
Low-cost Management of Inverted Files
for Online Full-Text Search

Giorgos Margaritis Stergios V. Anastasiadis

Department of Computer Science
University of Ioannina

Ioannina 45110, GREECE
{gmargari,stergios}@cs.uoi.gr

ABSTRACT
In dynamic environments with frequent content updates, we re-
quire online full-text search that scales to large data collections and
achieves low search latency. Several recent methods that support
fast incremental indexing of documents typically keep on disk mul-
tiple partial index structures that they continuously update as new
documents are added. However, spreading indexing information
across multiple locations on disk tends to considerably decrease the
search responsiveness of the system. In the present paper, we take
a fresh look at the problem of online full-text search with consid-
eration of the architectural features of modern systems. Selective
Range Flush is a greedy method that we introduce to manage the
index in the system by using fixed-size blocks to organize the data
on disk and dynamically keep low the cost of data transfer between
memory and disk. As we experimentally demonstrate with the Pro-
teus prototype implementation that we developed, we retrieve in-
dexing information at latency that matches the lowest achieved by
existing methods. Additionally, we reduce the total building cost
by 30% in comparison to methods with similar retrieval time.

Categories and Subject Descriptors
E.5 [Files]: Organization/Structure; H.3.2 [Information Storage]:
File Organization; H.3.3 [Information Search and Retrieval]: Search
Process; H.3.4 [Systems and Software]: Performance evaluation

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Online index maintenance, search engines, software design, proto-
type implementation.

1. INTRODUCTION
As the cost of storage space drops and the amount of accumu-

lated digital content grows, automated full-text search for file sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

tems, mail services and electronic commerce environments becomes
equally important to the search support in digital libraries and the
web [14,24]. Modern commercial search engines rebuild the entire
index periodically by processing tens of petabytes of data every
day with the assistance of customized systems infrastructure and
data processing tools [8]. They operate sufficiently well for the
web because they track changes that occur relatively infrequently
and would be almost infeasible to follow continuously due to their
enormous volume. On the other hand, search environments that re-
quire immediate visibility of newly added documents are currently
actively investigated with respect to their index organization and
their update algorithms [4, 6, 11, 14, 24]. The main challenge is to
achieve fast update and search operation at low cost.

Inverted file is an index that for each term stores a list of point-
ers to all the documents that contain the term. Each pointer to a
document is usually called posting and each list of postings for a
particular term is called posting list. The lexicon of the inverted file
associates every term that appeared in the dataset to its posting list.
We assume that a posting specifies the exact position of the docu-
ment where the term occurs and consider posting lists of document
identifiers sorted in increasing order. We focus on datasets that al-
low insertions of new documents over time and examine methods
to maintain inverted files efficiently on secondary storage. Index
maintenance for the more general case of document updates and
deletions is an interesting problem on its own that we won’t con-
sider further here [11].

In order to index static datasets, one needs to parse documents
offline into partial indexes and periodically flush the accumulated
postings from memory to disk. Eventually, external sorting can be
used to merge the multiple index files into a single file that handles
queries for the entire dataset [26]. Online approaches periodically
merge the partial indexes on disk to support search operations con-
currently with index updates. There is a typical trade-off between
index building time and search time. Ideally, each term search
should involve a number of steps that only depends on the num-
ber of postings rather than the total index size. However, existing
methods either take polynomial time to build an index of constant
search time or require logarithmic search time for linear building
time.

Unlike the latest methods that keep the merging cost low through
balanced-tree schemes [6, 11, 15], in the present paper we follow
the more straightforward approach of maintaining the postings on
disk in fixed-size blocks. Each fixed-size block may contain the
postings of a single frequent term or the posting lists of a lexico-
graphically ordered subset of several infrequent terms. During the
index construction, we dynamically determine the subset of terms
whose postings gathered in main memory can be more efficiently

0 20 40 60 80

Memory Flush

0

2

4

6

N
um

be
r

of
 R

un
s o

n
D

is
k

Contiguity of Inverted File

Figure 1: Several recent systems maintain the inverted file on
disk across multiple partial indexes (runs) [6, 16]. When they
retrieve the postings of a term, they need to access multiple runs
of the inverted file. The x axis refers to the time instances at
which memory contents are flushed to disk (Based on Wumpus
with Hybrid Logarithmic Merge over the 426GB GOV2 [6].)

flushed to disk. Thus, at each flush we only update a small number
of terms on disk at cost that remains relatively constant during the
index building. Depending on the frequency of a searched term,
its postings on disk either (i) are stored contiguously as part of a
single block, or (ii) are exclusively occupying a collection of mul-
tiple blocks. As we show experimentally, we achieve search cost
that only depends on the number of retrieved postings, and index
building time that is substantially lower than that of methods with
similar retrieval time.

In Figure 1, we depict the number of partial indexes maintained
by a linear building approach during the processing of a standard
text collection. We notice that there are phases during the building
process where we may need as many as 7 disk accesses to retrieve
the posting list of a term regardless of the storage space it occupies.
A typical SATA disk has seek time 8ms, average rotation latency
4ms and nominal transfer time 70 MB/s [23]. Then, in a 12ms time
period of the head positioning overhead, the disk can read sequen-
tially about 800 KB. Since the posting list for the majority of the
terms occupies up to a few megabytes, the access overhead required
to read multiple runs may exceed the corresponding useful transfer
time. Ideally, we should retrieve each posting list in a single disk
access, without substantial increase of the index building time.

The main contributions of the paper include: (i) grouping of
infrequent terms into lexicographic ranges, (ii) partial flushing of
both frequent and infrequent terms to disk, (iii) dynamic balance
between frequent and infrequent terms flushed to disk, (iv) block-
based storage management of all terms on disk. To the best of
our knowledge this is the first time that a method simultaneously
combines the above features. Previous methods distributed the in-
frequent terms randomly across different blocks [25] unless they
managed them individually [3, 27], only flushed partially the fre-
quent terms from memory to disk [4,5], and obtained limited bene-
fits from block-based storage management because they only con-
sidered small blocks of a few kilobytes [3, 25].

In Section 2 we summarize the previous related work and cat-
egorize existing approaches for managing inverted files online. In
Section 3 we introduce our index maintenance method and describe
the Proteus prototype implementation, while in Section 4 we go
over the experimentation environment that we used. In Section 5
we present the results from experiments with alternative system pa-

rameters and comparisons with other systems and in Section 6 we
outline our conclusions.

