
Lethe: Cluster-based Indexing for Secure
Multi-User Search

Eirini C. Micheli, Giorgos Margaritis, Stergios V. Anastasiadis

Department of Computer Science and Engineering

University of Ioannina, Greece

{emicheli,gmargari,stergios}@cs.uoi.gr

Abstract—Secure keyword search in shared infrastructures
prevents stored documents from leaking sensitive information
to unauthorized users. A shared index provides confidentiality
if it is exclusively used by users authorized to search all the
indexed documents. We introduce the Lethe indexing workflow
to improve query and update efficiency in secure keyword search.
The Lethe workflow clusters together documents with similar sets
of authorized users, and creates shared indices for configurable
document subsets accessible by the same users. We examine
different datasets based on the empirical statistics of a document
sharing system and alternative theoretical distributions. We apply
Lethe to generate indexing organizations of different tradeoffs
between the search and update cost. With measurements over an
open-source distributed search engine, we experimentally confirm
the improved search and update performance of particular
configurations that we introduce.

Keywords-confidentiality, privacy, access control, data storage,
outsourced services, document sharing, search engines

I. INTRODUCTION

Keyword search is an indispensable service for the au-

tomated text retrieval of diverse storage environments, such

as personal content archives, online social networks, and

scalable cloud facilities. As the accumulated data is becoming

predominantly unstructured and heterogeneous, the role of text

processing remains crucial in big-data analytics [12]. Stor-

age consolidation increasingly moves sensitive data to public

infrastructures, which makes insufficient the confidentiality

achieved by storage access control alone. For instance, the

aggregation of personal data from seemingly unrelated sources

is currently recognized as severe threat to the privacy of

individuals [15].

An inverted index is the typical indexing structure of

keyword search. The stored documents are preprocessed into

a posting list per keyword (or term), which provides the

occurrences (or postings) of the term across all the documents.

A single index shared among multiple users offers search

and storage efficiency. However, it can also leak confidential

information about documents with access permissions limited

to a subset of the users [7], [22], [19], [5]. The problem persists

even if a query is initially evaluated over the shared index, and

the inaccessible documents are later filtered out before the final

result is returned to the user [7].

A known secure solution relies on a shared index to serve

queries by restricting access to the postings of searchable

documents, and filtering out the postings of documents that

are inaccessible to the user [7]. In online social networks,

recent research applies advanced list-processing operators and

cost models to improve secure search efficiency [5]. First, it

organizes the friends of each user into groups based on char-

acteristics of the search workload. During query handling, it

intersects the list of documents that contain a term against the

list of documents authored by the querying user or members

of her friend groups.

A different secure solution partitions the document collec-

tion by search permissions, and maintains a separate index for

each partition [22]. The collection ends up indexed by a limited

number of indices, and query handling is limited to indices

of documents searchable by the querying user. However, the

number of indices increases by minor variations in the search

permissions of different documents. Although smaller indices

can be completely eliminated by replicating their contents

to private per-user indices, this approach increases document

duplication across the indices and the respective update cost.

In this study, we aim to achieve low search latency and

update resource requirements by limiting both the number

of indices per user and the document duplication across the

indices. We group by search permissions the documents into

families, and cluster together the families with similar permis-

sions. We maintain one index for the documents searchable

by a maximal common subset of users in a cluster. Cluster

documents, whose users lie outside the above subset, are

inserted into either per-user private indices or additional multi-

user indices.

Our indexing organization for secure keyword search is

innovative because we (i) skip query-time list filtering by using

prebuilt secure indices, and (ii) effectively reduce the number

of searched or maintained indices through configurable partial

merging of indices for documents with common authorized

users. In Sections II and III we present the Lethe indexing

workflow and our prototype implementation. In Sections IV

and V we show our experimental results and examine pre-

vious related work, while in Section VI we summarize our

conclusions and plans for future work.

II. INDEXING ORGANIZATION

We next provide the basic assumptions and goals of our

work, and describe the stages of the Lethe indexing workflow

that we propose.

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.54

328

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.54

323

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.54

323

�������

	
���������
����
���

�����
��������

���������������
��������

�������
������

	��
� 	
����� ����� ������

������
�����
�����!

"""�������

������#���

$������

�������

������#���

$������

�������

��������
����������
�������

Fig. 1. The four stages of the Lethe workflow.
�������

	
��������
%

Fig. 2. Document families clustered by searcher similarity Ls.

A. Assumptions and Goals

We target collections of text documents in shared storage

environments accessible by multiple users. The system applies

access control to protect the confidentiality and integrity of

the stored documents from actions of unauthorized users. We

designate as owner the user who creates a document, and as

searchers of a document the users who are authorized to search

for the document by keywords and read its contents. The

system preprocesses the documents content into the necessary

indexing structure to enable interactive search through key-

word criteria set by the searchers. In our indexing organization

we set the following goals:

• Security Ensure that the indexing structure provides

confidentiality of the searched documents with respect to

the document contents and their statistical characteristics

(e.g., number of documents, term frequency).

• Search Efficiency Minimize the search latency per query

as measured through an appropriate metric (e.g., average,

high percentile).

• Indexing Cost Minimize the document insertion I/O

activity and indexing storage space required for the entire

collection.

