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Abstract The integration of storage resources across different administrative do-
mains can serve as building block for the development of efficient collaboration
environments. In order to improve application portability across such environ-
ments, we target data sharing facilities that securely span multiple domains at
the filesystem rather than the application level. We introduce the hypergroup as
an heterogeneous two-layer construct, where the upper layer consists of adminis-
trative domains and the lower layer of users from each participating domain. We
use public keys to uniquely identify users and domains, but rely on credentials to
securely bind users and domains with hypergroups. Each domain is responsible
for authenticating its local users across the federation, and employs access control
lists to specify the rights of individual users and hypergroups over local storage
resources. In comparison to existing systems, we show both analytically and exper-
imentally reduced transfer cost of remote authorizations and improved scalability
properties.

1 Introduction

Different administrative domains frequently get involved in federations (or coali-
tions) that require secure data sharing among specific users [4, 7, 17, 30, 41]. In-
frastructures that integrate storage resources from different domains can become
the basis for flexible collaboration environments in several areas such as business,
education, science and engineering. Different types of distributed computing al-
ready support secure resource peering among independent domains. Nevertheless,
most existing applications are not designed to run across multiple machines, let
alone machines that belong to different domains. Data sharing at the filesystem
level has traditionally facilitated the interaction of standalone applications, but
common distributed filesystems usually only run within a single domain.

G. Margaritis · A. Hatzieleftheriou · S. V. Anastasiadis
Department of Computer Science, University of Ioannina, Ioannina 45110, Greece



2 G. Margaritis et al.

Today, secure file sharing across different domains remains a major challenge
from several aspects including the scalable management of identities and access
control [28, 30, 41, 50, 58, 61]. We are considering typical storage resources, such
as the files on a fileserver, whose access control is mainly enforced by a common
operating system. Role-based access control provides system administrators with
a general intermediate construct to scalably assign access permissions to users in
centralized and distributed computing systems [55]. Instead, ordinary operating
systems usually apply discretionary access control, which allows users to spec-
ify resource permissions, for example, through the access matrix model. Alterna-
tively, secure operating systems apply mandatory access control models, where
only trusted administrators are allowed to specify the security policy enforced by
the system [26].

We regard security domain (or simply domain) as an organization with inde-
pendent security policy [39]. We assume that a user domain hosts users that con-
sume resources, while a resource domain accommodates resource providers that
handle access requests. In a federation, each domain often undertakes both the
above functions. We set as a minimal requirement that each user domain main-
tains a local authentication service to identify the local users and their attributes,
such as the groups that have a user as member. Similarly, every resource provider
operates a local authorization service to control the permissions of requested ac-
cesses.

Traditional access control is effectively based on the identity of the requester,
unless the user and resource lie in different domains. Then, a trusted third party
(e.g. an X.509 certificate authority [38]) may certify the identity associated with
a public key, while the resource provider securely maps the certified identity to
specific permissions. Alternatively, a certificate-based approach has each request
carry authorization assertions to the remote resource [60]. In an effort to reduce
the administration cost, the Community Authorization Service (CAS) centrally
gathers at a third-party server full information about the participating users and
the accessible resources. Based on this information, the CAS server issues cer-
tificates of access permissions to the users [48]. In order to reduce the resource
requirements of the central service, the Virtual Organization Membership Service
(VOMS) distributes the management of access rights to the resource domains of
the federation. However, VOMS centrally manages the identities of the individual
users and the membership of the groups to which they belong [2].

Identity management is another challenge for secure cross-domain file shar-
ing [41]. Due to the potentially complex authority infrastructure required by iden-
tity certificates, a public key (or its hash) can be directly used as a globally unique
identity [14,37]. Moreover, given the security risk of mapping identities to actions,
distributed trust management uses credentials to directly bind public keys to ac-
tions [10]. Consequently, a fileserver may locally apply a user-agnostic default pol-
icy that grants access to user requests based on tamperproof permissions carried
by the requests [40].

Despite the availability of several access control models, the access control list
(ACL) remains the main protection mechanism for general-purpose fileservers [26].
Since fileservers manage file permissions locally, they could also handle remote
requests through local ACLs, if the ACLs directly contain users or user groups
from remote domains [30]. The assignment of access permissions to user groups
provides a relatively scalable mechanism to uniformly specify and enforce access
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control for large numbers of users that span multiple domains [41]. Furthermore,
the Self-certifying File System (SFS) periodically replicates group memberships
between the authentication and the authorization service of different domains in
order to avoid complex certification infrastructures and the need of users to attach
attributes (e.g. user groups) to their requests [30].

In a large federation consisting of numerous domains and users, there are po-
tentially several large groups each consisting of multiple subgroup layers across
the different domains [46,50]. Therefore, depending on the modification frequency
of group memberships, cross-domain replication may incur sensitivity to network
transfers and outages. The presumed need for advance propagation of group mem-
berships to a fileserver is based on the assumption that request-carried certificates
should be avoided due to the complexity of the certificate chains that they intro-
duce [7, 9, 30].

In the design range of access control for distributed file services, full support
or complete avoidance of certificates is two (potentially costly) extremes. As a
compromise between the two, we propose to specify ACL permissions in terms of
an heterogeneous two-layer construct that we call hypergroup. The upper layer is
a group of domains, while the lower layer is the union of user groups contributed
respectively by the domains of the upper layer. Then, a remote access request
to a fileserver only carries a credential (signed attribute) of the hypergroups to
which the requesting user belongs. Correspondingly, the credential only contains
hypergroup identities rather than full access permissions, and the fileserver only
needs to know the hypergroups that contain a particular user rather than the full
user membership of each hypergroup.

The heterogeneous structure clearly differentiates hypergroups from traditional
constructs, such as roles and groups. In fact, a domain dynamically creates a hyper-
group and selects the domains of a federation that contribute users or fileservers.
Thus, we can apply access control without central management of the users or
their access rights. The respective certification cost is low for several reasons:

1. The proposed credential only certifies which hypergroups contain a user and a
requested fileserver, rather than all the hypergroups in the federation.

2. The credential only contains hypergroup identities rather than the full user
population of each hypergroup. For example, a fileserver may not need to know
those particular remote users that will never access it.