2. RELATED WORK
Published literature on text retrieval separates offline index con-

struction from online index maintenance [22, 26]. In comparison
to online maintenance, offline index construction is simpler and
more efficient because it does not handle document queries until its
completion. In particular, web search research mainly focused on
offline index construction, giving also emphasis on the related is-
sues of how to crawl the web to gather documents and exploit web
hyperlinking information for ranking purposes [1, 8].

During index building, a system typically parses new documents
into posting lists of terms that temporarily maintains in main mem-
ory for improved efficiency [7]. When memory gets full, the system
flushes the postings lists to disk. Early work recognizes as main
requirement in the above process the contiguous storage on disk
of the postings belonging to each term [25]. Storage contiguity
may improve access efficiency for both query processing and index
maintenance, but introduces the need for complex dynamic storage
management and frequent or bulky relocations of postings. Alter-
natively, the disk access efficiency may be improved by partition-
ing the terms into lexicographic ranges and keeping the postings
of different terms from the same range in correspondingly different
neighboring blocks on disk [12].

In-place methods build each posting list incrementally as new
documents are processed. The need for contiguity makes it neces-
sary to relocate the lists when they run out of empty space at their
end [17, 18]. One can amortize the cost of relocation by preallo-
cating list space for future appends using various criteria [25]. If
the system keeps the posting lists non-contiguously on disk, then it
avoids relocations but may need multiple seeks during query pro-
cessing to retrieve a posting list. The merge-based methods merge
postings from memory and disk into a single file on disk. The lat-
est related methods amortize the cost by permitting the creation
of multiple inverted files on disk and merging them according to
specific patterns [15, 16]. Even though in-place index maintenance
has linear asymptotic disk cost that is lower than the polynomial
cost of merge-based methods, merge-based methods are experi-
mentally shown to use sequential disk transfers and outperform in-
place methods [17].

The problem of merging postings lists is very similar to external
sorting. We call run a collection of posting lists lexicographically
sorted by term. One way to specify the sequence of merging steps
is to use a tree representation [13]. The leaves of the tree cor-
respond to the initial runs, while their internal nodes refer to the
runs that result from the merging of their descendants. Previous re-
search in database systems has identified the optimization objective
of merging to perform as few merge steps and move as few records
as possible [9]. Known heuristics always merge the smallest exist-
ing runs or mostly use maximal fan-in. One approach previously
mentioned but not verified only merges or concatenates fractions
of runs [10]. In the present paper we introduce the concept of term
range to apply the above idea for first time, and examine its benefit
in the storage management of inverted files.

Hybrid methods separate terms into short and long. One early
approach hashed short terms accumulated in memory into fixed-
size disk regions called buckets. If a bucket filled up, the method
categorized the term with the most postings as long and kept it at a
separate disk region from that point on [25]. In several recent hy-
brid methods, the systems use a merge-based approach for the short
terms and in-place appends for the long ones [6]. They treat each
term as short or long depending on the number of postings that have

Index Maintenance Method Building Cost Search Cost References
No Merge Θ(N) Θ(N/M) [6, 12, 15, 25]
Immediate Merge Θ(N2/M) O(1) [4, 6, 7, 15]
Logarithmic Merge (or Geometric Partitioning) Θ(N log(N/M)) O(log(N/M)) [6, 15]

Geometric Partitioning with ≤ p partitions Θ(N (N/M)1/p) O(1) [15]
Hybrid Immediate Merge Θ(N1.833/M) O(1) [4, 6]
Hybrid Logarithmic Merge Θ(N) O(log(N/M)) [6]

Table 1: The table summarizes the asymptotic cost (in I/O operations) required to build and search inverted files for online full-text
search. The rightmost column contains references to published literature where the corresponding methods appeared. N is the
number of indexed postings and M is the amount of main memory used for postings gathering. Ideally, we would prefer to have a
method that offers constant search time O(1) for linear building cost Θ(N), but none of the above methods achieves that. On the
other hand, experimental research has shown that building time may also depend on storage system parameters not always included
in asymptotic cost estimates [4, 17].

shown up in total until the current moment, or currently participate
in the merging process. The Wumpus prototype implementation
of the above methods weakens the storage contiguity requirement
by keeping the postings of each long term into multiple different
locations of a file that consists of 64KB blocks [4, 6]. We extend
this approach by storing the postings of each long term across large
blocks (with default size 8MB) and also lexicographically group-
ing the short terms into ranges that fit in large blocks. Subsequently,
we merge to disk those ranges with a substantial number of accu-
mulated postings in memory. Thus we reduce the data transfers
between memory and disk to the cases where we estimate them as
efficient.

In Table 1, we summarize the asymptotic cost of known meth-
ods to manage inverted files in secondary storage. The No Merge
method flushes its postings to a new run on disk without any merg-
ing, every time memory gets full. Although impractical to process
queries, No Merge provides a baseline for the minimum possible
building time. The Immediate Merge method repeatedly merges the
postings in memory with the entire inverted file on disk. The Geo-
metric Partitioning or Logarithmic Merge method uses a balanced-
tree pattern to merge the postings of memory and the runs on disk.
The Geometric Partitioning method with ≤ p partitions adjusts
continuously the fanout of the merging tree to keep the number of
runs on disk at most p. In the particular case of p = 2, Geometric
Partitioning with ≤ p is also known in the literature as Square Root
Merge method [6].

In the Hybrid versions of the above, the system partitions the
index into in-place and merge-based parts [6]. During merging, it
moves to the in-place part of the index the postings of terms that
accumulated more than T (typically 106) postings in memory and
the merge-based part of the index. In our experiments, we use the
above variation of hybrid policies as supported in the latest Wum-
pus prototype. It reduces the index building time but may increase
the search time of the long terms due to posting retrievals from both
the in-place and the merge-based part. Another variation of hybrid
methods also exists that categorizes terms into short or long accord-
ing to the total postings accumulated in the system rather than those
only in memory and the merge-based part [4, 5]. This variation in-
creases the building time, but keeps the postings of each term in
only one of the merge-based and in-place parts.

From the asymptotic search cost that is not constant, we realize
that several recent methods tend to relax the requirement for con-
tiguity of the postings lists. For example, several efficient merge-
based methods maintain more than one index files on disk. Sim-
ilarly, an in-place method stores on disk the postings of a term in
multiple groups of a minimum size rather than a single contiguous
collection [6]. A recent hybrid method uses partial flushing to de-
lay merges of short terms by only flushing the long terms with occu-

pied memory that exceeds an automatically adjusted threshold [4].
When transfer efficiency drops, then all long and short postings are
flushed from memory to disk. Instead, we free a minimum amount
of memory space every time memory gets full by selectively flush-
ing short and long terms based on their relative size in memory.