We require that users are authenticated by the system and

receive authorization to only search for documents with the

necessary access permissions. Accordingly, we build a separate

index for each document subset with common access permis-

sions. We examine secure search in multi-user environments

without special consideration of encrypted storage. On its own,

search with encrypted keywords over encrypted documents

does not necessarily hide the search activity and stored content

from the storage provider or unauthorized searchers [22], [27].

B. The Lethe workflow

We introduce the Lethe workflow consisting of four basic

stages for crawling the document metadata, clustering together

the documents with similar searchers, mapping the documents

to indices, and generating the indices (Fig. 1).

Crawler In order to realize our goals, we build an appro-

priate indexing organization based on the document search

permissions. Let a text dataset T = (DT , ST), where DT is

the set of documents, and ST the set of users with search

permissions over one or more documents of DT . First we

crawl the names (e.g., paths) and permissions (e.g., allowed

searchers) of documents in T , and assign unique identifiers to

the members of DT and ST . Then we group into a separate

family f = (Df , Sf) each set of documents Df ⊆ DT with

identical set of searchers Sf ⊆ ST . We define as IT the set

of indices that we build to securely index the DT .

Clusterer We aim to maintain a single index for the

searchers who are common among similar families. Accord-

ingly, we need to identify those families with substantial

overlap in their searcher sets. We address this issue as a

universal clustering problem over the searcher sets of the

families in the entire dataset T (Fig. 2). We parameterize

the clustering method as necessary to assign every family to

exactly one cluster, i.e., without omitting any family as noise.

Let the searcher similarity Ls ∈ [0, 1] be a configurable

parameter to adjust the number of common searchers across

the families of each created cluster. We generate a set CT of

family clusters, where each cluster c ∈ CT contains a set Fc

of families, and each family f ∈ Fc contains the document set

Df ⊆ DT . The document set Dc of cluster c is derived from

the union of the documents contained across all the families

of c, i.e., Dc =
⋃

f∈Fc
Df .

Mapper We strive to map each family f to the minimum

number of indices required to securely handle keyword queries

over the documents in Df , but also minimize the total number

of indices, |IT |, maintained in the system. First, we dedicate to

every searcher u ∈ ST the private collection Pu = (De
u, {u}),

where De
u ⊆ DT is the set of documents exclusively search-

able by user u. Then, we assign to Pu a private index Iu ∈ IT
containing all the documents of De

u.

Let the cluster intersection of cluster c ∈ CT be a pair

Pc = (Di
c, S

i
c), with Di

c = Dc, and Si
c =

⋂
f∈Fc

Sf the

intersection of searchers in the families of Fc. By family

definition, the documents in Di
c are searchable by all the

searchers in Si
c. If Si

c �= ∅, we dedicate a separate index

Ic ∈ IT to the intersection Pc. For every family f ∈ Fc,

we also define a family difference Pf = (Dd
f , S

d
f), where

Dd
f = Df and Sd

f = Sf − Si
c. Hence, Sd

f corresponds to the

searchers of family f not contained in Si
c of Pc. If Sd

f �= ∅,
we have to allow the users u ∈ Sd

f to securely search for

documents d ∈ Dd
f .

An extreme approach to address the above Pf search

problem is to insert all documents d, ∀d ∈ Dd
f , to all private

indices Iu, ∀u ∈ Sd
f . However, a difference Pf may contain

a relatively large number |Dd
f | of documents searchable by a

considerable number |Sd
f | of users. Hence, the above approach

329324324

Summary of Symbols
Symbol Description Properties
CT set of family clusters from dataset T
Dc document set of cluster c =

⋃
f∈Fc

Df

Di
c document set of cluster intersection Pc = Dc

Df document set of family f ⊆ DT
Dd

f document set of family difference Pf = Df

DT document set of dataset T
De

u document set of private collection Pu ⊆ DT
Fc family set of cluster c |Fc| ≤ |Dc|
IT set of indices for dataset T
Ic shared index of cluster intersection Pc ∈ IT
If shared index of family difference Pf ∈ IT
Iu private index of searcher u ∈ IT
Ls searcher similarity ∈ [0, 1]

Mf access bitmap of family f

Pu private collection of searcher u = (De
u, {u})

Pc intersection of cluster c = (Di
c, S

i
c)

Pf difference of family f = (Dd
f , S

d
f)

Rd
f duplication product = |Dd

f | · |Sd
f |

Si
c searcher set of cluster intersection Pc =

⋂
f∈Fc

Sf

Sf searcher set of family f ⊆ ST
Sd
f searcher set of family difference Pf = Sf − Si

c

ST searcher set of dataset T
Td duplication threshold ∈ [0,∞)

TABLE I
WE SUMMARIZE THE DESCRIPTION OF SYMBOLS USED IN LETHE.

could end up to a large number of documents duplicated across

the private indices of many users.

At the other extreme, we could dedicate a separate index

If ∈ IT to every difference Pf with Sd
f �= ∅. However, this

approach runs the risk of generating in the system a large

number of indices, each serving a small number of documents

and searchers.