3. A user domain never needs to disclose externally the entire hierarchy of lo-
cal groups that potentially participate in a hypergroup. Actually, a domain
determines the local users that belong to a hypergroup based on the local ad-
ministration practices independently of the other domains [45]. As a result, we
facilitate administrative autonomy and privacy across the federated domains.

We achieve improved scalability with respect to the CAS centralized approach
because we manage the user identities and access permissions locally at the respec-
tive user domains and resource domains. In comparison to VOMS, we additionally
avoid the centralized management of user identities because we specify the upper
layer of a hypergroup in terms of domains rather than individual users. Similarly,
we avoid the network traffic that SFS requires to propagate group memberships
specified in terms of users; we only propagate across the federation the hypergroup
memberships specified in terms of domains. We further explain the above differ-
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ence when we compare analytically and experimentally our system with alternative
architectures in Sections 6 and 7.

To the best of our knowledge, the present work is the first to propose the
hypergroup as an heterogeneous multi-layer construct with flexible domain mem-
bership to provide scalable decentralized authorization in federated environments.
Additionally, we help fill an important gap in the published literature through the
quantitative comparison of alternative authorization models that we conduct. In
summary, the main contributions of the present work include

– Reconsideration of the security requirements for scalable access control in fed-
erated file services.

– Description of a security model based on the construct of hypergroups that we
introduce.

– Prototype implementation of the Nephele system within the Globus Toolkit
standard middleware environment.

– Analytical comparison and experimental evaluation of the performance prop-
erties of the Nephele prototype with respect to other systems.

In the rest of the manuscript, we describe our trust model in Section 2, and
introduce hypergroups in Section 3. In Section 4 we present the architecture of
Nephele, while in Section 5 we get into details of our prototype implementation.
In Section 6 we analytically compare the storage and transfer requirements of
our architecture with those of other systems. We outline our experimentation
environment in Section 7, and experimentally compare the Nephele prototype
system with CAS. We present previous related work at Section 8, and summarize
our conclusions in Section 9.

2 Goals and Trust Model

We set as research objective to enable collaborations over the Internet through
secure file sharing with low overhead. For several reasons that have to do with
security concerns and transfer overheads, block-based accesses remain challenging
over wide-area networks in comparison to large file downloads [47]. As faster back-
bone networks blur this distinction, we mainly target fine-granularity accesses over
large distances. For that purpose, we set the following goals:

1. Federation support. We facilitate collaboration by allowing domains to dynam-
ically organize federations of file services over the network.

2. Cross-domain operation. We enable the users of one domain to securely access
the fileservers of a remote domain according to the principle of least privi-
lege [52].

3. Fileserver compatibility. For compatibility with common fileservers, we use
access-control lists to manage the access permissions at file and user granu-
larity.

4. Decentralized administration. We distribute the security state across multiple
domains to avoid centralized management of the federation.

5. Communication scalability. We require low communication cost to control ac-
cesses within and across the domains that participate in the federation.

In order to establish mutual trust, the collaborating domains exchange public
keys through a secure external registry. For instance, domain public keys may be
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Fig. 1 Each participating domain contributes to the hypergroup an arbitrary hierarchy of
local users and groups.

distributed via a global registry such as the Security Extensions (DNSSEC) of the
Domain Name Service [19]. However, we leave key distribution outside the scope
of the present work because it is studied as an independent problem elsewhere [37].
We deliberately avoid complex multi-level authentication among the domains, or
long delegation chains across users. Even though academic communities and so-
cial networks commonly allow individual users to easily share data with remote
untrusted users, there are also typical environments (e.g. commercial) where such
flexibility is restricted for security reasons. Accordingly, we regard as acceptable
the involvement of security administrators in the configuration of a federation
without compromising administration scalability.

Multiple domains directly establish a federation through out-of-band negotia-
tion. We rely on public keys (or hashes thereof) to uniquely identify the partici-
pating users and services. We trust the federated domains to correctly identify the
participating local users, while we have the fileservers manage the respective access
permissions. Remote accesses occur over an untrusted network that requires sym-
metric encryption to ensure the confidentiality (and integrity) of the exchanged
data. Secret shared keys can be established online over the public keys of the cor-
responding endpoints [30]. For efficiency, we may cache and reuse secure network
channels to amortize the cost of the initial asymmetric cryptography involved.

We enable remote fileservers to securely determine the applicable access per-
missions based on user credentials that we embed into access requests. However,
we limit credentials to simply contain signed identity attributes of the users rather
than policy statements with permitted actions over the requested file resources.
Thus, our model combines the goals of decentralized administration and fileserver
ACL compatibility.
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Fig. 2 The Nephele architecture keeps the identity authentication of the users separate from
the authorization of their requested actions at the server. The owner domain A signs the
credential of hypergroup H1 with the private key K−1

A , while the user domain B signs the

request credential of user U1 with the private key K−1
B .

3 Hypergroups

The hypergroup is an abstract construct that we introduce to enable flexible and
secure file sharing between different domains. The hypergroup is semantically simi-
lar to the group of traditional operating systems, but it has a two-layer hierarchical
structure that spans multiple domains. The upper layer consists of domains, while
the lower layer contains the users that participate from each domain.

The administrator of a domain can dynamically create and globally identify a
hypergroup as a distinct public key. Correspondingly, the creating domain is called
the owner of the hypergroup and bears the responsibility to maintain the set of
domains that are members of the hypergroup. For simplicity, we assume that the
owner automatically becomes the first member of the hypergroup. Subsequently,
each member domain is responsible to specify the local users that belong to the
hypergroup (Fig. 1). Additionally, we have as members of the hypergroups those
domains that simply contribute file resources rather than users. This makes rela-
tively straightforward to find those hypergroups that contain the domains of both
the user and the accessed resource in a request.

