
�

�

�

�

�

�

�

�

2

Improving Bandwidth Efficiency for Consistent Multistream Storage

ANDROMACHI HATZIELEFTHERIOU and STERGIOS V. ANASTASIADIS,
University of Ioannina

Synchronous small writes play a critical role in system availability because they safely log recent state mod-
ifications for fast recovery from crashes. Demanding systems typically dedicate separate devices to logging
for adequate performance during normal operation and redundancy during state reconstruction. However,
storage stacks enforce page-sized granularity in data transfers from memory to disk. Thus, they consume
excessive storage bandwidth to handle small writes, which hurts performance. The problem becomes worse,
as filesystems often handle multiple concurrent streams, which effectively generate random I/O traffic. In
a journaled filesystem, we introduce wasteless journaling as a mount mode that coalesces synchronous con-
current small writes of data into full page-sized journal blocks. Additionally, we propose selective journaling
to automatically activate wasteless journaling on data writes with size below a fixed threshold. We imple-
mented a functional prototype of our design over a widely-used filesystem. Our modes are compared against
existing methods using microbenchmarks and application-level workloads on stand-alone servers and a mul-
titier networked system. We examine synchronous and asynchronous writes. Coalescing small data updates
to the journal sequentially preserves filesystem consistency while it reduces consumed bandwidth up to
several factors, decreases recovery time up to 22%, and lowers write latency up to orders of magnitude.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management; D.4.5
[Operating Systems]: Reliability; D.4.8 [Operating Systems]: Performance

General Terms: Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Journaling, logging, concurrency, small writes

ACM Reference Format:
Hatzieleftheriou, A. and Anastasiadis, S. V. 2013. Improving bandwidth efficiency for consistent multistream
storage. ACM Trans. Storage 9, 1, Article 2 (March 2013), 27 pages.
DOI:http://dx.doi.org/10.1145/2435204.2435206

1. INTRODUCTION

Synchronous small writes lie in the critical path of several systems that target fast
recovery from failures with low performance loss during normal operation [Anand
et al. 2008; Bent et al. 2009; Chang et al. 2006; Fryer et al. 2012; Gray and Reuter
1993; Hagmann 1987; Hitz et al. 1994; Kwon et al. 2008; Mammarella et al. 2009; Shin
et al. 2011]. Before modifying the system state, updates are recorded to a sequential
file (write-ahead log). Periodically the entire system state (checkpoint) is copied to per-
manent storage. After a transient failure, the lost state is reconstructed by replaying
recent logged updates against the latest checkpoint [Verissimo and Rodrigues 2001].

The present research was supported in part by project INTERSAFE 303090/YD763 of the INTERREG IIIA
program co-funded by the EU and the Greek State.
Authors’ address: A. Hatzieleftheriou and S. V. Anastasiadis (corresponding author), Department of Com-
puter Science, University of Ioannina, Ioannina 45110, Greece; email: stergios@cs.uoi.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1553-3077/2013/03-ART2 $15.00
DOI:http://dx.doi.org/10.1145/2435204.2435206

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:2 A. Hatzieleftheriou and S. V. Anastasiadis

Write-ahead logging improves system availability by preserving state from fail-
ures and substantially reducing recovery time. It is a method widely applied in
general-purpose file systems [Hitz et al. 1994; Prabhakaran et al. 2005a; Rosenblum
and Ousterhout 1992; Seltzer et al. 2000]; relational databases [Gray and Reuter
1993]; key-value stores [Chang et al. 2006; Mammarella et al. 2009]; event process-
ing engines [Brito et al. 2009; Kwon et al. 2008]; and other mission-critical sys-
tems [Borthakur et al. 2011; Calder et al. 2011; Nightingale et al. 2006]. Logging
is also one technique applied during the checkpointing of parallel applications to
avoid discarding the processing of multiple hours or days after an application or sys-
tem crash [Bent et al. 2009; Ouyang et al. 2011b; Polte et al. 2008]. Logging incurs
synchronous small writes, which are likely to create a performance bottleneck on
disk [Appuswamy et al. 2010; Gray and Reuter 1993; Min et al. 2012; Nightingale
et al. 2006; Wang et al. 1999]. Thus, the logging bandwidth is typically overprovi-
sioned by placing the log file on a dedicated disk separately from the devices that store
the system state (e.g., relational databases [Mullins 2002] and Azure [Calder et al.
2011]). In general, asynchronous writes also behave as synchronous if an I/O-intensive
application modifies pages at the flushing rate of the underlying disk [Batsakis et al.
2008].

Furthermore, a distributed service is likely to maintain numerous independent log
files at each server (RVM [Satyanarayanan et al. 1993]; Megastore [Baker et al. 2011];
and Azure [Calder et al. 2011]). For instance, multiple logs facilitate the balanced load
redistribution after a server failure in a storage system. If the logs are concurrently ac-
cessed on the same device, random I/O is effectively generated leading to long queues
and respective delays. This inefficiency remains even if the logs are stored over a dis-
tributed filesystem across multiple servers. One solution is to manage the multiple
logs of each server as a single file (e.g., Bigtable over GFS [Chang et al. 2006] and
HBase over HDFS [Borthakur et al. 2011]). Then, individual logs have to be separated
from each other at the cost of extra software complexity and processing delay during
recovery.

For the needs of high-performance computing, special file formats and interposition
software layers have been developed to efficiently store the data streams generated by
multiple parallel processes [Bent et al. 2009; Elnozahy and Plank 2004; Hildebrand
et al. 2006; Polte et al. 2008]. In structures optimized for multicore key-value storage,
the server thread running on each core maintains its own separate log file [Mao et al.
2012]. For higher total log throughput, it is recommended that different logs are stored
on different magnetic or solid-state drives. However, fully replacing hard disks with
flash-based solid-state drives is currently not considered a cost-effective option for sev-
eral server workloads [Narayanan et al. 2009]. Also, while the storage density of flash
memory continues to improve, important metrics such as reliability, endurance, and
performance of flash memory are currently declining [Grupp et al. 2012]. Solutions
based on specialized hardware are further discussed in Section 7. In the present work,
we address the I/O inefficiency of concurrent stream writing through enhancements in
the write path of the underlying filesystem over low-cost hardware.

Journaled filesystems use a log file (journal) to copy data and/or metadata from
memory to disk [Hisgen et al. 1993; Seltzer et al. 1995; Tweedie 1998; Zhang and Ghose
2007]. Update records are safely appended to the journal at sequential throughput,
and costly filesystem modifications are postponed without penalizing the write latency
perceived by the user. A page cache temporarily stores recently accessed data and
metadata; it receives byte-range requests from applications and forwards them to disk
in the form of page-sized requests [Bovet and Cesati 2005]. The page granularity of
disk accesses is prevalent across all storage transfers, including data and metadata
writes to the filesystem and the journal. In the case of asynchronous small writes, the

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:3

Fig. 1. For a duration of 5min, we use 100 threads over the Linux ext3 filesystem to do periodic synchronous
writes at fixed request size (each thread writes 1req/s). We measure the total write traffic to the journal
across different mount modes (fully explained in Sections 2 and 3).

disk efficiency is improved, as multiple consecutive requests are coalesced into a page
before being flushed to disk. In contrast, synchronous small writes are flushed to disk
individually, causing costly random I/O of data and metadata page transfers.

In Figure 1, we measure the amount of data written to the journal of the ext3 filesys-
tem (described in Section 3). We run a synthetic workload of 100 concurrent threads for
5min. Each thread generates periodic synchronous writes of fixed request size at rate
1req/s. We include the ordered and writeback modes along with the data journaling
mode. The ordered and writeback modes incur lower traffic because they only write to
the journal the blocks that contain modified metadata. Instead, data journaling writes
to the journal the entire modified data and metadata blocks. In Figure 1, as the request
size drops from 4KiB to 128 bytes (by a factor of 32), the total journal traffic of data
journaling only decreases from 267MiB to 138MiB (by about a factor of 2). Thus, data
journaling incurs a relatively high amount of journal traffic at subpage requests. By
tracing the block transfer activity of ext3 in the Linux kernel, we found that metadata
and data modifications are journaled in granularity of entire 4KiB pages regardless of
how many bytes are actually modified in a file page.

According to Chidambaram et al. [2012], after a system crash, the data journal-
ing mode correctly associates metadata with data of the matching version (version
consistency). This type of crash consistency is stronger than only keeping the meta-
data structures consistent with each other (metadata consistency), or associating the
data blocks with the file they belong to (data consistency). However, data journaling
requires each data update to be written twice, first in the journal and later in the
filesystem. If it involves a large amount of written data or numerous small writes,
double writes lead to inefficient utilization of storage bandwidth that may hurt per-
formance. Consequently, the use of data journaling is explicitly discouraged in several
cases, while production systems activate only metadata journaling by default [Anand
et al. 2008; Chidambaram et al. 2012; Prabhakaran et al. 2005a; Rajimwale et al. 2011;
Zhang and Ghose 2007].

Today, journaling of both data and metadata is applied in a production distributed
filesystem to ensure consistency of the on-disk state [Weil et al. 2006]. Additionally,
data journaling is desirable for increased consistency across several production en-
vironments, including the native filesystem of I/O-intensive high-performance com-
puting systems [Oral et al. 2010], and the host filesystem holding the disk images
of virtual machines running write-dominated workloads [Le et al. 2012]. In general,

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:4 A. Hatzieleftheriou and S. V. Anastasiadis

write-optimized filesystems that improve random access performance are increasingly
important for networked environments [Leung et al. 2008].

In the present study, we investigate the performance and consistency implications
of storage bandwidth consumption in journaled and other filesystems. In the case of
data journaling, we find that the excessive disk traffic of synchronous small writes is
primarily a result of the page granularity enforced by the storage stack and less a
consequence of writes to both the journal and the filesystem. In fact, journaling may
actually improve performance because it safely copies updates to disk at sequential
throughput. The bandwidth inefficiency of small writes is not trivially overcome by
reducing the granularity of disk writes to a single sector because smaller writes would
cause higher I/O overhead in the system. Instead, one promising solution is to accu-
mulate the modifications from multiple subpage updates from different threads into
a single page, and only pay once the disk I/O cost of the page write. This approach
cannot be directly applied to writes that modify the filesystem in-place because each
write corresponds to a different block on disk. However, it is applicable to the updates
appended into the journal.