We introduce the duplication product Rd
f = |Dd

f |·|Sd
f | to ap-

proximate1 the potential document duplication resulting from

indexing a family difference Pf . Subsequently, the decision of

whether we should create a dedicated index If depends on how

Rd
f compares to the configurable duplication threshold Td. We

assume that Rd
f < Td implies an affordable cost of inserting

the documents d, ∀d ∈ Dd
f , to private indices Iu, ∀u ∈ Sd

f .

Instead, Rd
f ≥ Td suggests that devoting a separate index If

to the difference Pf is preferable.

An optimization that we do not examine further, due to its

complexity, is to pursue additional duplication reduction by

intersecting the searchers of the differences Pf , ∀f ∈ F ′
c, for

appropriate F ′
c ⊂ Fc corresponding to cluster c.

Indexer We insert each document d ∈ DT to the appro-

priate indices of IT specified by the above mapping stage. In

order to keep low the necessary I/O activity, we separately

generate each index through a specification of the documents

contained in the index. We have experimentally validated

that the alternative approach of specifying the list of indices

1For increased accuracy of Rd
f over diverse document sizes, we could

replace |Dd
f | with the total number of postings contained in all documents

d ∈ Dd
f .

containing each document leads to higher I/O activity during

index creation due to lower storage locality.

As new documents are added to the collection, we seek to

use existing indices to securely serve all the searchers of each

document. Periodically, we repeat the previous clustering and

mapping stages to optimize the search over the accumulated

document collection. Deletions or modifications of inserted

documents are handled with the necessary changes of the

index contents and potential reorganization of their mapping

to documents. We summarize the description of the symbols

involved in the Lethe workflow at Table I.

III. PROTOTYPE IMPLEMENTATION

Based on the above design, our prototype implementation

consists of four components: (i) crawler, (ii) clusterer, (iii)

mapper, and (iv) indexer. The crawler specifies a unique

identifier for each document, and gathers information about

the permitted document searchers. The clusterer organizes the

documents into families according to their searchers, and then

clusters the families based on their relative searcher similarity

Ls. We insert each document identifier into a hash table by

using as key the respective list of authorized searchers. The

documents with identical searchers belong to the same family

and have their identifiers stored at the same entry of the table.

The searchers of family f are concisely represented through

the access bitmap Mf . The bitmap length is equal to the total

number of users |ST | in the dataset. The bit value of Mf is set

to 1 at the positions specified by the identifiers of the searchers

u ∈ Sf . Families with similar access bitmaps are grouped into

the same cluster, which is represented as a vector of family

identifiers.

Since we do not know in advance the appropriate number

of clusters, we use a clustering algorithm that generates this

number as output (e.g., DBSCAN) rather than requiring it as

input (e.g., K-means) [25]. Within each cluster, the mapper

identifies the cluster intersections and family differences. Each

intersection or difference is specified through the contained

documents and authorized searchers. We assign a dedicated

index to each cluster intersection; we also use a dedicated

index, or the private indices of the respective searchers, for

each family difference according to the duplication threshold

Td. The indexer receives the index specifications from the

mapper, and splits each index into document batches. Then it

communicates with the search engine to insert the documents

of each batch to the respective index after the necessary

initialization. Finally, the search engine serves queries by using

the permitted indices of each authorized searcher.

In our prototype implementation, we use the Elasticsearch

distributed search engine [13]. Elasticsearch is free, open-

source software written in Java and based on the Apache

Lucene library. It uses one or multiple servers (nodes) to store

the indices and serve incoming queries. If an index contains

a large amount of documents, it is split into smaller parts,

called shards. Each shard can be placed on a separate node

or replicated on multiple nodes for improved performance and

availability.

330325325

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 10 20 30 40 50 60 70 80 90100

T
o
ta

l
N

u
m

b
e
r

o
f
In

d
ic

e
s

Searcher Similarity (Ls %)

Docushare (Td = 0)

Intersection Difference Private

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 10 20 30 40 50 60 70 80 90100

T
o
ta

l
N

u
m

b
e
r

o
f
In

d
ic

e
s

Searcher Similarity (Ls %)

Docushare (Td = 500)

Intersection Difference Private

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 10 20 30 40 50 60 70 80 90100

T
o
ta

l
N

u
m

b
e
r

o
f
In

d
ic

e
s

Searcher Similarity (Ls %)

Docushare (Td = 1500)

Intersection Difference Private

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 10 20 30 40 50 60 70 80 90100

T
o
ta

l
N

u
m

b
e
r

o
f
In

d
ic

e
s

Searcher Similarity (Ls %)

DocuShare (Td → ∞)

Intersection Difference Private

(d)

Fig. 3. We consider the types of indices emerging across different Td and Ls values over DocuShare. Intersection indices refer to cluster intersections,
private indices are dedicated to specific searchers, and difference indices correspond to document families in clusters with empty or non-empty intersection.

IV. EXPERIMENTAL EVALUATION

We use the published statistics of a real dataset to generate

a synthetic workload, and apply a prototype implementation

of the Lethe workflow that we developed. Then we measure

the indexing performance over a search engine, and examine

the search and update cost across different parameters. Finally,

we analyze the security and efficiency characteristics of our

approach.