Recent research also considers the problem of indexing in the
context of document deletions from the indexed document set [11].
In the present paper, we radically simplify online index mainte-
nance by keeping the posting lists on fixed-size blocks rather than
contiguous files. Other previous work has examined the storage
of posting lists onto collections of blocks with size up to 64KB
[3,25,27]. Those studies were done with architectural assumptions
of the previous decade and were rather lukewarm about the ben-
efits of block-based storage management due to overheads related
to query processing and unused storage space. In the present pa-
per, we quantitatively explore the relevance of block-based storage
management to the problem under study with a prototype imple-
mentation over modern systems and datasets.

3. THE PROTEUS ARCHITECTURE
Even though the index building process involves the parsing of

documents to extract the postings, in the present paper we focus
our interest on the management of the inverted file. In our de-
sign, we set two objectives: (i) retrieve posting lists at cost that
only depends on their length and not the size of the index, and
(ii) build the inverted file with minimal disk transfer cost under
the above constraint. We consider these objectives consistent with
the requirements of a search engine designed for dynamic environ-
ments, where new documents are added frequently and users expect
to search them shortly after their addition. In order to achieve our
goal, we make the following design decisions: (i) Categorize terms
into short or long based on the total space of their postings. (ii)
Manage short terms in lexicographic ranges and long terms indi-
vidually. (iii) Flush postings lists to disk selectively by amount of
postings in memory. (iv) Allocate disk storage space in fixed-size
blocks.

As we add new documents to a collection, we accumulate term
postings in the available memory space and eventually transfer them
to disk. We use a lexicon to keep track of the individual terms and
associate them with postings lists in memory or on disk. Through
experimentation we verified that in-place management of terms with
few postings bears significant overhead for appending them to disk.
Similarly, merge-based management of terms with lots of postings
incurs significant cost for merging them to disk. Thus, we consider
a term short or long, respectively, depending on whether its current
total posting space is less or exceeds the preconfigured system pa-
rameter term threshold Tt. For the sake of conciseness, we use the

Symbol Name Description Default Value
Bp Posting Block Fixed size of each block storing postings on disk 8MB
Mp Posting Memory Total buffer space for accumulating postings in memory 1GB
Mf Flushed Memory Bytes flushed to disk every time the posting memory gets full 20MB
Fp Preference Factor Factor of flushing preference for long or short terms 3
Tt Term Threshold Posting list size that differentiates short terms from long 1MB

Table 2: Summary of parameters used in the proposed architecture.

name long or short not only for terms but also for their correspond-
ing postings, posting lists or ranges.

Initially all terms are short. When the total size of postings for
a term exceeds the threshold Tt, then we categorize the term as
long. We anticipate that long terms are relatively frequent and will
continue to accumulate postings in memory. When we remove a
long term from memory, we simply append its postings to the ex-
isting list on disk using the in-place approach. Since individual
short terms are infrequent, we group them into lexicographically
ordered ranges. We move their postings to disk by merging them in
memory with older postings on disk.

We store the postings on disk using fixed-size blocks of size Bp,
that we call posting blocks. The postings of a long term exclu-
sively occupy one or multiple blocks that we allocate dynamically
as needed. A range of short terms takes its own block on disk to
store the postings lists lexicographically ordered by term. When the
posting block of a short range gets full, we split the range across
two postings blocks. Similarly, if the posting block of a long term
overflows, we allocate a new posting block and move the overflow
postings there. When a term changes category from short to long,
we remove all its postings from the range and store them into a
new exclusive block. From that point on, we no longer keep any
postings of the long term in the corresponding short range that pre-
viously contained that term.

Finally, we maintain a partial index on top of each long post-
ing list. This allows us to only retrieve the postings for specific
ranges of documents. For example, this is needed in the relatively
common case that we answer conjunction queries and merge the
posting lists of the most frequent terms against those of the most
infrequent. The answer is the intersection of the documents that
contain the terms of the query. According to our design, the post-
ings of a short term are contiguously stored as part of one posting
block on disk. When we retrieve the posting list, we only need a
single disk transfer. Instead, the postings of a long term generally
occupy multiple posting blocks and require multiple transfers to get
them in memory. Overall, the retrieval time of a posting list is inde-
pendent of the total size of the index. However, this argument does
not include the potential increase in average seek time that may oc-
cur over a large index with posting blocks spread across many areas
of the disk space.

3.1 Selective Range Flush
We call posting memory the space of capacity Mp that we reserve

in main memory to temporarily accumulate the postings from new
documents. When posting memory gets full, we need some policy
to determine which particular postings to transfer to disk and make
space for new ones [4]. In order to minimize the total index build-
ing time, we need to minimize the total number of disk operations
and maximize their efficiency. In fact, the overall building cost de-
pends not only on the efficiency of each individual transfer from
memory to disk but also on the total amount of data brought from
disk to memory, when we apply the merge-based method. For long
postings, we use the in-place method and prefer to have only few
large appends to disk. For short postings, we apply the merge-based

Algorithm 1 Flush postings from memory to disk.
1: Algorithm: SelectiveRangeFlush
2: Input: index in memory & on disk
3: Output: updated index in memory & on disk
4: Sort long terms/short ranges by memory space of postings
5: while (flushed memory space < Mf) do
6: {Get max list size of long terms and short ranges in memory}
7: Tlong := long term of max memory space
8: Rshort := short range of max memory space
9: {Compare terms/ranges by memory space of postings}
10: if (sizeof(Rshort)/sizeof(Tlong) < Fp) then
11: {Append long postings to on-disk index}
12: Remove the postings of Tlong from memory
13: Allocate new posting blocks as needed
14: Append memory postings to the posting blocks
15: else
16: {Merge short postings to on-disk index}
17: Remove the postings of Rshort from memory
18: Merge postings into posting block of Rshort

19: if (posting block overflown) then
20: {Split range of short terms}
21: Allocate new posting blocks as needed
22: Split Rshort equally across posting blocks
23: end if
24: end if
25: end while

method, and want to minimize the number and maximize the size of
the transfers to disk. Thus, we group short terms into lexicographic
ranges and keep their postings in memory as long as possible to
avoid the repetitive disk reads and writes involved during merges.

Short-term flushing seems similar to the page replacement prob-
lem in the sense that good candidates for flushing are those ranges
which won’t get new postings in the future. One main difference
from paging is that we accumulate new postings in memory without
needing the older postings until we flush them to disk. Addition-
ally, we need to balance flushes of short and long terms according
to their cost. Long postings incur an one-time cost for flushing,
while short ranges require repetitive reads from disk before flush-
ing new postings. Furthermore, writes occur asynchronously and
may incur delays during subsequent reads - of new documents, for
example, that we process next - due to the need for cleaning dirty
buffers from the page cache [2].