We set as an objective achieving filesystem consistency at high I/O performance
with efficient bandwidth utilization. We propose, design, and fully implement two new
mount modes, wasteless journaling and selective journaling. We are mainly concerned
about highly concurrent multithreaded workloads that synchronously apply small
writes over the same storage devices [Anand et al. 2008; Bent et al. 2009; Borthakur
et al. 2011; Calder et al. 2011; Chang et al. 2006; Kwon et al. 2008; Nightingale et al.
2006; Shin et al. 2011]. Unnecessary writes of unmodified data and writes of high po-
sitioning overhead occupy valuable disk access time. Thus they waste disk bandwidth,
which should preferably be spent on useful data transfers. With microbenchmarks and
application-level workloads, we show that our two modes can considerably reduce the
journal (and filesystem) traffic. More importantly, they improve operation throughput
and substantially reduce the response time in comparison to alternative mount options
and filesystems.

The general idea of subpage logging is not new. Previously, researchers at DEC pro-
totyped and used the Echo distributed filesystem [Birrell et al. 1993]. For improved
performance and availability, Echo logged subpage updates, and bypassed the logging
of page-sized or larger writes [Hisgen et al. 1993]. The development of Echo was discon-
tinued in early 1992, partly because it ran on hardware that lacked fast-enough compu-
tation relative to communication. Recent research introduced semantic trace playback
(STP) to rapidly evaluate alternative filesystem designs without the cost of real system
implementation or detailed filesystem simulation [Prabhakaran et al. 2005a]. STP was
used to emulate journaling of block modifications instead of entire modified blocks in a
filesystem. Although the authors showed a reduced amount of data written to the jour-
nal, they did not examine the general performance and recovery implications. Due to
the obsolete hardware characteristics or the high emulation level of the above studies,
they leave questionable the general architectural fit and actual performance benefit of
journal bandwidth reduction in current filesystems.

To the best of our knowledge, the present work is the first to comprehensively
investigate the general benefits of subpage data journaling using a prototype im-
plementation in a fully operational filesystem. We summarize our contributions as
follows.

(1) We measure bandwidth inefficiencies in journaled filesystems and examine ways
to combine filesystem consistency with high performance at moderate cost.

(2) We design and fully implement wasteless and selective journaling as optional
mount modes in a widely used filesystem.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:5

(3) We discuss the implications of alternative journaling optimizations to the consis-
tency semantics of the filesystem in the context of different storage configurations.

(4) We apply micro-benchmarks, storage workloads, and database logging traces over
a journal spindle to demonstrate performance improvements up to several orders
of magnitude across different metrics.

(5) With a parallel filesystem, we show that wasteless journaling doubles the through-
put of parallel checkpointing over small writes, while it reduces the total traffic
to disk.

In Section 2 we present architectural aspects of our design, while in Section 3 we
describe the implementation of wasteless and selective journaling. In Section 4 we ex-
plain our experimentation environment, and in Section 5 we present detailed measure-
ments across different workloads. In Section 6 we summarize previous related work,
and in Section 7 we consider our results in the context of virtualization and solid-state
drives. Finally, in Section 8 we outline our conclusions and plans for future work.

2. SYSTEM DESIGN

In this section we describe the basic assumptions and objectives of our journaling ar-
chitecture. In a general-purpose filesystem, we aim to safely store recent state up-
dates on disk and ensure their consistent recovery in case of failure. We also strive
to serve synchronous small writes and subsequent reads fast, with low bandwidth
requirements. The consistency of metadata updates has already been studied previ-
ously [Hagmann 1987; Seltzer et al. 2000]. Additionally, subpage journaling of meta-
data updates is made widely available today through popular commercial filesystems,
such as the IBM JFS and MS NTFS [Prabhakaran et al. 2005a]. On the contrary, data
journaling is only supported in few filesystems (e.g., ext3/4, ReiserFS) and its use is
generally avoided because it is considered harmful for performance [Chidambaram
et al. 2012]. Moreover, the subpage journaling of data updates is not supported in cur-
rent filesystems.

2.1. Wasteless Journaling

Historically, journaling was only applied to the metadata of a filesystem with specific
goal to ensure fast structural recovery after a system failure [Hagmann 1987; Tweedie
1998]. Today, support for data journaling is provided in few filesystems to preserve
the latest data updates from a system crash and keep them accessible [Chidambaram
et al. 2012]. As a side effect of the journal sequential access, data journaling can im-
prove the throughput of random I/O operations. However, this benefit is realized at
the cost of excessive bandwidth consumption due to the page granularity of the stor-
age traffic [Appuswamy et al. 2010; Prabhakaran et al. 2005a]. In order to overcome
this limitation, we designed and implemented a new mount mode that we call waste-
less journaling. In synchronous writes, we transform partially modified data blocks
into descriptor records, which we subsequently accumulate into special journal blocks
(Figure 2(a)). For data blocks that have been fully modified by write operations, we
synchronously copy the entire blocks from memory to the journal. After timeout expi-
ration or due to shortage of journal space, we copy the partially or fully modified data
blocks from memory to their final location in the filesystem. Subsequently, we clean
the respective records from the journal device.

2.2. Selective Journaling

Data journaling adds extra I/O cost because it writes data to both the journal and
the filesystem. In the particular case of sequential writes, the benefit from sequential

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:6 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 2. (a) In wasteless journaling, we journal data updates at subpage granularity. (b) In selective journal-
ing, while we treat small requests approximately as in wasteless mode, we transfer large requests directly
to the final location without prior journaling of the data.

appends to the journal device is not that significant, because the data writes to the
filesystem are also most likely sequential. In this case, the journal device may ac-
tually become a bottleneck and harm performance. With goal to reduce the journal
I/O activity of sequential writes, we evolved wasteless journaling into an alternative
mount mode that we call selective journaling. In this mode, the system automatically
differentiates the write requests based on a fixed-size threshold that we call write
threshold. Depending on whether the write size is below the write threshold or not,
we respectively transfer the synchronous writes to either the journal or the final disk
location directly (Figure 2(b)). The rationale of this approach is to apply data journal-
ing only when multiple small writes can be coalesced into a single journal block, or
different data blocks are fully modified and scattered across multiple locations in the
filesystem.

2.3. Consistency

Since the synchronous write from a single thread must be transferred to disk immedi-
ately, it only makes sense to accumulate into a journal block the writes that originate
from different concurrent threads. Therefore, we expect wasteless and selective jour-
naling to be mostly beneficial in environments that consist of multiple writing streams
with frequent small writes. In the case of wasteless journaling, we only consider a
write operation effectively completed after we log both data and metadata into the
journal device. Synchronous writes from the same thread are added to the journal se-
quentially. In case of failure, a prefix of the operation sequence is recovered through
the replay of the data modifications that have been successfully logged into the jour-
nal. Thus, the structure of the filesystem remains consistent across system failures,
and the filesystem metadata refers to the latest data that has been safely stored on
disk (version consistency [Chidambaram et al. 2012]).

Selective journaling allows a series of synchronous writes to have a subset of the
modified data added to the journal, and the rest of the modified data directly trans-
ferred to the final location in the filesystem. During a recovery from crash, a write op-
eration is fully aborted if the corresponding journal appends were interrupted halfway.
However, if the write is large enough to be directly transferred to the final location, it
may be only partially completed at the instance of the failure. Consequently, selective
journaling provides the consistency of mount modes which journal the metadata only
after the respective data is saved to disk (data consistency [Chidambaram et al. 2012]).
Such modes update the data in place and add metadata modifications to the journal,
while selective journaling applies large data updates in place but adds to the journal
both metadata modifications and small data updates. If the write traffic is dominated

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:7

by request sizes below the write threshold, the consistency of selective journaling ap-
proaches the version consistency of wasteless journaling.

Arguably, the accumulation of multiple small updates into a single journal block
leaves open the possibility of losing multiple updates if the block does not safely reach
the journal device. However, the wasteless and selective journaling do not defer in any
way the operation of buffer flushing, regardless of whether it is periodically invoked
by the filesystem or explicitly requested through synchronous writes. Instead, the two
modes merely flush the buffer updates faster because they reduce the amount of I/O
involved. This efficiency allows applications to achieve decreased write latency and a
shorter vulnerability window during which requested updates remain outstanding. We
provide additional explanations about the system consistency, when we describe the
atomicity guarantees of our implementation in Section 3.4, while we experimentally
demonstrate the reduced flushing latency of our modes in Section 5.

2.4. Update Sequences

In selective journaling, we call update sequence a series of multiple incoming updates
applied to the buffer of a single data block. The update sequence terminates when the
modified data block, along with the respective metadata blocks, are safely transferred
from memory to the filesystem. In our definition, the updates are not necessarily back-
to-back, but there should be no in-between transfer of the respective data and meta-
data blocks to the final disk location. For presentation simplicity, but without loss of
generality, we assume that the write threshold and the block size are both set equal to
the size of a system page.

If the first update in such a sequence has subpage size, we mark the corresponding
buffer as journaled. Then, we log to the journal the entire update sequence of the block
as the individual updates are flushed to disk. It would be a straightforward approach
to turn off the journaling of the block as soon as the subpage write switched into a full
overwrite along an update sequence. As a result, the initial updates of the block would
be journaled and the rest would be directly flushed to the filesystem. During journal
replay at a subsequent recovery from a failure, the subpage writes would erroneously
corrupt the block whose latest update fully overwrote it. We deliberately avoid this
situation by journaling the block throughout the update sequence at the cost of paying
data journaling I/O for the entire update sequence.

On the other hand, if the first update is page-sized, we skip journaling the entire
update sequence of the block. This implies that flushing any subsequent subpage data
write to disk causes the entire data block to be flushed to the filesystem and the re-
spective metadata blocks written to the journal. If we trivially did not do that, then
only the subpage writes could be recorded in the journal. Our approach in this case
sacrifices the sequential I/O of journaling in order to avoid block corruption due to only
replaying the subpage writes of the update sequence after a failure.

We prefer to preserve clean recovery semantics in selective journaling at the cost
of lower performance gain. In our experience, the two above transitions in write size
along an update sequence are not common in practice. Also, an update sequence has
limited lifetime due to the periodic flushing of dirty data by the system. According to
our experiments, selective journaling maintains significant performance gains across
different representative workloads that we examined. In Figure 3, we use a flowchart
to summarize the possible execution paths of a write request through selective
journaling.

