
Dike: Virtualization-aware Access Control for
Multitenant Filesystems

Giorgos Kappes, Andromachi Hatzieleftheriou and Stergios V. Anastasiadis
Department of Computer Science

University of Ioannina, Greece
{gkappes,ahatziel,stergios}@cs.uoi.gr

Technical Report DCS2013-1
February 18th, 2013

ABSTRACT
In a virtualization environment that serves multiple cus-
tomers (or tenants), storage consolidation at the filesystem
level is desirable because it enables data sharing, adminis-
tration efficiency, and performance optimization. Today the
scalable deployment of filesystems in such environments is
challenging due to intermediate translation layers required
for purposes of networked file access or identity manage-
ment. First we analyze the security requirements in multi-
tenant filesystems. Then we introduce the Dike authoriza-
tion architecture, which combines native access control with
tenant namespace isolation that is backwards compatible to
object-based filesystems. We experimentally evaluate a pro-
totype implementation that we developed, and show that
our solution incurs limited added performance overhead.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
distributed file systems; D.4.6 [Operating Systems]: Se-
curity and Protection—access controls; D.4.8 [Operating
Systems]: Performance—measurements

General Terms
security, design, experimentation, performance, measurements

Keywords
access-control lists, object-based storage, scalability

1. INTRODUCTION
Cloud infrastructures are increasingly used for a broad

range of computational needs in private and public organi-
zations. We call tenant an independent organization that
is customer of the networked services offered by a cloud
provider [1]. Access control over the resources of a multi-
tenant environment is a challenging problem because of the
enormous number of end users involved and the required
isolation of the security administration across different or-
ganizations. Distributed authorization has already been ex-
tensively studied in the context of networked services, e.g.,
distributed filesystems [10]. However, a cloud environment
introduces unique characteristics that warrant reconsidera-
tion of the assumptions and solution properties.

We are particularly interested to take advantage of service
co-location in the datacenter to better consolidate the stor-
age infrastructure used by common data files at the appli-
cation (e.g., collaboration documents) or system level (e.g.,

root images). Secure storage consolidation at the filesystem
level is increasingly advocated as the preferred multitenancy
paradigm for cloud environments [13, 8, 4, 2, 17]. Although
virtual disks are attractive for their versioning, isolation and
migration properties, a file-based interface can additionally
support fine-grained controlled sharing, easy resource ad-
ministration, and file-level performance optimizations. Ex-
isting file-based solutions face scalability limitations because
they either lack support for multiple guest tenants, rely on
global-to-local identity mapping to manage the users of dif-
ferent tenants, or have the guests and a centralized filesys-
tem (or proxy) running at the same host [13, 4, 2]. In the
proposed solution we rely on an object-based, distributed
filesystem to handle the storage requirements of clients (e.g.,
virtual machines) belonging to different tenants.

In our design we require that each client directly mounts
the filesystem instead of having the filesystem mounted by
an intermediate proxy. The filesystem natively manages the
access control metadata of each tenant, and ensures that
each tenant can only access its own namespace. Controlled
file sharing is relatively straightforward as a result of the file-
based access to a common filesystem with file-granularity
access control. We provide prototype implementation of the
above approach in the Ceph production-grade, distributed
filesystem. With microbenchmarks and application-level ex-
periments we quantitatively demonstrate the limited perfor-
mance overhead of our design.

We can summarize our contributions as follows:

• Analysis of access-control requirements in consolidated
storage for virtualization.

• Architectural design of native access control in a mul-
titenant filesystem with backwards compatibility to
object-based storage.

• Prototype implementation over a production-grade dis-
tributed filesystem.

• Experimental performance evaluation of multitenancy
overheads.

In the remaining document we provide motivating scenarios
of file-level storage consolidation (§ 2), introduce basic re-
lated concepts (§ 3), and present our trust and threat model
(§ 4). We describe our system design and prototype in § 5
and § 6, respectively. Then we explain our experimental
measurements (§ 7), and compare our work with previous
research (§ 8). Finally we summarize our conclusions and
plans for future work (§ 9).



2. MOTIVATION
Next we examine scenarios of virtualization environments

in which file-based storage consolidation makes sense for rea-
sons of (i) fine-granularity access control, (ii) storage effi-
ciency, (iii) data sharing, and (iv) administration flexibility.

