
International Journal on Digital Libraries manuscript No.
(will be inserted by the editor)

Scale and Performance in Semantic Storage Management
of Data Grids
Stergios V. Anastasiadis∗,∗∗ and Syam Gadde∗∗ and Jeffrey S. Chase∗

∗Department of Computer Science, Duke University, Durham, NC, 27708, USA
∗∗Duke-UNC Brain Imaging and Analysis Center, Durham, NC, 27708, USA

Received: December 1, 2003 / Revised version: May 1, 2004

Abstract. Data grids are middleware systems that offer se-
cure shared storage of massive scientific datasets over wide
area networks. Main challenge in their design is to provide
reliable storage, search and transfer of numerous or large
files over geographically dispersed heterogeneous platforms.
The Storage Resource Broker (SRB) is an example of such a
system that has been deployed in multiple high-performance
scientific projects during the past few years. In the present
paper, we take a detailed look at several of its functional fea-
tures, and examine its scalability using synthetic and trace-
based workloads. Unlike traditional file systems, SRB uses a
commodity database to manage both system and user-defined
metadata. We quantitatively evaluate this decision, and draw
insightful conclusions about its implications to the system
architecture and performance characteristics. We find that
the bulk transfer facilities of SRB demonstrate good scal-
ability properties, and we identify the bottleneck resources
across different data search and transfer tasks. We exam-
ine the sensitivity to several configuration parameters, and
provide details about how different internal operations con-
tribute to the overall performance.

Key words: data grids, middleware systems, distributed stor-
age systems, semantic web

Correspondence to: Stergios V. Anastasiadis, Department of Computer Sci-
ence, Duke University, PO Box 90129, Durham, NC 27708, USA, Email:
stergios@cs.duke.edu

1 Introduction

Applications in scientific and enterprise data mining cur-
rently drive the demand for storing and processing massive
amounts of data [28]. Not surprisingly, accelerating rates
in data acquisition make semantic querying a problem of
crucial importance for the effective operation of data stor-
age systems in both high-performance research and personal
computing environments [7]. Arguably the management of
user- defined and system metadata becomes the most critical
component in the architecture of data sharing services, and
finding ways to streamline the metadata operations can have
significant implications to the efficiency and scalability of
the entire system.

The Storage Resource Broker (SRB) is a data discov-
ery and sharing facility developed at the San Diego Super-
computer Center for serving the storage and computational
needs of modern scientific research [4]. It combines multiple
heterogeneous storage servers with a decentralized database
into a distributed facility that supports secure storage and
search for scientific data. The system allows data owners to
attach semantic information to datasets, upon which autho-
rized users can base keyword and range queries to search
and retrieve data.

During the last five years, several SRB installations have
been deployed to support terabytes of data and millions of
files in astronomy, physics, medical imaging, and molec-
ular sciences [20]. Unlike traditional file system architec-
tures that are usually based on custom- developed data struc-
tures, SRB is a data storage middleware facility that relies
on commodity database software for its metadata manage-
ment. Making a commodity database major component of



2 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

a large-scale distributed facility adds significant flexibility
and extensibility into the features supported by the system.
It also creates major challenges in maintaining the efficiency
of the system operation and amortizing the cost of database
transactions across data accesses.

The semantic description of scientific and commercial
datasets creates a building block towards (i) the construc-
tion of data discovery facilities with richer interfaces, and
(ii) the integration of shared data and applications into dis-
tributed computational workflows [7, 24]. As the world wide
web infrastructure is enriched with data interpretation capa-
bilities, semantic storage systems will become essential for
searching and accessing effectively and securely distributed
data resources. Search engines will index complex datasets
more precisely, while distributed services more easily will
automatically recognize and handle different data formats.

In the present paper, we examine several aspects of the
SRB functionality, and experimentally evaluate its perfor-
mance using both synthetic and trace-based workloads. We
identify performance bottlenecks across different supported
operations, examine interesting scalability properties in spe-
cialized data search and transfer commands, and investigate
the sensitivity of the system responsiveness to the names-
pace organization and the network latency. Additionally, we
measure the efficiency of alternative authentication schemes
that the system supports, and study the behavior of the sys-
tem when it is accessed through a regular file system inter-
face. We find that specific relational database queries and
tables are used repeatedly, which points into potential tar-
gets for further tuning and optimization of the system.

Our main contributions include: (i) clarification of the
architectural and performance objectives of semantic data
storage systems, (ii) comprehensive bottleneck and sensitiv-
ity analysis across different operations and parameters, (iii)
identification of repetitive internal tasks whose optimization
can improve the performance of such systems, and (iv) bet-
ter understanding of the advantages and challenges intro-
duced when using commodity software for metadata man-
agement. Several of our conclusions can be generalized to a
broad range of systems with similar properties, even though
our evaluation is based on a specific hardware and software
setup.

The rest of the paper is organized as follows. Section
2 outlines the architecture of the SRB, while Section 3 de-
scribes the performance metrics and the environment used
for the performance evaluation. Section 4 analyzes the per-
formance measurements that we did, and Section 5 summa-
rizes previous related work. We present our conlusions in
Section 6.

MCAT-enabled�
SRB server�

MCAT�
DB server�

Client�

Meta�
data�

Data�
Vault�

SRB server�

Data�
Vault�

Zone 1�

WAN�

MCAT-enabled�
SRB server�

MCAT�
DB server�

Client�

Meta�
data�

Data�
Vault�

SRB server�

Data�
Vault�

Zone 0�

Fig. 1. Example of federated Storage Resource Broker installation consist-
ing of multiple MCATs.

2 System Overview

The Storage Resource Broker (SRB) combines multiple stor-
age servers with a decentralized database into a data discov-
ery and sharing facility deployed over a wide-area network.
Different clients can access the entire system by attaching to
a specific storage server over the network. A client can sub-
mit queries for finding datasets that satisfy certain search
criteria, and data transfer requests for accessing the discov-
ered datasets. Overall, the functionality of the SRB can be
summarized into the following four components: (i) search
engine, (ii) access control, (iii) access auditing, and (iv) data
storage. Different subsets of the system operations are ac-
cessible through standalone command-line binaries, graph-
ical window environments, application programming inter-
face libraries, and a unix-like file system interface.

2.1 Metadata Search and Management

The Metadata Catalog (MCAT) is an information manage-
ment facility used for managing the metadata of SRB. Both
the data model used by the MCAT for the internal struc-
turing of the metadata, and also the exchange format used
for the metadata communication with the external world are
described by the Metadata Attribute Presentation Structure
(MAPS) specification. Although, in principle, the metadata
information can reside on alternative catalog management
systems, the current implementation only stores the meta-
data as a collection of relational tables managed in a com-
modity database, such as Oracle or DB2.

The metadata information managed by the MCAT con-
tains four different types of entities (i) users, (ii) resources,
(iii) data objects, and (iv) methods. Each user entity is as-
sociated with metadata that include a unique identifier and
the user contact information. The user namespace is par-
titioned across tree- structured directories, called domains.
Also, each user can arbitrarily belong to at least one, or
multiple groups. The storage vault is the pair of a host ad-
dress and a directory path where data can be stored in a stor-
age server. The physical resource associates a name with a



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 3

particular storage vault. Multiple physical resources can be
grouped into a logical resource with abstract properties re-
lated to data replication or striping, and write-once or read-
only access permissions.