3. PROTOTYPE IMPLEMENTATION

We implemented wasteless and selective journaling in the Okeanos prototype system
over Linux ext3 [Bovet and Cesati 2005; Tweedie 1998]. At a high level, the original

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:8 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 3. Alternative execution paths of a write re-
quest in the selective journaling mode.

Fig. 4. For each journaled block (i) A dedicated buffer
head in memory specifies the respective disk block in
the journal device and, (ii) A journal head in memory
links the block with the journal transaction to which
it belongs.

ext3 filesystem implements journaling of updates in two steps. First, it copies the mod-
ified blocks into the journal with a a commit block at the end. Then, it updates the mod-
ified blocks in-place at the filesystem and discards the journal blocks. If the filesystem
is mounted in data journaling mode, both data and metadata blocks are copied to the
journal before th filesystem update. The ordered mode copies only metadata blocks to
the journal after it has stored the associated data blocks at the filesystem. This order
ensures that a file structure points to valid data blocks on disk. The writeback mode
copies only metadata blocks to the journal without any constraints in the relative order
at which data and metadata blocks update the filesystem. It is considered the fastest
mode, but also the weakest in terms of consistency.

3.1. Buffers

The Linux kernel uses the page cache to keep the data and metadata of recently ac-
cessed disk files in memory [Bovet and Cesati 2005]. For every cached disk block, a
block buffer in memory stores the respective data, while a buffer head stores the related
bookkeeping information (Figure 4). The page cache manages disk blocks in page-sized
groups called buffer pages. Since the block and page typically have the same size, we
use these two terms interchangeably from now on. A number of pdflush kernel threads
periodically flush dirty pages to their final disk location. The threads systematically
scan the page cache every writeback period; a dirty page is due for flushing after an
expiration period has passed since it was last modified. Additionally, applications can
synchronously flush the data and metadata blocks of an open file, for instance, through
the fsync call or after opening the file with the O SYNC option enabled. The journaling
block device is a special kernel layer used by ext3 to implement the journal as a hidden
file in the filesystem, or a separate disk partition. In the journal, each log record cor-
responds to an update of one disk block in the filesystem. The log record contains the
entire modified block instead of the byte range actually overwritten. This wastes disk
bandwidth and space, but makes straightforward the restoration of modified blocks
after a crash. The degree of waste depends on the fraction of the block that is left
unmodified by the write operation.

At the minimum, the system only needs to log the modified part of each buffer and
merge it into the original block to recover the latest block version. Thus, we introduce
a new type of journal block that we call multiwrite block (Figure 5(b)). We only use
multiwrite blocks to accumulate the updates from data writes that partially modify

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:9

Fig. 5. (a) In the original design of data journaling, the system copies to the journal the entire blocks
modified by write operations. (b) In wasteless journaling, we use multiwrite journal blocks to accumulate
the data modifications from multiple writes.

block buffers. If a buffer contains metadata or is fully modified by a write operation, we
can send it directly to the journal without creation of an extra copy in the page cache.
We call such a journal block a regular block. When a write request of arbitrary size
enters the kernel, the request is broken into variable-sized updates of individual block
buffers. In wasteless journaling, for buffer updates smaller than the block size, we
copy the corresponding data modification into a multiwrite block. Otherwise, we link
the update to the entire modified block in the page cache. In selective journaling, we set
the write threshold equal to the page size of 4KiB. If a buffer update is smaller than the
write threshold, we mark the corresponding block as journaled by setting a special flag
that we added in the page descriptor of the buffer. Then, we copy the modification to the
multiwrite block. If the update modifies the entire block, we prepare the corresponding
modified buffer for transfer to the filesystem without prior journaling. We clear the
journaled flag after we complete the block transfer to the filesystem.

In a straightforward way, our current prototype can also support arbitrary write
thresholds below the page size. In contrast, support for write thresholds above the
page size requires additional implementation intervention at the system path of write
requests, as described recently in a more general context [Mesnier et al. 2011]. The
additional modification is necessary in order to keep track of the write size across the
buffers in the page cache and treat them differently based on the write threshold.

3.2. Transactions

A system call may consist of multiple low-level operations that atomically manipulate
disk data structures of the filesystem. For improved efficiency, the system assigns to
one transaction the records of multiple calls. Before the records of a transaction are
transferred to the journal, the kernel allocates a journal descriptor block with a list
of tags. A tag maps a buffer to the respective block in the filesystem (Figure 5(a)).
When a journal-descriptor block fills up with tags, the kernel moves it to the journal
together with the associated block buffers. For each block buffer that will be written
to the journal, the kernel allocates an extra buffer head specifically for the needs of
journaling I/O. Additionally, it creates a journal head structure to associate the block
buffer with the respective transaction (Figure 4). After all the log records of a transac-
tion have been safely transferred to the journal, the system appends to the journal a
final commit block.

For writes that only modify part of a block, we expanded the journal head with
two extra fields, the offset and the length of the partially modified block pointed to
by the buffer head. When we start a new transaction, we allocate a buffer for the
journal descriptor block. The journal descriptor block contains a list of fixed-length

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:10 A. Hatzieleftheriou and S. V. Anastasiadis

tags, where each tag corresponds to one block update (Figure 5(b)). Originally, each
tag contained the filesystem location of the modified block and one flag for the journal-
specific properties of the block. In our design, we introduce three new fields in each
tag: (i) a flag to indicate the use of a multiwrite block; (ii) the length of the write in the
multiwrite block; and (iii) the starting offset of the modification in the filesystem data
block. These fields are required during recovery to allow the extraction of the update
from the multiwrite block and the overwrite of the respective filesystem block at the
right offset.

3.3. Recovery

We consider a transaction committed if it has flushed all its records to the journal
and has been marked as finished. A transaction is automatically committed by the
kjournald kernel thread after a fixed amount of time has elapsed since the transaction
started. Subsequently, we regard the transaction as checkpointed if all the blocks of a
committed transaction have been moved to their final location in the filesystem and the
corresponding log records have been removed from the journal. If the journal contains
log records after a crash, the system assumes that the unmount was unsuccessful and
initiates a recovery procedure in three phases. In the scan phase, it looks for the last
record in the journal that corresponds to a committed transaction. During the revoke
phase, the kernel marks as revoked those blocks that have been obsoleted by later
operations. In the replay phase, the system writes to the filesystem the remaining
(unrevoked) blocks that occur in committed transactions.

During the recovery process, we retrieve the modified blocks from the journal. In the
case of multiwrite blocks, we apply the updates to blocks that we read from the corre-
sponding filesystem locations. Since the data of consecutive writes are placed next to
each other in the multiwrite block, we can deduce their corresponding starting offsets
from the length field in the tags. As soon as the length field of a tag exceeds the end of
the current multiwrite block, we read the next block from the journal and treat it as
another multiwrite block from the same transaction. We read into memory and update
the appropriate block as specified by the filesystem location and the starting offset in
the tag. However, if the multiwrite flag is not set, then we read the next block of the
journal and treat it as a regular block. We write every regular block directly to the
filesystem without need to read first its older version from the disk.

3.4. Atomicity

Disk drives can guarantee the atomic update of a 512-byte sector through an attached
checksum calculated over the sector data [SBC 2005]. For a page that consists of mul-
tiple sectors, incomplete page updates can be detected (torn page detection) through
additional bits calculated over the entire page [Chidambaram et al. 2012; Sears and
Brewer 2006]. Accordingly, we assume that the disk supports atomic page updates.
One misbehavior not covered by the page atomicity is the case that only a subset of
the pages in a transaction actually reaches the filesystem. This is possible because
the disk internally uses a write cache to temporarily store incoming data. The on-disk
write cache is typically set to operate in write-back mode, which may reorder writes
for better performance. Then, the disk is possible to acknowledge a synchronous page
write before the data is safely stored.

The integrity of a journaled transaction can be verified with a checksum calculated
over the contents of the transaction [Prabhakaran et al. 2005b]. However, a journaled
filesystem may silently end up in inconsistent state if the system crashes after a trans-
action partially updates the filesystem, but before the transaction is safely stored in
the journal. Such inconsistency can be avoided if the filesystem explicitly controls the
on-disk ordering of journal commits. For that purpose, the Linux ext3 provides the

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:11

barrier mount option while the SCSI specification offers the SYNCHRONIZE CACHE com-
mand [SBC 2005] (SATA also provides the FLUSH CACHE command [SATA 2003]). If
the device does not support write barriers, a flush workload can be used to flush the
on-disk write cache instead [Rajimwale et al. 2011]. Alternatively, we can disable the
write cache and have the disk only acknowledge a write after it really reaches the
medium [Shin et al. 2011].

Assuming page atomicity on disk, wasteless journaling provides the consistency of
data journaling. If additionally the disk barrier is used or the write cache is disabled,
both wasteless and data journaling guarantee the idempotence of write operations. If a
transaction replay is interrupted halfway through, from page atomicity it follows that
each affected page in the filesystem will carry either the new value or the old value.
A safely committed transaction can be repeatedly applied to the filesystem until it
completes successfully. At this point, all the affected pages in the filesystem will have
the new value.

Selective journaling marks as journaled the buffer of an update sequence based on
the size of the first update to the respective data page. If a data page is prepared for
direct transfer to the filesystem, there is no journal head to associate this data page
with a transaction. It is possible that the system crashes right after a dirty data page is
directly transferred to the filesystem. The respective metadata updates will not make
it to the journal if we use write barriers or disable the on-disk write cache. After the
crash, the above data update can become visible to the user if the update overwrote
an existing file page. Essentially, the consistency of selective journaling degenerates
to that of ordered mode if the update sequence is not journaled. With journaled up-
date sequence, the respective filesystem page is only modified if it belongs to a safely
committed transaction. If all the update sequences of a transaction are journaled, the
consistency of selective journaling is that of wasteless journaling. As part of our ex-
perimentation, we confirm the comparative benefits of our journaling modes across
different settings of the on-disk cache and the write barrier (Section 5.6).