A. Document Datasets

We generate a synthetic document collection with searcher

lists based on published measurements of an existing dataset

(DocuShare [23]). Accordingly, we set the number of users to

200, user groups to 131, documents to 50000, and maximum

group size to 50. We specify the sizes of individual groups

from the DocuShare statistics, and uniformly pick users as

group members.

Based on the DocuShare statistics, we specify the number

of users and groups allowed to search each document; then

we uniformly assign users and groups to each document.

Alternatively, we determine the sizes of user groups based

on the Zipfian distribution with α set equal to 0, 0.7, or 2.2,

but keep the remaining empirical properties of DocuShare. We

evaluate our solution over the first 50000 documents (820MB)

of the GOV2 dataset from the TREC Terabyte track [26].

Our query set consists of 50000 standard queries with average

number of terms per query equal to 2.8.

We implemented the crawler, clusterer and mapper in C/C++

with STL, and the indexer in Perl (v5.10.1). For clustering

we applied the DBSCAN algorithm with MinObjs = 1 and

Eps = Ls [25]. We execute the Lethe workflow and the

Elasticsearch client on a machine with one quad-core x86

2.33GHz processor, 4GB RAM, 1 GbE link, and two 250GB

7.2KRPM SATA disks. We run Elasticsearch on two servers,

each with two quad-core x86 2.33GHz processors, 4GB RAM,

1 GbE link, and two 7.2KRPM SATA disks of capacity 500GB

and 1TB respectively. Each server devotes 2GB of RAM to

the execution of Elasticsearch. All the machines use Debian

v6.0 squeeze with Linux kernel v2.6.32.

B. Measurement Results

We first examine in detail the indexing characteristics of

alternative clustering configurations. Then we measure the

performance of query handling and requirements of index

building for the DocuShare dataset over Elasticsearch. Finally,

we examine the sensitivity of indexing costs to different

parameters and group distributions.

1) Cluster-based Indexing: We applied the Lethe workflow

to organize into clusters the document families of DocuShare.

From measurements of the created clusters (not shown), we

found two extreme cases: one with Ls = 0% leading to 1

cluster of 1475 families and 50000 documents, and another

with Ls = 100% leading to 1475 single-family clusters of

33.9 documents on average each. Instead, a moderate choice

of Ls = 60% generates 929 clusters with 53.8 documents per

cluster.

In Fig. 3, we show the number of intersection (Ic), differ-

ence (If), and private (Iu) indices resulting from different Ls

and Td values. As we vary Td from 0 to ∞ in Figures 3a-

d, the total number of indices drops considerably. Indeed, the

maximum number of indices decreases from 1561 at Td = 0

(Ls = 50%), to 703 at Td = 500 (Ls = 30%), 337 at Td =

1500 (Ls = 40%), and 292 at Td → ∞ (Ls = 50%). From

additional measurements (not shown), we found that most of

the difference indices at Td ≤ 1500 correspond to families

contained in clusters with empty intersection. Higher values

of Td suppress the creation of difference indices, and let more

documents be replicated across the private indices. Therefore,

setting Td →∞ minimizes the total number of indices through

document replication.

However, ideally we need to balance the indices per searcher

against the indices per document in order to achieve high per-

formance in both search and update operations. For instance,

setting Ls = 60% and Td = 1500 lets the mapper specify a

moderate number of 298 indices: 84 shared indices for cluster

intersections, 14 indices for specific families, and 200 private

indices for individual searchers. We next examine the effect

of different indexing configurations to the actual search and

build performance of the search engine.

331326326

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 4 8 16

A
v
g
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Number of Clients

Search Time - DocuShare

Ls=100%,Td=0
Ls=60%,Td=0
Ls=100%,Td→∞

Ls=60%,Td=500
Ls=60%,Td=1500

(a)

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

Q
u
e
ri
e
s
 (

%
)

Response Time (ms)

Search Time (1 client)

Ls=60%,Td=1500
Ls=60%,Td=500
Ls=60%,Td=0
Ls=100%,Td=0
Ls=100%,Td→∞

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(q

/s
)

Number of Clients

Search Performance - DocuShare

Ls=60%,Td=1500
Ls=60%,Td=500
Ls=100%,Td→∞

Ls=60%,Td=0
Ls=100%,Td=0

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

L
s=100%,T

d=0

L
s=60%,T

d=0

L
s=60%,T

d=500

L
s=60%,T

d=1500

L
s=100%,T

d→
∞

 0

 5

 10

 15

 20

 25

 30

T
im

e
 (

m
in

)

D
is

k
 S

p
a

c
e

 (
G

B
)

Index Building - DocuShare

Time
Disk Space

1
2

.9
1

5

1
6

.9
9

6

2
8

.6
2

8
7

4
6

.4
6

6

3
0

7
.2

2
2

0
.5

0
5

0
.6

5
7

2
.0

5
5

3
.3

8
9

2
2

.6
9

0

(d)

Fig. 4. We show (a) the average response time and (b) the cumulative fraction of queries with different response time, (c) the query throughput, and (d) the
time and storage space required for index building of DocuShare over Elasticsearch.

2) Elasticsearch: In Fig. 4, we experimentally consider

indexing the DocuShare dataset using five configurations with

Ls = 60% or 100%, and Td = 0, 500, 1500 or Td →∞. We

examine a number of clients concurrently submitting back-

to-back queries against the Elasticsearch engine. Each client

independently submits 6000 queries uniformly chosen from a

standard pool of 50000 queries. We use the first 1000 queries

for cache warmup in the Elasticsearch nodes, and only report

the response time from the last 5000 queries per client.