Each data object corresponds to an actual data entity.
Supported data objects include files accessible to Unix and
Windows file servers, FTP and HTTP servers, or database
objects. Object system attributes include a unique identifier,
the object name, the owner, the physical resource, and the
access location of the data. Other related metadata include
the data size, the access timestamps, and the replica number
for the case a data object is replicated. The data objects are
grouped into tree- structured directories called collections.
Each collection can contain collections that reside on differ-
ent physical resources. Methods provide application- spe-
cific computation through well-defined input and output in-
terfaces. Invocation of remote execution is possible through
special calling interfaces.

Each collection and data object can be associated with a
user-defined set of attributes. The system currently supports
only string and integer attributes, whose number is only lim-
ited by the underlying implementation. A metadata query
can return the attribute values of a particular object. Alter-
natively, a query can request the identifiers of all the objects
that satisfy specific conditions on the attribute values.

2.2 Storage Management

The SRB middleware provides unified access to multiple
distributed storage servers connected in peer-to-peer fash-
ion. Both the SRB storage servers and the metadata are par-
titioned into zones with each zone managed by a single Meta-
data Catalog (MCAT). Each MCAT is accessible by a single
MCAT- enabled storage server, and is capable of caching
metadata of other MCATs. A client binds to a single storage
server through which it accesses the data of the entire SRB
installation. Each storage server resolves access requests by
submitting queries to the MCAT of its zone, and directly
communicating with the SRB server where the requested
data reside (Figure 1).

A high-level interface provides communication between
a client and the MCAT through one or multiple SRB servers.
It allows creation and deletion of datasets, access to data,
and query handling related to the entities supported by the
system. A low-level interface provides direct access to the
remote data storage resources by using metadata informa-
tion provided by the high-level interface. In a typical se-
quence that creates a dataset, the server submits an MCAT
query to check if the client is allowed the specific operation.
If successful, the query returns the host name and path lo-
cation of the collection where the dataset will be created. A

low-level request creates the file in the appropriate location,
while a high-level request registers the file to the MCAT and
passes all the necessary metadata. The successful registra-
tion request returns to the client the file handle for the low-
level write calls that will transfer the data to the new data
object.

When a large number of data objects have to be created
or accessed on a remote storage server, data communication
can be reduced by using the container entity. Each container
is associated with one or multiple storage servers. Data ac-
cess requests can be handled by the local server thus reduc-
ing the communication overhead. Special calls can be used
for explicitly synchronizing the local storage server of the
container with the remote server. All the metadata involved
in translating data object requests to container requests are
still maintained by the MCAT. There is no data caching
functionality transparent to the users unlike most existing
storage systems. However, metadata caching is supported in
some cases depending on the client software used for con-
necting to the server.

2.3 Access Control

In this section, we give an overview of the SRB security
mechanisms that we evaluate experimentally in the present
paper. Additional details about the security architecture of
SRB can be found in previous published literature [4]. Each
data object and collection is associated with an access con-
trol list that specifies the access permissions granted to in-
dividual users or groups: (i) read, (ii) write, (ii) control, and
(iv) grantTicket. The system verifies the identity of a user
before it will establish a secure connection between the user
and a storage server. One simple authentication method sup-
ported by SRB uses a plain-text or encrypted password stored
on the home directory of the user client host. Each time a
user submits a request to the system, the server will use the
user’s password to verify one’s identify.

An alternative more secure method relies on the Grid
Security Infrastracture (GSI) for mutual authentication be-
tween the user and the system [14, 27]. A user generates lo-
cally a public-private key pair, and has the public key signed
into a certificate by a trusted authority. Similarly, a public-
private key pair and a certificate are generated for the SRB
itself. When a user attempts to access the SRB service, both
the system and the user verify the identity of the author-
ity who signed the certificate of the other. Then, based on
their certificates and public keys they can establish mutual
trust and proceed into a secure connection. Users can also
generate proxies, or additional public-private key pairs and
certificates signed by themselves rather than by a certificate
authority.



4 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

A different method for authorizing data accesses within
SRB makes use of ten-character strings called tickets. A
ticket can be created by an object owner and be passed to
a registered or unregistered user (or user group) to provide
an action permit (e.g. read) on a data object or collection.
A ticket provider can impose access restrictions, such as
who can use the ticket, and the time period during which
the ticket can be applied. The ticket is used subsequently
for opening a connection to a storage server and allowing a
specified operation to be completed.

2.4 Access Auditing

Each action on a data object can be logged and the action
success or failure can be noted in an audit trail. The owner
or anyone with control permission on the object can impose
auditing of the actions on a data object from specific users.
Then whenever those users access the dataset the action is
logged in the audit trail. The users can also impose a restric-
tion on the audit that prevents their actions from being au-
dited in which case an anonymous user audit trail is written.
The audit trail consists of five-tuples that include identifiers
for the accessed object, the accessing user, the audited oper-
ation, a timestamp and a comment.

3 Evaluation Methodology

The SRB version that we evaluate stores all the system and
user metadata onto a relational database, called Metadata
Catalog (MCAT), and uses SQL statements for handling all
the metadata search and update operations involved in data
accesses. In fact, three out of the four components that we
identified previously, namely searching, access control and
auditing are fully implemented using select and insert/update
SQL queries. Only the data storage management is imple-
mented using standard operating system calls outside the
database. All the metadata traffic has to pass through a spe-
cific SRB server that communicates directly with the MCAT,
called MCAT- enabled server.

3.1 Goals and Metrics

We use system performance and resource utilization metrics
in order to explore potential limits in the system scalability
and identify software and hardware bottleneck resources. As
a result of our measurements, we point out that some partic-
ular functions can overload the system, while others have
negligible system performance implications.

The command throughput measures the number of SRB
commands the system completes in a time unit. Since most

MCAT-enabled�
SRB server�

MCAT�
DB server�

Client 0�

Client 1�

Client 7�

Emulated�
WAN�

Meta�
data�

Data�
Vault�

Fig. 2. The testbed configuration of SRB that we used during our experi-
ments.

of the relevant commands are operating on data files, we
normalize this metric across the different commands by mea-
suring the number of operations per individual file com-
pleted in the time unit (files/s). Instead, the data through-
put measures the amount of bytes transferred into and out
of the system in a time unit (bytes/s). The data throughput
cannot exceed the aggregate network link capacity connect-
ing the clients to the SRB storage servers. In the case of
data uploading operations, the data throughput is also lim-
ited by the aggregate capacity of the disk channels connect-
ing the storage devices to the SRB storage servers. On the
other hand, download data transfer throughput can exceed
the disk channel bandwidth limitation, if the requested data
are served from the buffer cache rather than directly from
the disks.

The command throughput tracks the metadata manage-
ment efficiency of the system, while the data throughput is
more dependent on the underlying networking and storage
devices used for actually serving the data transfers. Depend-
ing on the size of the datasets transferred and the granularity
of the individual requests, either the command throughput or
the data throughput can become the prevalent performance
metric that specifies the number of operations completed per
second.

Additionally, we use the turnaround time metric to mea-
sure the elapsed time from the point a user submits a com-
mand until the command completes. Since each command
can handle different numbers of files, we normalize the turn-
around time by measuring it in time units to complete an op-
eration per individual file (s/file). During each experiment,
we also accumulate statistics of the processor utilization on
the hosts running the SRB server and the database server,
respectively, and also the average amount of bytes passing
through the channel of each disk and the network interface
card of each host.