Example. In Figure 6, we examine the potential effect of the updates applied to three
different pairs of data and metadata blocks whose buffers are already located in system
memory. Assuming that time increases from left to right, we refer to the data and
metadata block of updates 1, 2, and 3, respectively, with bd

1 and bm
1 , bd

2 and bm
2 , bd

3
and bm

3 . The squares that contain the character c symbolize the commit block of the
transaction. We assume that the updates applied to bd

1 and bd
2 are partial, while bd

3 is
fully overwritten. With the journal and filesystem on disk, the example indicates that
wasteless and selective journaling are likely to require less I/O time to safely flush the
updates from memory to disk in comparison to the ordered and data journaling modes.

If the system crashes at instance t1, then all the updates applied in memory are
lost. At the other extreme, if the system crashes at instance t3, then all the updates
can be safely recovered from disk. Although both data and wasteless journaling record
all the block updates to the journal, wasteless journaling transfers one less block. The
ordered mode transfers all the data blocks to the filesystem, before it appends the
three metadata blocks to the journal. Selective journaling only transfers block bd

3 to the
filesystem, but it copies to the journal the updates of bd

1 and bd
2 through a multiwrite

block.
In this example, if the system crashes at instance t2, then selective journaling has

already modified block bd
3 in the filesystem, while the ordered mode has modified bd

1,
bd

2, bd
3 in the filesystem. As a result both the ordered and selective journaling modes

leave the filesystem in an inconsistent state after the crash. Additionally, given that
the commit block has not been safely stored on disk before the crash, all four modes

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:12 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 6. We consider three different pairs of data and metadata blocks whose respective buffers are updated
in memory. From left to right, we show a possible timing of block transfers to the journal (j) and the filesys-
tem (fs) across four different filesystem modes. The superscripts d and m of the blocks refer to data and
metadata, respectively, while t1, t2, and t3 refer to three time instances of system crash that we examine.
The square containing c refers to the commit block.

fail to recover the three updates. The example indicates that the multiwrite block helps
reduce the I/O traffic to the journal, while any in-place updates directly applied to the
filesystem may lead to inconsistencies during a crash.

4. EXPERIMENTATION ENVIRONMENT

We implemented wasteless and selective journaling in the Linux kernel version 2.6.18.
Newer Linux releases still lack the functionality that we propose (e.g., ext4 [Kumar
et al. 2008]). In order to add the proposed functions into ext3, we modified 684 lines of
code across 19 files of the original Linux kernel. Members of our team used the modi-
fied system as a working environment for several months. We evaluated our prototype
over a 16-node cluster using x86-based servers running the Debian Linux distribution
and connected through gigabit ethernet.

In most experiments we use nodes with one quad-core 2.66GHz processor, 3GiB
RAM, and two SAS 15KRPM disks (Seagate Cheetah ST3300655SS [Cheetah 2007]).
Each disk has 300GB storage capacity, multisegmented 16MiB cache, 3.4/3.9ms av-
erage read/write seek time, and 122–204MB/s sustained transfer rate. We have the
journal and the data partition on two separate disks, unless we mention otherwise.
Our conclusions were similar in several experiments that we did (not shown) with
two SATA 7.2KRPM disks of 250GB capacity and 16MiB cache. We keep the page
and block sizes equal to 4KiB, while we leave the journal size at the default value
128MiB. In our measurements, we assume synchronous write operations, unless we
specify differently. We keep the default parameters of periodic page flushing: write-
back period equal to 5s and expiration period 30s. Between successive repetitions,
we flushed the page cache by unmounting the journal device and writing the value
3 to the /proc/sys/vm/drop caches. On otherwise idle machines, with up to fifteen ex-
periment repetitions, we ensure that our results have half-length of 90% confidence
interval within 10% of the reported average.

5. PERFORMANCE EVALUATION

We study the performance of microbenchmarks, application-level workloads and traces
from database logs directly running on the modified filesystem. We also evaluate a
stable Linux port of the Log-structured File System, where the entire filesystem is
structured as a log [Rosenblum and Ousterhout 1992]. Additionally, over a multitier

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:13

Fig. 7. (a) At 1Kbps, the journal throughput (lower is better) of both selective and wasteless journaling
approaches that of ordered and writeback modes, unlike data journaling which is several factors higher.
(b) At 1Mbps, wasteless and data journaling have the same journal throughput, while selective journaling
lies between writeback and ordered. (c) In comparison to ordered and writeback at 1Kbps, the other three
modes incur lower filesystem throughput (lower is better), because they batch multiple writes into fewer
page flushes.

configuration based on the PVFS2 distributed filesystem, we examine the impact of
the server filesystem to the parallel workload running across multiple clients. Finally,
we measure the recovery time after a crash.

The default disk settings typically increase performance by allowing a synchronous
write to return when the data reaches the on-disk cache rather than the storage sur-
face. The durability of written data can be improved if one alternatively disables the
on-disk cache, applies flush workloads to the cache, or uses controllers with battery-
backed cache [Nightingale et al. 2006; Rajimwale et al. 2011; Shin et al. 2011]. In most
of our experiments we kept enabled the on-disk caches, but in Section 5.6 we report
the sensitivity of our results to alternative cache configurations.

5.1. Microbenchmarks

For a time period of 5min, we ran a number of threads on the local filesystem. Each
thread appends data to a separate file by calling one synchronous write per second. The
generated aggregate traffic effectively consists of random I/O operations. As a metric of
inefficiency, we use the average throughput (the lower the better) on the journal device
across the different mount modes of ext3. With 1Kbps streams in Figure 7(a), we ob-
serve that as the number of streams increases from one hundred to several thousand,
the journal throughput of data journaling reaches 27MiB/s. On the contrary, selective
and wasteless journaling limit the journal traffic up to 2.9MiB/s and 4.2MiB/s, respec-
tively. The higher throughput of data journaling is expected because it writes to the
journal the entire modified data blocks instead of just the subpage modifications.

At stream rate 1Mbps, wasteless and data journaling are comparable in terms of
journal throughput (Figure 7(b)). Instead, the selective and ordered modes transfer
data updates directly to the filesystem, which reduces their journal throughput by an
order of magnitude or more with respect to wasteless and data journaling. We addi-
tionally examined (not shown) streams of 10Kbps and 100Kbps, and mixed workloads
with multiple stream rates at different ratios. Not surprisingly, the journal throughput
of wasteless journaling varied between the values reported in Figures 7(a–b) according
to the fraction of requests that correspond to each stream rate.

In Figure 7(c), we measure the write throughput of the filesystem device for 1Kbps
streams. The ordered mode synchronously transfers the data updates directly to the
filesystem with costly random I/Os before moving the corresponding metadata to the
journal. Instead, wasteless, selective and data journaling synchronously transfer the

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:14 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 8. (a) With low rates, the write latency (lower is better) of ordered and writeback mode appears orders
of magnitude longer than the other modes. (b) At higher rates, the selective and ordered modes experience
much higher latency. (c) As we read sequentially multiple files that we previously wrote concurrently, read
requests of 4KiB size with NILFS complete in order of magnitude longer time than the different modes of
ext3.

updates to the journal, and only periodically flush the dirty pages to the filesystem.
Thus, multiple writes to the same data block are automatically coalesced into fewer
page flushes, leading to lower traffic at the filesystem. Respectively, we also measured
the processor utilization (not shown) and found it relatively higher for wasteless, se-
lective and data journaling. Nevertheless, processor utilization in these experiments
always remained low, up to 5%.

Ultimately, the journaling of data is expected to reduce the latency of synchronous
writes. As they serve multiple streams of 1Kbps, in Figure 8(a), the ordered and write-
back modes incur orders of magnitude higher latency with respect to the other modes.
Multiple concurrent synchronous requests in ordered mode result in random accesses
to the filesystem device. Thus, data journaling completes a write operation in tens of
milliseconds, but the ordered mode takes several seconds instead. Selective journal-
ing follows wasteless at low rates, and approaches the ordered mode at high rates
(Figures 8(a–b)).

In Figure 8, we also consider a stable Linux port of the Log-structured File System,
where all data and metadata updates are written sequentially as a continuous stream
(NILFS) [Yoshiji et al. 2009]. We find that the write latency of NILFS is comparable to
that of wasteless and data journaling at both 1Kbps and 1Mbps streams. Overall, the
sequential throughput of the journal significantly improves the ability of the system
to store fast the incoming data. In Figure 8(c), we use a thread to sequentially read
one after the other different numbers of files that we previously created concurrently
at 1Mbps each, using NILFS or ext3. In this experiment, we measure the average time
to read one 4KiB block. We observe that NILFS is an order of magnitude slower with
respect to ext3. We attribute this behavior to the fact that NILFS interleaves the writes
from different files on disk, which may lead to poor storage locality during sequential
reads. Our results with 1Kbps streams were similar; NILFS along with the ordered
and writeback modes incur higher read latencies than the other three modes.

In order to examine the generality of our conclusions, we also considered streams
with asynchronous writes. In I/O-intensive workloads, we anticipate that recent up-
dates are flushed to the filesystem as a result of memory pressure, before the page-
cleaning daemon is periodically activated over the cache. In Figure 9, with several
low-rate streams, we notice that the ordered mode leads to write latency that is con-
siderably longer and highly variable in comparison to selective journaling. Essentially,
selective and wasteless journaling move recent updates to the journal device at sequen-
tial throughput, which reduces the latency of ordered and data journaling up to several

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:15

Fig. 9. We depict the average latency of 1000 streams along a sequence of 200 disk writes. Each stream
asynchronously writes once per second 125 bytes (1Kbps). In comparison to selective journaling, the write
latency of ordered mode tends to be highly variable and orders of magnitude longer.

orders of magnitude. Correspondingly, we confirm previous reports that asynchronous
workloads may behave as synchronous under conditions of high update rate [Batsakis
et al. 2008].

5.2. Postmark and Filebench

We use the Postmark benchmark to examine the performance of small writes as seen in
electronic mail, netnews, and web-based commerce [Katcher 1997]. We apply version
1.5 with the option of synchronous writes added by FSL of Stony Brook University. The
experiment duration varies depending on the efficiency of the requested operations. In
order to keep the runtime reasonable, we assume an initial set of 500 files and use 100
threads to apply a total workload of 10,000 mixed transactions with file read, append,
create, and delete operations. We set equal to 5 the ratio of read/append operations
and equal to 9 the ratio of create/delete. We draw the file sizes from the default range
between 500 bytes and 97.66KiB, while I/O request sizes lie in the range between
128 bytes and 128KiB. In Figure 10(a), we observe that the transaction rate (higher is
better) of wasteless journaling gets as high as 738tps. Wasteless journaling combines
the sequential throughput of journaling with the reduced amount of written data to
the journal and the filesystem during small updates. Across different request sizes
between 128 bytes and 128KiB, wasteless journaling consistently remains faster than
the other modes, including data journaling (max rate 663tps). It is notable that waste-
less journaling improves by 85% the performance of ordered mode (max rate 399tps).
Instead, selective journaling with max rate 473tps lies between the data journaling
and ordered modes.