Example. The administrators of the participating domains communicate of-
fline to agree on the hypergroups that will be needed in a federation and the
domain that undertakes the ownership of each hypergroup. Practically, the num-
ber of hypergroups depends on the distinct types of users that participate in the
federation. We consider the hypothetical joint project fedstore which is established
between the domains A, B and C. Let KD denote the unique public key that glob-
ally identifies entity D, and K−1

D the respective private key (Fig. 2). If the domain
A is the project coordinator, it may own the hypergroup Kadmins@fedstore for the
project administrators, Kscientists@fedstore for the research staff, and Kengineers@fedstore

for the engineering personnel. Each of the three hypergroups is defined as a list of
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three domains {KA, KB, KC}, and each of the three domains specifies the local
users that belong to each hypergroup.

4 System Design

In the present section, we describe important parts of the Nephele architecture re-
lated to the functions of authentication, authorization, administration, delegation,
revocation, and accountability.

Authentication. Domains, users, hypergroups, and services are global enti-
ties uniquely identified through their public keys. Thus, a user and a fileserver can
mutually authenticate to each other, and subsequently establish a secure connec-
tion for request processing. Each domain operates a local authentication service
that issues credentials as signed bindings of public keys with specific identity at-
tributes. In particular, the domain that owns a hypergroup issues a hypergroup
credential to enlist the domains that belong to the hypergroup.

We consider home domain of a user the domain that registers the user as local
entity. Accordingly, the home domain of a user issues a user credential to enlist
the hypergroups that contain the user. For reduced communication cost, the home
domain may issue a request credential that only enumerates those hypergroups
which contain both the domains of the user and the fileserver specified in a remote
access request (Fig. 2). We envision filesystem clients that automatically obtain
request credentials without the manual intervention of the user. As a defensive
measure against attacks, credentials have a limited lifetime at the end of which
they become invalid unless they are renewed.

Authorization. Each fileserver specifies the action permissions of local or
remote users and hypergroups. For that purpose, ACLs are commonly used by
fileservers due to the fine granularity, administration flexibility and user account-
ability that they offer. By placing both policy specification and enforcement within
a resource domain, we keep low the amount of inter-domain state transfer. Hyper-
group owners are responsible to periodically inform the current members of the
hypergroup about the respective domain membership. We anticipate this update
to be relatively inexpensive given that the number of domains that belong to a hy-
pergroup should typically not exceed a few tens or hundreds at most. Instead, the
population of users that participate in a hypergroup can be large and change fre-
quently, which would make the corresponding inter-domain update substantially
more costly.

Nephele has each remote access carry a request credential issued by the home
domain of the respective user. The source network address along with the current
time (or a nonce) can be securely attached to the exchanged messages to strengthen
their authenticity and freshness [44]. The remote fileserver executes the access, if
the user or his hypergroup is granted the respective permission in the ACL of
the requested file. Thus, the authorization decision is decentralized across the
three domains involved in an access: (i) The user domain that issues the request
credential, (ii) The hypergroup owner that issues the hypergroup credential, and
(iii) The resource domain that hosts the fileserver.

Administration. Each domain retains the management of the respective enti-
ties –local users, hypergroups or fileservers– that it maintains. The request creden-
tial issued by a domain only exposes to other domains the hypergroups that contain
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a requesting user. As we already explained, each domain applies whatever group-
ing method fits better to identify the users that participate in each hypergroup,
e.g. the role hierarchy or the organizational structure. Consequently, Nephele im-
proves administrative transparency and efficiency because it makes unnecessary
for a domain to disclose (and update) its internal structure to other domains. The
selective participation of domains into hypergroups directly supports the principle
of least privilege [52], while the ability of each domain to create hypergroups natu-
rally decentralizes the federation administration. A local security policy may allow
individual users to create multi-domain hypergroups without the involvement of
an administrator. Nevertheless, the creation of hypergroups and the correspond-
ing user assignment by administrators should adequately handle the maintenance
needs of a typical collaboration.

Delegation. Delegation of access rights across a distributed system is either a
means to execute jobs that involve multiple networked servers with different access
restrictions, or a collaboration mechanism that allows a user to enable resource
sharing with users from remote domains [7, 29, 62]. In Nephele, we grant local
access rights to a remote user by first making a file accessible to a hypergroup,
then adding the home domain of the user to the hypergroup, and finally having the
remote user added to the hypergroup by their local administrator. Therefore, for
the security needs of remote file sharing, we support some limited form of inter-
domain delegation. In particular, our scheme assigns to the hypergroup owner
the specification right of the hypergroup domain membership, while it assigns to
each participating domain the specification right of local user membership in the
hypergroup. Nevertheless, we don’t expect this simple delegation scheme to entail
the deployment concerns previously expressed for complex certificate chains [30].

Revocation. Our model inexpensively provides revocation of access rights
through the time expiration of hypergroup and request credentials. This mecha-
nism implicitly notifies a fileserver that an individual user or an entire domain
no longer belongs to a hypergroup, which automatically invalidates the applica-
bility of the hypergroup access rights to the user or domain. As an option, we
also enforce immediate cancellation of rights through the explicit distribution of
revocation lists from a user domain or a hypergroup owner to a resource domain.
Such a solution provides immediate policy enforcement, but increases the system
cost and complexity with the extra updates required [7, 23].

Accountability. We make a user accountable for his requests through a mu-
tual authentication step required for the initial connection with the fileserver.
Subsequently, each request carries a request credential signed by the respective
home domain. Thus, we can audit the remote resource consumption by each user,
and trace back system misbehaviors to the user and domain that caused them. It
is possible that a compromised domain falsely issues request credentials to unau-
thorized local users, or a hypergroup owner falsely adds unauthorized domains to
the federation. Nevertheless, a user or domain is unable to impersonate a different
entity undetectably, provided that public keys are securely distributed across the
federation. Ultimately, a misbehaving domain can be easily removed from a hy-
pergroup, and similarly the hypergroups of a malfunctioning owner can be entirely
deleted from the fileservers in the federation.

Summary. We can outline the advantages of our approach as follows:
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1. Decentralization. We avoid the requirement from any authority to know all
users, hypergroups or accessible resources.

2. Freshness. User population changes are configurably reflected into user requests
according to the frequency that request credentials are refreshed.

3. Access Cost. Requests only need to carry request credentials that simultane-
ously contain both the domains of the user and the fileserver.

4. Update Cost.We reduce the update overhead at the fileservers by only requiring
them to know the domain membership of the hypergroups.