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 5

3.2 Experimentation Environment

In all our experiments, we used SRB version 2.1.1 with MCAT
version 2.0 running on an Oracle 9.2.0 database. The server
systems that we used were Intel-based workstations running
Debian Linux kernel 2.4.21. We ran the Oracle database on
a PIII/ 1.4GHz system with 2GB memory, 1 Gbit/s Ethernet
network card, and Ultra160 SCSI disk adapters. We stored
the database datafiles on a Seagate Cheetah 10K RPM disk
of 50 MB/s minimum internal transfer rate. The MCAT- en-
abled SRB server was hosted on a system with PIII/ 866MHz
equipped with 1GB memory, 1 Gbit/s Ethernet network card,
Ultra160 SCSI adapter and Seagate Cheetah disk of 10K
RPM and 26 MByte/s minimum internal transfer rate. The
majority of our experiments have the clients accessing the
MCAT- enabled SRB directly (Figure 2). Nevertheless, an
additional SRB server has been used in some experiments
for measuring the impact of multiple SRB servers between
the client and the metadata database server. The request work-
load was generated by up to eight client machines with Intel
PIII/ 1GHz running Debian Linux 2.4.20 and using 256 MB
and 100 Mbit/s network cards. We relied on the NIST Net
tool to emulate alternative network throughput and latency
values between the system nodes [11] (Emulated WAN in
Figure 2).

4 Experimental Results

We start our evaluation by focusing on specific SRB com-
mands that we expect to be frequently used: i) Sput for
uploading a fileset to the server, ii) Sget for downloading
a fileset from the server, iii) Sbload for uploading in bulk
a fileset, iv) Sbunload for downloading in bulk a fileset
to a local directory, v) Sregister for registering a fileset
to the server without physically copying the data to SRB,
and vi) Sls for listing the contents of an SRB directory.
Since the performance of Sput, Sget and Sregister is
similar, assuming that the data transfer throughput is not the
bottleneck, in several cases we only evaluate the Sget com-
mand instead of all three of them. Sbload and Sbunload
operate by default on containers and use multiple threads to
transfer data in large blocks of 8 MByte each. This improves
significantly the system efficiency especially when handling
large numbers of small files.

In our experiments, each reported number is average over
the number of runs (up to 10) that were necessary to achieve
half-length of the 95% confidence interval of the turnaround
time less than 5% of the average turnaround time. Each run
lasts three minutes, and we discard the statistics gathered

during the first minute. Except for Section 4.5 where we ex-
amine alternative security schemes, we only use password-
based authentication without encryption in the rest of our
experiments.

4.1 Baseline Performance

Our goal here is to evaluate the turnaround time across dif-
ferent operations as a function of the system throughput. The
design of each command allows them to scale up to a num-
ber of operations per second with reasonable turnaround time.
Trying to further increase the throughput results in arbitrar-
ily high turnaround time due to saturation of some particular
hardware or software system resource. We assume a single
SRB storage server with a collection of 1000 empty files.
We show later in detail how sensitive the system is to the
numbers of files it contains.

4.1.1 File Accesses

In the first set of experiments (Figure 3(a)) we evaluate the
performance of Sput, Sget, and Sregister when used
for individual files rather than file sets. We measure the time
that is required to complete a single file operation across dif-
ferent values of system throughput. We only use files of size
1 KByte for this experiment so that we can isolate the meta-
data management performance of the system. We observe
that Sregister maintains less than 300ms turnaround time
for throughput up to 9 files/s, while Sget and Sput in-
crease exponentially the turnaround time when the system
throughput exceeds about 8 files/s. We should keep in mind
that Sregister involves no file data transfer but does up-
date the metadata database, Sget mainly only reads data
and metadata, and Sput both transfers data and updates
metadata.

In Figure 3(b), we repeat the above experiment using
Sget and Sput over entire directories rather than individ-
ual files. We observe that as the number of files increases,
turnaround time tends to drop but starts to exponentially in-
crease again as throughput exceeds 8 files/s. In comparison
to Figure 3(a), Sput and Sget manage to maintain sig-
nificatly lower turnaround time, by aggregating the update
overhead over more than one files.

In Figure 3(c), we focus on the Sbload and Sbunload
commands. Both these operations leverage the container mech-
anism in order to handle a large number of files efficiently.
We notice that the throughput achieved by Sbload is an
order of magnitude lower than that of Sbunload. We ap-
plied the Sbunload repeatedly on the same container, and
we measure the best possible performance assuming that file



6 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

1 2 3 4 5 6 7 8 9 10

Throughput (files/s)

0

200

400

600

800

1000
T

ur
na

ro
un

d 
T

im
e 

(m
s/

fi
le

) Single File

sput
sget
sreg

(a)

2 4 6 8 10 12 14 16

Throughput (files/s)

0

200

400

600

800

1000

T
ur

na
ro

un
d 

T
im

e 
(m

s/
fi

le
)

File Collection

sput
sget

(b)

1 10 100 1000 10000

Throughput (files/s)

0

200

400

600

800

1000

T
ur

na
ro

un
d 

T
im

e 
(m

s/
fi

le
) File Container

sbload
sbunload

(c)

Fig. 3. (a). We measure the turnaround time of Sput, Sget, and Sregister as a function of the achieved throughput. Each command invocation
transfers or registers a single file of 1 KByte. We notice that the turnaround time of Sput and Sget increases exponentially as the throughput grows,
unlike Sregister that reacts more gracefully to higher loads. (b). When Sput and Sget manipulate collections of multiple files rather than individual
files, we observe a noticable drop in the turnaround time. (c). We explore the maximum throughput and the corresponding turnaround time of Sbload and
Sbunload. The independent variable is the number of files contained in the transferred container. Sbunload can handle an order of magnitude more
files in each invocation than Sbload, while requiring lower time to complete for the same throughput.

1 10 100 1000

Throughput (files/s)

1

10

100

1000

10000

T
ur

na
ro

un
d 

T
im

e 
(m

s/
fi

le
)

Filename Queries
1 file
10 files
100 files

(a)

1 10 100 1000

Throughput (files/s)

0

1

10

100

T
ur

na
ro

un
d 

T
im

e 
(m

s/
fi

le
)

Semantic Queries

1 file
2 files
4 files
16 files
64 files

(b)

0 100 200 300 400 500

Files per Query

0

1

10

T
ur

na
ro

un
d 

T
im

e 
(m

s/
fi

le
)

Semantic Queries

Three Attributes
Two Attributes
One Attribute

(c)

Fig. 4. (a) We consider filename queries, and vary the number of files returned by Sls in a collection of 1,000 empty files. We notice that as the number
of returned files increases, the turnaround time per file drops exponentially, while the system consistenly saturates at roughly ten queries per second. (b)
We study the performance of semantic queries based on user-defined attributes. As the number of files returned by a query increases, the completion
time per file drops, while higher throughput makes the reported turnaround time to increase exponentially. (c) We focus on semantic queries, and vary
between one and three the number of metadata attributes involved in a query. We notice that, with two and three attributes, the search time per file increases
exponentially, when the number of returned files exceeds some threshold. During this experiment, we maintained a very low average request rate of 0.1
queries/s.

data are made available from SRB buffer cache, and meta-
data from the database buffer and library cache. More im-
portantly, we observe that the completion time per file drops
exponentially as the throughput increases, which demon-
strates the scalability properties of these two particular com-
mands. We should point out that the throughput can only be
controlled indirectly by the rate at which requests are sub-
mitted to the system. By further increasing the request rate,
we didn’t notice additional improvement in the measured
performance without negative effect to the reliable comple-
tion of the commands.