Virtual Desktops: The private cloud of an enterprise
stores the desktop filesystems of personal thin clients. Each
desktop root filesystem is stored as a separate directory with
access limited to a single client. As an optimization, there
is a shared, read-only directory that is branched into the
private directory of each client. A similar approach can also
be applied to manage the home directories of users.

Software-as-a-service: A software-as-a-service provider
supports business customers with disjoint end users [1]. The
filesystem treats each business customer as a tenant with
separate application files in writable mode (e.g., databases),
but possibly shared system files in read-only mode (e.g., con-
figuration scripts).

Software Repository: A public cloud provides a shared
software repository that different groups of developers can
fork into separate branches. The members of a group obtain
writable access to their own branch, and read-only access to
the branches of other groups. A simpler scheme without
branches could also be used for sharing scientific datasets.

3. BACKGROUND
In a distributed filesystem, client is typically a process

that provides local filesystem access to a node, while the
servers implement filesystem actions across the network [10].
Principal is the user or process that accesses the filesystem
through the client. In a traditional distributed filesystem,
all principals are registered to a central directory service.
If a principal is securely identified by the directory, it re-
ceives a ticket (i.e., capability) to contact the filesystem.
For a filesystem request that does not violate the access
policy, the principal is granted the ticket that provides the
authorized service from a server. Object-based, distributed
filesystems also rely on a similar authorization approach,
but emphasize the scalability of secure data and metadata
management [19].

Existing cloud environments primarily apply storage con-
solidation at the block level. Guests access virtual disk im-
ages either directly as volumes of a storage-area network
or indirectly as files of network-attached storage mounted
by the host. File-based access of consolidated storage has
been advocated to improve data sharing, manageability and
performance. Nevertheless, traditional file-based access pre-
sumes that users are registered into a central authentication
service. Due to identity management challenges from the
enormous number of users involved, this is most likely un-
realistic for the tenants of a cloud provider.

File-based storage virtualization can be managed through
versioning and access-control lists (ACLs) (Ventana, [13]).
Server file ACLs have system-wide effect to all clients; the
guests apply their own format and rules to specify the guest
file ACLs of their users. A shared NFS server allows guests
at a host to access networked object servers through a cus-
tom protocol. Alternatively, a network-filesystem protocol
can connect a host-based fileserver to multiple co-located
guests (VirtFS, [4]). The mapped security model stores the
guest credentials as extended attributes at the fileserver, and
the passthrough security model stores the guest credentials

directly on the fileserver. Hierarchical delegation enables
a tenant to assign identities to local principals; the sub-
directories from different volumes are combined to a unified
tenant view (HekaFS, [2]). Different tenants can coexist by
translating the pair of tenant and principal identifier to a
unique per-server principal identifier.

The scalability of Ventana and VirtFS is limited by the
centralized NFS-like functionality at the host. VirtFS mainly
targets a fileserver co-located on the host of the guests with-
out isolating the principals of different guests. HekaFS lacks
support for sharing and applies global-to-local identity map-
ping that was previously criticized as cause for limited scal-
ability in grid computing [7]. In the present work, we aim
to natively support multitenancy by directly storing access-
control metadata at the fileserver without the need for iden-
tity translations from one tenant to another.

4. TRUST AND THREAT MODEL
The clients and servers of the filesystem all run in one

datacenter that is physically protected and operated by an
independent provider. A secure co-processor certifies the
software stack on each physical host (e.g., hash chain gen-
erated by a Trusted Platform Module [12]). A central mon-
itor establishes the trust of the infrastructure from the in-
tegrity of the participating nodes. Public keys (or hashes
thereof) uniquely identify tenants, principals and services.
The nodes securely communicate over temporary symmetric
keys dynamically agreed upon via public-key cryptography.
The private keys of principals and services are permanently
stored in encrypted form and only appear in cleartext form
at the volatile memory of authorized nodes. Before the re-
allocation of host memory across different nodes, the mem-
ory contents are scrubbed to prevent information leakage.

The filesystem protects the confidentiality and integrity
of stored data and metadata by restricting accesses to au-
thorized principals. We assume that the provider has no
malicious intent to compromise the system security. How-
ever, there may be other reasons (e.g., poor practices) for
which the provider is not trusted for some applications. In
that case the tenant may externally apply techniques of en-
cryption, hashing and auditing to achieve end-to-end confi-
dentiality, integrity and freshness [3]. We target filesystem
access control without any explicit attempt to provide solu-
tions for public-key distribution, entity authentication, de-
nial of service and traffic analysis. Finally, we do not address
general distributed processing, which involves multitenant
sharing of resources other than storage (e.g., computation).