As application-level workloads with asynchronous writes, we used the fileserver
and oltp personalities of Filebench v.1.4.9.1 [2011]. Similarly to SPECsfs, the
fileserver emulates the I/O activity of a simple fileserver using an operation mix of
file create, delete, append, read, write, and attribute accesses. By default, the number
of threads is set to 50 and the mean size of appends is 16KiB. We let the tool automat-
ically configure the number of files to 250K, based on the memory size of the server.
From Table I it follows that the operation throughput (higher is better) of ordered
mode is improved by 12.6% with data journaling and 17.5% with wasteless, respec-
tively. Subsequently, we configured the mean append size of fileserver to 4KiB. Then,

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:16 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 10. (a) With the Postmark benchmark, wasteless journaling consistently outperforms the other modes
in terms of operation transaction rate (higher is better). (b) We consider up to 128 concurrent Jetstress
instances. In comparison to the other modes, selective journaling maintains the latency of log writes lower
up to several orders of magnitude. (c) We examine the three flushing methods of MySQL/InnoDB. With
respect to the ordered mode, wasteless journaling reduces up to an order of magnitude the latency required
to flush the transaction log to the disk.

Table I. Performance of fileserver and oltp Personalities in Filebench. (In fileserver we
alternatively examine mean append size equal to 16KiB (default) and 4KiB.)

Fileserver (16KiB) Fileserver (4KiB) OLTP
Mount Thput Latency Thput Latency Thput Latency
Mode (Ops/s) (ms) (Ops/s) (ms) (Ops/s) (ms)
Ordered 579.2 314.6 576.8 315.5 779.8 182.2
Selective Jrn 493.8 368.9 559.2 326.1 810.2 156.3
Data Jrn 652.2 278.2 700.0 260.1 826.8 146.6
Wasteless Jrn 680.4 266.9 711.0 255.5 825.2 146.7

the respective improvement became 21.4% with data journaling and 23.3% with waste-
less. Selective journaling splits the data writes between the journal and the filesystem
leading to operation throughput below that of ordered.

In the case of the oltp personality, Filebench performs the file system operations
of the Oracle 9i I/O model. By default, it uses 200 reader processes, 10 processes for
asynchronous writing and a synchronous log writer. The tool automatically configures
the file size to 600MiB. The workload involves small random reads and writes, and it
is sensitive to the latency of the moderate-sized (128KiB+) writes to the log involved.
Data and wasteless journaling achieve a limited throughput improvement (6%) with
respect to the ordered mode, while selective journaling lies between the wasteless and
ordered. In the following section, we further examine the logging latency of databases
by considering multiple concurrent workloads [Calder et al. 2011; Mao et al. 2012].

5.3. Groupware and Database Logging

System administrators prefer to devote a separate device for the logs of I/O-intensive
applications for efficiency [Mullins 2002]. Distributed systems place multiple log files
locally at each machine for improved performance and autonomy [Calder et al. 2011;
Gray and Reuter 1993]. Also, database engines optimized for multicore hardware
maintain multiple log files on the same host [Mao et al. 2012]. Given the high cost
of maintaining extra spindles in a machine, we investigate the possibility of serving
multiple log files efficiently over a single disk with appropriate filesystem support. In
the present section, we measure the latency to serve the I/O traffic of log traces that
we gathered from groupware and database workloads.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:17

5.3.1. Jetstress. We consider the Jetstress Tool that emulates the disk I/O load of the
Microsoft Exchange messaging and collaboration server [Jetstress 2007]. We run Jet-
stress for two hours in a Windows Server 2003 system with 1GiB RAM and two SATA
disks in mirrored mode. We used 50 mailboxes with 100MiB each and 1 operation per
second for each mailbox. With these parameter values, we stress the hardware but
also keep the reported measurements within acceptable levels to successfully pass the
Jetstress test. The tool fixes the database cache to 256MiB. Using the MS Process
Monitor, we recorded a system-call trace of the Jetstress I/O activity. The I/O traffic of
the database log contains appends of size from 512 bytes to tens of KiB. The writes are
tagged as uncached, that is, they are configured to bypass the buffer cache and directly
reach the disk.

Over Linux, we use the original interarrival times to replay a 15min extract from
the middle of the log trace. We consider different ext3 modes with the O SYNC option
enabled at file open for synchronous access. Additionally, we consider the ordered mode
with the O DIRECT option at file open to bypass the page cache. In order to study dif-
ferent loads and serve multiple logs from the same device, we varied the number of
concurrent replays from 1 to 128. In Figure 10(b), both selective and wasteless jour-
naling keep write latency up to tens of milliseconds even at high load. Unlike wasteless
journaling that writes to the journal all the affected data modifications, selective dis-
tributes across both spindles—of the journal and filesystem—the incoming appends.
As a result, selective journaling achieves logging latency that is half that of wasteless
or less. At high load, data journaling and ordered mode incur write latency that reaches
hundreds of milliseconds, an order of magnitude longer than our two modes. These re-
sults indicate that the default uncached writes of Jetstress can be outperformed with
appropriate filesystem support. We assume that the durability of synchronous writes
is similar to that of bypassing the page cache.

5.3.2. TPC-C. We also examine the logging activity of the OLTP performance bench-
mark TPC-C [TPCC 1992] as implemented in Test 2 of the Database Test Suite [DBT].
We used the MySQL open-source database system with the default InnoDB storage en-
gine [MySQL]. After consideration of our hardware capacity, we tested a configuration
with 20 warehouses and 20 connections, 10 terminals per warehouse and 500s dura-
tion. Running the benchmark led to insignificant differences of the measured trans-
action throughput among ordered mode, wasteless, and selective journaling. This is
reasonable because most updates in the workload have a size above the write thresh-
old; as a result, the disk operations are sequential regardless of whether they update
the journal or the filesystem.

The InnoDB storage engine supports three different methods for flushing to disk
the transaction log of the database. In default method 1 (Cmt/Disk), the log is flushed
directly to disk at each transaction commit. It is considered the safest to avoid trans-
action loss in case of database, operating system or hardware failure. In method
0 (Prd/Disk), a performance improvement is expected by having the transaction
log written to the page cache and flushed to disk periodically. Finally, in method 2
(Cmt/Cache), the transaction log is written to the page cache at each transaction com-
mit and periodically flushed to disk. A transaction loss is probable in case of operating
system or hardware failure.

During an execution of TPC-C, we collect a system-call trace of the MySQL trans-
action log. Subsequently, we replay a number of concurrent instances of the log trace
over the ordered and wasteless journaling. We measure the average latency to flush
the transaction log to disk. In Figure 10(c), we see that wasteless journaling takes
up to tens of seconds to complete each log flush across the three methods of Inn-
oDB at high load. Instead, at 64 or 128 instances, ordered mode takes hundreds of

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:18 A. Hatzieleftheriou and S. V. Anastasiadis

seconds. We also experimented with selective journaling (not shown) and found it close
to wasteless journaling and well below ordered. The reported behavior was anticipated
because wasteless and selective journaling sequentially store the small appends of the
database log into the system journal.

5.4. MPI-IO over PVFS2

Workload characterization of parallel applications shows the need for improved per-
formance in small I/O requests over small and large files that arise due to normal
execution and checkpointing activity [Carns et al. 2009; Hildebrand et al. 2006].
Especially small requests of 1KiB are known to be problematic because they incur
high rotational overhead, even after they are transformed into sequential [Polte et al.
2008]. Writes of 47001 bytes often also appear in parallel applications and lead to poor
performance due to alignment misfit [Bent et al. 2009]. In this section we examine the
performance gain of a parallel multitier configuration with our mount modes running
directly in the kernel-based filesystem of the storage server.

We chose the PVFS2 as an open-source scalable parallel file system [PVFS2]. We
configured a networked cluster of fifteen quad-core machines with thirteen clients, one
PVFS2 data server and one PVFS2 metadata server. By default, each server uses a
local BerkeleyDB database to maintain local metadata. Through system-call tracing,
we observed that the data server uses a single thread for local metadata updates and
multiple threads for data updates. To focus our study on multistream workloads, at
the data server we placed the BerkeleyDB on one partition of the root disk, and ded-
icated the entire second disk to the user data (filesystem and journal). We fixed the
BerkeleyDB partition to ordered mode and tried alternative mount modes at the data
disk. We used the default thread-based asynchronous I/O of PVFS2. Also, we enabled
data and metadata synchronization, as suggested in the system guide to avoid write
losses at server failures.

We used the LANL MPI-IO Test to generate a synthetic parallel I/O workload on
top of PVFS2 [MPI-IO]. In our configuration, each process writes to a separate unique
file (“N processors to N files”). According to previous studies, this is the write pattern
suggested to application developers for best performance [Bent et al. 2009]. We varied
between 4 and 40 the number of processes on each of the thirteen quad-core clients,
leading to total processes between 52 and 520. We tried 65,000 writes with alternative
write sizes of 1024 and 47001 bytes. In Figure 11, we compare the data throughput of
MPI-IO across different write sizes and loads. With 1KiB writes, wasteless journaling
almost doubles the throughput of ordered mode, while data journaling and selective
lie between the other two. With writes of 47001 bytes, the write throughput remains
about the same across the different modes.

In Figure 12 we depict the total volume of write traffic across the BerkeleyDB,
the journal and the filesystem. At 1KiB requests, data journaling transfers 415MiB
to the journal, while wasteless and selective journaling reduce this amount by 42%
(Figure 12(a)). The ordered mode writes to the journal 139MiB, but transfers to the
filesystem a total of 255MiB. This amount is at least a factor of four higher with re-
spect to the other three modes, which accumulate multiple small writes in memory
before transferring them coalesced into the filesystem. At requests of 47001 bytes, se-
lective journaling closely tracks the ordered mode in terms of total write volume. In
contrast, data and wasteless journaling almost double the total disk traffic by double-
writing the updated data blocks (Figure 12(b)).