4.1.2 Metadata Search

In the implementation of SRB, system and user metadata
accesses are handled by running SQL queries against rela-
tional database tables. In order to evaluate the related per-
formance, we first experiment with the Sls command. It
returns the names (and optionally the system attributes) of
the files that satisfy a search pattern of plain and wildcard
characters. We used a small collection of 1000 files, and
ran Sls commands that would return a random subset of
1, 10, or 100 filenames. We measure the time that it takes
per file to complete the operation across different achieved
system throughput values. As before, the system throughput



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 7

is controlled by changing the rate at which operations are
submitted to the system.

As we see in Figure 4(a), the number of files returned
by each Sls invocation affects significantly the turnaround
time per file. This time is less than 1ms per file when Sls
requests 100 files, about 10ms per file for requests of 10
files, and about 100ms per file for requests of 1 file. Further-
more, as the system throughput increases, the turnaround
time grows quickly to more than 100ms, 1s and 10s, re-
spectively. We conclude that the more files an Sls call re-
turns, the better the performance at higher system through-
put. This is reasonable given the significant database over-
head incurred by the relational table searches, which is demon-
strated by the increased processor utilization on the database
server.

Subsequently, we attach ten attribute-value pairs, a0 =
v0, a1 = v1, ..., a9 = v9, to each file in a collection of 1024
files. Uniformly across the different files, the first attribute
takes values between 1 and 1024, the second between 1 and
512, and so on, while the last attribute only takes values 0
and 1. We use the Sufmeta command of SRB to search
the files with a specific attribute value. In queries of one at-
tribute, we search for files that satisfy the constraint pi = vi,
with i = 0, .., 9. Note that the query pi = vi returns 2i files.
For example, p0 = v0 returns one file, while p9 = v9 returns
512 files. In queries of two attributes, we use the conjunction
pi+1 = vi+1 AND pi = vi+1. The equality pi+1 = vi+1

finds 2i+1 files which are subsequently filtered into 2i files
by the equality pi = vi+1. This structure can be generalized
to three or more attributes in a similar way. Essentially, as
the number of attributes in our query increases, an exponen-
tially larger number of files is filtered down to a specified
return size. This allows us to examine whether the search
time depends on the return size only, or other parameters as
well.

In Figure 4(b), we measure the turnaround time per re-
turned file spent using single-attribute queries. As the query
throughput increases, the turnaround time grows exponen-
tially. Also, queries that return more files require less time
per file to complete. This behavior is consistent with file-
name queries that we examined in Figure 4(a). It is also
something we expected since both types of queries are han-
dled through SQL statements running on the MCAT. In Fig-
ure 4(c), we consider queries of one and multiple attributes,
while we vary the number of returned files between 1 and
512. We observe that in queries of one attribute, the turnaround
time to search each file drops, as the number of returned files
for the query increases. Instead, we notice that in queries
of two and three attributes, as the number of returned files
exceeds 64 and 16, respectively, the search time per file in-
creases exponentially. Correspondingly, the processor uti-

lization (not shown) of the MCAT database grows from less
than 1% to about 20%. We conclude that multi- attribute
queries are more likely to overload the system than single-
attribute queries, while file queries with user-defined attributes
behave similarly to searches using system metadata.

In summary, the turnaround time of search operations
depends on both the number of files found during the in-
termediate steps of the query processing and the number of
files returned to the user.

4.2 Bottleneck Analysis

In Figure 5, we depict the total bidirectional transfer rates
measured on the disk channel and network link of the SRB
storage server. We transfer files of three different sizes: (i)
1 KByte, (ii) 1 MByte and, (iii) 10 MByte. Sbload with
1 MByte or 10 MByte files is disk- I/O intensive and its
throughput (shown on the top of the network link bar) is
limited by the disk transfer capacity measured at about 22
MByte/sec. For a disk with nominal minimum internal trans-
fer rate of 26 MByte/s this is a reasonable expectation. The
network link transfer rate is only slightly higher at 23 MByte/s.
In Figure 6 we also notice the Sbload and Sbunload of 1
KByte files to stress out the database server processor. When
the file size increases to 1 MByte or 10 MBytes, however,
the database processor utilization drops with a correspond-
ing increase in the SRB processor utilization. We attribute
this change to the processing overhead involved in handling
concurrent disk accesses and network transfers.

Similarly, Sget of 1 KByte and 1 MByte files is mostly
limited by the processing power of the database server, while
the corresponding throughput hardly exceeds 15 files/s. When
downloading files of 10 MByte, however, the system through-
put is limited by the SRB server processing power. From our
previous experience, we already know that even though the
1 Gbit/s Ethernet links have nominal capacity of 1.25 106

Byte/s, their measured transferred hardly exceeds 50 MByte/s
when using the typical Ethernet frame size of 1500 bytes,
due to the network protocol processing required. In our pre-
vious discussion we assume that the downloaded directory
is fully cached in the SRB server main memory, and practi-
cally no disk transfers are involved.

Sbunload of 1 MByte or 10 MByte files (cached in the
SRB server) stresses out both the processor and the network
links of the SRB server. Instead, Sbload of 1 KByte files
incurs significant database and SRB server processing load
at relatively low network data throughput. Finally, we ex-
periment with Sls across 1, 10 and 100 returned files. We
observe that Sls saturates completely the SRB server pro-
cessor, while incurring high database processing overhead



8 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

0

10000

20000

30000

40000

50000

D
at

a 
T

hr
ou

gh
pu

t (
K

B
yt

es
/s

)
Bandwidth Bottlenecks

37
88

.8

1KB

30
.4

1M
B

3.1

10M
B

Sbunload

22
8.9

1KB

19
.3

1M
B

1.5

10M
B

Sbload

15
.6

1KB

13
.7

1M
B

3.7

10M
B

Sget

13
.8

1

13
.3

10

10
.0

100

Sls

SRB Network Link
SRB Disk Channel

Fig. 5. We depict the measured data throughput at different file sizes
(Sbload, Sbunload and Sget) or numbers of returned files (Sls). We
show that when manipulating large files, Sbload saturates the disk chan-
nel capacity, while Sbunload and Sget are stressing the network transfer
capacity. The number at the top of the bars shows the measured command
throughput (files/s).

10

20

30

40

50

60

70

80

90

100

C
PU

 U
til

iz
at

io
n 

(%
)

Processing Bottlenecks

1KB
1M

B
10M

B
Sbunload

1KB
1M

B
10M

B
Sbload

1KB
1M

B
10M

B
Sget

1 10 100

Sls

SRB Processor
DB Processor

Fig. 6. We measure the processor utilization of the SRB server and
the database server when varying the file sizes transferred by Sbload,
Sbunload and Sget or the number of files returned by Sls. We no-
tice that high command throughput involves high database and SRB server
processing overhead, while high data throughput saturates the SRB server
processor.

too. Both the network and disk data throughput are negligi-
ble, though.

From the above we conclude that high command through-
put operations are limited by the processing power of either
the database server, or the SRB server. On the other hand,
high data throughput operations are limited by the process-
ing power of the SRB server and the corresponding network
transfer capacity. In general, we expect the SRB processing
utilization at high data throughput to vary depending on how
much the I/O device controller depends on the host proces-
sor during the data transfers.

