
1

Efficient Range-Based Storage Management
for Scalable Datastores
Giorgos Margaritis, and Stergios V. Anastasiadis

Abstract—Scalable datastores are distributed storage systems capable of managing enormous amounts of structured data for online
serving and analytics applications. Across different workloads, they weaken the relational and transactional assumptions of traditional
databases to achieve horizontal scalability and availability, and meet demanding throughput and latency requirements. Efficiency
tradeoffs at each storage server often lead to design decisions that sacrifice query responsiveness for higher insertion throughput.
In order to address this limitation, we introduce the novel Rangetable storage structure and Rangemerge method so that we efficiently
manage structured data in granularity of key ranges. We develop a general prototype framework and implement several representative
methods as plugins to experimentally evaluate their performance under common operating conditions. We experimentally conclude that
our approach incurs range-query latency that is minimal and has low sensitivity to concurrent insertions, achieves insertion performance
that approximates that of write-optimized methods under modest query load, and reduces down to half the reserved disk space.

Index Terms—Distributed systems, Storage Management, Performance, Measurements

F

1 INTRODUCTION

Scalable datastores (or simply datastores) are distributed
storage systems that scale to thousands of commodity
servers and manage petabytes of structured data. Today,
they are routinely used by online serving, analytics
and bulk processing applications, such as web index-
ing, social media, electronic commerce, and scientific
analysis [1], [2], [3], [4], [5], [6], [7]. Datastores differ
from traditional databases because they: (i) Horizontally
partition and replicate the indexed data across many
servers, (ii) Provide weaker concurrency model and sim-
pler call interface, and (iii) Allow dynamic expansion of
records with new attributes. Depending on the applica-
tion needs, they organize data as collections of key-value
pairs, multidimensional maps or relational tables.

System scalability across multiple servers is necessi-
tated by the enormous amount of handled data and
the stringent quality-of-service requirements [1], [2], [8].
Production systems keep the high percentiles of serving
latency within tens or hundreds of milliseconds [2], [8].
General-purpose datastores target good performance on
both read-intensive and write-intensive applications [1],
[3]. Furthermore, applications that ingest and mine event
logs accelerate the shift from reads to writes [9].

The data is dynamically partitioned across the avail-
able servers to handle failures and limit the consumed
resources. To a large extent, the actual capacity, func-
tionality and complexity of a datastore is determined
by the architecture and performance of the constituent
servers [10], [11], [12]. For instance, resource manage-
ment efficiency at each storage server translates into

• The authors are with the Department of Computer Science and Engineer-
ing, University of Ioannina, Ioannina 45110, Greece
E-mail: {gmargari,stergios}@cs.uoi.gr

fewer hardware components and lower maintenance cost
for power consumption, redundancy and administration
time. Also, support of a missing feature (e.g., range
queries) in the storage server may require substantial re-
organization with overall effectiveness that is potentially
suboptimal [13], [14].

A storage layer at each server manages the memory
and disks to persistently maintain the stored items [12].
Across diverse batch and online applications, the stored
data is typically arranged on disk as a dynamic collection
of immutable, sorted files (e.g., Bigtable, HBase, Azure,
Cassandra in Section 7, Hypertable [15]). Generally a
query should reach all item files to return the eligible
entries (e.g., in a range). As the number of files on
disk increases, it is necessary to merge them so that
query time remains under control. Datastores use a
variety of file merging methods but without rigorous
justification. For instance, Bigtable keeps bounded the
number of files on disk by periodically merging them
through compactions [1] (also HBase, Cassandra, Lazy-
Base in Section 7, Anvil in Section 15.1). In the rest of
the document we interchangeably use the terms merging
and compaction.

Despite the prior indexing research (e.g., in relational
databases, text search), datastores suffer from several
weaknesses. Periodic compactions in the background
may last for hours and interfere with regular query
handling leading to latency spikes [12], [16], [17], [18],
[19]. To avoid this problem, production environments
schedule compactions on a daily basis, thus leaving frag-
mented the data for several hours [12]. Frequent updates
in distinct columns of a table row further fragment the
data (e.g., HBase) [6], [20]. When several files on a server
store data with overlapping key ranges, query handling
generally involves multiple I/Os to access all files that
contain a key. Bloom filters are only applicable to single-



2

 0

 500

 1000

 1500

 2000

 0  50  100  150  200  250  300
 0
 200
 400
 600
 800
 1000
 1200
 1400

Q
ue

ry
 la

te
nc

y 
(m

s)

T
ot

al
 th

ro
ug

hp
ut

(r
eq

/s
)

Time (min)

Total throughput
Query latency

Fig. 1. The query latency at the Cassandra client varies
according to a quasi-periodic pattern. The total through-
put of queries and inserts also varies significantly.

Latency (ms) of Range Queries on Cassandra
#

Servers
Client Server Storage Mgm

Avg 90th 99th Avg 90th 99th
1 204.4 420 2282 178.8 382 1906
4 157.6 313 1601 130.8 269 1066
8 132.2 235 1166 111.7 218 802

TABLE 1
Storage management on the server occupies more than
80% of the average query latency measured at the client.

key (but not range) queries, and have diminishing ben-
efit at large number of files (e.g. 40) [12]. Finally, several
merge-based methods require roughly half of the storage
space to remain free during merging for the creation of
new files [12].

In this work we study the storage management of
online datastores that concurrently support both range
queries and dynamic updates. Over inexpensive hard-
ware we reduce the data serving latency through higher
storage contiguity; improve the performance predictabil-
ity with limited query-update interference and config-
urable compaction intensity; and decrease the storage
space required for file maintenance through incremental
compactions. Our main insight is to keep the data of
the memory and disk sorted and partitioned across
disjoint key ranges. In contrast to existing methods (e.g.,
Section 3), when incoming data fills up the available
memory of the server, we only flush to disk the range
that occupies the most memory space. We store the data
of each range in a single file on disk, and split a range
to keep bounded the size of the respective file as new
data arrives at the server.

Our contributions can be summarized as follows: (i)
Unified consideration of known solutions for datastore
storage management across different research fields. (ii)
Identification of several limitations in existing systems
and introduction of the Rangetable structure and Range-
merge method to address them. (iii) Prototype devel-
opment of a general framework to support alternative
management methods as plugins. (iv) Comprehensive
experimental study of existing methods and demon-
strated superior performance of our solution over dif-
ferent storage devices and workload conditions.

In Sections 2 and 3, we experimentally motivate our
study and outline previous known solutions. In Section

4 we specify our system assumptions and goals, while
in Section 5 we introduce our solution and describe
our prototype framework. In Section 6 we present our
experimentation environment and results across differ-
ent workloads. In Section 7 we compare our work with
related literature, and in Section 8 we summarize our
results and future work. In Sections 9-15 we provide ad-
ditional assumptions, analytical and experimental eval-
uations, and differentiation from related research.

2 MOTIVATION

In a distributed system, variability in the latency dis-
tribution of individual components is magnified at the
service level; effective caching cannot directly address
tail latency unless the entire working set of an appli-
cation resides in the cache [21]. In this section, over a
distributed datastore we experimentally demonstrate the
query latency to vary substantially over time with a high
percentage of it to be spent in the storage layer.

We use a cluster of 9 machines with the hardware con-
figuration described in Section 6. We apply the Apache
Cassandra version 1.1.0 as datastore with the default
Size-Tiered compaction and the Yahoo! YCSB version
0.1.4 as workload generator [4], [5]. An item has 100B
key length and 1KB value size. A range query requests
a random number of consecutive items that is drawn
uniformly from the interval [1,100]. Initially we run Cas-
sandra on a single node. On a different machine, we use
YCSB with 8 threads to generate a total of 500req/s out
of which 99% are inserts and 1% are range queries. We
disregarded much higher loads (e.g., 1000req/s) because
we found them to saturate the server. The experiment
terminates when a total of 10GB is inserted into the
server concurrently with the queries.

For average size of queried range at 50 items, the
generated read load is 250items/s, i.e., almost half the
write load of 495items/s. An I/O on our hard disk takes
on average 8.5-10ms for seek and 4.16ms for rotation.
Accordingly the time to serve 5 range queries is 67.2ms,
while the time to sequentially write 495 items is 21.9ms.
Although the read time appears 3 times higher than that
of the writes, the actual write load is practically higher
as a result of the compactions involved.

In Fig. 1 we show the query latency measured every 5s
and smoothed with a window of size 12 for clarity. The
query latency varies substantially over time following
some quasi-periodic pattern which is independent of
the random query size. In fact, the latency variation
approximates the periodicity at which the server flushes
from memory to disk the incoming data and merges the
created files. In the same figure, we additionally show
the measured throughput of queries and inserts to also
vary considerably over time, and actually drop to zero
for 90 consecutive seconds at minutes 157 and 295.