For this unique problem of disk transfer scheduling, we came
up with a new policy called Selective Range Flush. We show the
pseudocode of the method in Algorithm 1. Every time our posting
buffer gets full, we sort the posting lists according to the space they
occupy in memory (Line 4). We compare the byte size of the largest
long list against the byte size of the largest short range in memory
(Line 10). We pick for flushing next the largest long list, unless it
is Fp times smaller than the largest short range (Lines 11-14). In
the latter case we flush the short range instead (Lines 16-23). We
repeat the above process until we flush to disk Flushed Memory
(Mf) bytes of postings. Our approach generalizes in several ways
the partial flushing introduced previously [4]. We avoid inefficient
flushes of long terms by only flushing Mf bytes instead of the en-
tire posting memory. In addition to long terms, we selectively flush
short ranges, when their size is sufficiently large.

hashtable

rangetable termtable

posting blocks

MEMORY

DISK

(a)

call be

was milk

tree can able

dig

new postings

...
...

MEMORY

(b)

an of the

postings

MEMORY

DISK

termtable

blocklist

... ...

postings postings

... ... blocks

(c)

header postings

a - lost lot - pass paste - zoo

lot man ... pass

MEMORY

DISK

search bucket

rangetable

blocks...

(d)

Figure 2: (a). The prototype implementation of Proteus. (b) We maintain the hashtable in memory to keep track of the postings that
we have not flushed yet to disk. (c) Each entry of the termtable corresponds to a long term and points to the blocklist that keeps
track of the associated posting blocks on disk. (d). Each entry of the rangetable corresponds to a range of short terms, and points to
the search bucket that serves as partial index of the corresponding posting block.

The constant Fp is a fixed configuration parameter that we call
preference factor. Its choice reflects our preference for the one-
time flushing cost of a long list rather than the repetitive transfers
between memory and disk of a short range. We postpone the flush-
ing of the largest short range until the size of the largest long list be-
comes Fp times smaller. Then the flushing overhead of the long list
takes too much for the amount of data flushed. At the same time we
prefer to keep the short postings in memory and avoid their merging
into disk. The parameter Fp may depend on the performance char-
acteristics of the system architecture, such as the head-movement
overhead, the sequential throughput of the disk, and the statistics
of the indexed document collection (e.g. the frequency of the terms
across the different documents). In our experiments, small values
between Fp = 2 and Fp = 3 achieved the lowest building time for
the dataset that we used.

Our algorithm behaves greedily because it only considers the
space that a long term or short range currently occupies in memory.
We use the parameter Fp to approximate the cost of flushing a short
range relative to a long term. Similarly, we use the occupied space
of postings in the indexed dataset to categorize the terms into short
or long. We experimented extensively with alternative approaches
that estimate the posting flushing throughput or choose to aggres-
sively flush terms up to a minimum size of posting lists. The simple
approach of Selective Range Flush to flush few tens of megabytes
from the largest lists in memory gave the best performance overall.

As a baseline for search efficiency, we provide a version of the
SRF algorithm with the long lists contiguously stored on disk. Each
long list starts as a single block with the default size. As the size
of the list exceeds the current capacity of the block, we reallo-
cate a block with twice the size and relocate the postings of the
list to the new block. In our figures, we depict this implemen-
tation as SRF/CNT-Proteus in order to separate it from the origi-
nal SRF/FRG-Proteus version, where each long list is fragmented
across multiple blocks of the default size.

3.2 Prototype Implementation
We built a prototype implementation of our own inverted-file

management in the Proteus architecture (Figure 2(a)). We retained
the parsing and search components of the open-source Zettair search
engine (version 0.9.3) [20]. The focused and modular design of
Zettair made it a good choice for our needs. In our study, we mainly
investigate the I/O aspects of search and make no engineering effort
to optimize processing-related tasks beyond reasonable choices. In
particular, we use the standard memory management of libc, al-
though a customization to the needs of Selective Range Flush could
reduce the related processing cost.

We maintain in memory a hash table that we call hashtable,
where we store the posting lists that we extract from the parsed
documents (Fig. 2(b)). In the posting list of each term, the doc-
ument identifiers and the corresponding locations of the terms are
sorted in ascending order. Then, each list is stored as an initial
identifier or position and a list of gaps compressed using variable-
length byte-aligned encoding [26]. Overall, compression reduces
considerably the space requirements of postings in memory and on
disk.

We categorize the terms into short or long according to the total
space of their postings in the system. We use a sorted array, called
termtable, to keep track of the posting blocks associated with each
long term (Figure 2(c)). We use binary search to look for particular
terms in the termtable. Organization of the termtable as an array of
pointers to descriptors makes relatively inexpensive the shifting of
existing terms and the insertion of new ones at arbitrary positions.
Each descriptor contains the term name, the size of the postings
in memory, a pointer to the last block, the amount of free space
at the last block on disk, and a linked list of nodes that we call
blocklist. Each node of the blocklist contains a pointer to a posting
block on disk, and also the first and last document identifier held
by the corresponding posting block. This is useful information for
the case that we need to retrieve only a subset of the posting blocks
that contain specific document identifiers.

In memory, we keep for the short terms a sorted array that we
call rangetable (Figure 2(d)). Each rangetable entry corresponds to
a range of terms whose postings are stored in a single block. The
entry contains the space size of the postings, the names of the first
and last term in the range, and also a pointer to the block and the
amount of the free space at this block. In a partial index that we
call search bucket, we maintain the name and location of the term
that occurs every 128KB along each posting block. The search
bucket allows us to approximately retrieve only the required part
of the posting block that may contain a term. From our experi-
ence, any more detailed index to each posting block may increase
significantly the maintenance overhead of the rangetable.

Initially, the termtable is empty and the rangetable contains a sin-
gle entry for all terms. When the posting memory fills up, we sort
by posting space the short and long ranges currently in memory. We
pick the actual term or range that we flush next based on the Selec-
tive Range Flush algorithm. For each range we maintain a linked
list of all the associated terms that have non-empty posting lists in
memory. Before we flush a range, we retrieve its postings already
stored on disk and merge them with those accumulated in memory.
If the range that emerges from merging exceeds the capacity of a
posting block, we split the range into multiple half-filled blocks.