4.3 Namespace Organization

The number of distinct files managed efficiently by SRB is
one measure of scalability that we used. We expect that as
the system is more widely used, the number of uploaded
datasets will increase. We examine the effect that such in-
crease has to the achieved throughput and the user-perceived
turnaround time. We experimented with three different col-
lection configurations: (i) a flat collection of 1000 empty
files (1Kx1), (ii) a flat collection of 100,000 empty files
(100Kx1), and (iii) a single collection of 10,000 collections
each containing 100 empty files (10Kx100). We generated
the first two organizations using a separate Sput for each
file, and the last organization using Sbload for each col-
lection of 100 files. In all our experiments, the initial file
configuration remains unaffected by the files additionally in-
serted for the evaluation of particular commands. We check-
pointed and restored the database after the creation of each
organization, in order to prevent performance degradation

from tablespace fragmentation. During our experiments, we
also verified 100% library and buffer cache hit ratio in the
database server, as a result of aggressive buffer caching and
query cursor caching.

In Figure 7 we show the turnaround time (per file) across
the three collection organizations. We notice a significant
slowdown of Sget when the collection size increases from
1K files to 100K files. From Figure 8 we find a strong cor-
relation between the turnaround time and the database pro-
cessor utilization. Ideally, we would expect the system per-
formance to be independent of the number of files managed,
especially when only a small subset of them is accessed at
a time during the system operation. Given the significant
database latching and table scanning activity reported by
the Oracle diagnostics tools, we infer that the system would
most likely benefit from additional indexing over the rela-
tional tables. It is surprising that the turnaround time drops
with the 10Kx100 organization, even though we would ex-
pect the opposite due to the larger total number of files in
comparison to the other two cases. We don’t have a definite
explanation for that behavior, but we could attribute it to the
cost optimization decisions of the database engine itself.

In Figure 8 we also observe high database processing
load with Sbunload in the 10Kx100 organization. In fact,
we had to reduce the rate of the requests from 1 req/s to 0.2
req/s in order to get the experiment completed. As a result,
the measured command throughput (shown at the top of the
DB bars) is an order of magnitude lower in comparison to
the other two organizations. Nevertheless, we hardly notice
any major increase to the turnaround time (per file) due to
the amortization of the cost over a relatively large number



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 9

0

500

1000

T
u

rn
ar

ou
n

d
 T

im
e 

(m
s/

fi
le

)

Namespace Organization

22
18

.7

20
65

.1

34
1.3

Sbunload

64
.1

60
.6

66
.3

Sbload

4.5

4.0

4.2

Sget

3.9

3.6

3.7

Sls

1Kx1
100Kx1
10Kx100

Fig. 7. We illustrate the turnaround time (per
file) across three different namespace organiza-
tion schemes. Sget is slowed down in the case
of a single collection with 100,000 files. The mea-
sured command throughput is shown at the top of
the bars.

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

ti
li

za
ti

on
 (

%
)

Namespace Organization

1Kx1
100Kx1

10Kx100

Sbunload

1Kx1
100Kx1

10Kx100

Sbload

1Kx1
100Kx1

10Kx100

Sget

1Kx1
100Kx1

10Kx100

Sls

SRB Processor
DB Processor

Fig. 8. We examine the SRB and DB processor
utilization across different namespace organiza-
tions. We find an increased number of files to be
leading into higher database processing activity in
the case of Sbunload and Sget.

0

500

1000

1500

T
u

rn
ar

ou
n

d
 T

im
e 

(m
s/

fi
le

)

Network Latency

22
01

.6

21
44

.7

20
22

.4

Sbunload
63

.8
70

.1 65
.3

Sbload

4.3
4.4

4.3

Sget

3.9
3.9

3.8

Sls

client-server RTT = 1ms
client-server RTT = 10ms
client-server RTT = 100ms

Fig. 9. We experimented with different network
latencies between an SRB client and server. We
see that Sls and Sget are both very sensitive to
increased latencies, as a result of which they are
significantly slowed down.

of files. Finally, we find Sbload and Sls insensitive to
the collection organization, which implies that the necessary
table indexes have already been added to the system to make
the related metadata accesses fast.

Overall, we find that some particular operations remain
sensitive to the namespace organization of the system. This
occurs despite the fact that indexing structures have been
added to prevent full table scans in several cases. Since table
scans are currently not completely eliminated in the system,
we anticipate that additional indexing is likely to reduce the
observed excessive database processing load.

4.4 Network Latency

In Figure 9, we evaluate the effect of the network latency
between the SRB client and the SRB server to the user-
perceived completion time when running Sget, Sbload,
Sbunload and Sls. Even though we only show numbers
for throughput at about 1/4 of the maximum possible rate in
our system setup, we verified that the relative effects that we
report become less prevalent as the throughput increases.

Sls proves to be an operation very sensitive to the round-
trip delay between the client and the server. We observe that
for Sls returning just one file, the time to complete grows
by an order of magnitude from roughly 150ms to 1.396s
as the network latency changes from 1ms to 100ms. Sget
behaves similarly since its completion time increases from
about 111ms to 1.077s under the same conditions. We ex-
pect that multiple handshake steps in the protocol imple-
mentation of Sget and Sls to have a multiplier effect on
the measured performance as a function of the round-trip

delay. Nevertheless, it is remarkable, how the bulk oper-
ations Sbload and Sbunload remain relatively insensi-
tive to the network latency. Additionally, from the measured
throughput attached at the top of each bar in Figure 9, we
find the throughput to remain relatively insensitive to the
network latency at low operation request rates.

Finally, we examined the case that the client is attached
to a local SRB storage server that is remotely connected to
the MCAT- enabled SRB server. The accessed storage vault
was directly attached to the remote SRB server. Repeating
the experiments in that setting we didn’t find any major dif-
ference in comparison to the case that the client is directly
attached to the remote MCAT- enabled SRB server.

4.5 Access Control

As we already mentioned in Section 2.3, SRB supports a
range of alternative methods for authenticating the users and
authorizing their requests. We evaluated three particular au-
thentication methods of SRB: (i) plain-text password which
is expected to have the lowest overhead, and (ii) tickets that
allow registered or unregistered users to access specific files,
and (iii) GSI which enables SRB to participate in large grid
installations. We compare the performance of all three meth-
ods with the SSH/SCP file copying facility which uses public-
private key pairs for verifying the identify of a user. In all the
measurements, we use the Sget command for SRB, and the
scp command of OpenSSH version 3.6.1 on Debian Linux
for SSH/SCP.

The workload that we used is based on the logged activ-
ity of file requests recorded by the FTP server operated by



10 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

Trace Count Sum(B) Avg(B) Max(B) StdDev(B) Sum(s) Avg(s) Max(s) StdDev(s)
I 1,689 202,552,865 119,924 31,742,157 887,870 4,944 2.971 398 11.563
II 470 791,038,275 1,683,060 728,334,336 33,592,658 3,558 7.570 2,191 101.383

Table 1. We compare alternative authentication and file transfer schemes using two traces of duration 10 minutes each. The traces have been kindly made
available by the administration of the FTP server operated by the Washington University at St. Louis. Trace I was taken on August 18, 2002 at time 20:50-
20:59, while Trace II was logged on September 27, 2002 at time 23:50-23:59. In the above table we summarize the file size and transfer time characteristics
as recorded in the log file. It is noteable, that Trace I consists of more file transfers, lower average file size, and lower download time than Trace II.