We repeat the above experiment with Cassandra over
1, 4 and 8 server machines. We linearly scale the gen-
erated request rate up to 4000req/s and the inserted



3

The I/O Complexity of Datastore Storage Structures
Dynamic Data Structure Insertion Cost Query Cost System Example

B-tree O(logB
N
M

) O(logB
N
M

+ Z
B
) PNUTS [3], Dynamo [2]

Log-structured File System (LFS) O( 1
B
) N/A RAMCloud [22], FAWN [23]

Log-structured Merge Tree
O( r

B
logr

N
M

) O(logr
N
M

+ Z
B
)

HBase [12], Anvil [16], Azure [24],
Bigtable [1], bLSM [9](LSM-tree), Geometric, r-COLA

Geometric with p partitions,
O( 1

B
p
√

N
M

) O(p+ Z
B
) bottom layer of SILT [25]Remerge (special case for p=1)

Stepped-Merge Algorithm (SMA),
O( 1

B
logk

N
M

) O(k logk
N
M

+ Z
B
) Cassandra [4], GTSSL [12], Lucene [26]Sorted Array Merge Tree (SAMT),

Nomerge (special case for k = N/M )

TABLE 2
Summary of storage structures typically used in datastores. We include their I/O complexities for insertion and range

query in one-dimensional search over single-key items.

dataset size up to 80GB, while we fix to 8 the num-
ber of YCSB threads at the client. We instrument the
latency to handle the incoming query requests at each
server. Table 1 shows the query latency respectively
measured at the YCSB client and the storage layer of
all the Cassandra servers. The difference mainly arises
from time spent on network transfer, request redirection
among the servers, and RPC handling. As we increase
the number of servers, the query latency drops because
the constant (8) number of YCSB threads results into
reduced concurrency (and contention) per server in the
cluster. Across different system sizes, the storage man-
agement accounts for more than 80% of the average
latency and the 90th percentile, and more than 65% of the
99th percentile. Overall, compactions cause substantial
latency variations, and storage management is dominant
in the online performance of Cassandra-like datastores
(Section 7). In the following sections we introduce a new
storage structure and method to effectively control the
compaction impact, and improve the datastore perfor-
mance.

3 BACKGROUND
Next we outline representative known methods for the
problem of write-optimized data storage. We only con-
sider external-memory data structures that handle one-
dimensional range queries to report the points contained
in a single-key interval. Thus we do not examine spatial
access methods (e.g., R-tree, k-d-B-tree) that directly
store multidimensional objects (e.g., lines) or natively
handle multidimensional queries (e.g., rectangles). Spa-
tial structures have not been typically used in datas-
tores until recently [27]; also, at worst case, the lower-
bound cost of orthogonal search in d dimensions (d>1)
is fractional-power I/O for linear space and logarithmic
I/O for nonlinear storage space [28].

A data structure is static if it remains searchable and
immutable after it is built; it is dynamic if it supports
both mutations and searches throughout its lifetime. The
processing cost of a static structure refers to the total
complexity to insert an entire dataset, and the inser-
tion cost of a dynamic structure refers to the amortized

complexity to insert a single item [29]. In a datastore,
multiple static structures are often combined to achieve
persistent data storage because filesystems over disk or
flash devices are more efficient with appends rather than
in-place writes [1], [22], [25].

Some datastores rely on the storage engine of a rela-
tional database at each server. For instance, PNUTS [3]
uses the InnoDB storage engine of MySQL, and Dy-
namo [2] the BDB Transactional Data Store. In a re-
lational database, data is typically stored on a B-tree
structure. Let N be the total number of inserted items, B
items the disk block size, and M items the memory size
for caching the top levels of the tree. We assume unary
cost for each block I/O transfer. One B-tree insertion
costs O(logB

N
M ) and a range query of output size Z

items costs O(logB
N
M + Z

B ) [30]. In contrast, the Log-
structured File System (LFS) accumulates incoming writes
into a memory-based buffer [31]. When the buffer fills
up, data is transferred to disk in a single large I/O
and deleted from memory. RAMCloud and FAWN use
a logging approach for persistent data storage [22], [23].

Inspired from LFS, the Log-Structured Merge-Tree (LSM-
tree) is a multi-level disk-based structure optimized for
high rate of inserts/deletes over an extended period [32].
In a configuration with ` components, the first compo-
nent is a memory-resident indexed structure (e.g., AVL
tree), and the remaining components are modified B-
trees that reside on disk. Component size is the storage
space occupied by the leaf level. The memory and disk
cost is minimized if the maximum size of consecutive
components increases by a fixed factor r. When the size
of a component Ci reaches a threshold, the leaves of Ci

and Ci+1 are merged into a new Ci+1 component. The
LSM-tree achieves higher insertion performance than a
B-tree due to increased I/O efficiency from batching
incoming updates into large buffers and sequential disk
access during merges. The insertion cost of the LSM-
tree is O( r

B logr
N
M ), where ` = logr

N
M is the number of

components. However, a range query generally requires
to access all the components of an LSM-tree. Thus, a
range query costs O(logr

N
M + Z

B ), if search is facilitated
by a general technique called fractional cascading [30].



4

Bigtable and Azure rely on LSM-trees to manage per-
sistent data [1], [12], [24].

The Stepped-Merge Algorithm (SMA) is an optimization
of the LSM-tree for update-heavy workloads [33]. SMA
maintains ` + 1 levels with up to k B-trees, called runs,
at each level i = 0, . . . , ` − 1, and 1 run at level `.
Whenever memory gets full, it is flushed to a new run
on disk at level 0. When k runs accumulate at level i
on disk, they are merged into a single run at level i+1,
i = 0, . . . , `−1. SMA achieves insertion cost O( 1

B logk
N
M ),

and query cost O(k logk
N
M + Z

B ) under fractional cas-
cading. A compaction method based on SMA (with
unlimited `) has alternatively been called Sorted Array
Merge Tree (SAMT) [12]. If we dynamically set k = N

M
to SMA, we get the Nomerge method, which creates new
sorted files on disk without merging them [34]. Although
impractical for searches, Nomerge is a baseline case for
low index-building cost. A variation of SMA is applied
with k=10 by the Lucene search engine [26], or k=4 by
Cassandra and GTSSL [12].

Text indexing maps each term to a list of document
locations (postings) where the term occurs. A merge-
based method flushes postings from memory to a sorted
file on disk and occasionally merges multiple files [35].
Along a sequence of created files, Geometric partitioning
introduces the parameter r to specify an upper bound
((r − 1)ri−1M ) at the size of the ith file, i = 1, 2, . . . , for
memory size M . Hierarchical merges guarantee similar
sizes among the merged files and limit the total number
of files on disk. The I/O costs of insertion and search
in Geometric are asymptotically equal to those of the
LSM-tree [30], [35] and the Cache-Oblivious Lookahead
Array (COLA) [36]. Geometric can directly constrain the
maximum number p of files with dynamic adjustment
of r. Setting p=1 leads to the Remerge method, which
always merges the full memory into a single file on disk
and requires one I/O to handle a query [35]. A variation
of Geometric with r=2 is used by Anvil [16] and r=3
by HBase [12]; SILT uses a single immutable sorted file
(similar to p=1) on flash storage [25].

We summarize the asymptotic insertion and range-
query costs of the above structures in Table 2. Log-
based solutions achieve constant insertion cost, but lack
efficient support for range queries. SMA incurs lower
insertion cost but higher query cost than the LSM-tree.
Geometric with p partitions takes constant time to an-
swer a query, but requires fractional-power complexity
for insertion. In our present study, we experimentally
measure several of the above costs taking into consider-
ation the interference among concurrent operations.

4 SYSTEM ASSUMPTIONS

We mainly target interactive applications of online data
serving or analytics processing. The stored data is a
collection of key-value pairs, where the key and the
value are arbitrary strings of variable size from a few
bytes up to several kilobytes. The system supports the

Request Router

Storage 

Server

update query

...

Log Memory Disk

update query

Storage 

Server

Fig. 2. Assumed datastore architecture.

operation of a point query as value retrieval of a single
key, and a range query as retrieval of the values in a
specified key range. Additionally, the system supports an
update as insertion or full overwrite of a single-key value.
We do not examine the problems of query handling over
versioned data, or data loading in bulk.

A datastore uses a centralized or distributed index to
locate the server of each stored item. Data partitioning
is based on interval mapping for efficiency in handling
range queries (Section 15.3). All accepted updates are
made immediately durable through write-ahead log-
ging [1], [2]. Thus, updates are commonly handled at
sequential disk throughput, and queries involve syn-
chronous random I/O. We focus on the storage func-
tionality of individual servers rather than the higher
datastore layers. The storage layer is implemented as a
dynamic collection of immutable, sorted files. We require
each point query to incur at most one disk I/O operation,
and each range query to incur one I/O operation only
increased by the extra sequential transfer time involved.
Fig. 2 illustrates the path of an update or query through
the request router and the storage servers, before return-
ing the respective response back to the datastore client.

With data partitioning, each storage server ends up
locally managing up to a few terabytes. The data is
indexed by a memory-based sparse index, i.e., a sorted
array with pairs of keys and pointers to disk locations
every few tens or hundreds of kilobytes. For instance,
Cassandra indexes 256KB blocks, while Bigtable, HBase
and Hypertable index 64KB blocks [1], [4]. With a 100B
entry for every 256KB, we need 400MB of memory to
sparsely index 1TB. Compressed trees can reduce the
occupied memory space by an order of magnitude at the
cost of extra decompression processing [25]. We provide
additional details about our assumptions in Section 10.

5 DESIGN AND IMPLEMENTATION

In the present section we propose a novel storage layer
to efficiently manage the memory and disks of datastore
servers. Our design sets the following primary goals: (i)
Provide sequential disk scans of sorted data to queries
and updates, (ii) Store the data of each key range at a
single disk location, (iii) Selectively batch updates and
free memory space, (iv) Avoid storage fragmentation
or reorganization and minimize reserved storage space.
Below, we describe the proposed Rangetable structure



5

: Search Diskstore4

1

5 : Scan & merge keys

a - h i - p q - z

1

2

5

Itemtable

Rangeindex

Chunk-

indexes

Rangefiles

Diskstore

Memstore

Memory

Disk

i k m

5

q t wa c e

3

32

: Search Memstore

4

Fig. 3. The organization of the Rangetable structure, and
control flow of a handled range query. For presentation
clarity we use alphabetic characters as item keys.

and the accompanying Rangemerge method. Then we
outline the prototype software that we developed to
fairly compare our approach with representative storage
structures of existing systems.