5 Prototype Implementation

In order to evaluate the authorization cost of hypergroups in comparison to tradi-
tional certificates, we built a prototype of the Nephele architecture based on the
open source implementation of the Community Authorization Service (CAS) [48].
Next, we describe the modifications that we applied to CAS and GridFTP in order
to develop a prototype of the Nephele architecture.

The original CAS server includes a front-end SOAP-accessible web service writ-
ten in the Web Service Definition Language, a back-end commodity relational
database accessed through embedded SQL statements, and Java code that links
these two components [20,48]. The relational database centrally manages a collec-
tion of tables that keep track of users, resources, and service actions, as shown in
Fig. 3(a). Policy statements in the form of relational tuples associate the users with
the objects and the corresponding permitted actions. GridFTP refers to both a
data transport protocol and a collection of client/server tools that allow fast trans-
fer of files over wide-area networks [21]. The original CAS-enabled GridFTP client
uses a short-term identity certificate to request from the CAS server a certificate
extended with assertions of the access rights that apply to the user. The GridFTP
server receives the certificate from the client and applies the embedded access per-
missions to decide if the requested service action is allowed for the identified user.
A prior CAS profiling study attributes a substantial part of the certification cost
to the processing needed by the web services and the encryption library [59].

The CAS architecture simplifies the trust infrastructure because it establishes
mutual trust relationships between the CAS server and each domain, instead of
among all the domains between each other. With hypergroups, we aim to avoid
single points of failure and also have simple trust relationships between each hyper-
group owner and the user or resource domains. We split the original CAS schema
into two collections of tables that we respectively call the User Authentication Ser-
vice (UAS) and the Action Authorization Service (AAS) (Fig. 3(b)). Each domain
has a local UAS to identify the local users and define the user membership of the
local groups. Also, the UAS schema specifies the users and groups that belong to
local and remote hypergroups. Correspondingly, each resource provider operates
its own AAS to manage the access control. Thus, Nephele relocates the definition
of user groups from the central CAS server to the UAS of each domain and the
specification of access control from the central CAS server to the AAS of each
fileserver.

The Nephele prototype issues to the user a request credential that is based
on X.509 certificate, extended with the Security Assertion Markup Language
(SAML) [51]. We implemented the UAS subsystem of Nephele in Java code, which
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(a) Original CAS

(b) Nephele prototype

Fig. 3 (a) The original CAS server centrally maintains the users, objects, actions and their
respective groups along with the permitted actions of the users over the objects. (b) The
Nephele prototype places the user attributes at the User Authentication Service (UAS) of the
user domain, and the ACLs at the Action Authorization Service (AAS) of the resource domain.
We maintain the hypergroups at the UAS of each owning domain.

retrieves from a database the groups that contain the user directly and iteratively
accumulates the groups that contain the user indirectly. The GridFTP client for-
wards the credential along with the file transfer request to the GridFTP server.
During the file request processing, the server parses the SAML extension to ex-
tract the hypergroups of the user and retrieves the applicable access rights from
the local AAS. The above functionality was partially available in the original CAS
implementation across approximately 9K lines of Java code. However, we had to
port it from the Java-based CAS server into the C implementation of the GridFTP
server.

We considered several alternative approaches to (i) Manually translate the
above Java code into C, (ii) Use a library (e.g. Java Native Interface) to directly
invoke the Java implementation from C, or (iii) Expand the web service interface of
CAS and have it directly used by the GridFTP server. We disregarded the manual
code translation due to the effort replication that it involved, and the direct use of
Java code from C due to skepticism about the performance overhead that it would
introduce. Instead, we decided to implement the required database access of the
AAC with a single database statement that would both select the relevant tuples
and join them into the required list of fields at one step. We temporarily store the
returned permissions into a list of objects and allowed actions. Then, the server
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Asymptotic Costs
System Central Storage Periodic Updates Certif. or Credent. Size
Architecture (Num. stored items) (Num. item transfers) (Num. carried items)
CAS O((M +G) ·N) 0 O(M)
VOMS O(G ·N) 0 O(G)
SFS 0 O(D ·G ·N) 0
Nephele 0 O(D2 ·H) O(H)

Table 1 Across four representative architectures, we summarize the number of items involved
in central storage, periodic updates and remote access certificates or credentials. We assume
that D � N and H ≤ G.

matches the list against the requested file and operation. If the match succeeds,
the server proceeds to the execution of the requested operation.

Our prototype is relatively unoptimized, since a typical fileserver implements
the access-control functionality internally instead of assigning it to an external
database. In a real deployment, the client and server domains are also probably
connected over remote links. Then, the request credential is issued by the UAS
at the home domain of the user, while the authorization request is processed by
the AAS that resides at the domain of the fileserver. Therefore, in the common
case, the only interaction needed over the wide-area network is the submission
of the file transfer request to the remote server along with the file transfer itself.
Consequently, in our experimental measurements we focus on the cost of having the
request credential of a user issued by the local UAS, and the cost of a file transfer
request served by the GridFTP server in collaboration with the local AAS.

6 Analysis and Qualitative Comparison

We consider alternative representative architectures to solve the problem of dis-
tributed access control. In the present section, we point out several qualitative
differences among the architectures, and analytically approximate the number of
items that is maintained at a central server or transferred among the domains. We
assume a total number of N users, H hypergroups, G user groups (or roles) and
M resources across a federation of D domains. Based on the system description
of Section 4, it is reasonable to claim that D � N and H ≤ G.

The Community Authorization Service (CAS) represents one endpoint in the
design space of distributed access control [48]. It uses a trusted third-party service
to maintain the identities and properties of users, groups, resources, and allowed
actions per resource and user. The CAS server centrally stores a total of O(N+G+
G ·N +M +M · (N +G)) ≈ O((M +G) ·N) entities assuming that G � N . Since
the server lies outside the user domains, the CAS is accessible over the Internet
through relatively slow connections and protocols. For remote accesses, the user
needs a CAS-issued extended certificate of size O(M) to specify his permissions
over specific resources. In a large federation, the CAS is likely to require substantial
overhead to keep the stored information up to date, and issue certificates prior to
user remote accesses [27].