In Fig. 4a, we show the average response time mea-

sured over three experiment runs with coefficient of variation

CV<0.07. The response time lies in the range 17.7 - 73.5ms

with 1 client, and the range 21.8 - 774.2ms with 16 clients. It

is remarkable that Ls = 60% with Td = 1500 leads to response

time in the range 17.8 - 21.8ms, and Td = 500 slightly expands

the range to 17.7 - 52.0ms. Essentially, family similarity in

clusters allows multiple documents to be served by shared

intersection or difference indices (Figures 3b,c), leading to low

query response time. On the contrary, Td = 0 creates a large

number of indices (Fig. 3a); as a result, it causes some queries

to take up to several seconds, and increases the measured

average time.

In Fig 4b, we illustrate the cumulative fraction of queries

across the measured values of response time. On the left,

the curves with Ls = 60% and Td = 500 or 1500 almost

overlap with at least 96% of the queries responding within

50ms. At the right side, with Ls = 100% and Td → ∞,

the respective percentage drops below 19%. We attribute this

poor performance of case (100%, ∞) to excessive document

duplication and the resulting required storage space, which

does not allow the indices to simultaneously fit in memory

(further demonstrated by Fig 4d explained below).

We additionally measure the query throughput for 1 to 16

clients in Fig. 4c. We notice that throughput rises by a factor

of 9.2, from 37.0q/s to 339.8q/s, in case (60%, 1500), and

it reaches 201.1q/s in curve (60%, 500). However, in the

remaining cases, throughput stays below 39.7q/s (e.g., Ls =

60 and Td = 0 at 2 clients) as a result of the number of indices

accessed per query, or the total amount of indexing information

involved in query handling.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

G
ro

u
p
s
 (

%
)

Number of Searchers

Searchers Per Group

Zipf(a=2.2)
DocuShare
Zipf(a=0.7)
Uniform

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Uniform

A
v
g
 N

u
m

b
e
r

o
f
S

e
a
rc

h
e
rs

Searchers Per Document

79.04

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Zipf(a=0.7)

A
v
g
 N

u
m

b
e
r

o
f
S

e
a
rc

h
e
rs

Searchers Per Document

68.96

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

DocuShare

A
v
g
 N

u
m

b
e
r

o
f
S

e
a
rc

h
e
rs

Searchers Per Document

60.10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Zipf(a=2.2)

A
v
g
 N

u
m

b
e
r

o
f
S

e
a
rc

h
e
rs

Searchers Per Document

51.84

(b)

Fig. 5. For different distributions of group size, we illustrate (a) the
cumulative fraction of groups containing different numbers of searchers, and
(b) the average number of authorized searchers per document.

We illustrate the resource requirements of index building in

Fig 4d. The elapsed time and storage space vary in the ranges

12.9 - 307.2min and 0.5 - 22.7GB, respectively. Setting Ls

= 100% with Td = 0 or Td → ∞ leads the requirements at

the low or high end of the above ranges. Instead, Ls = 60%

keeps the measured values in between, but close to the low

end, e.g., 46.5min and 3.4GB for Td = 1500. This outcome

makes sense, because Ls = 60% creates a moderate number of

indices as a result of clustering, unlike Ls = 100% that creates

a minimum or maximum number of indices (Fig. 3).

3) Distribution of Group Size: We explore the sensitivity of

index clustering to group membership by considering different

distributions of group size. In Fig. 5a, we illustrate the cumu-

lative fraction of groups corresponding to different numbers

of searchers. Three curves refer to variations of the Zipfian

distribution with α set to 0 (uniform), 0.7, or 2.2, and another

curve refers to the DocuShare empirical statistics. The plot

illustrates that low α values equally distribute the sizes across

the groups, and higher α values narrow down the larger sizes

to fewer groups.

This is further demonstrated in Fig. 5b, from which it

follows that the closer to uniform (α = 0) the distribution gets,

the higher the number of searchers per document becomes. As

332327327

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost - DocuShare

Td = 0
Td = 500
Td = 1500
Td → ∞

(a)

 1

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost - Uniform

Td = 0
Td = 500
Td = 1500
Td → ∞

(b)

 1

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost - Zipfian (a = 0.7)

Td = 0
Td = 500
Td = 1500
Td → ∞

(c)

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost - Zipfian (a = 2.2)

Td = 0
Td = 500
Td = 1500
Td → ∞

(d)

Fig. 6. We examine the number of indices per searcher in the DocuShare dataset, and three variations of it with theoretical distributions of group size.
Increasing α reduces the indices per searcher. The DocuShare empirical distribution effectively lies between α=0.7 and 2.2.

