
This program is supported by This program is supported by InterregInterreg IIIA GreeceIIIA Greece--AlbaniaAlbania Neighboring Neighboring GrantGrant NoNo 303090/YD7631/03303090/YD7631/03--0707--20072007
Intersafe: Intersafe: TeachingTeaching andand researchresearch inin computercomputer sciencescience withwith applicationsapplications toto publicpublic safetysafety

A general-purpose stream archival facility
could serve as a building block for a variety of
applications, e.g.

network packet monitoring
urban traffic control

General monitoring case:
messages received from massive numbers of
sensors
reception at potentially different rates
data should be stably stored on disk

Existing systems’ inadequacies:
Traditional systems (such as relational DBs):
• not engineered to efficiently store continuous

stream data automatically generated from
sensors in real time

Modern stream storage servers:
• basically designed to store stream files of limited

size for repetitive playback
• inefficient to constantly accumulate continuous

stream data for archival purposes

Monitoring sensors may generate:
high-resolution video and audio streams at
large rates
intermittent variations in environmental
conditions at much lower rates

Summarizing received data should:
be stably stored on the storage facility
not compromise the sequential playback
performance

[1] P. J. Desnoyers and P. Shenoy, Hyperion:
High Volume Stream Archival for Retrospective
Querying, USENIX Annual Technical
Conference, June 2007

[2] V. Prabhakaran et al., Analysis and Evolution
of Journaling File Systems. USENIX Annual
Technical Conference, April 2005, pp. 105-120.

Please contact {axatzhel, stergios}@cs.uoi.gr

More information on this and related projects
can be obtained at www.srg.cs.uoi.gr

Preserve filesystem consistency across system
crashes at minimal recovery time

improvement of operation reliability

Two alternative journaling modes can be used:
metadata-only logging (ordered journaling)
write-ahead logging of file contents (data
journaling)

Data journaling negatively affects disk
throughput in sequential write workloads

doubly stores data at both journal record and
the final location in the file system structures

According to aggregate workload
characteristics:

Ordered journaling efficient for sequential
access
Data journaling efficient for random access

For each individual stream the system should
automatically:

identify the most appropriate journaling
approach
adjust its behavior according to the varying
features of the stream over time

Data journaling inefficient for low-rate streams
Possible solution: differential logging

Poster at Poster at EuroSysEuroSys ‘‘08, Glasgow, UK08, Glasgow, UK

OkeanosOkeanos -- Reliable Archival Storage for Heterogeneous Reliable Archival Storage for Heterogeneous
Stream DataStream Data

Andromachi Hatzieleftheriou and Andromachi Hatzieleftheriou and StergiosStergios V. V. AnastasiadisAnastasiadis
Department of Computer Science, University of Department of Computer Science, University of IoanninaIoannina, GREECE, GREECE

Journaling FilesystemsJournaling Filesystems

Efficient and reliable storage of multiple
concurrent streams

aggregate workload random-access behavior
appends corresponding to individual streams
perfectly sequential

Data received from lowlow--raterate streams:
significant overhead for the immediate
movement from memory to the final disk
location
disk penalized with small writes
flushing data to the final location can be
deferred to a later more convenient time

Data received from higherhigher--raterate streams:
larger amount of data
can be moved directly to their final destination
on disk without compromising the efficiency of
the storage device

IntroductionIntroduction Journaling InefficienciesJournaling Inefficiencies

HighHigh--Rate Stream ResultsRate Stream ResultsStream Rate CharacteristicsStream Rate Characteristics

In ProgressIn Progress

ReferencesReferences

Contact InformationContact Information

Operation sequence in ordered journalingordered journaling:
At each journal commit interval, before the
journal record is updated (metadata only), data
is flushed to the final location
At each pdflush wake-up interval, both data and
metadata are flushed to their final locations

within journal record:
• metadata written synchronously
• sequential writes efficiency
• small amount of data efficiency

within final location:
• metadata written asynchronously
• data written synchronously
• continuous disk traffic inefficient for small writes

Operation sequence in data journalingdata journaling:
At each journal commit interval, the journal
record updated (both data and metadata)
At each pdflush wake-up interval, both data and
metadata are flushed to their final locations

within journal record
• both data and metadata written synchronously
• sequential writes efficiency
• large amount of data inefficient for large

volumes of data

within final location
• both data and metadata written asynchronously
• deferred writes (write-coalescing) efficient for

small writes

0 5 10 15 20 300
2
4
6
8

10
12
14
16
18
20

Number of Streams

D
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.6) /
se

c Bit Rate = 10Mbps

Ext3 :: Ordered journaling
Ext3 :: Data journaling

50 100 150 200 250 300 400 500 6500
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of StreamsD
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.
6) /

se
c

Final Location :: Bit Rate = 1Kbps
Ext3 :: Ordered journaling
Ext3 :: Data journaling

50 100 150 200 250 300 400 500 6500

0.5

1

1.5

2

2.5

Number of StreamsD
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.6) /
se

c External Journal :: Bit Rate = 1Kbps
Ext3 :: Ordered journaling
Ext3 :: Data journaling

Journal traffic:Journal traffic:
Ordered journaling

only metadata logged

Data journaling
sequential writes
more data than needed

Total disk traffic:Total disk traffic:
random-access behavior
ordered journaling better than data journaling

Metadata**

Metadata ** + Data **

Ordered JournalingOrdered Journaling

Data JournalingData Journaling

Journal RecordJournal Record

Metadata **** + Data ****

Ordered JournalingOrdered Journaling

Data JournalingData Journaling

Final LocationFinal Location

Metadata **** + Data **

Metadata**

Metadata ** + Data **

Ordered JournalingOrdered Journaling

Data JournalingData Journaling

Journal RecordJournal Record

Metadata **** + Data ****

Ordered JournalingOrdered Journaling

Data JournalingData Journaling

Final LocationFinal Location

Metadata **** + Data **

** SynchronouslySynchronously

**** AsynchronouslyAsynchronously
** SynchronouslySynchronously

**** AsynchronouslyAsynchronously

LowLow--Rate Stream ResultsRate Stream Results
Final location traffic:Final location traffic:

Ordered journaling
random access
more data than needed

Data journaling
only needed data logged

mailto:stergios}@cs.uoi.gr
http://www.srg.cs.uoi.gr/

Okeanos - Reliable archival storage for
heterogeneous stream data1
Andromachi Hatzieleftheriou*

Stergios V. Anastasiadis
Department of Computer Science
University of Ioannina, GREECE

{axatzhel, stergios}@cs.uoi.gr

 The prevalence of continuous monitoring processes
for system management purposes and general physical site
safety make stream processing applications highly relevant
in modern computing infrastructures. Recently proposed
stream management engines demonstrate the feasibility of
flexibly applying time-series operators on massive numbers
of streams in real time as their data arrive to the system. In
principle, dropping prices in computer hardware should also
make possible the storage of high-resolution or numerous
streams for entire months or years.

50 100 150. 200 250 300 400 500 6500

0.2

0.4

0.6

0.8

1

Number of StreamsD
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.
6) /

se
c Final Location :: Bit Rate = 1Kbps

50 100 150 200 250 300 400 500 6500

0.5

1

1.5

2

2.5

Number of StreamsD
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.
6) /

se
c External Journal :: Bit Rate = 1Kbps

Ext3 :: Ordered journaling
Ext3 :: Data journaling

0 5 10 15 20 300

5

10

15

20

Number of StreamsD
is

k
Th

ro
ug

hp
ut

 (
B

yt
es

 x
 1

0.
6) /

se
c Final Location :: Bit Rate = 10Mbps

Ext3 :: Ordered journaling
Ext3 :: Data journaling

 Prior research has made the case that traditional
systems (such as relational databases or general-purpose file
systems) are not engineered to efficiently store continuous
stream data that are automatically generated from sensors in
real time [1]. Similarly, modern stream storage servers are
basically designed to store stream files of limited size for
repetitive playback rather than constantly accumulating
continuous stream data for archival purposes. In the general
monitoring case, we are interested in receiving messages
from massive numbers of sensors at potentially different
rates and reliably storing their data on disk files before
acknowledging their reception as successful. Some sensors
may generate high-resolution video and audio streams at
large rates while others may send intermittent variations in
environmental conditions at much lower rates. Across all
these heterogeneous cases, we need the received data to be
stably stored on the same storage facility without
compromising the sequential playback performance required
for effective visualization or statistics-gathering processing.
 In our vision, a general-purpose stream archival
facility could serve as a building block for a variety of
applications in the entire range from network packet
monitoring to urban traffic control with the appropriate
indexing functionality built separately at a higher level when
needed. In order to improve their operation reliability,
general-purpose file systems apply journaling techniques to
preserve metadata consistency across system crashes at
minimal recovery time. Some of them additionally use write-
ahead logging of file contents (or data journaling) in order to
prevent small writes from penalizing disk access
performance. Nevertheless, data journaling negatively
affects disk throughput in sequential write workloads due to
doubly storing data at both their temporary journal record
and also their final location in the file system structures
(Figure 1). Alternatively, disk writing of data to its final
location before updating the corresponding metadata can
provide consistency guarantees similar to those of data
journaling without the extra overhead associated with the
latter. Comparisons across different journaling methods with
general-purpose file server traffic have shown that either

1 Supported in part by an Interreg IIIA Greece-Albania Neighboring
Grant No 303090/YD7631/03-07-2007.

ordered data writing or data journaling may lead to better
performance depending on whether the aggregate workload
is sequential or random-access [2]. In our undergoing
research, we focus on the efficient and reliable storage of
multiple concurrent streams whose aggregate workload
demonstrates random-access behavior even though appends
corresponding to individual streams may be perfectly
sequential.

Figure 1. Total disk traffic when writing multiple high-rate
streams of 10Mbps each on Ext3/Linux 2.6.18. The disk
throughput of data journaling is twice that of ordered
journaling and flattens out faster.

Figure 2. Journal and final location traffic generated from low-
rate streams of 1Kbps. Although, in both journaling modes the
disk is penalized with small writes, in contrast to the random-
access final location writes, log records are written sequentially,
which makes differential logging a possible solution to data
journaling inefficiency.

 Data journaling flushes data to stable log storage
and easily restores it after a crash presuming that copying to
the final location can be deferred to a later more convenient
time. This is useful for low-rate streams that individually
would incur significant overhead for their immediate
movement from memory to their final disk location (Figure
2). Instead, the larger amounts of data received from higher-
rate streams can be moved directly to their final destination
on disk without compromising the efficient operation of the
storage device. Ideally, the system should automatically
identify the most appropriate journaling approach for each
individual stream and adjust its behavior according to the
varying features of the stream over time.
 In conclusion, we motivate the necessity for
building systems facilities for the archival storage of
heterogeneous streams with different rate and content
characteristics. Ideally, such facilities should be able to
reliable store massive numbers of streams while requiring
minimal recovery time across crashes and supporting low-
overhead stream playback for the needs of visualization and
statistical processing.
 [1] P. J. Desnoyers and P. Shenoy, Hyperion: High Volume
Stream Archival for Retrospective Querying, USENIX
Annual Technical Conference, June 2007.
[2] V. Prabhakaran et al., Analysis and Evolution of
Journaling File Systems. USENIX Annual Technical
Conference, April 2005, pp. 105-120.

* Graduate student

	Okeanos_poster.pdf
	Slide Number 1