5.1 The Rangetable Structure
The main insight of Rangetable is to keep the data on
disk in key order, partitioned across large files by key
range. We store the data of a range at a single file to
avoid multiple seeks for a point or range query. The disk
blocks of a file are closely located in typical filesystems,
with allocators based on block groups or extents (e.g.,
ext3/4, Btrfs). If the size of a data request exceeds a
few MBs, the disk geometry naturally limits the head
movement overhead to below 10%. For instance, if the
average rotation and seek take 6.9ms in a 10KRPM SAS
drive, the overhead occupies 8.6% of the total time to
access 10MB [37]. We do not need enormous files to
achieve sequential I/O, as long as each file has size in
the tens of megabytes. We avoid frequent I/O by gath-
ering incoming updates in memory, and inexpensively
preserve range contiguity on disk by only flushing those
ranges that ensure I/O efficiency.

New updates at a server are durably logged, but
also temporarily accumulated in memory for subsequent
batched flushing to their rangefile on disk (Fig. 2). For
fast key lookup and range scan, we keep the data in
memory sorted through a mapping structure, called
itemtable (Fig. 3). We use a concurrent balanced tree (e.g.,
red-black tree) for this purpose, although a multicore-
optimized structure is preferable if the stored data fully
resides in memory [10]. For effective I/O management,
we partition the data of every server into key-sorted
ranges using a memory-based table, called rangeindex.
Each slot of the rangeindex points to the respective items
stored on disk.

We avoid external fragmentation and periodic reorga-
nization on disk by managing the space in files, called
rangefiles, of maximum size F (e.g., 256MB). Each range-
file is organized as a contiguous sequence of chunks
with fixed size C (e.g., 64KB). In order to easily lo-
cate the rangefile chunks, we maintain a memory-based

Algorithm 1 The RANGEMERGE method
Input: Rangetable with memory size >=M
Output: Rangetable with memory size < M

1: {Victimize a range}
2: R := range whose items occupy max total memory
3: {Flush memory items of R to its rangefile fR}
4: Load empty buffer bR with contents of rangefile fR
5: Merge bR with itemtable data of R into empty buffer b′R
6: v := dsizeof(b′R)/F e
7: Allocate v new rangefiles f

(1)
R , . . . , f

(v)
R on disk

8: Split b′R into v subranges R(1), . . . , R(v) of equal size
9: Transfer subranges to respective f

(1)
R , . . . , f

(v)
R

10: Build chunkindexes for f
(1)
R , . . . , f

(v)
R

11: Update rangeindex with entries for R(1), . . . , R(v)

12: {Clean up memory and disk}
13: Free buffers bR, b′R, and itemtable entries of R
14: Delete rangefile fR and its chunkindex

sparse index per rangefile, called chunkindex, with entries
the first key of each chunk and the offset within the
rangefile. From the steps shown in Fig. 3, an incoming
range query (1) traverses the itemtable in the memstore.
Concurrently with step (1), the query searches (2) the
rangeindex, (3) the chunkindex and (4) the rangefile of
the diskstore. Finally, (5) the requested items from both
the itemtable and rangefile are sorted into a single range
by the server and returned.

5.2 The Rangemerge Method
In order to serve point and range queries with roughly
one disk I/O, the Rangemerge method merges items
from memory and disk in range granularity. When we
merge items, we target to free as much memory space
as possible at minimal flushing cost. The choice of the
flushed range affects the system efficiency in several
ways: (i) Every time we flush a range, we incur the cost
of one rangefile read and write. The more new items
we flush, the higher I/O efficiency we achieve. (ii) A
flushed range releases memory space that is vital for
accepting new updates. The more space we release, the
longer it will take to repay the merging cost. (iii) If a
range frequently appears in queries or updates, then we
should skip flushing it to avoid repetitive I/O.

Memory flushing and file merging are generally re-
garded as two distinct operations. When memory fills
up with new items, the server has to free memory space
quickly to continue accepting new updates. Existing
systems sequentially transfer to disk the entire memory
occupied by new items. Thus, they defer merging to
avoid blocking incoming updates for extended time pe-
riod. This approach has the negative effect of increasing
the files and incurring additional I/O traffic to merge the
new file with existing ones [9]. To avoid this extra cost,
Rangemerge treats memory flushing and file merging
as a single operation rather than two. It also limits
the duration of update blocking because a range has
configurable maximum size, typically a small fraction of
the occupied memory at the server (Section 14).



6

Diskstore

Memstore
put() get()

Compaction Manager

(Nomerge, SMA, Geometric, Rangemerge, Remerge)

...

Itemtable

File

Chunkindex

File

Chunkindex

File

Chunkindex

Fig. 4. Prototype framework with several compaction
methods as plugins.

We greedily victimize the range with largest amount of
occupied memory space. The intuition is to maximize the
amount of released memory space along with the I/O
efficiency of the memory flush. For simplicity, we take
no account of the current rangefile size, although this
parameter affects the merging cost, and the probability of
having future I/O requests to a particular range. Despite
its simplicity, this victimization rule has proved robust
across our extensive experimentation. In Section 9 we
show that Rangemerge has the asymptotic I/O cost of
Remerge (Table 2), but in Sections 6.3 and 12 we ex-
perimentally demonstrate Rangemerge to approach the
insertion time of Geometric (and even Nomerge) under
various conditions (concurrent gets, sufficient memory,
or skewed distribution).

The pseudocode of Rangemerge appears in Algo-
rithm 1. The server receives items in the key interval
assigned by the datastore index. We insert new items
until the occupied memory space reaches the memory
limit M . At this point, we pick as victim R the range of
maximum memory space (line 2), read rangefile fR from
disk, merge it with the items of R in memory, and move
the merged range back to disk (lines 4-11). The addition
of new items may lead the size of range R to exceed
the rangefile capacity F . In that case, we equally split
R into v subranges (line 6) and move the data to v new
rangefiles on disk (line 9). Finally, we free the itemtable
space occupied by R, and delete the old rangefile from
the disk (lines 13-14). Practically, flushing a single range
is sufficient to reduce the occupied memory below the
memory limit.

5.3 System Prototype
We developed a general storage framework to persis-
tently manage key-value items over local disks. The
interface supports the put(k,v) call to insert the pair
(k,v), the get(k) call to retrieve the value of key k, the
get(k,n) call to retrieve n consecutive records from key
≥k, and the get(k1,k2) call to retrieve the records with
keys in the range [k1, k2]. A get request returns the exact
specified set of entries, rather than an ordered subset
of them that would raise issues of result accuracy. Our
prototype adopts a multithreaded approach to support
the concurrent execution of queries and updates, and it is

designed to easily accept different compaction methods
as pluggable modules. The implementation consists of
three main components, namely the Memstore, the Disk-
store, and the Compaction manager (Fig. 4).

The Memstore uses a thread-safe red-black tree in
memory to maintain incoming items in sorted order, and
the Diskstore accesses each sorted file on disk through
a sparse index maintained in memory. The Compaction
manager implements the file merging sequences of the
following methods: Nomerge, SMA, Geometric, Range-
merge and Remerge. We implemented the methods us-
ing C++ with the standard template library for basic data
structures and 3900 uncommented lines of new code.

6 PERFORMANCE EVALUATION

We claim that Rangemerge achieves minimal query la-
tency of low sensitivity to the I/O traffic from concur-
rent compactions, and approximates or even beats the
insertion time of write-optimized methods under various
conditions. In the present section, we experimentally
evaluate the query latency and insertion time across
several compaction methods. In Sections 11-14 we vali-
date our prototype against Cassandra, and examine the
performance sensitivity to various workload parameters
and storage devices. Although not explicitly shown,
Rangemerge also trivially avoids the 100% overhead in
storage space of other methods [12].

6.1 Experimentation Environment
We did our experiments over servers running Debian
Linux 2.6.35.13. Each machine is equipped with one
quad-core 2.33GHz processor (64-bit x86), one activated
gigabit ethernet port, and two 7200RPM SATA2 disks.
Unless otherwise specified, we configure the server RAM
equal to 3GB. Each disk has 500GB capacity, 16MB buffer
size, 8.5-10ms average seek time, and 72MB/s sustained
transfer rate. Similar hardware configuration has been
used in a recent related study [38]. We store the data on
one disk over the Linux ext3 filesystem. In Rangemerge
we use rangefiles of size F=256MB. We also examine
Remerge, Nomerge, Geometric (r=2, r=3, or p=2) and
SMA (k=2 or k=4, with unlimited `). In all methods we
use chunks of size C=64KB. From Section 3, variations of
these methods are used by Bigtable, HBase (Geometric,
r=3), Anvil and bLSM (Geometric, r=2), GTSSL (SMA,
k=4), and Cassandra (SMA, k=4).

We use YCSB to generate key-value pairs of 100 bytes
key and 1KB value. On one server we insert a dataset
of 9.6M items with total size 10GB. Similar dataset sizes
per server are typical in related research (e.g., 1M [3],
9M [19], 10.5GB [38], 16GB [12], 20GB [5]). The 10GB
dataset size fills up the server buffer several times (e.g.,
20 for 512MB buffer space) and creates interesting com-
paction activity across the examined algorithms. With
larger datasets we experimentally found the server be-
havior to remain qualitatively similar, while enormous
datasets are typically partitioned across multiple servers.