In contrast, the Virtual Organization Membership Service (VOMS) keeps the
authorization function local at each resource provider [2]. Thus, it removes from the
central server the need to account for the M shared resources and the respective
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actions allowed to each user. However, VOMS remains responsible to centrally
manage the N users and their G groups (or roles) in the federation. For simplicity,
with the symbol G we refer to both groups and roles of VOMS. Asymptotically
the number of centrally stored entities is equal to O(N +G+G ·N) ≈ O(G ·N).
A remote access carries a certificate of size O(G) enlisting the relevant groups
(or roles) of the respective user. Consequently, VOMS is also likely to incur high
overheads for the continuous update of the centrally maintained entities and the
respective issuance of certificates by the central server.

The decentralized user authentication of the Self-certifying File System (SFS)
is another unique point in the related design space [30]. It manages theN users and
their G groups locally at each participating domain, and each resource provider
authorizes incoming remote requests based on the locally cached lists of the remote
users and their groups. Thus, SFS decentralizes the functions of user authentication
and action authorization across the federated domains, but the authentication
service of each user domain has to periodically transfer the updated user groups
to the authorization service of the resource. Essentially, each user domain transfers
O(N + G + G · N) items to all the resource domains, which roughly amounts to
a total of O(D · (N + G + G · N)) ≈ O(D · G · N) item transfers. Practically,
it is only necessary to transfer the group modifications that occurred over time,
which substantially reduces the amount of transferred data. The authorization of a
remote access is done at the resource domain on the basis of the (globally unique)
user identity carried by the request.

The Nephele architecture also favors the decentralization of user authentication
and action authorization across the domains. However, the access control lists of
the resource providers specify the permissions in terms of the H hypergroups, with
each hypergroup containing up to D domains. Thus, the periodic update of the
H hypergroups across the federation involves the transfer of O(H +H ·D) items
from each home domain to the remaining domains. This cost roughly amounts to a
total of O(D · (H+H ·D)) ≈ O(D2 ·H) item transfers. As with the groups of SFS,
it is only necessary to update hypergroup modifications over time. Consequently,
each remote access carries a list of the O(H) hypergroups that have the requesting
user as member.

We summarize the storage and transfer costs of the four architectures in Ta-
ble 1. In comparison to CAS and VOMS, both SFS and Nephele completely avoid
the centralized management of users or resources. Unlike SFS, Nephele additionally
avoids to transfer user lists from one domain to another. Thus, the authentication
and authorization services of Nephele only involve local accesses at each domain,
while the hypergroup updates across the federation contain a small amount of data
that specify domain lists.

7 Performance Evaluation

We quantify the performance characteristics of the CAS service in comparison
to the Nephele prototype that we designed and developed. In our experiments,
we measure the latency to issue Nephele request credentials and authorize file
transfers with respect to the corresponding costs of the original CAS and GridFTP
server. Additionally, we measure the latency to insert users into a CAS server so
that we quantify the potential cost of centralized user management. Hypergroup
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credentials have similar structure to request credentials (Fig. 2), and we do not
evaluate them separately.

7.1 Experimental Environment

For our measurements, we used an isolated cluster of 28 server nodes running the
Debian distribution of Linux kernel version 2.6.18. Each node is equipped with one
quad-core x86 2.33GHz processor, up to 3GB RAM, one enabled gigabit ethernet
port and two 7200RPM SATA disks of 250GB or 500GB each. The nodes are con-
nected with a 48-port gigabit ethernet switch of packet latency 5.4µs and 96Gbps
switching capacity. In our experiments, we used the open-source Globus Toolkit
(GT) version 4.0.7, PostgreSQL object-relational DBMS version 8.4.0, Apache
Ant version 1.7.1, and Java development kit version 1.6.0 14. We use GT in our
comparative experiments because it already supports certificates and is modular
enough to allow the placement of the authentication and authorization functions
at different domains. Nevertheless, prototyping Nephele over GT was a challenging
task that took us several months due to the lack of unified, detailed documentation
about the internal organization of the multithreaded modules that we modified.

We used one machine to exclusively run the database, and another to execute
in turn the CAS, the Nephele or the Gridftp service. In order to concurrently
handle the workload requests, we set equal to 50 the maximum number of threads
in the CAS web service, and equal to 100 the number of database connections
to the web service. We generate the client requests against the above services
with up to 26 separate machines, which make possible to include both low and
high loads in our study. Essentially, our experiments only involve networking and
memory-based processing on otherwise idle machines. After we ensured that our
measurements had negligible variation across different experiment repetitions, we
show averages for the handling of 50 up to 200 requests. In each experiment, we
only take measurements when all concurrent clients become active, after an initial
warm-up period. We also desynchronize the concurrent client requests by starting
the clients one after the other with brief random delays between them.

7.2 Certificates and Credentials

We measured the CAS server latency and throughput to issue extended certifi-
cates for a varying number of objects accessible by the requesting user. We use the
Java-based cas-proxy-init command of the Globus Toolkit (GT). We invoke the ex-
ecutable back-to-back repeatedly on a dedicated client machine in order to request
certificates from the CAS. This load raises the processor utilization on the client
machine above 35%. To avoid client competition between concurrent requests, we
used up to 26 different client machines and ran a corresponding number of re-
quest loops against the same CAS server. In Figure 4(a), we use different curves
to illustrate the throughput achieved to generate extended certificates for different
numbers of accessible objects. It is evident that throughput drops substantially as
the number of accessible objects increases from tens to hundreds.

In Figure 4(b), we observe exponential increase in the delay to generate ex-
tended certificate of a thousand objects as we raise the number of concurrent
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Fig. 4 We examine the performance of a CAS server that issues extended authorization
certificates for number of concurrent clients between 1 and 26. We grant five action rights to
each object. For certificates with large number of objects (e.g. 1000), we observe the server
throughput (a) to drop substantially and the request latency (b) to reach several tens of
seconds, respectively. The heavy load is reflected into higher processor utilization (c) of the
nodes that run the web service (S) and the database (D) of the CAS, as shown for 4, 16 and
26 clients.