1

2

3

4

T
ur

na
ro

un
d 

T
im

e 
(s

)

TRACE I: 18/08/02/20:50-59

2.6
6

2.6
6

bits
PWD

2.5
5

2.5
8

TICK

2.6
4

2.6
3

1024

2.4
6

2.4
8

2048
GSI

2.5
4

2.5
4

1024

2.4
9

2.4
9

2048
SSH/SCP

10 Mbit/s
100 Mbit/s

(a)

1

2

3

4
T

ur
na

ro
un

d 
T

im
e 

(s
)

TRACE II: 09/27/02/23:50-59

0.7
6

0.7
6

bits
PWD

0.7
6

0.7
6

TICK

0.7
6

0.7
6

1024

0.7
6

0.7
6

2048
GSI

0.7
6

0.7
6

1024

0.7
6

0.7
6

2048
SSH/SCP

10 Mbit/s
100 Mbit/s

(b)

Fig. 10. (a). Password-based SRB is roughly twice as fast as GSI-based
SRB. Both are significantly faster than scp. Ticket-based SRB is compa-
rable to GSI-based SRB. The bit length of the RSA keys affects more the
cost of GSI rather than that of scp. (b). When the workload involves few
large files, we observe that the completion time of SRB transfers remains
lower than scp. The bandwidth of the server network link has major im-
pact to the transfer times. The measured throughput is shown at the top of
each bar.

0

20

40

60

SR
B

 C
P

U
 U

ti
liz

at
io

n 
(%

)

TRACE I: 18/08/02/20:50-59

bits
PWD TICK

1024 2048
GSI

1024 2048
SSH/SCP

10 Mbit/s
100 Mbit/s

(a)

0

20

40

60

SR
B

 C
P

U
 U

ti
liz

at
io

n 
(%

)

TRACE II: 09/27/02/23:50-59

bits
PWD TICK

1024 2048
GSI

1024 2048
SSH/SCP

10 Mbit/s
100 Mbit/s

(b)

Fig. 11. (a). We notice that the authentication scheme can increase the pro-
cessor utilization by as high as a factor of two. The cost of scp is similar to
that of GSI though, while the cost of ticket accesses is comparable to that
of password-based authentication. (b) scp almost doubles the processing
utilization in comparison to GSI, but both the schemes are more costly
than tickets and passwords. The smaller number of files transferred leads
to lower processing utilization overall.

the Washington University at St Louis. For our experiments
we used two 10-minute traces: the Trace I recorded on Au-
gust 18, 2002 from 20:50 to 20:59, and the Trace II recorded
on September 27, 2002 from 23:50 to 23:59. We summarize
the features of these traces on Table 1. Trace I demonstrated
relatively high activity with 1,689 requests of average size
117 KBytes, and average download time 2.971 seconds. In-
stead, Trace II consists of 470 requests with average size 1.6
MByte, and average download time 7.570 seconds. In order
to emulate the workloads, we uploaded to SRB zero-filled
files of the size specified in the traces. For practical reasons,
we didn’t try to recreate the transfer rates recorded for each
file request. Instead, we replayed the traces using two differ-
ent server network link capacities, 10 Mbit/s and 100 Mbit/s.
The node hosting the client was connected to the SRB server
node through a gigabit Ethernet switch.

In the case of GSI, we tried RSA keys of both 1024
and 2048 bits. We also generated RSA keys of 1024 and
2048 bits for SSH/SCP and used empty passphrase to run
the transfers in batch mode. In Figure 10(a), we notice that
Trace I with password authentication takes average file trans-
fer time about 598 msec for 10 Mbit/s, and 377 msec for
the 100 Mbit/s server network link. The network capacity
doesn’t make major difference due to the small average size

of the transferred files. Use of GSI certificates with 1024 bits
increases the file transfer time to 918 msec and 663 msec,
respectively. We believe that this a reasonable cost for the
additional security that GSI offers, namely authentication of
both the user and the server, and local-only use of the private
keys. Increasing the number of bits to 2048 almost doubles
the transfer time. We also observe a drop in the achieved
throughput shown at the top of each bar. Ticket-based au-
thentication provides to SRB users the flexibility to grant
access permission for their data to other users. The corre-
sponding file transfer time lies between those of password
and GSI-based authentication.

In the case of SSH we use the inexpensive blowfish ci-
pher for the data transfer encryption. Note that the data traf-
fic in the SRB transfer times that we reported previously was
not encrypted at all. From Figure 10(a) we found scp to
take more than 3 seconds on average. Changing the network
link capacity and the number of bits in the RSA keys didn’t
make any significant difference. Using the -v option with
scp we verified that most of the time is spent during the
handshaking steps for establishing trust between the server
and the client, rather than the data transfer itself. From Fig-
ure 11(a) we notice that the processor utilization in the SRB



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 11

server is comparable between GSI and SSH, and roughly
twice as high as the plain password authentication.

We repeated the above experiments using the Trace II
that has fewer data transfers but larger average file size.
Not surprisingly, the bandwidth of the server network link
affects significantly the transfer time, especially with SRB
transfers (Figure 10(b)). Consistently with Trace I, however,
the scp requests take more time on average to complete.
The difference exceeds a factor of three between GSI and
scp for 1024 keys. From Figure 11(b) we also find that the
processor utilization is much lower in comparison to 11(a),
which can be explained by the lower authentication over-
head as a result of the fewer file transfers in the case of Trace
II.

In summary, we found that GSI and Ticket file transfers
using SRB take more time to complete than password-based
transfers but significantly less than file transfers using the
SSH/SCP facility. The processor utilization on the server is
affected more by the number of file requests and less by the
actual amount of bytes being transferred.

4.6 Access Auditing

We also experimented with the performance of several SRB
commands after enabling the auditing facility at different
levels (namely 1, 2, and 3). However, we found no perfor-
mance degradation as a result of auditing in any of the com-
mands that we tried. Auditing involves appending of log in-
formation to a number of tables, but requires minimal search
and modification of the stored metadata. Thus, it is not sur-
prising that the incurred overhead is insignificant.

4.7 File System Interface

The Modified Andrew Benchmark (MAB) is a file system
benchmark introduced fifteen years ago to emulate software
development workloads. It has been widely used to evalu-
ate and compare the performance of several distributed file
systems over a multitude of hardware configurations. MAB
consists of five phases: (i) create a directory hierarchy, (ii)
copy files into the directories, (iii) traverse the hierarchy and
list file attributes, (iv) scan the files, and (v) compile the files.
Admittedly, these tasks only represent a specific way of us-
ing a file system, the one where files are accessed by a sin-
gle thread of control at a fine granularity of individual data
blocks. Therefore, by including MAB at the present study,
we only expect to demonstrate the performance of SRB in
this mode of operation, and allows us to compare SRB with
other systems in this context.

In order to run MAB over SRB, we use an extension
of the freeware Linux Userland Filesystem (LUFS) that al-
lows an SRB-managed data collection to appear to a remote
client as a mounted filesystem. The LUFS combines a ker-
nel module with a user-space daemon into an extensible file
system framework. For our experiments, we used a three-
tier system organization where a client, the SRB server, and
the database server run on three different machines. They
are all interconnected through switched ethernet with aver-
age round-trip latencies about 150 microseconds. We intro-
duce no artificial delay between any of the three machines.
The database datafiles and the SRB data vaults are stored on
disks directly attached to the corresponding hosts. For com-
parison, we also export the data vault filesystem of the SRB
server and mount it over the network to the client through
NFS v3.