5. SYSTEM DESIGN
In the present section we introduce the Dike system of

access control for multitenant shared storage at the file level.

5.1 Assumptions and Goals
The storage system follows the architecture of an object-

based, distributed filesystem (Fig. 1). A collection of data
servers are responsible to redundantly store the data and
metadata in object form. Multiple metadata servers achieve
locality and load balancing by partitioning over the object
servers the name, data index and ACL of different files. The
system can flexibly manage the secure access to stored ob-
jects with help from the operating system at each object



...

TENANTNTENANT1

FILESYSTEM SERVERS

Filesystem 
Authentication 

Service

Tenant 
Authentication 

Service

UsersN

Clients

Tenant 
Authentication 

Service

Users1

Clients

Figure 1: The Dike multitenant access-control system. A
tenant authenticates its own principals, and the filesystem
authenticates the authentication service of each tenant.

server. In the proposed scheme of filesystem access control,
we set the following goals:

1. Isolation: Securely isolate the identity space and ac-
cess control of principals from different tenants.

2. Sharing: Enable flexible file sharing among the prin-
cipals of the same and different tenants.

3. Efficiency: Provide native support of multitenant ac-
cess control for filesystem performance and scalability.

4. Compatibility: Ensure architectural compatibility
with existing scalable and reliable filesystems.

5.2 Authentication
A trusted monitor at the datacenter certifies the integrity

of the software stack running at each client. The client re-
ceives the secret key to decrypt its private key and uses
public-key cryptography to securely connect with a tenant.
Every tenant certifies the identity of local clients and princi-
pals with its own authentication service that is securely reg-
istered to the filesystem authentication service (Fig. 1). A
principal connects to a particular client and provides a secret
password for authentication by a tenant that also stores the
password in encrypted form. After the successful authen-
tication, the principal receives a secret key to decrypt its
private key that is made accessible at the client. From the
tenant the principal retrieves a secure ticket to access the
metadata server of the filesystem, and from the metadata
server retrieves another secure ticket to access a particular
data server. Message freshness is ensured with a requester-
provided nonce that the replying party returns modified ac-
cording to a known function (e.g., increment by one).

5.3 Authorization
The filesystem grants to a principal a permitted file access

according to the tenant-issued ticket. The authorization pol-
icy is specified in ACLs maintained by the filesystem. The
rules of principals that belong to different tenants and the
filesystem are respectively maintained across separate ACLs.
The ACL of a tenant for a particular file is a list of entries;
each entry consists of a principal’s identity and a represen-
tation of the permitted actions. There is a separate ACL,
where the filesystem maintains the permissions of its native
principals. A file can be configured as private or shared
across the principals of a single or multiple tenants.

TENANT1 VIEW

/
T1

bob
alice

Share
Images

/
T1

T2

bob
alice

...

bob

Share
Images

ADMIN VIEW

nick

TENANT2 VIEW

/
T2

bob
nick

Share
Images

Figure 2: Admin and tenant view of the filesystem metadata
in the Dike system.

For administration purposes the system provides selective
access to metadata in the form of views (Fig. 2). The filesys-
tem administrator has access to the admin view, which al-
lows specification of permissions at the granularity of entire
tenants or individual principals. Instead the tenant view al-
lows a tenant administrator to configure the metadata made
accessible to the tenant by the filesystem admin. Depending
on whether it belongs to the filesystem or a tenant, respec-
tively, a principal can only access a subset of the admin or
tenant view filtered according to the applicable permissions.

5.4 Security Analysis
The specification of the authorized client and principal in

an encrypted ticket along with the secure ticket exchange
among nodes prevent a principal from getting unapproved
access to the data and metadata of other principals from
the same or different tenant. An attacker may manage to
penetrate a client and guess the password of a regular princi-
pal. Then the attacker is still unable to modify the system-
wide access policy, which affects the native principals of the
filesystem or the principals of other tenants. Special pro-
tection measures make harder to forge the identity of the
filesystem administrator, e.g., by disabling access to the re-
spective account from outside the datacenter.

6. SYSTEM PROTOTYPE
Next we describe our implementation of the Dike mul-

titenant access control over a distributed filesystem. The
prototype implementation is based on Ceph, a flexible pro-
totyping platform with scalable management of metadata
and extended attributes.