 1

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost - DocuShare

Td → ∞
Td = 1500
Td = 500
Td = 0

(a)

 1

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost - Uniform

Td → ∞
Td = 1500
Td = 500
Td = 0

(b)

 1

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost - Zipfian (a = 0.7)

Td → ∞
Td = 1500
Td = 500
Td = 0

(c)

 1

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost - Zipfian (a = 2.2)

Td → ∞
Td = 1500
Td = 500
Td = 0

(d)

Fig. 7. We illustrate the number of indices per document for the DocuShare dataset and three theoretical distribution of group size. A higher α value in the
Zipfian distribution tends to reduce the indices per document. The empirical distribution of DocuShare effectively lies between α = 0.7 and 2.2.

a result, we anticipate that lower α values require more indices

per searcher or per document to securely handle the queries.
4) Search Cost: The search cost depends on the number

of indices per searcher, which determines the number of

document lists merged for the search result. In Fig. 6a, we

examine different values of Ls and Td over DocuShare. The

indices per searcher vary in the range 35.8 - 79.6 at Td = 500,

and 11.6 - 22.5 at Td = 1500.

Setting Ls = 0% or 100% usually maximizes the indices

per searcher, because it only permits a limited amount of

index sharing within a cluster of multiple diverse families,

or a single family. On the contrary, setting Ls = 60% usually

minimizes the indices per searcher due to index sharing within

cluster intersections and family differences. However, setting

Td → ∞ suppresses the index sharing of family differences,

and inverses the effect of Ls: setting Ls = 0% or 100% actually

minimizes the number of indices per searcher.

In Figures 6b-d we further examine the indices per searcher

for Zipfian group sizes of α = 0, 0.7, or 2.2. At increasing

α, the indices per searcher decreases because more groups

have smaller size (Fig. 5). Therefore, a searcher belongs to

fewer groups, and a smaller number of indices can index the

documents of each searcher. For different Ls and Td values,

we notice the same trends already observed in the original

DocuShare dataset, i.e., Ls = 60% reduces the indices per

searcher for Td �= ∞. Overall, the impact of Ls diminishes

as α increases, because there is less similarity among the

document searchers, and less opportunity for index sharing.
5) Update Cost: The cost of index building depends on

the average number of indices that handle a document, and

have to be updated during document insertion. In Fig. 7a, we

examine the sensitivity of the update cost to Ls and Td over

DocuShare. At Ls = 60%, setting Td = 1500 or Td → ∞
minimizes the number of indices per document to 7.9 and

53.5, respectively. Essentially, higher Td values discourage the

creation of shared indices dedicated to family differences, and

replicate more documents across the private indices. Instead,

the curves remain almost flat when Td = 0 or 500, and the

number of indices drops to about 1 or 5, respectively.

In Figures 7b-d we further consider the sensitivity of the

indices per document to the distribution of the group size.

Increasing α reduces the maximum number of indices per

document from 79.0 (α = 0), to 69.0 (α = 0.7) and 51.8

(α = 2.2). This behavior follows from the decreasing group

sizes appearing at higher α, and the resulting lower document

duplication across the private indices. Within each plot, there is

a low point reached around Ls = 60% for Td = 1500 or →∞,

and a respective peak at Td = 0 or 500. As with the search

cost, the number of indices per document is less sensitive to

Ls in Zipfian distributions of higher α.

If we combine the observations on the search and update

cost, we notice diverse effects across the Ls and Td param-

333328328

eters. In particular, Ls leads the two costs to low or peak

values depending on Td. Instead, as Td grows, it consistently

decreases the search cost, but makes more costly the update.

One reasonable choice is to set Ls = 60% and Td = 1500,

because we combine 7.9 indices per searcher with 11.6 indices

per document in DocuShare. Instead, if we reduce Td to 500

in DocuShare, the search cost increases by a factor of 3 (from

11.7 to 35.8), and the corresponding update cost only drops

by 41% (7.9 to 4.7).

More generally, the values of Ls and Td should lead to the

appropriate balance of indices per searcher and per document

depending on the operation characteristics of the workload and

the optimization objectives of the service provider.

C. Analysis of Results

Our experiments provide strong evidence for an improved

method to achieve efficient and secure keyword indexing. The

method is secure because a query can only use indices of

documents that the searcher is permitted to access [7]. The

method is also efficient for several reasons.

First, we guarantee that the result returned by an index does

not require any filtering to remove documents inaccessible

to the searcher. We only require to merge the results from

multiple indices for ranking purposes, as is typically already

done by parallel or distributed search engines. Thus, we avoid

the extra query-time overhead for list processing required by

previous secure methods [5].

Second, the clustering of document families allows the

service of common searchers in the cluster intersection with a

single index. Thus, we reduce the average number of indices

per searcher, which translates into smaller number of result

lists to be generated and merged during query handling. To the

best of our knowledge, Lethe represents the first application

of index clustering to achieve efficiency in secure keyword

search.

Third, the control of indexing duplication through the

threshold Td prevents the insertion of the same document

to an excessive number of multiple private indices, which

was previously required [22]. Instead, we create extra shared

indices whenever the number of documents and their common

searchers justify the additional indexing cost.

V. RELATED WORK

We compare our work with related research results previ-

ously developed for secure text indexing, remote storage of

encrypted documents, and online social networks.

Secure Indexing Büttcher and Clarke examined relevance-

ranking search on the vector space model [7]. Secure search

must only deliver query results of files searchable by the

querying user. A system-wide index is insecure because it

can leak sensitive information about file and term statistics. A

solution integrates security restrictions into query processing

so that the index manager only returns the parts of posting lists

that are accessible to the user. However, this solution leads to

performance slowdown in some cases.