7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120

G
et

 la
te

nc
y 

(m
s)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(a) Get latency in three methods

 0
 10
 20
 30
 40
 50
 60

G
et

 la
te

nc
y 

(m
s)

 0

 5

 10

 15

 20

 0  20  40  60  80  100G
et

 th
ro

ug
hp

ut
 (

re
q/

s)

Time (min)

(b) Compactions in Geom (r=2)

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8  9  10
 0

 10

 20

 30

 40

 50

 60

F
ile

s 
pe

r 
ke

y 
ra

ng
e

G
et

 la
te

nc
y 

(m
s)

Data inserted (GB)

Get latency
Number of disk files

(c) Number of files in Geom (r=2)

Fig. 5. During concurrent inserts and queries, (a) the get latency of Geometric (r=2) and SMA (k=4) has substantially
higher variability and average value than Rangemerge, and (b) the get throughput of Geometric (r=2) drops as low
as 15.5req/s during compactions (grey background). (c) At the insertion of 10GB with M=512MB using Geometric
partitioning (r=2), get latency (at load 10req/s) is closely correlated to the number of files created.

For experimentation flexibility and due to lack of public
traces [39], we use synthetic datasets with keys that
follow the uniform distribution (default), Zipfian dis-
tribution, or are partially sorted [5]. We take average
measurements every 5s, and smooth the output with
window size 12 (1-min sliding window) for readability.
Our default range query reads 10 consecutive items.

The memory limit M refers to the memory space used
to buffer incoming updates. Large system installations
use dynamic assignment to achieve load balancing by
having number of service partitions (micro-partitions)
that is much larger than the number of available ma-
chines [21]. For instance, the Bigtable system stores data
in tablets with each machine managing 20 to 1,000
tablets. Consequently, the default buffer space per tablet
lies in the range 64-256MB [40]. Other related research
configures the memory buffer with size up to several
GB [5], [12]. As a compromise between these choices, we
set the default memory limit equal to M=512MB; thus
we keep realistic (1/20) the ratio of memory over the
10GB dataset size and ensure the occurrence of several
compactions throughout an experiment. In Section 6.3
we examine memory limit and dataset size up to 4GB
and 80GB respectively. We further study the performance
sensitivity to memory limit M in Fig. 13.

6.2 Query Latency and Disk Files
First we measure the query latency of a mixed workload
with concurrent puts and gets. An I/O over our disk
takes on average 13.4ms allowing maximum rate about
74req/s (can be higher for strictly read workloads). We
configure the get load at 20req/s so that part of the
disk bandwidth can be used by concurrent compactions.
We also set the put rate at 2500req/s, which is about
half of the maximum possible with 20get/s (shown in
Fig. 10c). The above combined settings occupy roughly
two thirds of the total disk bandwidth and correspond to
a write-dominated workload (get/put ratio about 1/100
in operations and 1/25 in items) [38]. We examine other
combinations of put and get loads in Section 12.

We assume that when memory fills up, the put thread
is blocked until we free up memory space. Although
write pauses can be controlled through early initiation
of memory flushing [9], their actual effect to insertion
performance additionally depends on the flushing gran-
ularity and duration (explored in Section 14). In order
to determine the concurrency level of query handling
in the server, we varied the number of get threads
between 1 and 20; then we accordingly adjusted the
request rate per thread to generate total get load 20req/s.
The measured get latency increased with the number of
threads, but the relative performance difference between
the methods remained the same. For clarity, we only
illustrate measurements for one put and one get thread.

In Fig. 5a we examine three representative methods:
SMA (k=4), Geometric (r=2), and Rangemerge. The ex-
periment runs separately for each method until loading
10GB. The get latency of Rangemerge (avg: 15.6ms, std:
8.2ms, max: 30.5ms) has lower average value by 51-83%
and standard deviation by 2.5-3 times than Geometric
(avg: 23.5ms, std: 20.5ms, max: 64.5ms) and SMA (avg:
28.6ms, std: 24.3ms, max: 93.3ms). Also Remerge (not
shown) is less responsive and predictable (avg: 21.1ms,
std: 10.6ms, max: 35.4ms) than Rangemerge. However,
SMA reduces the experiment duration to 90min from
119min required by Rangemerge and 112min by Geo-
metric (see also Fig. 13). In Fig. 5b we illustrate the get
performance of Geometric, with concurrent compactions
as vertical grey lanes. Compactions increase latency by
several factors and reduce throughput from 20req/s to
15.5req/s. The throughput of SMA (not shown) also
drops to 10.4req/s, unlike the Rangemerge throughput
that remains above 17.4req/s.

In Fig. 5c we depict the number of files (left y axis)
and the average get latency (right y axis) for Geometric.
After every compaction, we measure the get latency
as average over twenty random requests. From every
file, the get operation reads the items of the requested
key range. Assuming no concurrent compactions, the
measured latency varies between 11.9ms and 49.0ms,



8

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9 10

F
ile

s 
pe

r 
ke

y 
ra

ng
e

Data inserted (GB)

(a) Nomerge

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(b) SMA (k=4)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(c) Geom (r=2)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(d) Geom (p=2)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(e) Rangemerge

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(f) Remerge

Fig. 6. We show the number of files that store the data across different compaction methods with M=512MB for 10GB
dataset size. In the case of Rangemerge, a single file strictly stores the data of a rangefile range.

 0

 5

 10

 15

 0  10  20  30  40  50  60  70  80  90  100
 0

 50

 100

 150

In
se

rt
io

n 
tim

e 
(m

in
)

(D
at

a 
=

 5
G

B
)

In
se

rt
io

n 
tim

e 
(m

in
)

(D
at

a 
=

 4
0G

B
)

Data inserted (%) - Geometric (r=2)

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70  80  90  100
 0

 50

 100

 150

 200

In
se

rt
io

n 
tim

e 
(m

in
)

(D
at

a 
=

 5
G

B
)

In
se

rt
io

n 
tim

e 
(m

in
)

(D
at

a 
=

 4
0G

B
)

Data inserted (%) - Rangemerge

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

(a) Scaling configuration parameters

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

In
se

rt
io

n 
tim

e 
(m

in
)

Data inserted (GB)

Remerge
Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

Rangemerge
SMA (k=4)

Nomerge

(b) Cumulative insertion time (log y axis)

Fig. 7. (a) The insertion progress is similar between the configuration of M=256MB with 5GB dataset (left y-axis)
and M=2GB with 40GB (right y-axis). (b) Cumulative insertion with Remerge takes longer by several factors than
Geometric, while Rangemerge lies between Geometric (r=2) and SMA (k=4) with M=4GB for 80GB dataset size.

as the number of files per key varies between 1 and
4. The evident correlation between get latency and the
number of files in Geometric explains the variation of
get performance between compactions in Fig. 5b.

We further explore this issue in Fig. 6, where we show
the number of maintained files as function of the dataset
size. Nomerge increases the number of sorted files up
to 20 (only limited by the dataset size), and SMA (k=4)
increases the number of created files up to 8. Geometric
with r=2 and p=2 varies the number of files up to 4 and 2,
respectively. Instead, Remerge always maintains a single
file for the entire dataset, while Rangemerge strictly
stores on a single file the items of a rangefile range;
both methods lead to roughly one random I/O per get
operation. Overall Rangemerge leads to more responsive
and predictable get operations with concurrent puts.

6.3 Insertion Time

Next we study the cumulative latency to insert data
items one-by-one into the storage server. Insertion in-
cludes some processing to sort the data in memory,
but mainly involves I/O to flush data and apply com-
pactions over the disk files. In order to ensure the
generality of our results, we measured the total insertion
time at different scales of dataset size and memory limit.
In Fig. 7a the cumulative insertion time of Geometric
(and Rangemerge) forms a similar curve as long as the
ratio of dataset size over memory limit is constant (e.g.,

5GB/256MB=40GB/2GB=20). We confirmed this behav-
ior across several parameter scales that we examined.

In Fig. 7b (with log y axis) we examine the time
required to insert a 80GB dataset with M=4GB over a
server with 6GB RAM. Nomerge takes 1.5hr to create
20 files on disk, and SMA (k=4) spends 2.9hr for 8 files.
Geometric takes 5.8hr with r=2, 7.4hr with r=3, and 7.7hr
with p=2 for up to 2 files. Remerge requires 13.9hr to
maintain 1 file on disk, and Rangemerge takes 6.4hr.
In general the smaller the number of disk files with
overlapping key ranges, the longer it takes to insert the
dataset. One exception is Rangemerge that requires half
the insertion time of Remerge to effectively store the
keys of each rangefile range contiguously at one disk
location. Geometric (r=2) reduces the insertion time of
Rangemerge by 10%, but requires up to 4 random I/Os
for a query (Fig. 6c). We further study memory in Fig. 13.

In Fig. 8a we investigate how insertion time is affected
by the percentage of keys inserted in sorted order.
Rangemerge approaches Nomerge as the percentage of
sorted keys increases from 0% (uniform distribution) to
100% (fully sorted). This behavior is anticipated because
the sorted order transforms merges to sequential writes
with fewer reads. In Fig. 8b we draw the inserted keys
from a Zipfian distribution and study the impact of
parameter α to the insertion time. The higher we set the
parameter α, the more items appear at the head (popular
part) of the distribution. Rangemerge exploits the higher
item popularity to again approximate Nomerge.



9

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70  80  90 100

In
se

rt
io

n 
tim

e 
(m

in
)

Percentage of keys ordered (%)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Ordered keys

 0

 20

 40

 60

 80

 100

 120

 0  0.5  1  1.5  2  2.5  3  3.5  4

In
se

rt
io

n 
tim

e 
(m

in
)

α parameter of Zipf distribution

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(b) Zipfian keys

Fig. 8. Sensitivity of insertion time to key distribution, as
we generate put requests back-to-back with zero get load.

7 RELATED WORK

Next we present previous research related to datastores
(further explored in Section 15).