6.1 Outline of Ceph
Ceph consists of four components: the clients provide ac-

cess to the filesystem, the metadata servers (MDSs) manage
the namespace hierarchy, the object-storage devices (OSDs)
reliably store objects, and the monitor (MON) manages the
server cluster map. Both data and metadata are stored on
OSDs, but they are separately managed for greater scala-
bility. The metadata is dynamically partitioned across the
MDSs to preserve locality and achieve load balancing. A reg-
istered client shares a secret key with the monitor. When
a user requests from the client to mount a filesystem, the
client is authenticated by the monitor and receives a session
key encrypted with the secret key. The session key is used
by the client to securely request from the monitor a ticket
that authenticates the client to the MDSs and OSDs.

The ticket is encrypted with a secret key that the monitor



Method Description
bool check_tenant_perm() Check tenant permission
void grant_tenant_perm() Grant tenant permission
void set_unix_uid() Set user ID
void set_unix_gid() Set group ID
uid_t set_unix_mode() Set file permissions
uid_t get_unix_gid() Return user ID
gid_t get_unix_gid() Return group ID
mode_t get_unix_mode() Return file permissions

Table 1: The methods that we added into class CInode to
manage the tenant permissions of an inode.

shares with the MDSs and OSDs. The client uses the ticket
to initiate a new session with the MDS. The MDS receives
from the client a message of type MClientSession and sends
back the capability (i.e., ticket) that enables access of the
root directory at the OSDs. In general the returned capa-
bility contains the inode number, the permitted operations,
the replication factor and the striping method of the file.
From the capability the client derives an object identifier,
which is hashed to the placement group of OSDs that con-
tain the object replicas. A Ceph directory is stored as a
single object, or as a collection of fragments with each frag-
ment on a different object. A directory entry includes the
name, the inode and the extended attributes of a file. Ev-
ery MDS maintains a journal of recently-updated metadata.
Metadata updates are labeled as projected while written to
the journal but not yet to the in-memory cache, committing
while queued to the disk, and committed when written in
stable storage.

6.2 Multitenant Access Control
In Ceph we implemented native support for multitenant

access control according to the Dike design (Fig. 3). We de-
liberately avoid global-to-local identity translations because
they introduce performance bottlenecks, replica inconsisten-
cies and impersonation vulnerabilities. Instead we enforce
the access policy by restricting the session between a client
and the filesystem to only serve the permitted actions of the
principal who initiated the session. In a filesystem mount
request to an MDS, a client has to securely identify the ten-
ant of the principal. In order to derive the tenant identifier
(TID) we apply the RIPEMD-160 cryptographic hash func-
tion on the public key of the tenant. Then we include the
TID into an expanded MClientSession request and send it
to the MDS over a secure session. For authentication pur-
poses the request should additionally carry a tenant-issued
certification (not supported yet in our prototype).

The MDS extracts the TID from the MClientSession mes-
sage and stores it as a field of the session class. Our current
implementation only supports Unix-like permissions of in-
dividual users and groups, but it is straightforward to add
access-control lists in a future version of our code. We fa-
cilitate the system administration through the support of
multiple filesystem views. Based on the supplied TID, a
client obtains tenant view of the filesystem for access by a
principal of the tenant. For configuration purposes, we also
provide the admin view that enables full access permissions
to the filesystem. We extended the CInode class of Ceph
with eight new operations to set and retrieve the permis-
sions of tenants and individual principals (Table 1).

When the tenant view is used, the permission attributes

EXTENDED 
ATTRIBUTES MAP

INODES

UID
GID

MODE
...

XATTRS
...

Native User Permissions

ClientClientClient

ClientClientMDS

ClientClientMON

ClientClientOSD

OBJECT POOLS

...

Permissions
Permissions

Permissions

TID1
TID2

...
TIDN

Auth

Figure 3: Prototype implementation of the Dike multitenant
access-control system.

are stored in the extended attributes of the filesystem; oth-
erwise the regular fields of the inode are accessed. The ex-
tended attributes are managed as key-value pairs stored in
a C++ map structure (red-black tree). We use as key the
string "TID‖perm_type", where TID is the tenant identi-
fier and perm_type is set to "UNIX" for Unix permissions
or "ACL" for the ACL model. In the Unix model the value
of the pair can be set to "UID:GID:mode", where UID and
GID are the user and group ID, respectively, while mode
represents the Unix file permissions.