0

20

40

60

80

A
ve

ra
ge

 R
et

ri
ev

al
 T

im
e

(m
s)

Posting Lists of Short Terms

83.76

HLM
-W

umpus (*4 runs)

20.36

HSM
-W

umpus (*1 run)

20.22

HIM
-W

umpus

22.95

SRF/FRG-Proteus

22.15

SRF/CNT-Proteus

(a)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ri
ev

al
 T

im
e

(m
s)

Posting Lists of Long Terms

459.04

HLM
-W

umpus (*4 runs)

375.30

HSM
-W

umpus (*1 run)

416.11

HIM
-W

umpus

144.96

SRF/FRG-Proteus

125.86

SRF/CNT-Proteus

(b)

1 10 100

Postings retrieval time (x 5ms)

0

2000

4000

6000

8000

N
um

be
r

of
 te

rm
s

pe
r

in
te

rv
al

Histogram of Retrieval Time

HIM
HSM (*1 run)
SRF/FRG
SRF/CNT
HLM (*4 runs)

(c)

Figure 3: (a) We measure the average retrieval time for the terms with total postings up to 1MB. HIM has 10% lower time than
SRF/CNT and 14% lower time than SRF/FRG. HSM appears similar to HIM here, because it happens to have single-run merge-
based index at the end of GOV2. HLM requires about four times more time than the other policies due to the four runs of the
merge-based index. (b) We measure the average retrieval time for terms with postings more than 1MB. In comparison to the other
methods, SRF/CNT requires about 3-3.7 times and SRF/FRG 2.6-3.2 times lower retrieval time. (c) We show the number of terms
across 5ms intervals of posting retrieval time. The peaks of SRF/CNT and SRF/FRG are slightly to the right of HIM, while the peak
of HLM lies separately further right. In order to make more visible the differences, we only include retrieval times up to 1s.

We flush a long term by simply appending its postings to its last
block on disk. If we exceed the capacity of the last posting block,
we allocate more blocks on disk and completely fill them up except
for the last one. After the flush, we update the tables in memory to
accurately reflect the postings currently available in memory.

4. EXPERIMENTATION ENVIRONMENT
For our experiments we used servers running the Debian distri-

bution of Linux kernel version 2.6.18. Each server is equipped with
one quad-core x86 2.33GHz processor, 3GB RAM, one linked gi-
gabit ethernet port, and two 7200RPM SATA disks of 500GB each.
The disk vendors specify buffer size 16MB, seek time 8.9ms, and
sustained transfer rate 72MB/s. We store the document collection
and the generated index on the two disks separately. We access
the disks through the default filesystem of Linux (ext3). All the
reported numbers correspond to system operation with negligible
swapping activity.

In our experiments we use the full 426GB GOV2 standard dataset
from the TREC Terabyte track [19]. Unless otherwise specified,
we set the parameter values of Proteus Bp = 8MB, Mp = 1GB,
Mf = 20MB, Fp = 3 and Tt = 1MB. In the case of GOV2,
the hashtable that we maintain in main memory occupies 4MB,
the termtable and rangetable together 0.5MB, the block lists of the
long terms 0.12MB, and the range buckets of the short terms re-
serve 36.5MB. In total, our auxiliary structures in memory require
less than 50MB.

In order to keep our comparative measurements consistent, we
do all the related experiments on a single server and observe negli-
gible (< 1%) measurement variations across different repetitions of
the same experiment on one machine. Proteus generates index size
of 70GB which is comparable to the 64GB created by the Wum-
pus system [6]. Even though the two systems manage the storage
space differently, we verified that the posting list of the same term

occupies space within a few percent of each other across the two
systems.

5. PERFORMANCE EVALUATION
We compare the index building and term retrieval behavior of

Proteus against alternative configurations of Wumpus. Subsequently,
we examine the effects of the system configuration parameters to
the performance of the Proteus prototype. We consider a subset of
index maintenance methods that are known to cover a wide range
of tradeoffs between building and search efficiency (Table 1). We
experimented with the above methods as implemented in the Wum-
pus system with activated partial flushing and automated threshold
adjustment [4,6]. The original Zettair implementation builds a lex-
icon for term searches at the end of the index building; this makes
it offline and we don’t examine it any further here. In Proteus, we
maintain a lexicon that allows us to retrieve all the posting lists
from memory and disk during the building process.

To keep Wumpus and Proteus functionally comparable, we ac-
tivate full stemming across both systems when we compare them
with each other (Porter’s option [21]). Full stemming reduces terms
to their root form by stripping suffixes. Thus, it retrieves relevant
documents with words that do not match exactly those searched.
Full stemming makes the document parsing to take longer time,
but reduces the index size and improves query processing speed.
In Proteus we use an unoptimized version of Porter’s algorithm as
implemented in Zettair. This makes the reported parsing time of
the Proteus index building a pessimistic estimate that may be fur-
ther improved with sufficient engineering effort. When we examine
the sensitivity of Proteus to the configuration parameters, we use a
less aggressive option called light stemming instead, which is the
default setting in the original Zettair parsing implementation.

Selective Range Flush/FRG - Proteus Hybrid Logarithmic Merge - Wumpus
Stemmed Short Blks Long # Blks Time Short # Runs Long # Segs Time
Term Bytes (8MB) Bytes (8MB) ms Bytes Bytes (64KB) ms
anim 0 0 4723752 1 99 541211 3 4285528 89 238
colmid 7 1 0 0 21 1 4 0 0 89
gtefcu 0 0 0 0 30 0 4 0 0 113
wallet 53314 1 0 0 14 17226 4 0 0 91
floor 0 0 2940503 1 74 955182 4 1115022 21 252
spruce 185226 1 0 0 31 93818 4 0 0 99
yahoomap 195 1 0 0 26 29 4 0 0 84
degener 126185 1 0 0 19 52819 4 0 0 74
meaning 778171 1 0 0 26 242044 4 0 0 99
wage 0 0 3515692 1 87 583295 3 2618283 53 204

Table 3: Selective Range Flush/FRG of Proteus stores the posting list of each short term contiguously in part of a posting block; it
exclusively occupies multiple posting blocks for the posting list of each long term. Hybrid Logarithmic Merge in Wumpus spreads
a posting list across several runs of the merge-based subindex and several segments of the in-place subindex. In comparison to
Wumpus, Proteus consistently achieves a decrease of several factors in the retrieval time of the posting lists. This is a sample from
the indexes created for the GOV2 collection by Proteus and Wumpus, respectively.

5.1 Reading a Posting List
We measure the time to retrieve the posting list of different unique

terms in the index of the entire GOV2 dataset. In our experiments,
we use the terms (25673 short and 5121 long terms on average
across the policies) contained in the Efficiency Topics query set
of the TREC 2005 Terabyte Track [19]. We ensure that our mea-
surements include the delay of the disk transfers by flushing the
memory cache before we retrieve the posting list of a term.