7.1 Datastores
Bigtable is a structured storage system that partitions
data across multiple storage servers with the incoming
data logged to disk and kept in server memory [1].
HBase is an open-source variation of Bigtable; it sorts
files by age and merges an older file of size within twice
the size of the newer file, or within the aggregate size of
all newer files [5], [6]. Azure partitions data by key range
across different servers [24]. Each partition is stored
over multiple checkpoint files whose number is kept
small through periodic merging. Dynamo stores key-
value pairs over a distributed hash table, and accepts
pluggable persistent components for local storage [2].
Cassandra combines the data model of Bigtable with the
partitioning scheme of Dynamo, and merges into a single
file the sorted files of similar size [4], [20].

With an emphasis on analytics, LazyBase combines
update batching with pipelining and trades read fresh-
ness for performance. Tree-based merging is triggered by
the number of leaves or a time period [14]. RAMcloud
uses a log-structured approach to manage data on both
memory and disk for fast crash recovery [22]. For low
power consumption, the FAWN key-value store uses
a log file on flash storage indexed by an in-memory
hash table [23]. The SILT key-value store introduces
space-efficient indexing and filtering in memory, and it
maintains a log file, multiple hash tables and a sorted
file on flash storage [25]. HyperDex is a distributed
key-value store that supports multidimensional search
through space partitioning into non-overlapping sub-
regions and linear scan over log files [27]. In this study
we comparatively consider a representative set of storage
management techniques from the above systems.

7.2 Storage Structures
For the specialized needs of full-text search, we previ-
ously studied the online maintenance of inverted files

over fixed-sized, disk blocks [41]. A different study in-
troduced the BR-tree, which integrates Bloom filters into
a multidimensional data structure (R-tree). Over mul-
tidimensional data items, the BR-tree has been shown
to efficiently support different types of complex queries,
including point and range queries [42].

For intense update loads and analytics queries, the
partitioned exponential file (PE file) dynamically parti-
tions data into distinct key ranges and manages sepa-
rately each partition similarly to an LSM-tree [43]. Inser-
tion cost varies significantly due to the required storage
reorganization and data merging within each partition.
Search cost varies because it involves all levels of a
partition, uses tree indexing at each level, and interferes
with concurrent insertions.

The bLSM-tree applies application backpressure to
control write pauses in a three-level LSM-tree, but it can-
not gracefully cope with write skew or short scans [9].
Bender et al. introduce the cache-oblivious lookahead
array (g-COLA) as a multi-level structure, where g is
the factor of size growth between consecutive levels [36].
Due to buffering and amortized I/O, g-COLA achieves
faster random inserts than a traditional B-tree, but slower
searches and sorted inserts. In our experiments we in-
cluded Geometric partitioning as a variation of g-COLA
(Section 3).

7.3 Metadata Management

Spyglass uses index partitioning, incremental crawl-
ing, versioning and signature files to support complex
metadata searches over large-scale storage systems [44].
Range and top-k queries over multidimensional meta-
data attributes are efficiently supported by aggregating
correlated files into semantic-aware groups [45]. For the
approximate processing of aggregate and top-k metadata
queries in hierarchical filesystems, the Glance system
combines fast sampling with bounded-variance estima-
tion [46]. The VT-tree extends the write-optimized LSM-
tree to index filesystems at reduced storage fragmenta-
tion and data copying [47]. Unlike the above studies that
focus on exact or approximate search over filesystem
metadata, this work investigates the storage manage-
ment of structured data in scale-out datastores.

8 CONCLUSIONS AND FUTURE WORK

After consideration of existing solutions in storage man-
agement of datastores, we point out several weak-
nesses related to high query latency, interference be-
tween queries and updates, and excessive reservation
of storage space. To address these issues, we propose
and analyze the simple yet efficient Rangemerge method
and Rangetable structure. With a prototype implemen-
tation, we experimentally demonstrate that Rangemerge
minimizes range query time, keeps low its sensitivity to
compaction I/O, removes the need for reserved unuti-
lized storage space, under various moderate conditions



10

exceeds the insertion performance of practical write-
optimized methods, and naturally exploits the key skew-
ness of the inserted dataset. In our future work, we are
primarily interested to incorporate Rangemerge into a
multi-tier datastore and handle multi-versioned data.

REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a
distributed storage system for structured data,” in USENIX OSDI
Symp., Seattle, WA, 2006, pp. 205–220.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” in ACM
SOSP Symp., Stevenson, WA, October 2007, pp. 205–220.

[3] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s hosted data serving platform,” in VLDB Conf.,
Auckland, New Zealand, August 2008, pp. 1277–1288.

[4] E. Hewitt, Cassandra: The Definitive Guide. Sebastopol, CA:
O’Reilly Media, Inc., 2011.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
ACM SOCC Symp., Indianapolis, IN, Jun. 2010, pp. 143–154.

[6] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer, “Apache Hadoop goes realtime at
facebook,” in ACM SIGMOD Conf., Athens, Greece, Jun. 2011, pp.
1071–1080.

[7] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with Project Volde-
mort,” in USENIX FAST, San Jose, CA, Feb. 2012, pp. 223–236.

[8] B. Trushkowsky, P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan,
and D. A. Patterson, “The SCADS director: Scaling a distributed
storage system under stringent performance requirements,” in
USENIX FAST Conf., San Jose, CA, Feb. 2011, pp. 163–176.

[9] R. Sears and R. Ramakrishnan, “bLSM: a general purpose log
structured merge tree,” in ACM SIGMOD Conf., Scottsdale, AZ,
May 2012, pp. 217–228.

[10] Y. Mao, E. Kohler, and R. Morris, “Cache craftiness for fast
multicore key-value storage,” in ACM EuroSys Conf., Apr. 2012,
pp. 183–196.

[11] M. Stonebraker and R. Cattell, “10 rules for scalable performance
in ’simple operation’ datastores,” Commun. ACM, vol. 54, no. 6,
pp. 72–80, Jun. 2011.

[12] R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, and S. Archak,
“An efficient multi-tier tablet server storage architecture,” in ACM
SOCC Symp., Cascais, Portugal, Oct. 2011, pp. 1–14.

[13] P. Pirzadeh, J. Tatemura, O. Po, and H. Hacigümüs, “Performance
evaluation of range queries in key value stores,” J. Grid Computing,
vol. 10, no. 1, pp. 109–132, 2012.

[14] J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III, C. A. N. Soules,
and A. Veitch, “Lazybase: Trading freshness for performance in
a scalable database,” in ACM EuroSys Conf., Bern, Switzherland,
Apr. 2012, pp. 169–182.

[15] http://hypertable.org.
[16] M. Mammarella, S. Hovsepian, and E. Kohler, “Modular data

storage with Anvil,” in ACM SOSP Symp., Big Sky, MO, 2009,
pp. 147–160.

[17] R. Low, “Cassandra under heavy write load,” http://www.acunu.
com/blogs/richard-low/, Acunu, Ltd., London, UK, Mar. 2011.

[18] “Leveldb: A fast and lightweight key/value database library by
google,” http://code.google.com/p/leveldb/, May 2011.

[19] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López,
G. Gibson, A. Fuchs, and B. Rinaldi, “YCSB++: benchmarking
and performance debugging advanced features in scalable table
stores,” in ACM SOCC Symp., Cascais, Portugal, 2011, pp. 1–14.

[20] J. Ellis, “Leveled compaction in Apache Cassandra,” http://www.
datastax.com/dev/blog/, DataStax, San Mateo, CA, Jun. 2011.

[21] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, Feb. 2013.

[22] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in RAMCloud,” in ACM
SOSP Symp., Cascais, Portugal, Oct. 2011, pp. 29–41.

[23] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “FAWN: A fast array of wimpy nodes,” in
ACM SOSP Symp., Big Sky, MO, Oct. 2009, pp. 1–14.

[24] B. Calder, J. Wang, A. Ogus, N. Nilakantan, and A. Skjolsvold et
al., “Windows Azure Storage: a highly available cloud storage
service with strong consistency,” in ACM SOSP Symp., Cascais,
Portugal, Oct. 2011, pp. 143–157.

[25] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT: A
memory-efficient, high-performance key-value store,” in ACM
SOSP Symp., Cascais, Portugal, Oct. 2011, pp. 1–13.

[26] D. Cutting, “Open source search,” http://www.scribd.com/doc/
18004805/Lucene-Algorithm-Paper, 2005.

[27] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex: A distributed,
searchable key-value store,” in ACM SIGCOMM Conf., Helsinki,
Finland, Aug. 2012, pp. 25–36.

[28] J. S. Vitter, “External memory algorithms and data structures:
dealing with massive data,” ACM Computing Surveys, vol. 33,
no. 2, pp. 209–271, Jun. 2001.

[29] J. L. Bentley and J. B. Saxe, “Decomposable searching problems
i. static-to-dynamic transformation,” Journal of Algorithms, vol. 1,
pp. 301–358, 1980.

[30] K. Yi, “Dynamic indexability and lower bounds for dynamic
one-dimensional range query indexes,” in ACM PODS Symp.,
Providence, RI, Jul. 2009, pp. 187–196.

[31] M. Rosenblum and J. K. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Trans. Computer
Systems (TOCS), vol. 10, no. 1, pp. 26–52, Feb. 1992.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-
structured merge-tree (LSM-tree),” Acta Informatica, vol. 33, pp.
351–385, June 1996.

[33] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and
R. Kanneganti, “Incremental organization for data recording and
warehousing,” in VLDB, Athens, Greece, Aug. 1997, pp. 16–25.

[34] S. Büttcher, C. L. A. Clarke, and B. Lushman, “Hybrid index
maintenance for growing text collections,” in ACM SIGIR Conf.,
Seattle, WA, Aug. 2006, pp. 356–363.

[35] N. Lester, A. Moffat, and J. Zobel, “Efficient online index construc-
tion for text databases,” ACM Trans. Database Systems (TODS),
vol. 33, no. 3, pp. 1–33, Aug. 2008.