In summary, wasteless and selective journaling at small writes substantially im-
prove the performance of ordered mode, while they avoid the excessive journal traffic
of data journaling. At larger write sizes, performance remains similar across the mount

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:19

Fig. 11. We measure the data throughput (higher
is better) of MPI-IO as client of PVFS2. (a) At 1KiB
writes, wasteless journaling almost doubles the
performance of the default ordered mode. (b) At
request size 47001 bytes, the prevalence of writes
above the write threshold keeps similar the rela-
tive performance of the mount modes.

Fig. 12. We measure the disk traffic (lower is better)
of BerkeleyDB (BDB), the journal (Journal) and the
filesystem (Final) over a PVFS2 data server. (a) At
1KiB writes, selective and wasteless reduce the jour-
nal traffic of data journaling and the filesystem traffic
of ordered. (b) At 47001 bytes, wasteless is similar to
data journaling, and selective comparable to ordered
mode, in terms of total disk traffic.

modes, but the journal traffic is higher for the data and wasteless journaling, as they
enforce stricter consistently between the data and metadata updates.

5.5. Recovery Time

In a different experiment, we evaluate the ability of the system to recover quickly after
a system crash, which leaves the journal with log records before the respective updates
are checkpointed to the filesystem. It is known that when the free journal space lies
between 1

4 and 1
2 of the journal size, the original ext3 system automatically checkpoints

the updates to the final location [Prabhakaran et al. 2005a]. In order to make a fair
comparison across the different modes, we use writes that are small enough to prevent
checkpointing before the crash, but also useful for some application classes (e.g., event
stream processing [Brito et al. 2009]). Thus, we start 100 threads, each doing 100
synchronous writes of request size 8 bytes. Then we cut the system power. At the
subsequent reboot, we verify that all modes fully and correctly recover the unique
written data, while in the kernel we measure the duration of filesystem recovery.

In Figure 13, we break down the total recovery across the three passes that scan the
transactions, revoke blocks, and replay the committed transactions, respectively. In
comparison to data journaling, the scan pass of selective and wasteless journaling is an
order of magnitude shorter. This difference arises from journaling entire data blocks
by data journaling, which significantly increases the amount of scanned data. The
replay pass of selective and wasteless journaling takes about 40% more time than the
ordered and writeback modes due to the extra block reads involved. Overall, selective
and wasteless journaling reduce by 20–22% the recovery time of data journaling. In
comparison to these modes, the recovery time of ordered and writeback is an order of
magnitude lower, at the cost of weaker consistency guarantees across the stored data
and metadata.

5.6. Device Issues

We examine the sensitivity of our performance results to the settings of the on-disk
cache and the use of write barriers (Section 3.4). The disk we experimented with
(ST3300655SS) organizes the cache into multiple logical segments. It supports the
SYNCHRONIZE CACHE command to force the transfer of all cached write data to the

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:20 A. Hatzieleftheriou and S. V. Anastasiadis

Fig. 13. In comparison to data journaling, wasteless and selective journaling reduce the scan time of recov-
ery by an order of magnitude, but increase the replay time by about 40%. In total, they reduce the recovery
time of data journaling by 20–22%.

Fig. 14. (a) With disabled the on-disk write caches, wasteless journaling improves the performance of or-
dered mode by a factor of 4 at 1KiB requests and 73% at 128KiB size. (b) We enable the on-disk write
caches and mount the ext3 filesystem with barrier=1. Wasteless journaling improves the performance of
ordered mode by a factor of 4.3 at 1KiB requests. (c) If we enable the on-disk write caches with mount op-
tion barrier=0 (default ext3), the performance of ordered mode improves up to 18% at 1KiB. However, the
relative advantage of wasteless journaling with respect to the ordered mode remains significant (e.g., 3.52
times at 1KiB).

medium, and the FORCE UNIT ACCESS bit to enforce medium access on the basis of in-
dividual reads and writes [Cheetah 2007; SBC 2005]. We kept the read cache always
activated, and used the sdparm utility to configure the write cache. In Figure 14(a)
we disable the on-disk write caches at both the filesystem and the journal, while we
mount the filesystem with the option barrier=0 (default ext3). We run the Postmark
workload with the configuration of Section 5.1. It is not surprising that, for requests
of subpage size 1KiB, wasteless journaling maintains a performance advantage of four
times in comparison to the ordered mode. The relative improvement drops to 50% at
4KiB requests, and becomes 73% at 128KiB requests.

In Figure 14(b), we enable the write caches of the disks and mount the filesystem
with barrier=1. Write barriers ensure that the write cache of the journal device is
flushed before the commit block is written and also flushed to the medium. With en-
abled write caches, the two mount modes improve their performance by 21–53% with
respect to (a). In comparison to the ordered mode, wasteless journaling maintains a
performance advantage up to a factor of 4.25 at 1KiB requests. In Figure 14(c), we

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:21

enable the on-disk write caches and mount the filesystem with barrier=0. In compari-
son to (b), the performance of ordered mode increases from 62tps to 73tps at 1KiB, and
up to 4.6% at larger request sizes. The performance of wasteless journaling without
write barriers (c) remains within 3.5% of that achieved with write barriers (b). Also,
wasteless journaling improves the performance of ordered mode up to a factor of 3.52
at 1KiB. We conclude that enabling the write caches improves the benchmark perfor-
mance, while the use of write barriers incurs a relatively low cost, mostly noticeable in
the ordered mode. In all the other experiments, we kept the write caches enabled on
our disks and used the default ext3 mount option of barrier=0.

Arguably, wasteless journaling takes advantage of the two spindles that store the
journal and the filesystem, respectively. Instead, the ordered mode mostly uses the
spindle of the filesystem and uses the spindle of the journal less. To address this asym-
metry, we also run our stream microbenchmarks over two SAS disks in RAID0 config-
uration with hardware controller support. We examine the two modes with the journal
instantiated as a hidden file rather than a separate partition. With 1Kbps streams
over RAID0, the write latency of ordered mode drops to half, while the write latency
of wasteless does not change. Nevertheless, wasteless journaling remains one to two
orders of magnitude faster than ordered mode across different numbers of streams.
Also, wasteless journaling is up to an order of magnitude faster than the ordered mode
with 1Mbps streams.

6. RELATED WORK

The log-structured filesystem addresses the problems of synchronous metadata up-
dates and small writes by coalescing data writes sequentially to a segmented
log [Rosenblum and Ousterhout 1992]. Previous research reported cleaning overheads
and performance limitations under particular workloads [Seltzer et al. 1995]. Via ex-
periment, we also notice reduced read performance for the log-structured approach in
some cases (Section 5.1). Group commit is a known database logging optimization that
is used to amortize the I/O cost of inserting transaction commits to the log. It accumu-
lates the log records from multiple transactions and periodically flushes them to the
log [DeWitt et al. 1984]. Instead, we emphasize fitting multiple subpage modifications
from concurrent synchronous writes into a single block and investigate the related
benefits in a general-purpose journaled filesystem.

The virtual log uses a tree to logically link noncontiguous disk blocks and uses free
sectors close to the head to minimize the latency of small synchronous writes [Wang
et al. 1999]. StreamFS is a modified version of the log-structured filesystem for stor-
ing high-volume streams [Desnoyers and Shenoy 2007]. Instead, we also handle the
storage traffic of low-rate streams. The hFS filesystem stores metadata and small files
in a separate partition from large files. It differentiates updates by file size rather
than write size as we do [Zhang and Ghose 2007]. In real-time data processing, ap-
plication operators can recover from failures through synchronous logging at high
latency [Kwon et al. 2008]. Recent research combines software transactional mem-
ory with asynchronous logging to optimistically parallelize stream operators [Brito
et al. 2009]. However, this approach is limited to operators that do not perform exter-
nal actions such as I/O [Chandrasekaran and Franklin 2004]. The present work sub-
stantially extends our previously published work [Hatzieleftheriou and Anastasiadis
2011b] through motivating references; detailed description of our design and imple-
mentation; comprehensive experiments across different workloads and device configu-
rations; comparative presentation of representative related research; and a discussion
of our contribution in the context of current technology trends.

In the Ceph distributed filesystem, the storage servers support journaling of both
data and metadata similarly to the data journaling mode of ext3 [Weil et al. 2006].

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:22 A. Hatzieleftheriou and S. V. Anastasiadis

Ceph provides two new journaling modes: (i) In the writeahead mode, a write transac-
tion returns as soon as it reaches the journal. (ii) In the parallel mode, a write trans-
action is written to both the journal and the filesystem, and returns when either of the
two commits. The Ceph designers admit that they write all data twice for safety, and
mention the related performance tradeoff between write latency and write throughput.
For the efficient storage of the journal, they support several hardware options. In our
present work, we extensively examine the resource requirements of data journaling,
and propose two new modes to retain high performance at moderate journal traffic.

The I/O characteristics of parallel applications have led to middleware techniques
(e.g., data sieving or collective I/O) that handle as contiguous the noncontiguous re-
quests from parallel processes [Thakur et al. 1999]. Additionally, checkpointing has
a prominent role in the robust execution of high-performance parallel applications
[Elnozahy and Plank 2004]. The Parallel Log-Structured Filesystem (PLFS) introduces
an interposition layer that writes transparently the checkpoint data from different pro-
cesses to different files, instead of having all data written to a single shared file [Bent
et al. 2009]. The Checkpoint-Restart File System (CRFS) is a user-level filesystem that
aggregates per-file writes in memory [Ouyang et al. 2011b]. When the writes fill up a
preconfigured chunk size (e.g., 4MiB), they are asynchronously transferred to disk.
The above approaches are complementary to our work because they are specialized for
parallel applications or checkpoints, and operate at the middleware or the user level
rather than within a general-purpose filesystem.

High-performance synchronous writes can be handled through specialized hard-
ware, such as battery-backed main memory (NVRAM) [Chen et al. 1996]. WAFL im-
proves write performance by writing file system blocks to any location on disk and in
any order, while deferring disk space allocation with the help of nonvolatile RAM [Hitz
et al. 1994]. Reportedly, NVRAM creates a single point of failure over disk arrays,
while dual-copy NVRAM cache can be costly [Hu et al. 2002]. Disk-specific knowledge
can be exploited to align the data accesses on track boundaries, and avoid rotational
latency and track-crossing overhead [Anand et al. 2008; Schindler et al. 2002]. This ap-
proach operates at the disk level and could complement our methods when we update
the filesystem. Xsyncfs introduces externally synchronous I/O that guarantees dura-
bility to an external observer of application output rather than the application itself
[Nightingale et al. 2006]. If an application does not produce output, xsyncfs commits
data periodically and asynchronously.