From table 2 we observe that LUFS-SRB is rougly two
orders of magnitude slower than NFSv3 in handling the MAB
traffic. In fact, LUFS-SRB is especially slow in handling
fine-granularity data accesses (phases ii,iv and v), and more
acceptable with tasks involving metadata management only
(phase i and iii). We also found indexing to be contributing
critically towards improving the performance of the system.
We examined the sensitivity of SRB to the number of files it
manages by repeating the measurements after adding a thou-
sand empty files. We found this modification to increase the
MAB duration by roughly a factor of two, and was accom-
panied by extra processor utilization in the database server.
This outcome clearly indicates that the potential advantages
from tuning the database have not been fully tapped in fine-
granularity data accesses.

We repeated the execution of the Modified Andrew Bench-
mark while logging the database operations using the SRB
debugging facility. In Table 3, we break down the database
operations categorized into five groups. Select Query corre-
sponds to running SQL queries that retrieve metadata, and
Modify Query describes queries that insert or update meta-
data in the database. Bind Row and Unbind Row operations
describe the allocation and deallocation of variables for hold-
ing database table rows, respectively. Get Row refers to trans-
fer of rows between the database and the SRB server, while
we report separately the database updates under Commits.

The duration of the MAB execution is slightly extended
due to the logging overhead. We believe that this does not
affect the relevance of our conclusions given that we only
use the measurements to compare the relative significance
of the different database access components. The most im-
portant operation in terms of time overhead is the execution
of SQL select statements. It is closely followed by the trans-
fer of rows between the database and the server. By enabling
indexing of the frequently used tables, we reduce consid-



12 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

NFS LUFS-SRB
Mode ver.3 Index Scan
Files 0/1K 0 1K 0 1K
Phase I 0.035 1.097 1.108 2.497 4.960
Phase II 0.317 53.495 95.546 137.536 220.569
Phase III 0.556 2.336 2.351 8.053 16.286
Phase IV 0.595 8.434 19.190 20.365 37.830
Phase V 1.783 66.339 142.342 180.642 306.856
Total 3.284 131.701 260.537 349.094 586.501

Table 2. We measure the duration (seconds) of the five phases of the Modified
Andrew Benchmark over two different file systems, NFSv3 and LUFS-SRB.
In the LUFS-SRB case, we (i) consider relational tables that are either fully
scanned (scan), or indexed with B-trees (index), and (ii) examine two different
configurations with zero (0) and a thousand (1K) extra empty files stored on
SRB (in addition to those of the MAB itself). We observe that MAB runs two
orders of magnitude faster over NFSv3 than over LUFS-SRB.

Operation Index Scan
Description Delay Count Delay Count
Select Query 39.713 19536 41.385 19858
Modify Query 4.093 1893 4.261 1890
Bind Row 9.746 19536 9.960 19858
Unbind Row 6.448 19536 6.966 19858
Get Row 42.458 28340 249.334 28860
Commit 8.316 4448 8.483 4446
DB Total 115.370 95174 324.147 96668
MAB Total 145.906 359.447

Table 3. We show a breakdown (seconds) of the SRB operations
when running the Modified Andrew Benchmark. In both full-scan
and indexed table accesses, the DBMS overhead is dominated by
select query executions, and transfer of rows between the SRB server
and the database.

Select
Table Index Scan Table Index Scan
ad repl 13880 14101 td rsrc 2typ 2789 2789
cd user 10911 11226 td data typ 2786 2786
td data grp 9645 9870 td rsrc class 2786 2786
td domn 8309 8624 cd rsrc 1620 1620
au domn 8217 8532 ad grp accs 479 574
td ds accs 7959 8181 td data 2grp 367 461
au group 7939 8160 td grp accs 367 461
ad accs 7735 7955 ar repl 95 95
ar physical 6302 6522 ad collcont 92 92
adc repl 6115 6335 ar accs 92 92
td container 4314 4314 td collcont 92 92
au owner domn 3421 3641 td rsrc accs 92 92
cd owner user 3421 3641 td user typ 2 2
td owner domn 3421 3641 au auth key 1 1
td locn 2789 2789

Table 4. Total number of table access occurrences in SELECT SQL queries
when running the Modified Andrew Benchmark. We consider both full scan
and indexed table operations. SELECT SQL queries are typically used for
access authorization and data location discovery.

Insert Update
Table Index Scan Table Index Scan
ad repl 92 92 ad repl 1620 1620
td data grp 20 20
ad accs 92 92
ad grp accs 20 20

Table 5. Number of table occurrences in INSERT and UPDATE SQL state-
ments invoked when accessing or creating files.

erably the time spent on both these categories of database
operations, while leaving almost unaffected the other three
operation groups. As expected, the non-DB component of
the MAB duration remains about the same across the full
scan and the indexed execution.

The accessed dataset is less than 10 MByte large and
fully fits into the system main memory, thus keeping the
disk access delays to the minimum necessary to warm up
the database and system cache. Given that the number of
update operations is an order of magnitude smaller than the
number of select queries, it is not unreasonable to observe a
similar order of magnitude difference in the time that these
different operations occupy. On the other hand, we get an
indication that aggressive caching of the requested metadata

1 10 100 1000

Unique Identifier

1

10

100

1000

10000

C
um

ul
at

iv
e 

F
re

qu
en

cy

SQL Queries (Index)

Select
Update
Insert

Fig. 12. We depict the cumulative frequency of select, insert, and
update SQL statements during the MAB execution over an indexed
database. We find a few SQL statements to be responsible for a con-
siderable part of the select, update and insert query traffic, respec-
tively. Note that the unique identifiers of the x-axis correspond to
different statements across the three curves.

on the client or even on the server outside the database could
greatly benefit the measured system performance.

By looking closer at the individual SQL queries, we found
that only 27 out of a total 83 tables within the database
participate in most of the SELECT queries involved in the
benchmark(Table 4). In addition, only four tables are up-
dated, when new files are created or existing ones are modi-
fied (Table 5). Overall, we counted 1542 unique SQL state-
ments to account for all the SELECT queries handled by
the database during the benchmark. In our counting, each
query with different SQL statement text qualifies as different
from the others. The single most frequent SELECT state-
ment accounts for 15% out of a total 19,585 queries that
were recorded in the SRB log file. Also, the first 155 most
frequent unique statements (about 10%) covered more than
50% of the database entire query traffic (Table 12). There-
fore, only few tables are most frequently utilized by only a



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 13

small number of queries that are used mostly often. This ev-
idence substantiates the argument that aggresive query opti-
mization and caching is likely to improve the performance
of the system.

Due to implementation constraints, the LUFS-SRB does
not take advantage of bulk transfer operations available in
SRB. In addition, the Modified Andrew Benchmark itself
does not incorporate all the facilities available in SRB. The
fact that a small fraction of the metadata is heavily utilized
by few repetitive SQL statements can be used for making
the majority of the metadata accesses faster, and potentially
significantly reduce the response time of the system.

5 Related Work

To the best of our knowledge, the present paper is the first
comprehensive performance evaluation of the Storage Re-
source Broker. The architecture and the user interface of
SRB are described in more detail by Baru et al. [4] and Ra-
jasekar et al. [19]. The studies by Bell et al. [5] and Nalli-
pogu et al. [18] focused on pipeline optimizations of SRB
that improved the overlapping between network communi-
cation and disk accesses for I/O intensive file transfers. The
Datacutter middleware that is currently part of SRB has been
introduced by Beynon et al. to support handling of multidi-
mensional rate queries on scientific datasets [8].