User Enrollment into CAS
# Clients Latency (s) Throughput (Rq/s)

1 1.6906 0.5882
2 1.6922 1.1628
4 1.6802 2.2989
8 1.6876 4.5455
16 1.6984 8.6957
26 1.7275 13.2653

Table 2 We enroll new users through multiple concurrent container processes at the CAS
server. We observe that latency remains almost flat and throughput scales approximately
linearly. Nevertheless, registering new users to a third-party entity through the web service
turns out to be a relatively time-consuming procedure.

clients. The latency to generate an extended certificate even for one accessible
object takes about 2s on an otherwise idle server. Despite the high load, the re-
spective processor utilizations at the CAS server and database do not exceed 55%
(Fig. 4(c)). This implies that the processor cores are not fully utilized by the
database engine and the CAS web service. We used the debugging features of
the Globus Toolkit to trace the generation of certificate requests through the web
service and the database. Even at low loads, we found that concurrently arriving
requests queue up at the server to be handled sequentially one after the other
instead of being served in parallel. We attribute this behavior to the interaction
of the CAS system with the scheduling of the Java threads by the Linux kernel.

In Table 2, we measure the latency and throughput of the cas-enroll command
included in the Globus Toolkit to register new users into the CAS server. When we
ran multiple commands concurrently, the CAS server reported errors. We traced
this problem to a feature (potential bug) of the original code that allowed a global
class to be used at the same time by concurrent requests. To overcome this limi-
tation, we initiated multiple web services with different ports on the same server
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Fig. 5 We consider groups with a varying number of objects and fixed number (five) of allowed
actions per object. (a) For large numbers of groups and objects, the CAS certificates may take
minutes to be issued by the server. Instead, the Nephele credentials only take few seconds
even for 1000 groups per user. (b) This behavior is also reflected in the size of the generated
certificate and credential shown for CAS and Nephele. The case of 1000 User Groups is only
shown for the Nephele system due to the excessive size and latency that it incurs in CAS.

machine, all connected to the same database that ran at a different machine. Then,
we let the different concurrent clients each connect to a separate web service at
the server machine. In our measurements, we found the request latencies approx-
imately flat across different numbers of clients, while the throughput increased
almost linearly. When compared to the cas-proxy-init, the command cas-enroll is
less heavyweight because it only carries the identity of one user; this results into
relatively low communication delay and database access cost that remains constant
across different requests. Nevertheless, every user enrollment takes around 1.69s;
this could become a considerable cost for federated environments with numbers
of users in the order of thousands, unless the system provides tools for in-bulk
updates as was suggested for a different system [30].

Subsequently, we considered the latency to generate extended certificates for
a user that belongs to multiple user groups. We assume that each group gets a
fixed number of access permissions per object for a varying number of objects. We
set the number of permissions equal to five (e.g. read, write, execute, sticky and
setuid permissions of Unix). The certificate issued by the CAS server contains all
the access policies that apply to the user. Instead, the certificate issued by the
Nephele system only contains the applicable hypergroups emulated with normal
CAS user groups. In Figure 5(a), we show that the time to issue a certificate takes
up to minutes in the case of CAS when we set both the number of user groups
and objects per group equal to 100. On the contrary, the Nephele system takes flat
time to issue a credential for varying numbers of objects. Furthermore, the latency
remains less than 3s as we increase the groups that contain the requesting user
from 1 to 1000. This behavior is consistent with the size of the issued certificate
that appears in Figure 5(b). The CAS certificate grows up to about 10MB in the
case of 100 user groups and objects per group, while the Nephele credential does
not exceed the size of 100KB even for 1000 user groups.
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Breakdown of Time (ms) to Issue Certificate or Credential (Client - Server)
1 Group 10 Groups 100 Groups 1000 Groups

Method CAS NPH CAS NPH CAS NPH CAS NPH

getCasProxy() [Client Total] 1908 1840 2398 1809 6840 1879 98566 2459
getCredential() 452 452 452 450 450 451 452 448
getSAMLAuthzQueries() 127 127 127 127 128 128 128 127
getCASPort() 356 359 357 357 354 356 376 354
getAssertion() [client] 596 562 764 526 3158 548 85497 708

getAssertion() [Server] 70 26 497 18 2091 25 82793 101
parseAndVerifyAssertion() 154 134 331 137 1881 175 6162 414
embedAssertionInCredential() 187 171 331 176 830 186 5916 372
other 35 35 36 35 39 35 35 35

Table 3 We examine the time spent across different methods of the client and server, when
we request certificates or credentials with the cas-proxy-init command. We compare the CAS
(CAS) and Nephele (NPH) systems for a varying number of user groups. Each user group is
granted 5 action types over 10 different objects. The top row (getCasProxy()[Server]) shows
the total time to generate the extended certificate. The time spent at the CAS server (getAsser-
tion()[Server]) grows up to 83s, while it reaches 101ms in the case of Nephele. It is notable
that most of the Nephele time is spent at the client and the communication between the client
and the server.

In Table 3, we show a breakdown of the time required to generate extended
certificates for different numbers of user groups across the CAS and the Nephele
systems. The top row (getCasProxy()) corresponds to the main method invoked
by the cas-proxy-init command at the client. Beneath we see the time spent across
other important functions at the client and the method getAssertion() called at
the server. Across the different columns we notice that most time is spent in the
invocation of getAssertion() at the client and the server, respectively. In fact, the
Nephele system only spends at the server about 10% of the total time. Instead,
the SOAP-based communication between the client and the server takes about
a third of the total time. We consider crucial this observation about Nephele,
because the generation of the certificate does not have to be done at a third-
party as in the case of CAS (or VOMS). Indeed, we suggest having the user
authentication service (UAS) of the Nephele system located locally at the domain
of each user. Thus, a more lightweight client-server communication in the case
of Nephele could bring the total time to generate certificates much closer to the
server time (getAssertion()[Server]). Overall, the generation of credentials by the
Nephele server only takes few seconds even for large numbers of user groups, unlike
the CAS system where it takes up to minutes depending on the certificate size and
the server load.