We modified all the filesystem functions related to per-
missions handling, including the constructor of a new inode.
If the client uses the admin view, then we directly update
the regular inode of the filesystem. Otherwise we save the
user/group IDs and the file permissions into extended at-
tributes keyed under TID; we also update the regular inode
of the filesystem according to the user/group IDs and file
mode of the parent inode. A capability is only sent to a
client whose tenant has access to the file. In order to allow
or deny a file access to a client, we modified the returned
capability to include the tenant identifier and the respective
file ownership metadata. In general a client cannot directly
access the extended attributes that contain access control
information because it is responsibility of the filesystem to
read and update extended attributes on behalf of authorized
client requests.

7. PERFORMANCE EVALUATION

7.1 Experimentation Environment
We mainly use a cluster of x86 servers running Linux

kernel v3.5.5 (Debian v6.0 amd64 squeeze). Each server is
equipped with one quad-core 64-bit Intel Xeon processor at
2.33GHz, 2-4GB RAM, two SATA 250GB 7.2KRPM HDs,
and one activated gigabit link. We used up to four servers
as client hosts, each running the Xen v4.2.0 hypervisor (1
core/1GB) and three virtual machines (1 core/1GB each).
We developed the Dike prototype over Ceph v0.48.2 (Arg-
onaut). We have Ceph (or Dike) installed on hosts with
2GB RAM. One host is shared by the MDS and monitor,
while two other hosts are used as OSDs running the Btrfs
filesystem with 1GB journal.

7.2 Experimentation Results
Microbenchmark. First we measure the system per-

formance with the mdtest v1.8.3 from LLNL. This is a mi-
crobenchmark running in the MPI environment over a par-



 10

 100

 1000

 10000

create

stat
rem

ove

T
hr

ou
gh

pu
t (

op
s/

s)

private folder

mdtest - 6 clients

Ceph
Dike

 10

 100

 1000

 10000

create

stat
rem

ove

T
hr

ou
gh

pu
t (

op
s/

s)

shared folder

mdtest - 6 clients

(a) File Operations

 10

 100

 1000

 10000

create

stat
rem

ove

T
hr

ou
gh

pu
t (

op
s/

s)

private folder

mdtest

1 client
6 clients

10 clients

 10

 100

 1000

 10000

create

stat
rem

ove

T
hr

ou
gh

pu
t (

op
s/

s)

shared folder

mdtest

(b) File Operations

 0.001

 0.01

 0.1

 1

 10

open
opendir

stat
readdir

close
closedir

La
te

nc
y 

(m
s)

MapReduce - 12 clients

Ceph
Dike-10
Dike-100

(c) File Operations

 0.001

 0.01

 0.1

 1

 10

open
opendir

stat
readdir

close
closedir

La
te

nc
y 

(m
s)

MapReduce - 100 tenants

1 client
3 clients
6 clients

12 clients

(d) File Operations

Figure 4: Performance comparison of Ceph and Dike with
mdtest and MapReduce across different numbers of clients
(Ceph and Dike) and tenants (Dike only).

allel filesystem. Each spawned MPI task iteratively creates,
stats and removes a specified number of files/directories. We
configure every client to run 5 tasks in 3 iterations. A total
number of 12000 created files are equally divided among the
tasks of the experiment. Dike is configured to support 10
tenants and has each client accessing the filesystem through
a dedicated tenant. We examine the cases that either every
client creates files in a private folder of the filesystem, or all
clients use a shared folder.

We show the average execution time of the experiment
along with the standard deviation as an error bar. In Fig. 4a
we compare the throughput of mdtest running on 6 clients.
The measured performance is comparable between Ceph and
Dike. A notable case is file create over a private folder,
where Dike with 78.6ops/s lies 31% lower than Ceph with
113.7ops/s. In Fig. 4b we examine the measured through-
put as a function of the number of clients. We notice that
increasing the number of clients from 1 to 10 leads to higher
throughput for create and stat by about a factor of 10, but
lower throughput for remove beyond 6 clients. This behav-
ior is reasonable given the different intensity of contention
caused by shared (e.g., stat) or exclusive (e.g., remove) lock-
ing involved in the operations, respectively.