Singh et al. logically organize the filesystem into access-

control barrels, which are sets of files with identical access

privileges [22]. The system constructs a separate index per bar-

rel, and restricts query handling to permitted barrels. An access

credentials graph is constructed with the access credentials of

users, groups and barrels as nodes, and edges that minimally

connect users to their groups and barrels. The maintained

indices are safely reduced by eliminating barrels of size below

a configured threshold. Instead, we apply a clustering method

to reduce the document duplication across different indices.

Bawa et al. organize the providers of documents into privacy

groups and build bit vectors to summarize the terms of the

documents in each privacy group [2]. A designated host

constructs a privacy-preserving index from the bit vectors

to identify the privacy groups that match a query. Pang et

al. safeguard the content and result of user queries over the

vector space model [18]. The document server uses a partially-

encrypted suppressed index to handle queries, but the system

allows only authorized users to prune false positives and

retrieve the matching documents. Zerr et al. allow the inclusion

of transformed relevance scores in an untrusted server without

disclosing information about the indexed data [27].

In a preliminary work, we previously introduced the Lethe

workflow to create secure configurations of shared inverted

indices [16]. The present paper substantially expands our prior

work most notably (i) through extensive experimental study of

the characteristics of different indexing configuration across a

range of empirical and theoretical datasets, and (ii) with search

and update performance measurements over an open-source

distributed search engine.

Secure search of big data returns the records matching

a query without revealing the query or its results to the

provider [11]. Approximate string matching between two par-

ties is securely implemented without third-party involvement

by estimating whether the distance of two encrypted Bloom

filters lies below a threshold [3].

Encrypted Storage Song et al. describe techniques to

securely search remote documents maintained in encrypted

form [24]. The client queries the server through a key and a

plaintext or encrypted keyword. The server identifies keyword

locations through linear scan of the encrypted documents.

Chang and Mitzenmacher use an encrypted bitmap to encode

the presence of particular keywords in a document [8]. The

user submits a permuted keyword identifier along with a key to

search for specific encrypted documents. Similarly, the Mafdet

system inserts keyed hashes of document keywords into a

Bloom filter at the server [1]. Thus, a client only submits

keyword hashes to search for documents.

CryptDB supports keyword search over individually en-

crypted words of a text column in a relational database [21].

Pervez et al. assume that both files and inverted indices

are stored in encrypted form at the cloud [20]. Authorized

users submit encrypted search criteria to a third party, which

homomorphically encrypts them before their transmission to

the cloud server. The cloud server uses a user-specific key to

re-encrypt the index for query evaluation.

334329329

The Sedic system partitions data according to security

levels, and only replicates sanitized data to the public cloud for

MapReduce processing [28]. PRISM transforms the problem

of keyword search over encrypted files into privacy-preserving

map and reduce tasks [6]. Other related research applies

data possession proofs to prevent file hiding into the cloud

by unauthorized clients [17]. Therefore, the above research

focuses on indexing or processing of encrypted cloud storage.
Online Social Networks Keyword search in social networks

is possible through a set of inverted indices with each index

containing posting lists of documents from particular users.

Access control is enforced through intersection of the search

result with the identifiers (author list) of documents authored

by a particular set of users [4]. Alternative cost models are

examined to optimally include specific friends in the author

list of each user, and the HeapUnion operator is introduced to

efficiently process multiple lists of document identifiers [5].
Hummingbird is a microblogging system that cryptographi-

cally hides from a user the topics on which other users follow

her, and from third parties the fact that a user follows another

user on a specific topic [10]. Cheng et al. enable fine-grain

specification of access-control policies in user-to-user, user-

to-resource and resource-to-resource relationships over social

networks [9]. Hails provides data-flow confinement at the

client and server so that mutually-untrusted web applications

can interact safely [14]. These are general issues of access

control in social networks beyond our study scope.

VI. CONCLUSIONS AND FUTURE WORK

We use clustering to identify documents with similar sets of

authorized searchers. Accordingly, we generate shared indices

for documents with common authorized searchers of sufficient

volume. We experimentally use tunable parameters to combine

low numbers of indices per user and per document. Our

measurements over a distributed search engine confirm that

our indexing organization achieves higher search and update

performance. In our future work, we plan to analytically model

the operation costs, and experimentally explore alternative

clustering methods over a broader dataset collection from

collaborative environments, cloud storage and social networks.

VII. ACKNOWLEDGMENT

This research was supported by the European Union (Eu-

ropean Social Fund - ESF) and Greek national funds through

the Operational Program “Education and Lifelong Learning”

of the National Strategic Reference Framework (NSRF) -

Research Funding Program: Thales. Investing in knowledge

society through the European Social Fund (Project “Cloud9”).

REFERENCES

[1] S. Artzi, A. Kieżun, C. Newport, and D. Schultz. Encrypted keyword
search in a distributed storage system. Technical Report MIT-CSAIL-
TR-2006-10, CSAIL, MIT, Feb. 2006.