7.3 File Requests

We experimented with the url-copy command of the Globus Toolkit to request file
transfers from a GridFTP server. In the original CAS system, url-copy uses an
extended certificate that carries the set of access rights granted to the user. Then,
the GridFTP server extracts the applicable rights from the received extended cer-
tificate and matches them against the requested file and action. We also ran the
command with Nephele credentials that only carry the hypergroups of the request-
ing user. The Nephele system relies on a modified GridFTP server to extract the
hypergroups from the credential and subsequently retrieve the applicable policies
from the server authorization database.
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Fig. 7 We measure the quad-core processor uti-
lization on the CAS GridFTP server (CS), the
Nephele GridFTP server (NS) and the Nephele
database (ND). At 100 accessible objects and 16
clients or more, the system is saturated in both
cases. The bottleneck resource is located at the
database machine for Nephele, and the GridFTP
server in the case of CAS.

In order to evaluate how the file service is affected by the certificate type, we
ran back-to-back requests concurrently from up to 26 client machines against the
same GridFTP server. We vary the number of accessible objects between 1, 10 and
100, while we authorize the requested file transfer to one of the objects. Since we
focus on the authorization cost, we request files with zero data size. In Figure 6, we
compare the latency of the url-copy command over CAS and Nephele. For 1 or 10
accessible objects, increasing the number of concurrent clients leads to comparable
latencies across the two systems. In additional measurements for 1 or 10 objects,
we also found the CAS GridFTP server to operate at processor utilization that
exceeds 92% for 16 or 26 clients; the total utilization of the Nephele GridFTP
server and the database remains up to 77% across the different numbers of clients
(Fig. 7).

Instead, at 100 accessible objects, the file transfer takes 2.5-14.96s with Nephele
and only 0.29-2.4s for CAS. We previously found in Fig. 4(b) that the CAS server
takes an extra latency in the range 2.98-3.57s to generate an extended certificate
for 100 objects. Therefore, the total time to retrieve the permissions and do the
file transfer is comparable across the two systems for up to 8 clients. Instead, for
26 concurrent clients, the CAS system only requires 2.4s for the file transfer, while
Nephele takes 14.96s to retrieve permissions and transfer the file. However, the
CAS server may take minutes to retrieve the permissions for larger numbers of
objects or groups, as we already showed in Fig. 4(b) and Fig. 5.

In order to simplify the comparison with CAS, when a transfer request arrives
at the Nephele GridFTP server, our current implementation also retrieves the
policies that apply to all the objects that are accessible by the hypergroups of the
requesting user before matching the file currently requested. However, it is possible
to optimize the Nephele database statement so that it selects the permissions that
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only match the requested file. Then, the curve of Fig. 6 that applies to 1 object
(instead of 100) better illustrates the actual authorization cost involved in single
file transfers over Nephele. A similar modification could be applied over the CAS
server to generate extended certificates with permissions applicable to one file.
Nonetheless, this approach is not that beneficial for the CAS-based certificates,
because it incurs more frequent requests to the CAS server as the accessed files
change. Another possible improvement that Nephele introduces is the placement
of the authorization databases locally at each file service, which distributes the
authorization load across the fileservers. In fact, ACLs are typically maintained
within the fileserver itself, which further lowers the actual authorization cost in
more mature systems [30, 47, 56].

7.4 Discussion

In order to get insight about the implications of a real deployment over the Inter-
net, we also emulated the impact of higher round-trip times across the network
connections. For that purpose, we used the netem implementation of the NISTnet
package as made available in the Linux kernel distribution. We applied a 50ms
round-trip time from multiple clients to a CAS server handling requests to issue
extended certificates. In comparison to our previous experiments, we noticed an
increase of the request latency in the range 10-21% as a result of the longer round-
trip time. The corresponding increase in the case of Nephele credentials is about
14%. Consequently, we anticipate additional benefits in low service delays if we
apply the Nephele model that keeps the authentication service locally within each
security domain and avoids long round-trip times.

Overall, embedding the access policies into the extended certificate can lead to
high authorization delays at the central CAS server. It is possible to only include
a subset of the applicable policies into the certificate, but then the user has to
request different certificates more frequently depending on the particular files that
he accesses each time. The Nephele approach keeps constant the cost of credential
generation regardless of the number of accessible objects. Nonetheless, Nephele
incurs the extra delay to retrieve the policies online at the GridFTP server while
serving the file transfer request. However, the database access of the Nephele sys-
tem is amenable to several optimizations, which substantially reduce the incurred
latencies in typical production systems.

8 Related Work

Grid Computing. Foster et al. proposed a general architecture to address secu-
rity issues in distributed computational environments [17]. The users access remote
resources through temporary certificates, while domains map remote users to lo-
cal accounts. The maintenance of costly mappings across numerous entities poses
scalability concerns. Instead, the Community Authorization Service (CAS) is a
trusted third party that centrally manages the users, resources and policy state-
ments of the collaboration [48]. Role support in the CAS system was described by
Cannon et al. [11] and Pereira et al. [49]. Nevertheless, the central server of CAS
can become a bottleneck in large installations [27].
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The Virtual Organization Membership Service (VOMS) is an authorization
system for grid environments that distributes access policies across the resource
domains, but it still uses a central server to maintain user identities, group member-
ships and role assignments [2]. A national federated datastore is currently deployed
with VOMS-based certificate management [22]. The ability to map grid credentials
to Unix credentials is available to VOMS through the Local Credential Mapping
Service [33]. As suggested by previous research for a global file system [30], the
Nephele architecture avoids the cost of this mapping by allowing a remote entity
(e.g. hypergroup) to directly appear in the access control list of a local file.

Shibboleth is a single sign-on mechanism for web-based applications. It pro-
vides secure attribute transport that allows a user to access protected resources
at remote domains via a web browser [12]. The GridCertLib library leverages a
Shibboleth infrastructure to generate short-lived certificates for seamless access
to grid resources [42]. Short-lived certificates are also considered attractive for
cross-domain computation scheduling in hybrid environments that run grid mid-
dleware on-demand over virtual machines [8]. A secure virtual enclave identifies a
distributed collection of related resources along with the principals that are au-
thorized to access them [57]. A virtual enclave uses principal recognition rules and
local policies to authorize remote accesses. Rule updates among the enclaves raises
issues of maintenance cost and policy consistency.

