systems 2, 3
(Aug. 1984), 181–197.



[16] McVoy, L., and Kleiman, S. R. Extent-like
Performance from a Unix File System. In
USENIX Winter Technical Conference (Dallas,
TX, 1991), pp. 33–43.

[17] MPEG Software Simulation Group. MPEG-2
Encoder/Decoder, Version 1.2, 1996.

[18] Muntz, R., Santos, J. R., and Berson, S. A Par-
allel Disk Storage System for Real-Time Mul-
timedia Applications. International Journal of
Intelligent Systems 13, 12 (Dec. 1998), 1137–
1174.

[19] Neufeld, G., Makaroff, D., and Hutchinson,
N. Design of a Variable Bit Rate Continuous
Media File Server for an ATM Network. In
IS&T/SPIE Multimedia Computing and Net-
working Conf. (San Jose, CA, Jan. 1996),
pp. 370–380.

[20] RealNetworks, Inc. Working with RealProducer
8 Codecs. Seattle, WA, June 2000. Technical
Blueprint.

[21] Reddy, A. L. N., and Wijayaratne, R. Tech-
niques for improving the throughput of VBR
streams. In ACM/SPIE Multimedia Comput-
ing and Networking Conf. (San Jose, CA, Jan.
1999), pp. 216–227.

[22] Ruemmler, C., and Wilkes, J. An Introduction
to Disk Drive Modeling. Computer 27, 3 (Mar.
1994), 17–28.

[23] Sen, S., Dey, J., Kurose, J., Stankovic, J., and
Towsley, D. Streaming CBR transmission of
VBR stored video. In SPIE Symposium on
Voice, Video and Data Communications (Dal-
las, TX, Nov. 1997), pp. 26–36.

[24] Shenoy, P. J., Goyal, P., Rao, S. S., and Vin,
H. M. Symphony: An Integrated Multimedia
File System. In ACM/SPIE Multimedia Com-
puting and Networking Conf. (San Jose, CA,
Jan. 1998), pp. 124–138.

[25] Shenoy, P. J., Goyal, P., and Vin, H. M. Issues
in Multimedia Server Design. ACM Computing
Surveys 27, 4 (Dec. 1995), 636–639.