MapReduce. We gathered application-level measure-
ments with Stanford’s Phoenix v2 shared-memory imple-
mentation of Google’s MapReduce. Our MapReduce ap-
plication is called reverse index: it receives a collection of
HTML files and generates the text index with links to the
files. Our dataset contains 40,376 files and occupies 530.8MB.
We measure the latency of several metadata operations dur-
ing the index building. We repeated the experiment to con-

Linux Kernel Build Time
#Clients Ceph (s) Dike (s)

1 4,677.74 4,716.51
4 4,701.09 4,750.88

Table 2: Comparison of the kernel build time from multiple
clients across the Ceph and Dike system.

strain the 95% confidence-interval half-length within 5% of
the average stat latency. We consider three different con-
figurations: the original Ceph, the Dike with 10 tenants
(Dike-10), and the Dike with 100 tenants (Dike-100). Due
to multitenancy, there is a corresponding higher volume of
stored ACL metadata in Dike. Nevertheless most opera-
tions of Dike are completed in latency comparable to that
of the original Ceph (Fig. 4c). One exception is readdir
whose latency increases by a factor of 2 between the original
Ceph and Dike-100. Similarly, as we increase the number
of clients from 1 to 12 in Dike-100 (Fig. 4d), the latency of
readdir grows from 0.58ms to 0.99ms. This latency increase
is relatively limited because the folder metadata returned by
readdir is cached by the client.

Linux Build. Over a different cluster (2.66GHz quad-
core processor, 2x300GB 15KPRM SAS HDs/host) we store
the source of the Linux kernel (v3.5.5) in a shared folder of
the filesystem with 3 OSDs. Then we use soft links to make
the code accessible to private directories of the tenants. We
measure the average time to build the system image by up to
four clients with dedicated tenant per client (for Dike). The
extra latency of Dike is 5% with one client and 7% with four
clients (Table 2). Overall Dike incurs a limited performance
overhead across the cases that we experimented with.

8. RELATED WORK
Secure multitenancy in cloud storage supports multiple

customers at low cost [5]. The virtualization-based multite-
nancy architecture (VMT) runs separate virtual machines
for each customer over a distributed filesystem. Instead
the OS-based multitenancy architecture (OSMT) relies on
the fileserver kernel to isolate the resources of different cus-
tomers leading to lower execution overhead. SilverLine in-
troduces data isolation over a cloud hosting infrastructure [11].
It uses labels to control information flow between files and
processes within a single machine or across the network. The
S4 framework extends Amazon’s S3 cloud storage to provide
data sharing across different web services [17]. It supports
access delegation over the objects of different users via hier-
archical, filtered views of the applicable policy.

Virtual directories persistently represent complex searches
of files [8]. The combination of a file-based interface with
virtual directories facilitates accesses to multiple filesystems,
information finding, file sharing and system administration
in a virtualization environment. Support of storage access
from different institutions requires consistent ownership and
permission data across multiple client mounts [18]. Over
Lustre the client user and group identifiers can be mapped
to an authoritative list of filesystem identifiers. The Maat
protocol provides scalable security for petascale distributed
filesystems [6]. The extended capability authorizes I/O for
any number of users and files, is cryptographically secure,
and maintains fixed size through Merkle hash trees.



Excalibur uses a trusted computing abstraction (policy-
sealed data) to seal and unseal data according to a specified
node policy [15]. CloudProof allows customers of cloud stor-
age to securely detect and prove violations of integrity, write-
serializability and freshness [14]. Assuming that the cloud
is entirely untrusted, access control over read and write re-
quests is enforced through data encryption with secret keys,
and update verification with public-key signatures.

The use of access control was investigated across differ-
ent communication methods [16]. Groups have been sug-
gested as an effective structure to emulate several compli-
cated means of access control. Access control has been
comprehensively examined across known distributed filesys-
tems [10]. ACLs have been criticized for their inability to
support non-local users, and limited scalability with user
bases crossing organization boundaries. Direct authoriza-
tion through trust management certificates has been sug-
gested to better meet the requirements for autonomous dele-
gation across organization boundaries [9]. In prior research a
method was proposed for hierarchical access control in feder-
ated file services across different administrative domains [7].
In the present work, we study the problem of storage multi-
tenancy over virtualization environments, which introduces
new challenges as a result of the system consolidation in-
volved in the same datacenter.