[36] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C.
Kuszmaul, and J. Nelson, “Cache-oblivious streaming B-trees,” in
ACM SPAA Symp., San Diego, CA, Jun. 2007, pp. 81–92.

[37] “Savvio 10k.5 data sheet: The optimal balance of capacity, per-
formance and power in a 10k, 2.5 inch enterprise drive,” Seagate
Tech LLC, 2012.

[38] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Goméz-Villamor,
V. Muntés-Mulero, and S. Mankovskii, “Solving big data chal-
lenges for enterprise application performance management,” in
VLDB Conf., Instanbul, Turkey, Aug. 2012, pp. 1724–1735.

[39] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in ACM
SIGMETRICS Conf., London, UK, Jun. 2012, pp. 53–64.

[40] T. Dory, B. Mejias, P. V. Roy, and N.-L. Tran, “Measuring elasticity
for cloud databases,” in IARIA Intl Conf Cloud Computing, GRIDs,
and Virtualization, Rome, Italy, Sep. 2011, pp. 154–160.

[41] G. Margaritis and S. V. Anastasiadis, “Low-cost management of
inverted files for online full-text search,” in ACM CIKM, Hong
Kong, China, Nov. 2009, pp. 455–464.

[42] Y. Hua, B. Xiao, and J. Wang, “BR-Tree: A scalable prototype
for supporting multiple queries of multidimensional data,” IEEE
Trans. Comput., vol. 58, no. 12, pp. 1585–1598, Dec. 2009.

[43] C. Jermaine, E. Omiecinski, and W. G. Yee, “The partitioned
exponential file for database storage management,” The VLDB
Journal, vol. 16, pp. 417–437, October 2007.

[44] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
“Spyglass: Fast, scalable metadata search for large-scale storage
systems,” in USENIX FAST Conf., San Francisco, CA, feb 2009, pp.
153–166.

[45] Y. Hua, H. Jiang, Y. Zhu, , D. Feng, and L. Tian, “Semantic-aware
metadata organization paradigm in next-generation file systems,”
IEEE TPDS, vol. 23, no. 2, pp. 337–344, Feb. 2012.

[46] H. H. Huang, N. Zhang, W. Wang, G. Das, and A. S. Szalay,
“Just-in-time analytics on large file systems,” IEEE Trans. Comput.,
vol. 61, no. 11, pp. 1651–1664, 2012.

[47] P. Shetty, R. Spillane, R. Malpani, B. Andrews, J. Seyster, and
E. Zadok, “Building workload-independent storage with VT-
trees,” in USENIX FAST Conf., San Jose, CA, Feb. 2013, pp. 17–30.



11

Giorgos Margaritis is currently Doctoral Can-
didate in the Department of Computer Sci-
ence and Engineering, University of Ioannina,
Greece. Previously he received BSc (’05) and
MSc (’08) degrees from the Department of Com-
puter Science, University of Ioannina, Greece.
His research interests include search and stor-
age management for text and structured data on
distributed systems.

Stergios V. Anastasiadis is Assistant Professor
in the Department of Computer Science and En-
gineering, University of Ioannina, Greece. Pre-
viously he served as Visiting Professor (2009-
10) at EPFL, Switzerland and Visiting Assistant
Professor (2001-2003) at Duke University, USA.
He received MSc (’96) and PhD (’01) degrees
in Computer Science from the University of
Toronto, Canada. His research interests include
operating systems, distributed systems and per-
formance evaluation.



12

9 THE I/O COMPLEXITY OF RANGEMERGE

We aim to estimate the total amount of bytes transferred
between memory and disk during the insertion of N
items to the Rangetable with Rangemerge. For simplicity
each item is assumed to occupy one byte. Since the
rangefile size is roughly 0.5F after a split and cannot
exceed F by design, on average it is equal to 0.75F .
Accordingly each merge operation transfers on average
a total of cmerge = 1.5F bytes, as it reads a rangefile,
updates it, and writes it back to disk. For the insertion
of N items, the total amount of transferred bytes is equal
to Ctotal = K ·cmerge = K · 3F2 , where K is the number of
merges. In order to estimate an upper bound on Ctotal

we assume an insertion workload that maximizes K.
We call epoch a time period during which no range split

occurs, leaving unmodified the number of ranges (and
rangefiles). Let E be the number of epochs involved in
the insertion of N items, and ki be the number of merges
during epoch ei, i = 1, ..., E. Then the total number of
merges becomes equal to K =

∑E
i=1 ki.

When memory fills up for first time, there is a single
range in memory and no rangefile on disk. The first
merge operation transfers all memory items to r1 =
M/0.5F half-filled rangefiles, where ri is the number of
rangefiles (or ranges) during the ith epoch.

The next time memory fills up, we pick to merge
the largest range in memory. In order to maximize the
number of merges, we minimize the number of items in
the largest range through the assumption of uniformly
distributed incoming data. Then the largest range has
size m1 = M/r1 items. During the ith epoch, it fol-
lows that each merge transfers to disk a range of size
mi =M/ri items.

A split initiates a new epoch, therefore a new epoch
increments the number of rangefiles by one: ri = ri−1 +
1 = r1 + i − 1. Due to the uniform item distribution, a
larger number of ranges reduces the amount mi of items
transferred to disk per merge and increases the number
ki of merges for N inserted items. If we shorten the
duration of the epochs, then the number of merges will
increase as a result of the higher number of rangefiles.

At a minimum, a half-filled rangefile needs to receive
0.5F new items before it splits. Therefore the minimum
number of merges during the epoch ei is ki = 0.5F/mi.
Since an epoch flushes 0.5F items to disk before a split
occurs, it takes E = N/0.5F epochs to insert N items.
From Ctotal, K, E, mi, ri and r1 we find:

Ctotal =
3F

2
·K =

3F

2
·

E∑
i=1

ki =
3F 2

4
·

E∑
i=1

1

mi

=
3F 2

4M
·

E∑
i=1

ri =
3F 2

4M

E∑
i=1

(r1 + i− 1)

=
3F 2

4M

(
E · r1 +

1

2
E(E + 1)− E

)
= N2 6

4M
+N

(
3− 3F

4M

)
∈ O(

N2

M
)

If we divide O(N
2

M ) by the amount of inserted items
N and the block size B, the above result becomes
the O( N

MB ) per-item insertion I/O complexity of the
Remerge method (Table 2).

The above analysis of Rangemerge estimates the num-
ber of I/O operations involved in the worst case during
index building. However it does not account for the
cost of an individual I/O operation or the interaction
of insertion I/O operations with concurrent queries.
Through extensive experimentation in Sections 6 and
12-14 we show that Rangemerge combines high perfor-
mance in both queries and insertions because it achieves
search latency comparable to or below that of the read-
optimized Remerge and insertion performance compa-
rable to that of the write-optimized methods (e.g., Geo-
metric, Nomerge) under various conditions.

10 PRACTICALITIES AND LIMITATIONS

In this section we describe important practical issues that
we considered in our design and potential limitations
resulting from our assumptions.

10.1 Queries

Range queries are often used by data serving and ana-
lytics applications [3], [5], [6], [10], [14], [15], [24], while
time-range queries are applied on versioned data for
transactional updates [48]. Accordingly, typical bench-
marks support range queries in addition to updates and
point queries as workload option [5], [19]. We do not
consider Bloom filters because they are not applicable to
range queries, and their effectiveness in point queries has
been extensively explored previously; in fact, support
for range queries can orthogonally coexist with Bloom
filters [1].

We recognize that query performance is hard to op-
timize for the following reasons: (i) Service-level objec-
tives are usually specified in terms of upper-percentile
latency [2], [8]. (ii) Query performance is correlated with
the number of files at each server [6], [12], [19]. (iii) The
amortization of disk writes may lead to intense device
usage that causes intermittent delay (or disruption) of
normal operation [7], [16], [17], [18]. (iv) The diversity
of supported applications requires acceptable operation
across different distributions of the input data keys [5].

10.2 Updates

Incoming updates are inserted to the itemtable, and
queries are directed to both the itemtable and the
rangefiles. Although the itemtable supports concurrent
updates at high rate, the rangeindex along with the
rangefiles and their chunkindexes remain immutable
between range merges. Every few seconds that Range-
merge splits a range and resizes the rangeindex, we
protect the rangeindex with a coarse-grain lock. We find
this approach acceptable because the rangeindex has



13

relatively small size (in the order of thousands entries)
and only takes limited time to insert a new range.

The enormous amount of I/O in write-intensive work-
loads has led to data structures that involve infrequent
but demanding sequential transfers [32], [35]. Excessive
consumption of disk bandwidth in maintenance tasks
can limit interactive performance. Deamortization is a
known way to enforce an upper bound to the amount of
consecutive I/O operations at the cost of extra complex-
ity to handle interrupted reorganizations [36]. Instead,
Rangemerge naturally avoids to monopolize disk I/O by
applying flush operations at granularity of a single range
rather than the entire memory buffer and configuring the
range size through the rangefile parameter F .

10.3 Availability and Recovery
Availability over multiple machines is generally
achieved through data replication by the datastore itself
or an underlying distributed filesystem [1], [2], [3].
Durability requirements depend on the semantics and
performance characteristics of applications, while data
consistency can be enforced with a quorum algorithm
across the available servers [2]. We consider important
the freshness of accessed data due to the typical
semantics of online data serving [14]. For instance, a
shopping cart should be almost instantly updated in
electronic commerce, and a message should be made
accessible almost immediately after it arrives in a
mailbox.