[2] M. Bawa, R. J. Bayardo, R. Agrawal, and J. Vaidya. Privacy-preserving
indexing of documents on the network. VLDB J., 18(4):837–856, Aug.
2009.

[3] M. Beck and F. Kerschbaum. Approximate two-party privacy-preserving
string matching with linear complexity. In IEEE Intl. Congr. Big Data,
pages 31–37, Santa Clara, CA, June 2013.

[4] T. A. Bjørklund, M. Götz, and J. Gehrke. Search in social networks
with access control. In Intl. Work. Keyword Search on Structured Data
(KEYS), pages 4:1–4:6, Indianapolis, IN, June 2010.

[5] T. A. Bjørklund, M. Götz, J. Gehrke, and N. Grimsmo. Workload-
aware indexing for keyword search in social networks. In ACM Intl.
Conf. Information and Knowledge Management (CIKM), pages 535–
544, Glasgow, UK, Oct. 2011.

[6] E.-O. Blass, R. D. Pietro, R. Molva, and M. Önen. PRISM - privacy-
preserving search in MapReduce. In Privacy Enhancing Technologies
Symposium, pages 180–200, Vigo, Spain, July 2012.

[7] S. Büttcher and C. L. A. Clarke. A security model for full-text file
system search in multi-user environments. In USENIX Conf. on File and
Storage Technologies, pages 169–182, San Francisco, CA, Dec. 2005.

[8] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In Intl. Conf. Applied Cryptography and
Network Security, pages 442–455, New York, NY, June 2005.

[9] Y. Cheng, J. Park, and R. Sandhu. Relationship-based access control
for online social networks: Beyond user-to-user relationships. In
Intl. Conf. Social Computing/Privacy, Security, Risk and Trust (Social-
Com/PASSAT), pages 646–655, Amsterdam, Netherlands, Sept. 2012.

[10] E. D. Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Hummingbird:
Privacy at the time of Twitter. In IEEE Symp. Security and Privacy,
pages 285–299, San Francisco, CA, May 2012.

[11] K. E. Defrawy and S. Faber. Blindfolded data search via secure pattern
matching. Computer, 46(12):68–75, Dec. 2013.

[12] V. Dhar. Data science and prediction. C. ACM, 56(12):64–73, 12 2013.
[13] An end-to-end search and analytics platform. www.elasticsearch.org.
[14] D. G. Giffin, A. Levy, D. Stefan, D. Terei, D. Maziéres, J. C. Mitchell,

and A. Russo. Hails: Protecting data privacy in untrusted web applica-
tions. In USENIX Symp. Operating Systems Design and Implementation
(OSDI), pages 47–60, Hollywood, CA, Oct. 2012.

[15] M. Jensen. Challenges of privacy protection in big data analytics. In
IEEE Intl. Congr. Big Data, pages 235–238, Santa Clara, CA, June 2013.

[16] E. C. Micheli, G. Margaritis, and S. V. Anastasiadis. Efficient multi-
user indexing for secure keyword search. In Intl. Works. Privacy and
Anonymity in the Information Society (PAIS), pages 390–395, Athens,
Greece, Mar. 2014.

[17] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.
Dark clouds on the horizon: using cloud storage as attack vector and
online slack space. In USENIX Security Symp., pages 65–76, San
Fransisco, CA, Aug. 2011.

[18] H. Pang, J. Shen, and R. Krishnan. Privacy-preserving similarity-based
text retrieval. ACM Trans. Internet Techn., pages 4:1–4:39, Feb. 2010.

[19] A. Parker-Wood, C. Strong, E. L. Miller, and D. D. Long. Security aware
partitioning for efficient file system search. In IEEE Symp. Massive
Storage Systems and Techn., pages 1–14, Incline Village, NV, May 2010.

[20] Z. Pervez, A. A. Awan, A. M. Khattak, S. Lee, and E.-N. Huh. Privacy-
aware searching with oblivious term matching for cloud storage. Journal
of Supercomputing, 63(2):538–560, Feb. 2013.

[21] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: protecting confidentiality with encrypted query processing.
In ACM Symp. Operating Systems Principles (SOSP), pages 85–100,
Cascais, Portugal, Oct. 2011.

[22] A. Singh, M. Srivatsa, and L. Liu. Search-as-a-service: Outsourced
search over outsourced storage. ACM Trans. Web, 3(4):13:1–13:33, Sept.
2009.

[23] D. K. Smetters and N. Good. How users use access control. In Symp.
On Usable Privacy and Security, Mountain View, CA, July 2009.

[24] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In IEEE Symp. Security and Privacy, pages 44–55,
Berkeley, CA, May 2000.

[25] P.-N. Tan, M. Steinbach, and V. Kumar. Data Mining, chapter 8.
Addison-Wesley, May 2005.

[26] TREC terabyte track, 2006. National Institute of Standards and Tech-
nology,http://trec.nist.gov/data/terabyte.html.

[27] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+R: top-k
retrieval from a confidential index. In Intl Conf Extending Database
Technology, pages 439–449, Saint Petersburg, Russia, Mar. 2009.

[28] K. Zhang, Z. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: Privacy-
aware data intensive computing on hybrid clouds. In ACM Conf. Com-
puter and Communications Security (CCS), pages 515–525, Chicago,
IL, Oct. 2011.

335330330