Role-based Access Control. The role is a semantic construct that allows
an organization to assign access permissions to users based on job functions [55].
Role-based access control (RBAC) facilitates user-permission assignments, because
roles are relatively persistent with respect to user turnover and task reallocation.
Role hierarchy is a structure of roles that can reflect the line of authority in an
organization [54]. Role-based administration introduces a special hierarchy of ad-
ministrative roles to consistently decentralize the role management [53]. Alterna-
tively, a role hierarchy can be extended and flexibly managed with administrative
roles through the concept of administrative scope [15]. In order to facilitate the as-
signment of permissions to roles, an organizational structure can be directly used
to define pools of users and permissions independently of role hierarchies [45].
Roles differ from user groups, because a group only consists of users, while a role
is a collection of both users and permissions. Moreover, role-based access con-
trol has limited support in the ordinary operating systems and fileservers that we
target [26].

Distributed Filesystems. The Self-certifying File System (SFS) addresses
the problem of user authentication in a global filesystem [30, 37]. The authors
disregard certificate authentication infrastructures and chain discovery algorithms
because they are hard to deploy. Instead, they allow users to create personal groups
that contain remote users and groups. Authorization at the fileserver relies on
access control lists (ACLs) of local and remote users that are updated automat-
ically over the network. The caching of remote group membership lists has been
additionally evaluated elsewhere [24]. A comprehensive survey of decentralized ac-
cess control in distributed filesystems has been published recently by Miltchev et
al. [41]. Previously, Crisis was introduced as a wide-area authentication and access
control system [7]. Certificates signed by a certification authority (CA) are trusted
by both endpoints of a communication channel [38]. Hierarchically organized CAs
allow a principal to believe a certificate endorsed by a foreign domain, if a path of
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trust exists between the local and remote domain [9]. Crisis uses ACLs and relies
on certificates to create groups and specify group membership [43].

The Andrew distributed file system originally defined the access permissions
within a protection domain in terms of users and user groups [56]. In a later version
of Andrew, authentication was handled by the Kerberos system, which provided
inflexible support for cross-domain collaboration [44]. Leung et al. introduce the
Maat system where they describe hash-based capabilities to authorize any number
of clients for any number of files [34]. Secure multi-tenant storage for filesystem
cloud services has been experimentally investigated but without consideration of
the federation dimension across different domains that we examine [32]. A recent
study relies on novel key distribution techniques to manage the user groups of
ACLs over completely insecure fileservers in cloud environments [50]. Instead, we
assume that individual fileservers are relatively secure and rely on hypergroups to
distribute group management among different domains.

Trust Management. Unlike certificate-based security systems that bind keys
to identities, a trust management system uses credentials that bind public keys
to authorized actions and make unnecessary the mappings between identity and
authority [10]. For instance, DisCFS applies trust management credentials to iden-
tify users, files and rights in remote file accesses [40]. Also, trust management
provides a general framework to enforce uniform security policies over large-scale
distributed environments [25]. Clarke et al. introduce algorithms for chain dis-
covery to prove that the public key of a client belongs to the groups of an ACL
or is delegated authority from another key [14]. Li and Mitchell combine trust
management with roles and provide an algorithm for goal-directed chain discovery
over distributed credential storage [35]. Freudenthal et al. propose resource autho-
rization in coalition environments through cross-domain role delegation [18]. In
large-scale networks, Keromytis and Smith suggest to distribute policies through
public-key credentials that enclose authorization attributes, and handle adminis-
tration complexity through multi-layer hierarchical combination of policies [31].
Nephele also uses credentials to securely bind together sets of public keys, but it
stores access permissions locally at each fileserver.

Distributed Systems. Dekker et al. introduce formal requirements for role-
based administration in distributed systems [16]. They also propose a procedure
to deploy policy changes across security domains with different objects. Li et al.
suggest that system-level administrators assign users to groups, while group-level
administrators assign roles to the users of each group [36]. The authors call vir-
tual group a collection of roles contributed by collaborating domains, and propose
algorithms to automatically handle role conflicts. Jøsang et al. provide a compre-
hensive survey of digital identity management for online services [28]. Tolone et al.
compare existing models of access control for collaborative environments through
several assessment criteria [61].

SecPAL is a declarative authorization language that can express policy idioms,
including authority delegation and domain-specific constraints, to automate au-
thorization decisions over distributed systems [6]. The PERMIS system uses X.509
attribute certificates to centrally manage user roles and authorization policies [13].
The Akenti system uses a public-key infrastructure to issue certificates that iden-
tify users, specify policies and assign access rights [60]. SESAME allow users to
access remote domains through certificates that contain role-based privileges [3,29].
The xDAuth system relies on a third-party delegation service to authorize requests
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based on the policy of the resource domain and the authentication of the user do-
main [1]. The OASIS architecture enables remote access through role-membership
certificates that users conditionally accumulate from different services [5, 23]. For
policy flexibility, OASIS replaces ACLs with statements written in a role-definition
language. Overall, the above schemes use permission certificates, roles or central
control to serve the general needs of open distributed systems, while Nephele intro-
duces the hypergroups as a decentralized mechanism for the scalable maintenance
of access control lists in distributed file services (Section 2).

9 Conclusions and Future Work

Distributed access control over federated file services can be hurdled through
heavyweight updates among independent security domains. We introduce hyper-
groups as two-layer constructs of user groups that span multiple domains and
only involve domain membership updates between different domains. Then, we
propose the Nephele architecture to keep the user authentication and action au-
thorization services local at each domain.We built a prototype Nephele system and
comprehensively experimented with authentication and authorization requests for
GridFTP transfers. In comparison to centralized systems, Nephele increases mod-
erately the processing latency of the GridFTP requests, but makes the cost to issue
credentials lower and independent of the number of accessible objects. Reduced
cross-domain update traffic and distribution of the authentication and authoriza-
tion across the domains improve the scalability of the system. We also confirm
analytically the comparative scalability benefits of Nephele with respect to several
representative architectures. Based on the positive outcome of the present study,
in our future work we aim to explore the scalability properties of Nephele across a
broader range of storage and communication technologies, including wireless de-
vices and cloud environments, where the low update traffic of our approach makes
it a potentially attractive access-control method.
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