In earlier work, Hagmann described metadata update logging in the Cedar File Sys-
tem to improve performance and achieve consistency [Hagmann 1987]. Soft updates
track and enforce metadata update dependencies so that the filesystem can safely de-
lay writes for most file operations [Seltzer et al. 2000]. Unlike our work, both the above
systems only focus on metadata rather than data updates. Subpage updates had pre-
viously been handled efficiently in the context of distributed shared memory by the
Millipage system [Itzkovitz and Schuster 1999]. Instead, we introduce wasteless and
selective journaling as a general filesystem service.

7. DISCUSSION

Across a range of consistency conditions, existing filesystems can be wasteful or un-
derperforming. We propose and implement several improvements that address these
weaknesses without penalizing the behavior of the filesystem beyond a reasonable
increase in disk traffic. The main theme in our proposed design is to improve per-
formance and consistency at low cost. Thus, adding extra spindles to improve I/O
parallelism or a properly-sized NVRAM to absorb small writes, are alternative ap-
proaches likely to reduce latency and raise throughput [Chen et al. 1996; Hitz et al.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:23

1994]. However, such solutions carry some notable drawbacks that primarily have to
do with increased cost and maintenance concerns about additional faulty parts in the
system.

Our effort to favor sequential writes at moderate storage traffic is compatible with
the endurance and performance characteristics of novel devices such as solid-state
drives based on flash memory [Chen et al. 2009]. Flash memory exhibits a number
of attractive features related to low power consumption and improved access perfor-
mance, but also several hardware idiosyncrasies that make its behavior workload de-
pendent. Flash memory usually consists of multiple blocks, each of which contains
several pages. Data is written in units of pages, and space is erased in units of blocks.
Usually a log-structured approach organizes the flash space so that writes incur low
cost [Dai et al. 2004; Woodhouse 2001]. A cleaning process periodically merges valid
pages into clean blocks and reclaims the invalidated ones. The append-only nature of
journaling keeps writes over flash memory relatively cheap [Min et al. 2012]. Simple
block remappings of the metadata can transform journaled updates into a permanent
state without relocations that lead to duplicate writes [Choi et al. 2009]. Native sup-
port of atomic writes at the flash firmware was shown to avoid duplicate writes for
the safe update of the database state from logged deltas of data pages [Ouyang et al.
2011a].

In contrast, we focus on a general-purpose filesystem and coalesce concurrent sub-
page writes to the same storage block of the journal, while we safely delay and batch
small writes to the filesystem. Additionally, with selective journaling we avoid du-
plicate traffic to the device for sequential workloads. Our proposed modes could be
directly applied as a journaled filesystem over flash memory to serve two needs:
(i) reduce the amount of data sequentially written to a flash-based journal device and
the wear it causes [Choi et al. 2009]; (ii) decrease the number of random writes reach-
ing the storage device of a filesystem, since random writes are reported as harmful
for the performance and lifespan of flash memory [Min et al. 2012]. In ongoing work,
we are developing a flash-optimized filesystem to further explore the above observa-
tions [Hatzieleftheriou and Anastasiadis 2011a].

In virtualization environments, the block-based interface of the guest virtual ma-
chine makes small writes appear as full-block updates to the underlying filesystem.
Recently, the interaction of nested filesystems has been experimentally investigated.
Application workloads with reads and writes smaller than 4KiB suffer the most from
the full-page I/Os of the guest [Hildebrand et al. 2011]. The data and metadata of
the guest disk image are treated as data by the host filesystem. Consequently, write-
intensive workloads lead to significant consistency degradation if the filesystem at
the host provides metadata-only journaling. Additionally, the journaling of both data
and metadata is considered impractical due to the performance degradation [Le et al.
2012]. As one solution to the performance problem of data journaling, it was recently
proposed to maintain the journals of multiple virtual machines in the main memory
of the host, presuming that the hardware and virtual machine monitor are sufficiently
reliable [Huang and Chang 2011].

Instead, our proposed modes could be used either as guest filesystems to reduce the
downward write traffic, or as host filesystem to consistently serve the disk images of
multiple virtual machines. Application at the host filesystem would make sense under
the assumption that the guests communicate with the host through a virtualization-
optimized I/O interface that flexibly supports requests of different sizes. Accordingly,
we could safely serve the incoming small writes from multiple concurrent threads run-
ning across different guests and persistently store both the data and metadata of the
guest filesystems. Thus, we anticipate increased consistency in the recovery of virtual
images from crashes and improved guest performance during normal operation. In

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:24 A. Hatzieleftheriou and S. V. Anastasiadis

ongoing research, we investigate possible extensions of the present work for virtual-
ization environments.

8. CONCLUSIONS AND FUTURE WORK

Journaling is a technique commonly used in current filesystems to ensure their fast
recovery in case of system failures. In the present work, we rely on journaling of data
updates in order to ensure their safe transfer to disk at low latency and high operation
throughput without storage bandwidth waste. We design and implement a method that
we call wasteless journaling to merge concurrent subpage writes to the journal into
page-sized blocks. Additionally, we develop the selective journaling method that only
logs updates below a write threshold and transfers the rest directly to the filesystem.
Our experimental results include measurements from streaming microbenchmarks,
application-level workloads, database logging traces, and multistream I/O over a par-
allel filesystem in the local network. Across different cases, we demonstrate reduced
write latency and recovery time, along with improved transaction throughput with
low journal bandwidth requirements. Our plans for future work include extension of
the above methods for disk arrays, virtualization environments, and flash memory
systems.

ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers for their constructive comments that helped us improve the
manuscript.

REFERENCES

Anand, A., Sen, S., Krioukov, A., Popovici, F. I., Akella, A., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H.,
and Banerjee, S. 2008. Avoiding file system micromanagement with range writes. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation. 161–176.

Appuswamy, R., van Moolenbroek, D. C., and Tanenbaum, A. S. 2010. Block-level RAID is dead. In Proceed-
ings of the Workshop on Hot Topics in Storage in File Systems.

Baker, J., Bondç, C., Corbett, J., Furman, J. J., Khorlin, A., Larson, J., Léon, J., Li, Y., Lloyd, A., and
Yushprakh, V. 2011. Megastore: Providing scalable, highly available storage for interactive services.
In Proceedings of the Conference on Innovative Data Systems Research. 223–234.

Batsakis, A., Burns, R. C., Kanevsky, A., Lentini, J., and Talpey, T. 2008. AWOL: An adaptive write opti-
mizations layer. In Proceedings of the USENIX Conference on File and Storage Technologies. 67–80.

Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J., Polte, M., and Wingate, M.
2009. PLFS: A checkpoint filesystem for parallel applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC). 1–12.

Birrell, A. D., Hisgen, A., Jerian, C., Mann, T., and Swart, G. 1993. The Echo distributed file system. Tech.
rep. TR-111, DEC Systems Research Center, Palo Alto, CA.

Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., Ranganathan, K.,
Molkov, D., Menon, A., Rash, S., Schmidt, R., and Aiyer, A. 2011. Apache Hadoop goes realtime at
facebook. In Proceedings of the ACM SIGMOD Conference. 1071–1080.

Bovet, D. P. and Cesati, M. 2005. Understanding the Linux Kernel 3rd Ed. O’Reilly Media, Sebastopol, CA.
Brito, A., Fetzer, C., and Felber, P. 2009. Minimizing latency in fault-tolerant distributed stream processing

systems. In Proceedings of the International Conference on Distributed Computing Systems. 173–182.
Calder, B., Wang, J., Ogus, A., Nilakantan, N., and Skjolsvold, A., et al. 2011. Windows Azure Storage: A

highly available cloud storage service with strong consistency. In Proceedings of the ACM Symposium
on Operating Systems Principles. ACM, New York, 143–157.

Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., and Ludwig, T. 2009. Small-file access in parallel
file systems. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium.
IEEE, Washington, D.C., 1–11.

Chandrasekaran, S. and Franklin, M. 2004. Remembrance of streams past: Overload-sensitive management
of archived streams. In Proceedings of the Conference on Very Large Data Bases. 348–359.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:25

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., and
Gruber, R. E. 2006. Bigtable: A distributed storage system for structured data. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation. 205–218.

Cheetah. 2007. Seagate Cheetah 15K.5 SAS (ST3300655SS). Product Manual.
http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/SAS/100384784e
.pdf.

Chen, F., Koufaty, D. A., and Zhang, X. 2009. Understanding intrinsic characteristics and sys-
tem implications of flash memory based solid state drives. In Proceedings of the Conference on
SIGMETRICS/Performance. 181–192.

Chen, P. M., Ng, W. T., Chandra, S., Aycock, C., Rajamani, G., and Lowell, D. 1996. The Rio file cache: Sur-
viving operating system crashes. In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, New York, 74–83.

Chidambaram, V., Sharma, T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2012. Consistency without
ordering. In Proceedings of the USENIX Conference on File and Storage Technologies. 101–116.

Choi, H. J., Lim, S.-H., and Park, K. H. 2009. JFTL: A flash translation layer based on a journal remapping
for flash memory. ACM Trans. Storage 4, 14:1–14:22.

Dai, H., Neufeld, M., and Han, R. 2004. ELF: An efficient log-structured flash file system for micro sensor
nodes. In Proceedings of the ACM International Conference on Embedded Networked Sensor Systems.
176–187.

DBT. Database test suite. http://osdldbt.sourceforge.net/.
Desnoyers, P. J. and Shenoy, P. 2007. Hyperion: High volume stream archival for retrospective querying. In

Proceedings of the USENIX Annual Technical Conference. 45–58.
DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R., and Wood, D. A. 1984. Implemen-

tation techniques for main memory database systems. In Proceedings of the ACM SIGMOD Conference.
ACM, New York, 1–8.

Elnozahy, E. N. and Plank, J. S. 2004. Checkpointing for peta-scale systems: A look into the future of prac-
tical rollback-recovery. IEEE Trans. Dependable Secure Comput. 1, 2, 97–108.