In Sections 2 and 3, we already explained the policies that we
examine. We note that SRF/CNT keeps the postings of each term
contiguously in either the in-place or the merge-based part of the
index but not both. SRF/FRG is similar to SRF/CNT with the only
difference that it fragments the postings of the long terms across
multiple posting blocks. Hybrid Immediate Merge (HIM) has one
merge-based run and one in-place run. It keeps the postings of each
short term in the merge-based run, and the postings of each long
term in both the runs. Hybrid Square Root Merge (HSM) has one
in-place run and number of merge-based runs that varies between
one and two depending on the index size. At the end of GOV2
processing, HSM ends up having one merge-based run. Thus, the
postings of each short term are stored in one run, and the postings
of each long term in up to two runs. Hybrid Logarithmic Merge
(HLM) has one in-place run and number of merge-based runs that
logarithmically depends on the index size. During the processing
of GOV2, the number of merge-based runs varies between one and
six, and at the end it becomes four. Thus in our measurements of
HLM, each short term has postings in four runs, while each long
term has postings in five runs. We note that the in-place run of
the Wumpus prototype consists of 64KB segments. As a result,
the postings of each long term in Wumpus are fragmented across
multiple segments which are not contiguously stored.

In Figure 3(a) we measure the average retrieval time for terms
with postings up to 1MB in the system. We notice that HIM achieves
the lowest time. HSM is similar to HIM because it happens to have
single-run merge-based index at the end of GOV2. However, with
experiments that we also did (not shown here) for the case of two-
run merge-based index, HSM requires about 50% more time for
terms with total postings up to 1MB. Essentially, the search behav-
ior of HSM varies depending on the status of the merging process
at which we do the experiment. SRF/CNT is 10% higher than HIM
and SRF/FRG 13.5% higher. We attribute this difference between
SRF and HIM to seek overheads that arise because we spread the
postings of the short terms across a disk region of 70GB index.

Instead, we found that Wumpus keeps the merge-based index of
HIM in a smaller region of 10GB. Finally, HLM requires about
four times longer time than the other policies, due to the four-run
merge-based index. The discrepancy would be even higher in the
case of a six-run merge-based index (as shown in Figure 1).

In Figure 3(b), we measured the retrieval time for terms with
postings of more than 1MB. We observe that SRF requires retrieval
time about two to three times lower in comparison to the other poli-
cies. We attribute this difference to the mechanism of SRF and the
default size of 8MB posting block in Proteus. In comparison to
short terms, the retrieval time of long terms may be less crucial
depending on the type of the search operator. For example, in con-
junction queries only a subset of the posting list needs to be brought
to memory. We also note that SRF/CNT achieves 13% lower re-
trieval time in comparison to SRF/FRG. We can explain this dis-
crepancy if we consider the contiguity of the postings in SRF/CNT
that reduces disk access overheads during the retrieval of a long
term.

In Figure 3(c), we group the terms into intervals according to
their posting retrieval time. We choose the width of the interval
equal to 5ms. Thus, the y axis shows the number of terms whose
retrieval time lies within the same interval. We see that HIM has
its peak just one interval left of SRF. HLM varies its runs in the
merge-based part between 1 and 6. In our experiments HLM ended
up with four runs resulting into histogram curve distinctly on the
right of the other policies. HSM has merge-based index with one
run at the end of GOV2, therefore it has retrieval time similar to
HIM. We also examined the case (not shown) of HSM with two-
run merge-based index that is created if we stop the processing of
GOV2 a few gigabytes short of the entire dataset. Then, the curve
of HSM lies halfway between SRF and HLM.

In Table 3, we can see the exact number of runs accessed during
a search with the HLM and SRF/FRG policies. For example, HLM
maintains short postings for term anim across three runs and long
postings across 89 segments of 64KB. Instead, SRF/FRG catego-
rizes anim as long term and keeps all its postings in a single block.
As a result, the total retrieval time is 99ms for SRG/FRG policy
and 238ms for the HLM. Overall, HIM and SRF achieve the lowest
retrieval time for posting lists of short terms, while HSM and HLM
may take longer due to the multiple runs that they possibly main-
tain. When we retrieve the list of a short term we need to access all
the runs in the merged-based part as a result of the manner that the
index is constructed. This is even needed in the case that there is
no occurrence of the searched term in the indexed dataset.

0

200

400

600

800
B

ui
ld

 T
im

e
(m

in
)

Construction of Inverted File

730

HIM
-W

umpus

528

SRF/CNT-Proteus

514

SRF/FRG-Proteus

460

HSM
-W

umpus

391

HLM
-W

umpus

325

No M
erge-W

umpus

Parsing (Process docs + Clean dirty buffers)

Flushing (Merge/append postings to disk)

Figure 4: We break down the index building time into docu-
ment parsing and postings flushing parts across different main-
tenance policies implemented in Wumpus and Proteus. Parsing
includes the time to clean dirty pages of the index as needed to
free buffer space for newly read documents. For the SRF algo-
rithm over Proteus we depict the cases of fragmented long lists
(SRF/CNT) and contiguous long lists (SRF/FRG). We observe
that SRF/FRG takes 30% less time to build than HIM.

5.2 Building the Inverted File
In Figure 4, we break down the building time into the Parsing

part to read and parse the dataset into postings, and the Flushing to
gather and transfer the postings to disk. The different policies cover
a wide range of building times between 325 min for No Merge
and 730 min for HIM. In comparison to HIM, the total building
time is 30% lower for SRF/FRG and 28% for SRF/CNT. We also
notice that SRF only needs 14 additional minutes of building time
for postings relocations that keep the long lists contiguous on disk
(CNT versus FRG). We found that the corresponding increase in the
index size due to additional empty space within the posting blocks
of SRF/CNT is 8%.

The other two hybrid policies of Wumpus that we examine, HSM
and HLM respectively, achieve 37% and 46% reduction in compar-
ison to HIM. As we already explained in the previous section, HSM
keeps the postings of each term across a number of runs that varies
between 1 and 3 (one in-place run and two merge-based runs) dur-
ing the index construction. Furthermore, this number varies be-
tween 1 and 7 in the case of HLM during the processing of GOV2.
The retrieval time of the short terms may increase significantly as a
result.