9. CONCLUSIONS
We analyze the security requirements of scalable filesys-

tems used by virtualization environments. Then we intro-
duce the Dike system design to natively support multitenant
access control. With a prototype implementation of Dike
over a production-grade filesystem we experimentally demon-
strate a limited performance overhead for up to a hundred
tenants. Our plans for future work include integration of
Dike into a virtualization platform that supports trusted
computing in the datacenter, and further experimentation
with interesting I/O-intensive applications at large scale.

10. ACKNOWLEDGEMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

11. REFERENCES
[1] M. L. Badger, T. Grance, R. Patt-Corner, and J. M.

Voas. Cloud computing synopsis and
recommendations. Technical Report NIST SP -
800-146, National Institute of Standards and
Technology, May 2012.

[2] J. Darcy. Building a cloud file system. USENIX
;login:, 36(3):14–21, June 2011.

[3] A. Juels and A. Oprea. New Approaches to Security
and Availability for Cloud Data. C. ACM,
56(2):64–73, Feb. 2013.

[4] V. Jujjuri, E. V. Hensbergen, and A. Liguori. VirtFS:
Virtualization aware File System pass-through. In
Ottawa Linux Symposium, 2010.

[5] A. Kurmus, M. Gupta, R. Pletka, C. Cachin, and
R. Haas. A Comparison of Secure Multi-tenancy

Architectures for Filesystem Storage Clouds. In
ACM/IFIP/USENIX Intl Middleware Conf., pages
460–479, Lisboa, Portugal, Dec. 2011.

[6] A. W. Leung, E. L. Miller, and S. Jones. Scalable
Security for Petascale Parallel File Systems. In
ACM/IEEE Conf. Supercomputing, pages 16:1–16:12,
Nov. 2007.

[7] G. Margaritis, A. Hatzieleftheriou, and S. V.
Anastasiadis. Nepheli: Scalable Access Control for
Federated File Services. J. Grid Computing, May 2012.

[8] D. T. Meyer, J. Wires, N. C. Hutchinson, and
A. Warfield. Namespace Management in Virtual
Desktops. usenix; login:, 36(1):6–11, Feb. 2011.

[9] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis,
A. D. Keromytis, and J. M. Smith. Secure and flexible
global file sharing. In USENIX Annual Technical
Conference, Freenix Track, pages 168–178, San
Antonio, TX, June 2003.

[10] S. Miltchev, J. M. Smith, V. Prevelakis, A. Keromytis,
and S. Ioannidis. Decentralized access control in
distributed file systems. ACM Computing Surveys,
40(3):10:1–10:30, Aug. 2008.

[11] Y. Mundada, A. Ramachandran, and N. Feamster.
SilverLine: data and network isolation for cloud
services. In USENIX HotCloud Workshop, Portland,
OR, June 2011.

[12] B. Parno, J. M. McCune, and A. Perrig.
Bootstrapping Trust in Commodity Computers. In
IEEE Symposium on Security and Privacy, pages
414–429, Oakland, CA, May 2010.

[13] B. Pfaff, T. Garfinkel, and M. Rosenblum.
Virtualization Aware File Systems: Getting Beyond
the Limitations of Virtual Disks. In USENIX
Networked-Systems Design and Implementation, pages
353–366, San Jose, CA, 2006.

[14] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang. Enabling Security in Cloud Storage SLAs
with CloudProof. In USENIX Annual Technical
Conference, pages 355–368, Portland, OR, June 2011.

[15] N. Santos, R. Rodrigues, K. P. Gummadi, and
S. Saroiu. Policy-Sealed Data: A New Abstraction for
Building Trusted Cloud Services. In USENIX Security
Symposium, pages 175–188, Bellevue, WA, Aug. 2012.

[16] D. K. Smetters and N. Good. How users use access
control. In Symposium on Usable Privacy and
Security, Mountain View, CA, July 2009.

[17] N. H. Walfield, P. T. Stanton, J. L. Griffin, and
R. Burns. Practical protection for personal storage in
the cloud. In EuroSec Security Workshop, pages 8–14,
Paris, France, Apr. 2010.

[18] J. Walgenbach, S. C. Simms, J. P. Miller, and
K. Westneat. Enabling Lustre WAN for Production
Use on the TeraGrid: A Lightweight UID Mapping
Scheme. In TeraGrid Conference, Pittsburgh, PA,
Aug. 2010.

[19] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In
USENIX Symp. Operating Systems Design and
Implementation, pages 307–320, Seattle, WA, Nov.
2006.