Filebench. 2011. http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Main Page.
Fryer, D., Sun, K., Mahmood, R., Cheng, T., Benjamin, S., Goel, A., and Brown, A. D. 2012. Recon: Verify-

ing file system consistency at runtime. In Proceedings of the USENIX Conference on File and Storage
Technologies. 73–86.

Gray, J. and Reuter, A. 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, Ch. 9.
Grupp, L. M., Davis, J. D., and Swanson, S. 2012. The bleak future of NAND flash memory. In Proceedings

of the USENIX Conference on File and Storage Technologies. 17–24.
Hagmann, R. 1987. Reimplementing the Cedar file system using logging and group commit. In Proceedings

of the ACM Symposium on Operating Systems Principles. ACM, New York, 155–162.
Hatzieleftheriou, A. and Anastasiadis, S. V. 2011a. JLFS: Journaling the log-structured filesystem for proac-

tive cleaning in flash storage. In Proceedings of the USENIX Annual Technical Conference (poster).
Hatzieleftheriou, A. and Anastasiadis, S. V. 2011b. Okeanos: Wasteless journaling for fast and reliable mul-

tistream storage. In Proceedings of the USENIX Annual Technical Conference. 235–240.
Hildebrand, D., Ward, L., and Honeyman, P. 2006. Large files, small writes, and pNFS. In Proceedings of the

ACM International Conference on Supercomputing. 116–124.
Hildebrand, D., Povzner, A., Tewari, R., and Tarasov, V. 2011. Revisiting the storage stack in virtualized nas

environments. In Proceedings of the Workshop on I/O Virtualization (co-held with USENIX ATC).
Hisgen, A., Birrell, A., Jerian, C., Mann, T., and Swart, G. 1993. New-value logging in the Echo replicated

file system. Tech. rep. SRC 104, Digital Equipment Corp., Palo Alto, CA.
Hitz, D., Lau, J., and Malcolm, M. 1994. File system design for an NFS file server appliance. In Proceedings

of the USENIX Winter Technical Conference. 235–246.
Hu, Y., Nightingale, T., and Yang, Q. 2002. RAPID-Cache–a reliable and inexpensive write cache for high

performance storage systems. IEEE Trans. Parallel Distrib. Syst. 13, 3, 290–307.
Huang, T.-C. and Chang, D.-W. 2011. VM aware journaling: Improving journaling file system performance

in virtualization environments. Softw. Pract. Exper. 42, 3, 303–330.
Itzkovitz, A. and Schuster, A. 1999. MultiView and Millipage - Fine-grain sharing in page-based DSMs. In

Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 215–228.
Jetstress. 2007. Microsoft exchange server jetstress tool.

http://technet.microsoft.com/en-us/library/bb643093.aspx.
Katcher, J. 1997. PostMark: A new file system benchmark. Tech. rep. TR-3022, NetApp.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

2:26 A. Hatzieleftheriou and S. V. Anastasiadis

Kumar, V. A., Cao, M., Santos, J. R., and Dilger, A. 2008. Ext4 block and inode allocator improvements. In
Proceedings of the Linux Symposium. 263–274.

Kwon, Y., Balazinska, M., and Greensberg, A. 2008. Fault-tolerant stream processing using a distributed,
replicated file system. In Proceedings of the Very Large Data Bases Conference. 574–585.

Le, D., Hang, H., and Wang, H. 2012. Understanding performance implications of nested file systems in a
virtualized environment. In Proceedings of the USENIX Conference on File and Storage Technologies.
87–100.

Leung, A. W., Pasupathy, S., Goodson, G., and Miller, E. L. 2008. Measurement and analysis of large-scale
network file system workloads. In Proceedings of the USENIX Annual Technical Conference. 213–226.

Mammarella, M., Hovsepian, S., and Kohler, E. 2009. Modular data storage with Anvil. In Proceedings of
the ACM Symposium on Operating Systems Principles. ACM, New York, 147–160.

Mao, Y., Kohler, E., and Morris, R. 2012. Cache craftiness for fast multicore key-value storage. In Proceedings
of the ACM European Conference on Computer Systems. ACM, New York.

Mesnier, M., Chen, F., Luo, T., and Akers, J. 2011. Differentiated storage services. In Proceedings of the ACM
Symposium on Operating Systems Pinciples. ACM, New York, 57–70.

Min, C., Kim, K., Cho, H., Lee, S.-W., and Eom, Y. I. 2012. SFS: Random write considered harmful in solid
state drives. In Proceedings of the USENIX Conference on File and Storage Technologies. 139–154.

MPI-IO. The Los Alamos National LabMPI-IO Test. http://public.lanl.gov/jnunez/benchmarks/mpiiotest.htm.
Mullins, C. S. 2002. Database Administration: The Complete Guide to Practices and Procedures. Addison

Wesley, Ch. 11, 308.
MySQL. http://www.mysql.com/.
Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., and Rowstron, A. 2009. Migrating server storage

to SSDs: Analysis of tradeoffs. In Proceedings of the ACM European Conference on Computer Systems.
ACM, New York, 145–158.

Nightingale, E. B., Veeraraghavan, K., Chen, P. M., and Flinn, J. 2006. Rethink the sync. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation. 1–14.

Oral, S., Wang, F., Dillow, D., Shipman, G., Miller, R., and Drokin, O. 2010. Efficient object storage journaling
in a distributed parallel file system. In Proceedings of the USENIX Conference on File and Storage
Technologies. 143–154.

Ouyang, X., Nellans, D., Wipfel, R., Flynn, D., and Panda, D. K. 2011a. Beyond block I/O: Rethinking tra-
ditional storage primitives. In Proceedings of the IEEE International Symposium on High Performance
Computer Architecture. IEEE, Los Alamitos, CA, 301–311.

Ouyang, X., Rajachandrasekar, R., Besseron, X., Wang, H., Huang, J., and Panda, D. K. 2011b. CRFS: A
lightweight user-level filesystem for generic checkpoint/restart. In Proceedings of the International Con-
ference Parallel Processing. 375–384.

Polte, M., Simsa, J., Tantisiriroj, W., Gibson, G., Dayal, S., Chainani, M., and Uppugandla, D. K. 2008. Fast
log-based concurrent writing of checkpoints. In Proceedings of the Petascale Data Storage Workshop.

Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2005a. Analysis and evolution of jour-
naling file systems. In Proceedings of the USENIX Annual Technical Conference. 105–120.

Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi, H. S., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. 2005b. IRON file systems. In Proceedings of the ACM Symposium on Operating Systems
Principles. ACM, New York, 206–220.

PVFS2. Parallel virtual file system, version 2. http://www.pvfs.org.
Rajimwale, A., Chidambaram, V., Ramamurthi, D., Arpaci-Dusseau, A., and Arpaci-Dusseau, R. 2011.

Coerced cache eviction and discreet-mode journaling: Dealing with misbehaving disks. In Proceedings
of the International Conference Dependable Systems and Networks.

Rosenblum, M. and Ousterhout, J. K. 1992. The design and implementation of a log-structured file system.
ACM Trans. Comput. Syst. 10, 1, 26–52.

SATA. 2003. Serial ATA: High speed serialized AT attachment. Revision 1.0a, SerialATA Workgroup.
Satyanarayanan, M., Mashburn, H. H., Kumar, P., Steere, D. C., and Kistler, J. J. 1993. Lightweight recov-

erable virtual memory. In Proceedings of the ACM SIGOPS. ACM, New York, 146–160.
SBC. 2005. Working draft project American National Standard, SCSI Block Commands-3, Technical

Committee T10, INCITS. ftp://ftp.t10.org/t10/document.05/05-369r0.pdf.
Schindler, J., Griffin, J. L., Lumb, C. R., and Ganger, G. R. 2002. Track-aligned extents: Matching access

patterns to disk drive characteristics. In Proceedings of the USENIX Conference on File and Storage
Technologies. 259–274.

Sears, R. and Brewer, E. 2006. Stasis: Flexible transactional storage. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation. 29–44.

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

�

�

�

�

�

�

�

�

Improving Bandwidth Efficiency for Consistent Multistream Storage 2:27

Seltzer, M., Smith, K. A., Balakrishnan, H., Chang, J., McMains, S., and Padmanabhan, V. 1995. File system
logging versus clustering: A performance comparison. In Proceedings of the USENIX Annual Technical
Conference. 21–21.

Seltzer, M. I., Ganger, G. R., McKusick, M. K., Smith, K. A., Soules, C. A. N., and Stein, C. A. 2000.
Journaling versus soft updates: Asynchronous meta-data protection in file systems. In Proceedings of
the USENIX Annual Technical Conference. 71–84.

Shin, D. I., Yu, Y. J., Kim, H. S., Eom, H., and Yeom, H. Y. 2011. Request bridging and interleaving:
Improving the performance of small synchronous updates under seek-optimizing disk subsystems.
ACM Trans. Storage 7, 2, 4:1–4:31.

Thakur, R., Gropp, W., and Lusk, E. 1999. Data sieving and collective I/O in ROMIO. In Proceedings of the
IEEE Symposium Frontiers of Massively Parallel Computation. 182–189.

TPCC. 1992. TPC benchmark C standard specification. Tech. rep., Transaction Processing Council.
Tweedie, S. C. 1998. Journaling the Linux ext2fs filesystem. In LinuxExpo. 25–29.
Verissimo, P. and Rodrigues, L. 2001. Distributed Systems for System Architects. Kluwer Academic,

Norwell, MA.
Wang, R. Y., Anderson, T. E., and Patterson, D. A. 1999. Virtual log based file systems for a programmable

disk. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation.
29–43.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C. 2006. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation. 307–320. http://ceph.newdream.net/wiki/OSD journal.

Woodhouse, D. 2001. JFFS: The journaling flash file system. In Proceedings of the Linux Symposium.
Yoshiji, A., Konishi, R., Sato, K., Hifumi, H., Tamura, Y., Kihara, S., and Moriai, S. 2009. NILFS: Continuous

snapshotting filesystem for Linux. NTT Corp. http://www.nilfs.org/en/.
Zhang, Z. and Ghose, K. 2007. hFS: A hybrid file system prototype for improving small file and metadata

performance. In Proceedings of the ACM European Conference on Computer Systems. ACM, New York,
175–187.

Received April 2012; revised July 2012; accepted October 2012

ACM Transactions on Storage, Vol. 9, No. 1, Article 2, Publication date: March 2013.