At permanent server failure, a datastore recovers the
lost state from redundant replicas at other servers. After
transient failures, the server rebuilds index structures in
volatile memory from the rangefiles and the write-ahead
log. We normally log records about incoming updates
and ranges that we flush to disk. Thus we recover the
itemtable by replaying the log records and omitting
items already flushed to rangefiles. Holding a copy of
the chunkindex in the respective rangefile makes it easy
to recover chunkindexes from disk. We also rebuild the
rangeindex from the contents of the itemtable and the
rangefiles. The log size should be limited to keep short
the recovery time and control the occupied storage space.
For that purpose, a background process periodically
cleans the log from items which have been flushed to
disk or permanently deleted [31].

10.4 Caching
It is possible to improve the query performance with
data caching applied at the level of blocks read from
disk or data items requested by users [1], [21]. We
currently rely on the default page caching of the system
without any sophistication related to file mapping or
item caching. Prior research suggested the significance
of data compaction regardless of caching [12]. We leave
for future work the study of multi-level caching and
dynamic memory allocation for the competing tasks of
update batching and query data reuse.

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10

D
at

a 
tr

an
sf

er
re

d 
pe

r 
co

m
pa

ct
io

n 
(G

B
)

Data inserted (GB)

SMA (k=4)
Cassandra

 0.01

 0.1

 1

Fig. 9. We observe similar compaction activity between
Cassandra and our prototype implementation of SMA
(k=4). The height (y-axis value) of each mark denotes the
transfer size of the respective compaction.

11 PROTOTYPE VALIDATION

We validate the accuracy of our experimentation by com-
paring the compaction activity of our storage framework
with that of Cassandra. From review of the published
literature and the source code, we found that Cassandra
implements a variation of the SMA (k=4) algorithm [4].
Accordingly, the stored data is organized into levels
of up to k=4 files; every time the threshold of k=4
files is reached at one level, the files of this level are
merged into a single file of the next level (Section 3).
In our framework we set M=25MB because we found
that Cassandra by default flushes to disk 25MB of data
every time memory gets full. For comparison fairness
we disable data compression and insertion throttling
in Cassandra. We create the Cassandra workload using
YCSB with 2 clients, which respectively generate puts
at 500req/s and gets at 20req/s. The stored items are
key-value pairs with 100B key and 1KB value, while
the size of the get range is drawn uniformly from the
interval [1,20]. The experiment terminates when 10GB
of data is inserted. We generate a similar workload in
our framework with two threads.

In Fig. 9 we show the amount of transferred data as we
insert new items into the Cassandra and our prototype
system respectively. The height of each mark refers to the
total amount of transferred data during a compaction.
Across the two systems we notice quasi-periodic data
transfers of exactly the same size. In the case that a merge
at one level cascades into further merges at the higher
levels, in our prototype we complete all the required data
transfers before we accept additional puts. Consequently
it is possible to have multiple marks at the same x
position. Instead Cassandra allows a limited number of
puts to be completed between the cascading merges,
which often introduces a lag between the corresponding
marks. Overall the two systems transfer equal amount



14

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5000  10000  15000  20000

G
et

 la
te

nc
y 

(m
s)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5000  10000  15000  20000

G
et

 la
te

nc
y 

(m
s)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th percentile of get latency

 0

 50

 100

 150

 200

 250

 0  5000  10000  15000  20000

In
se

rt
io

n 
tim

e 
(m

in
)

Put load (req/s)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

(c) Cumulative insertion time

Fig. 10. Performance sensitivity to put load assuming concurrent get requests at rate 20req/s and scan size 10.

 1

 10

 100

 1000

 1  10  100  1000  10000  100000

G
et

 la
te

nc
y 

(m
s)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get latency

 1

 10

 100

 1000

 1  10  100  1000  10000  100000

G
et

 la
te

nc
y 

(m
s)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th percentile of get latency

 50

 100

 150

 200

 250

 1  10  100  1000  10000  100000

In
se

rt
io

n 
tim

e 
(m

in
)

Range get size (keys retrieved)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

(c) Cumulative insertion time

Fig. 11. Sensitivity to range get size assuming concurrent load of 2500req/s put rate and 20req/s get rate.

of data using the same compaction pattern during the
dataset insertion.

12 SENSITIVITY STUDY

We did an extensive sensitivity study with respect to
the concurrent load and available memory. First we
evaluate the impact of the put load to the query and
insertion time. As we vary the put load between 1000-
20000req/s, the average latency of concurrent gets is
lowest under Rangemerge (Fig. 10a). According to the
needs of Service Level Agreements [2], [7], [8], we also
consider the 99th percentile of get latency in Fig. 10b.
Rangemerge and Remerge are the fastest two methods.
Moreover, under concurrent puts and gets, the insertion
time of Rangemerge closely tracks that of Geometric
(r=3) and lies below that of Remerge and Geometric
(p=2) (Fig. 10c). We omit Nomerge because it leads to
excessively long get latency.

We also examine the sensitivity to the get size as-
suming gets of rate 20req/s concurrently served with
puts of rate 2500req/s. In Figures 11a and 11b we use
logarithmic y axis to depict the latency of get requests.
Across different get sizes and especially at the larger
ones (e.g., 10MB or 100MB), Rangemerge is distinctly
faster (up to twice or more) than the other methods
both in terms of average get latency and the respective
99th percentile. From Fig. 11c it also follows that the
concurrent get load has an impact to the insertion time.
Remerge takes as high as 285min with larger get sizes,
unlike Rangemerge that remains between two instances

of the Geometric method (r=2 and p=2). In Fig. 12, as the
load of concurrent gets varies up to 40req/s, the insertion
time of Rangemerge lies at the same level as Geometric
and well below Remerge. Under mixed workloads with
both puts and gets, from Figures 10, 11 and 12 we
conclude that Rangemerge achieves the get latency of
Remerge and the insertion time of Geometric.

Also we evaluate how insertion time depends on the
memory limit M (Fig. 13). As we increase M from our
default value 512MB to 2GB, both Remerge and Range-
merge proportionally reduce the disk I/O time. This
behavior is consistent with the respective I/O complex-
ities in Table 2 and Section 9. At M=2GB, Rangemerge
lowers insertion time to 15.2min, which approximates
the 10.2min required by Nomerge. The remaining meth-
ods require more time, e.g., 19.3min for Geometric (r=2),
19.8min for SMA (k=4) and 30.9min for Remerge. From
additional experiments (not shown) we found that a
higher M does not substantially reduce the get latency
of the remaining methods except for the trivial case
that the entire dataset fits in memory. We conclude that
the insertion time of Rangemerge approximates that of
Nomerge at higher ratio of memory over dataset size.

Finally we examine the generated I/O activity of com-
pactions. In Fig. 14 we illustrate the data amount written
to and read from disk for 10GB dataset and M=512MB.
The plots of the figure are ordered according to the
decreasing size of the maximum transferred amount.
Remerge (a) merges data from memory to an unbounded
disk file with 10GB final size. At the last compaction, the



15

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35  40

In
se

rt
io

n 
tim

e 
(m

in
)

Get load (req/s)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)

Fig. 12. Sensitivity of insertion time to get rate of scan
size 10 with concurrent put rate set at 2500req/s.

 1

 10

 100

 1000

128 256 512 1024 2048

In
se

rt
io

n 
tim

e 
(m

in
)

Memory limit (MB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

Fig. 13. Sensitivity of insertion time to M . With
M=2GB, Rangemerge approaches Nomerge and stays
by at least 21% below the other methods.

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9 10

D
at

a 
tr

an
sf

er
re

d 
(G

B
)

Data inserted (GB)

(a) Remerge

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(b) Geom (p=2)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  1  2  3  4  5  6  7  8  9  10

Data inserted (GB)

(c) Geom (r=2)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

(d) SMA (k=4)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

(e) Rangemerge

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

(f) Nomerge

Fig. 14. The total disk traffic of compactions in Rangemerge is comparable to that of Nomerge with M=512MB.

amount of transferred data becomes 20.5GB. Geometric
(b-c) reduces the transferred amount down to 16.5GB
for r=2. In SMA (d), k=4 limits the transferred amount
to 4.5GB; k=2 (not shown) leads to 14.5GB maximum
compaction transfer with 6 files. It is interesting that
Rangemerge (e) reduces to 594MB the maximum trans-
ferred amount per compaction bringing it very close to
512MB periodically transferred by Nomerge (f). Thus
Rangemerge makes compactions less I/O aggressive
with respect to concurrent gets (Section 6.2).

13 SOLID-STATE DRIVES

Given the enormous technological improvement of solid-
state drives (SSD) over the last decade, it is reasonable to
consider their behavior as part of the storage hierarchy
in a datastore server. Flash SSDs reduce I/O latency at
the cost of hardware equipment and system complexity;
the limited lifespan and the relatively poor random-
write performance have been recognized as problem for
the wider deployment of SSDs [49]. In our following
experiments we assume that an SSD fully replaces the
hard disk drive (HDD) as medium of persistent storage
for the written key-value pairs. Our SSD is a SATA2
60GB solid-state drive of max read throughput 285MB/s
and max write throughput 275MB/s. In Fig. 15a we
show the cumulative insertion time over an SSD for a
10GB dataset and memory limit 512MB. The compaction
methods applied over the SSD reduce by 28%-60% the in-
sertion time measured over the HDD (Fig. 13). However,
the relative performance between the methods remains

similar across the two devices. In particular, Rangemerge
reduces the insertion time of Remerge by 49% with SSD,
and by 53% with HDD.

Next we examine the query latency over the SSD
device. From the previous paragraph, the write data
throughput of our SSD device is about twice as high
as that of the HDD. Therefore we increase the put rate
of the background traffic to 5000req/s for the SSD from
2500req/s previously used for the HDD (Section 6.2). In
order to estimate the query transaction capacity of the
two devices, we use a synthetic benchmark with each
request involving a random seek followed by a read
of 512B block. Thus we found the read performance
of the HDD equal to 76req/s, and that of the SSD
4323req/s. First we tried get load of the SSD at rate
1000req/s in analogy to 20req/s that we used for the
HDD (26% of 76req/s). However the SSD device is
saturated (dramatic drop of throughput) with concurrent
workload of 5000req/s puts and 1000req/s gets. Thus we
reduced the get load to 100req/s, so that we stay below
the performance capacity of the SSD (and keep close to
1/100 the operation get/put ratio as with the HDD).