We have been puzzled by the amount of time required by parsing
(Figure 4). In order to explain this behavior, we recorded traces of
disk transfer activity during our experiments. From the traces, we
found out that, every time parsing reads new documents for pro-
cessing, it causes substantial write activity with tens of megabytes
to the device where we maintain the index. Normally, parsing
should only create read activity at the device where we store the
document dataset and no write activity to any device. However, the
index writes generated by Flushing only copy the postings to the
page cache of the system. The system does the actual disk write of

the postings later during parsing, when the reads have to clean dirty
buffers and free space in order to fit the new documents in memory
before processing them. Such system behavior has been already
documented in the literature [2].

In the rest of the current section, we examine the sensitivity of
the index building time across the configuration parameters of the
system using the SRG/FRG policy.

5.2.1 Posting Block Bp

The size of the posting block Bp is a critical configuration pa-
rameter that specifies the amount of postings contained in each
range of short terms. Therefore, it directly affects the amount of
bytes transferred while we merge the short postings of memory
and disk. Figure 5(a) demonstrates this effect through the amount
of bytes read and written during flushes. The less data that we read
during short term flushing, the lower total building time we achieve.
When we append long postings to disk there is almost no read in-
volved. As a result, the block size does not change the amount
of transferred bytes but it may affect the required number of disk
transfers. Overall, Figure 5(b) shows that an increasing block size
reduces the total flush time of long terms and raises that of short
terms. Our default block size Bp = 8MB balances the two trends
leading to low index building time.

In Figure 5(c) we break down the inverted file into a part that
contains postings, another that is empty space in blocks of short
terms, and a third that is empty space in blocks of long terms. The
large block size tends to increase substantially the empty space in
blocks of long terms, leading to larger inverted file. With our de-
fault choice of Bp = 8MB we get an index of 70GB, where about
41GB are actual data and the rest is empty space. However, large
posting blocks lead to low disk access overhead when we retrieve
long terms. For example, for a disk with 12ms access overhead
and 70MB/s sequential throughput, a block size of Bp = 8MB is
anticipated to keep access overhead less than 10%.

5.2.2 Preference Factor Fp

The preference factor specifies how aggressively we flush long
postings relatively to short ones. Term flushes cannot be done ef-
ficiently unless a term has a sufficient number of postings in mem-
ory. Otherwise, there is a high head movement cost for appending
or merging postings. Figure 6(a) makes it clear that we spend more
time for short flushes if we assume equal cost for short and long
flushes with Fp = 1. Instead, if we increase Fp beyond 8, the long
flushes dominate the I/O cost of index building. Reads of post-
ings from disk are synchronous and directly affect the total build-
ing time, while postings writes are asynchronous and only partially
account for the building time.

In Figure 6(b) we also see that long terms are involved in flushes
much more often than short ones. We can explain this behavior by
the fact that the most popular long terms accumulate postings fast
and become the first choice to flush into disk, while the flushing
cost of long terms is relatively lower. Should the frequency of term
occurrence change significantly across the indexed documents, we
may have to adjust the choice of Fp accordingly. In our experience,
a fixed small value around Fp = 3 keeps the index building time
low throughout the processing of the dataset.

5.2.3 Posting Memory Mp

The Posting Memory Mp specifies the memory space that we
reserve for temporary storage of postings. In Figure 6(c), we notice
that as we increase Mp from 0.5GB to 1GB, the build time drops
substantially. Further increase to 1.5GB reduces slightly the build
time, while further increase to 2GB keeps build time the same. In
the rest of the experiments, we chose as default value Mp = 1GB.

0

200

400

600

800

G
ig

ab
yt

es
 T

ra
ns

fe
rr

ed
Memory Flushing Activity

2MB 4MB 8MB 16MB 32MB

Writes of Short Terms
Reads of Short Terms
Writes of Long Terms

Posting Block Bp
(a)

0

200

400

600

B
ui

ld
 T

im
e

(m
in

)

Build Time Breakdown

2MB 4MB 8MB 16MB 32MB

Flush Prepare

Flush Long

Flush Short

Parsing Total

Posting Block Bp

(b)

0

20

40

60

80

100

Po
st

in
g

Bl
oc

k
Sp

ac
e

(%
)

Block Space Statistics

2MB 4MB 8MB 16MB 32MB

Empty Long Empty Short

Filled

Posting Block Bp

(c)

Figure 5: (a) As the size of the posting block increases, the system transfers more data between memory and disk during merging.
(b) As the posting block becomes larger, there is a shift of the flush time from long terms to short. Setting Bp = 8MB strikes a good
balance between the flush time of the different term types. (c) Empty space in posting blocks increases with their size, mostly due to
dedicating separate blocks to each long term.

5.2.4 Flushed Memory Mf

The Flushed Memory Mf parameter refers to the amount of
bytes that we flush to disk every time the posting memory gets full
(Figure 6(d)). We experimentally find that setting Mf = 20MB,
as a small percentage (2%) of the posting memory (1GB), leads to
low index building time. With Mf lower than 20MB, we don’t cre-
ate sufficient free space for new postings to accumulate and flush
efficiently the next time memory gets full. In fact, from the Zipfian
term distribution it follows that most postings gather at a few fre-
quent terms [6]. Instead, with Mf much larger than 20MB, we end
up flushing small amounts of postings that incur high overhead dur-
ing the head movement of the appends and the actual data transfer
of the merges.

5.2.5 Other parameters
We experimented with several other parameters against which

the system showed limited sensitivity. In particular, the parameter
term threshold Tt refers to the space occupied by the posting list
of a term in the system. Its choice affects the categorization of
terms into short or long and the subsequent flush method that we
use for their postings. We found that the default value Tt = 1MB
achieves a good balance in the flush time of long and short terms,
although the system behavior is relatively insensitive to values of
Tt in the neighborhood of a few megabytes.

6. CONCLUSIONS AND FUTURE WORK
We investigate the problem of online inverted-file maintenance.

From previous work, there is a known trade-off between index
building time and search latency that makes existing systems most
successful in only one of the two directions. In the present paper we
propose a simple yet innovative organization of inverted files that
uses fixed-size blocks for their storage on disk. When the memory
gets full with new postings, we only flush selectively the terms with
most postings in memory using the Selective Range Flush method.
We implement the proposed method in the Proteus prototype and
examine extensively its efficiency using a standard dataset of half

terabyte. We find that Selective Range Flush retrieves the posting
lists of infrequent terms at amount of time that matches one of the
fastest known methods, the Hybrid Immediate Merge (with partial
flushing and automatic threshold adjustment). The corresponding
retrieval time of Selective Range Flush for frequent terms is several
factors lower in comparison to alternative methods. Furthermore,
the index building time of Selective Range Flush is 30% lower in
comparison to Hybrid Immediate Merge. We examine the sensitiv-
ity of our method to various configuration parameters of the system
through extensive experimentation.