In Fig. 15b we compare the get latencies of SMA
(k=4), Geometric (r=2) and Rangemerge. We terminate
the experiment after we insert 10GB into the system
concurrently with the get load. In comparison to the get
latency over the HDD (Fig. 5a), the measured latencies
of the SSD are about an order of magnitude lower.
However the curves of the three methods look similar
across the two devices. In fact the maximum get latency



16

 1

 10

 0  1  2  3  4  5  6  7  8  9  10

In
se

rt
io

n 
tim

e 
(m

in
)

Data inserted (GB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Cumulative insertion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50

G
et

 la
te

nc
y 

(m
s)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(b) Get latency

Fig. 15. (a) Over an SSD, the insertion time of Rangemerge lies halfway between that of Nomerge and Remerge. (b)
Rangemerge reduces the variability of get latency in comparison to SMA (k=4) and Geometric (r=2).

of Rangemerge reaches 4.5ms, while that of Geometric
(r=2) gets as high as 7.1ms and that of SMA (k=4)
8.6ms. We conclude that the relative insertion and query
performance of the compaction methods remains similar
across the two different types of storage devices that we
experimented with.

14 DISCUSSION

Motivated from the highly variable query latency in
several existing datastores, we propose the Rangemerge
method to reduce the I/O intensity of file merging in
several ways: (i) We only flush a single range from mem-
ory rather the entire buffer space, and keep the amount
of I/O during a flush independent of the memory limit.
(ii) We combine flushing and compaction into a single
operation to avoid extra disk reads during merging. (iii)
We keep the size of disk files bounded in order to avoid
I/O spikes during file creation. The configurable size of
the rangefile provides direct control of the I/O involved
in a range flush.

In Table 3 we consider loading 10GB to a datastore
at unthrottled insertion rate. From the transferred data
and the compaction time we estimate every compaction
to require 32.7-36.2MB/s, which is about half of the
sequential disk bandwidth. If we reduce the rangefile
size from F=256MB to F=32MB, the average duration
of a compaction drops from 11.0s to 1.5s, but the re-
spective total insertion time varies in the range 51.6min
to 54.2min. It is not surprising that M=32MB raises
insertion time to 54.2min, because a smaller rangefile
causes more frequent and less efficient data flushes. In
practice we can configure the rangefile size according to
the insertion and query requirements of the application.

Previous research has already explored ways to con-
tinue accepting insertions during memory flushing.
When the memory limit M is reached, it is possible to
allocate additional memory space of size M to store new
inserts, and let previously buffered data be flushed to
disk in the background [1]. Alternatively, a low and high
watermark can be set for the used fraction of memory

Delays and Transferred Data over a Hard Disk
Rangefile Flushed Transferred Compaction Insertion

(MB) (MB) (MB) Time (s) Total (min)
32 4.9 49.1 1.5 54.2
64 9.6 97.8 2.7 51.6
128 19.1 196.0 5.5 51.6
256 37.1 386.8 11.0 53.8

TABLE 3
Amount of flushed and totally transferred data per

compaction, delay per compaction, and total insertion
time for different rangefile sizes of Rangemerge.

space. The system slows down application inserts when
the high watermark is exceeded, and it stops merges
when the occupied memory drops below the low wa-
termark [9]. Depending on the rate of incoming inserts,
such approaches can defer the pause of inserts. However
they do not eliminate the interference of compaction I/O
with query requests that we focus on in our present
study. Essentially the above approaches can be applied
orthogonally to the Rangemerge compaction mechanism
that allows queries to gracefully coexist with inserts.

15 ADDITIONAL RELATED WORK

Cloud data management is comprehensively surveyed
by Sakr et al. [50] and Cattell [51].

15.1 Transactions
The General Tablet Server Storage Layer (GTSSL) fo-
cuses on the transactional storage efficiency of a single
server [12]. The Multi-Tier Sorted Array Merge Tree is a
multi-level structure that improves lookup performance
with caching, Bloom filters and flash-based storage. Yet
the GTSSL designers regard the compaction inefficiency
of existing systems as throughput constraint and subject
of future work (Section 5.5 [12]). Megastore organizes
structured data over a wide-area network as a collection
of small databases with strong consistency guarantees
and high availability [52]. Percolator extends Bigtable



17

to support cross-row, cross-table transactions through
versioning [48]. Spanner manages clock uncertainty to
support general transactions over a scalable, globally-
distributed, synchronously-replicated database [53]. The
PNUTS system supports both point and range queries
over a geographically-distributed database that has disk
seek capacity as the primary bottleneck [3].

Anvil is a modular toolkit for building storage back-
ends with transactional semantics; the system merges
multiple files to ensure logarithmic increase of their
number over time, and it runs merges in the background
for reduced impact to online requests [16]. Masstree is
a shared-memory, concurrent-access structure for data
that fully fits in memory [10]. The ecStore builds trans-
actions over a scalable range-partitioned storage system
with versioning and optimistic concurrency control [54].
The ES2 system supports both vertical and horizontal
partitioning of relational data [55]. G-Store allows the
dynamic creation of key groups for the support of multi-
key transactional access [56]. Transactional support is
complementary to storage management (e.g. through
versioning) and outside the scope of the present work.

15.2 Benchmarking
The performance and scalability of several data serving
systems has been studied under the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [5]. Cassandra achieves higher
performance at write-heavy workloads, PNUTS at read-
heavy workloads, and HBase at range queries. The
YCSB++ adds extensions to YCSB for advanced features
that include bulk data loading, server-side filtering and
fine-granularity access control [19]. In a mixed workload
over the Accumulo system, read latency varies dramat-
ically in close correlation with concurrent compactions.
As a result the compaction policies and mechanisms are
emphasized as subject of important future work (Section
3.3 [19]). A synthetic benchmark for graph databases
adopts several trace characteristics from a Facebook
social graph including the support of range scans [57].
A datastore workload analysis focuses on memory-based
caches rather than the backend persistent storage that we
examine [39].

15.3 Storage Management
Existing systems alternatively organize data in (i) arrival
order, for write-intensive workloads [22], [23], (ii) hash
order, for memory efficiency [25], or (iii) key order, for
fast handling of range (and point) queries [1]. Possible
storage designs include relational engines, dynamic file
collections, and file-based hash tables [1], [2], [3].

An index partitions data through either interval map-
ping to efficiently handle range queries and isolate per-
formance hotspots [1], [3], [6], [14], [15], [24], or key
hashing to facilitate load balancing at lower performance
of range queries [13], [14]. The indexed sequential access
method (ISAM) refers to a disk-based tree used by
database systems [58]. ISAM is static after it is created,

because inserts and deletes only affect the leaf pages.
Overflow inserts are stored at arrival order in chained
blocks.

Despite the caching effectiveness of the content-
distribution networks used by Facebook, an underlying
storage system with high throughput and low latency
is required to process the long tail of less popular
photos [59]. The online defragmentation supported in
a recent filesystem allocates storage space using as few
extents as possible, where extent is a contiguous area on
disk [60]; such filesystem functionality is complementary
to the contiguous placement of a key range at a single
file by Rangemerge in the Rangetable structure.

ACKNOWLEDGMENTS

This research has been co-financed by the European
Union (European Social Fund - ESF) and Greek national
funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales.
Investing in knowledge society through the European
Social Fund.

REFERENCES
[48] D. Peng and F. Dabek, “Large-scale incremental processing us-

ing distributed transactions and notifications,” in USENIX OSDI
Symp., Vancouver, Canada, Oct. 2010, pp. 1–15.

[49] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: random
write considered harmful in solid state drives,” in USENIX FAST
Conf., San Jose, CA, Feb. 2012, pp. 139–154.

[50] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large
scale data management approaches in cloud environments,” IEEE
Communications Surveys & Tutorials, 2011.

[51] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD
Record, vol. 39, no. 4, pp. 12–27, Dec. 2010.

[52] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore : Pro-
viding scalable, highly available storage for interactive services,”
in CIDR Conf., Asilomar, CA, Jan. 2011, pp. 223–234.

[53] J. C. Corbett et al., “Spanner: Google’s globally-distributed
database,” in USENIX OSDI Symp., Oct. 2012, pp. 251–264.

[54] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional
cloud storage with range query support,” in VLDB Conf, Singa-
pore, Sep. 2010, pp. 506–514.

[55] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu,
and Q. Xu, “ES2: A cloud data storage system for supporting both
OLTP and OLAP,” in IEEE ICDE, Hannover, Germany, Apr. 2011,
pp. 291–302.

[56] S. Das, D. Agrawal, and A. El Abbadi, “G-store: a scalable data
store for transactional multi key access in the cloud,” in ACM
SOCC Symp., Indianapolis, Indiana, USA, Jun. 2010, pp. 163–174.

[57] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,
“LinkBench: a database benchmark based on the Facebook social
graph,” in ACM SIGMOD Conf., New York, NY, Jun. 2013.

[58] R. Ramakrishnan and J. Gehrke, Database Management Systems,
3rd ed. New York, NY: McGraw-Hill, 2003.

[59] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in Haystack: Facebook’s photo storage,” in USENIX OSDI
Symp., Vancouver, Canada, Oct. 2010, pp. 47–60.

[60] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree
Filesystem,” ACM Trans. Storage, vol. 9, no. 3, Aug. 2013.