In our future work, we plan to further investigate in the context
of the Proteus architecture alternative cost models for the flushing
overhead, and consider using different block sizes for the short and
long terms. Additional directions for exploration include the an-
alytical study of Selective Range Flush, and the automatic adjust-
ment of its configuration parameters according to the characteris-
tics of the indexed files and the underlying hardware.

7. ACKNOWLEDGMENTS
In part supported by project Interstore of the Interreg IIIA Greece-

Italy EU Community Initiative program under contract no. I2101005.

8. REFERENCES
[1] L. A. Barroso, J. Dean, and U. Holzle. Web search for a

planet: The google cluster architecture. IEEE Micro,
23(2):22–28, mar/apr 2003.

[2] A. Batsakis and R. Burns. Awol: An adaptive write
optimizations layer. In USENIX Conference on File and
Storage Technologies (FAST), pages 67–80, San Jose, CA,
Feb. 2008.

[3] E. W. Brown, J. P. Callan, and W. B. Croft. Fast incremental
indexing for full-text information retrieval. In VLDB
Conference, pages 192–202, Sept. 1994.

[4] S. Buttcher and C. L. A. Clarke. Hybrid index maintenance
for contiguous inverted lists. Information Retrieval,
11:197–207, June 2008.

0

200

400

600

B
ui

ld
 T

im
e

(m
in

)
Build Time Breakdown

1.0 2.0 3.0 4.0 8.0 16.0

Flush Prep

Flush Long

Flush Short

Parsing Total

Preference Factor Fp

(a)

0

100

200

300

400

N
u

m
b

er
 o

f
F

lu
sh

es
 (

x
10

00
)

Memory Flushing Activity

1.0 2.0 3.0 4.0 8.0 16.0

Flushed Long Terms

Flushed Short Ranges

Preference Factor Fp
(b)

0

200

400

600

B
ui

ld
 T

im
e

(m
in

)

Build Time Breakdown

0.5GB 1GB 1.5GB 2GB

Flush Prepare

Flush Long

Flush Short

Parsing Total

Posting Memory Mp
(c)

0

200

400

600

B
ui

ld
 T

im
e

(m
in

)

Build Time Breakdown

5MB 10MB20MB40MB80MB

Flush Prep

Flush Long

Flush Short

Parsing Total

Flushed Memory Mf

(d)

Figure 6: (a) Setting Fp = 3 is a reasonable choice that minimizes the total building time. (b) As the preference factor Fp becomes
higher, the flushes of long terms increase and become too expensive in comparison to merges of short postings. (c) We observe
diminishing reduction in build time as we increase the posting memory size from 0.5GB to 2GB. (d) Flushing more than a few tens
of megabytes (Mf) at a time incurs high cost due to the overhead of small I/O operations for terms or ranges.

[5] S. Büttcher, C. L. A. Clarke, and B. Lushman. A hybrid
approach to index maintenance in dynamic text retrieval
systems. In European Conference on IR Research (ECIR),
pages 229–240, London, UK, Apr. 2006.

[6] S. Büttcher, C. L. A. Clarke, and B. Lushman. Hybrid index
maintenance for growing text collections. In ACM SIGIR,
pages 356–363, Seattle, Washington, USA, Aug. 2006.

[7] D. Cutting and J. Pedersen. Optimizations for dynamic
inverted index maintenance. In ACM SIGIR, pages 405–411,
Brussels, Belgium, Sept. 1990.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, Jan. 2008.

[9] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, June 1993.

[10] G. Graefe. Implementing sorting in database systems. ACM
Computing Surveys, 38(3):1–37, Sept. 2006.

[11] R. Guo, X. Cheng, H. Xu, and B. Wang. Efficient on-line
index maintenance for dynamic text collections by using
dynamic balancing tree. In Conference on Information and
Knowledge Management (CIKM), pages 751–759, Lisboa,
Portugal, Nov. 2007.

[12] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. Journal of the Americal
Society for Information Science and Technology,
54(8):713–729, 2003.

[13] D. E. Knuth. The Art of Computer Programming: Searching
and Sorting, volume 3. Addison Wesley Longman, 2 edition,
1998.

[14] R. Lempel, Y. Mass, S. Ofek-Koifman, Y. Petruschka,
D. Sheinwald, and R. Sivan. Just in time indexing for up to
the second search. In Conference on Information and
Knowledge Management (CIKM), pages 97–106, Lisboa,
Portugal, 2007.

[15] N. Lester, A. Moffat, and J. Zobel. Efficient online index
construction for text databases. ACM Transactions on
Database Systems, 33(3):1–33, Aug. 08.

[16] N. Lester, A. Moffat, and J. Zobel. Fast on-line index
construction by geometric partitioning. In Conference on
Information and Knowledge Management (CIKM), pages
776–783, Bremen, Germany, Oct. 2005.

[17] N. Lester, J. Zobel, and H. Williams. Efficient online index
maintenance for contiguous inverted lists. Information
Processing Management, 42(4):916–933, 2006.

[18] N. Lester, J. Zobel, and H. E. Williams. In-place versus
re-build versus re-merge: Index maintenance strategies for
text retrieval systems. In Australasian Computer Science
Conference, pages 15–23, Dunedin, New Zeland, Jan. 2004.

[19] National Institute of Standards and Technology. Trec
terabyte track. http://trec.nist.gov/data/terabyte.html.

[20] RMIT University. The zettair search engine.
http://www.seg.rmit.edu.au/zettair/.

[21] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[22] B. Ribeiro-Neto, E. S. Moura, M. S. Neubert, and N. Ziviani.
Efficient distributed algorithms to build inverted files. In
ACM SIGIR, pages 105–112, Berkeley, CA, Aug. 1999.

[23] Seagate. Barracude es data sheet, May 2007. 750, 500, 400,
320 and 250 GB - 7200RPM - SATA 3Gb/s.

[24] C. A. N. Soules and G. R. Ganger. Connections: Using
context to enhance file search. In ACM Symposium on
Operating System Principles, pages 119–132, Brighton, UK,
Oct. 2005.

[25] A. Tomasic, H. Garcia-Molina, and K. Shoens. Incremental
updates of inverted lists for text document retrieval. In ACM
SIGMOD Conference, pages 289–300, Minneapolis,
Minnesota, May 1994.

[26] J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2), July 2006.

[27] J. Zobel, A. Moffat, and R. Sacks-Davis. Storage
management for files of dynamic records. In Australian
Database Conference, pages 26–38, Brisbane, Australia,
1993.