Stevens et al introduce the myGrid middleware frame-
work for the structural and semantic description of data and
services that make possible to build and execute distributed
workflows [24]. Singh et al. describe the Metadata Catalog
Service (MCS) to manage attributes for stored data [23].
Although similar to SRB from several aspects, MCS is de-
signed to only handle logical metadata, thus factoring out
information for physical locations of datasets, and function-
ality for access control. Allcock et al. introduce the GridFTP
extension of the FTP protocol for high-speed transfers of
files, and the Metadata Catalog/Replica Catalogs for man-
aging descriptive and location information of datasets [2].
In comparison to SRB, GridFTP optimizes transfers of indi-
vidual files rather than collections, while the Replica Cata-
log provides to users and applications direct control of data
replication tasks. Also, SRB is a data discovery and sharing
facility rather than a distributed application authoring envi-
ronment which is target of the WebDAV network protocol
[13].

Early peer-to-peer storage systems advocated the need
to protect the anonymity of content publishers, subscribers,
and maintainers, and provide decentralized organization of
the software and hardware resources [12]. More recently,
peer-to-peer systems became syonymous with any distributed

system, where all the nodes have the same responsibilities,
and communicate with each other symmetrically [21]. In
that context, sophisticated routing substrates were introduced
to provide the framework for automatically handling load
balancing, reliability, data replication, and caching services
[16, 25]. On the other hand, centralized search engines are
currently available that handle queries for public web con-
tent over the entire Internet [10]. In contrast, data grids com-
bine search functionality with storage and secure access of
data over wide-area networks.

The Avaki Data Grid is proprietary technology that of-
fers federated data services across multiple sites, but we
only have limited knowledge about its internal architecture
[3]. Its data grid directory provides direct access to the un-
derlying data objects at their source locations. Authentica-
tion of users and groups can be done through directory ser-
vices already existing at each individual location. File data
and metadata are cached locally for improved access re-
sponse time. Object search operations are supported based
on attributes maintained by the underlying file system, or
custom user attributes attached to individual objects.

Andrew (AFS) is a scalable distributed file system that
allows data sharing over a wide-area network [15]. Files are
organized into volumes that can be replicated across multi-
ple machines forming volume storage groups. Copies of a
file are cached locally on individual client machines; the lo-
cal copies are invalidated before a file can be modified on a
different machine. A common directory tree provides access
to files in a location-transparent way. Despite its sophisti-
cated functionality, Andrew leaves unsolved the problem of
attribute-based file search, which is one of the main issues
SRB tries to address.

Nest is a storage appliance that supports multiple data
transfer protocols and concurrency control models [6]. Pan-
gaia is a wide-area file system built on a symmetrically de-
centralized collection of commodity computers [22]. It repli-
cates files and directories aggressively when they are ac-
cessed, which improves the system performance, reduces
the network utilization, and leads to high availability.

Farsite is a distributed file system that provides file avail-
ability and reliability through replication, file content se-
crecy through cryptography, and integrity through fault- tol-
erant protocols [1]. It has been designed to perform effi-
ciently through data caching, lazy update propagation, and
authentication delegation. Instead, Ivy is a multi-user read/
write peer-to-peer file system consisting of a set of logs.
The logs are stored on a distributed hash table [17]. Data
retrievals and modifications are conducted by scanning and
appending log records respectively, and applications access
the system through a conventional file system interface.



14 S. V. Anastasiadis et al.: Performance of Semantic Data Grids

Brandt et al. investigate the metadata management prob-
lem in the context of distributed storage systems [9]. They
propose a two-level metadata server hierarchy and use hash-
ing for balancing the access load across the different nodes.
They maintain a hierarchical directory tree for preserving
the traditional file access semantics. They describe a method
to improve the access efficiency by delaying the propagation
of metadata updates among the different servers. In an ear-
lier study, Tyler and Fisher examine the design of a high-
performance storage system based on commodity Encina
OLTP technology [26]. Metadata distributed across multi-
ple nodes can be maintained consistently by making use of
nested transactional operations.

Xu et al. envision semantics-aware file servers that pro-
vide, among other features, advanced search capabilities,
customized name space views, and task automation through
dependency relations [29]. One of the challenges is man-
aging semantic relations with lightweight database systems,
assuming that the data protection properties of full database
systems have high overhead and are unnecessary for the
above application.

6 Conclusions

We briefly described the architecture of the Storage Resource
Broker, and comprehensively examined several of its fea-
tures through experimental performance evaluation. We found
that commands for bulk file transfers (such as Sbload and
Sbunload) incur high overhead for handling small num-
bers of files, but scale very well with increasing numbers of
files. Their performance is limited by the processing power
of the database, and the processing power and data transfer
capacity of the SRB storage server. Commands for trans-
ferring individual files (Sput and Sget) can only handle a
small number of files per second, and they are limited by the
processing power and the data transfer capacity of the SRB
storage server. File searches based on filenames and user-
defined attributes (Sls and Sufmeta) are mainly limited
by the processing power of the SRB storage servers, even
though they also incur significant database processing load.
In addition, the turnaround time of semantic search opera-
tions grows exponentially with the number of attributes in-
volved in the query due to the database processing involved.

We found commands not optimized for bulk operations
very sensitive to round-trip latencies typical in cross-country
network connections. We also found the database processing
activity to be affected by the organization of the file names-
pace. SRB file transfers with GSI authentication take more
time to complete than transfers of lower security based on
passwords, but are similar to file accesses based on tick-

ets. All of them are significantly faster than the widely used
SSH/SCP facility. Fine granularity data accesses of SRB
through file system interfaces can also be supported. How-
ever, they are much slower than those of widely used dis-
tributed file systems, and are also sensitive to the file names-
pace organization. We found table searches to be the most
common operation on the database, and few queries to be
accountable for most of the database activity. Overall, we
believe that the system performance is likely to improve by
additional indexing, and reorganization of the relational ta-
ble structure towards better efficiency, along with data and
metadata caching locally on each client site.

Acknowledgements. We are thankful to Gregory McCarthy for his
encouragement, Mark James and Jonathan Sacks for coordinating
the multi-site collaboration involved, and Arcot Rajasekar and the
rest of the SRB development team for providing the source code
of SRB and helping us understand several of its features. This re-
search has been supported by the Brain Morphometry Biomedi-
cal Informatics Research Network (BIRN, http://www.nbirn.net),
funded under contract number 3M01RR00030 by the National Cen-
ter for Research Resources (NCRR) at the National Institutes of
Health (NIH).

References

1. Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R.,
Douceur, J. R., Howell, J., Lorch, J. R., Theimer, M., and Wat-
tenhofer, R. P. FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment. In USENIX
Symposium on Operating Systems Design and Implementation
(Boston, MA, Dec. 2002), pp. 1–14.

2. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Fos-
ter, I., Kesselman, C., Meder, S., Nefedova, V., Quesnal, D.,
and Tuecke, S. Data Management and Transfer in High Per-
formance Computational Grid Environments. Parallel Com-
puting Journal 28, 5 (May 2002), 749–771.

3. Keep It Simple: Overcome Information Integration Challenges
with Avaki Data Grid Software. Tech. rep., Avaki Corporation,
July 2003.

4. Baru, C., Moore, R., Rajasekar, A., and Wan, M. The SDSC
Storage Resource Broker. In IBM CASCON (Toronto, ON,
Nov. 1998).

5. Bell, K., Chien, A., and Lauria, M. A High-Performance
Cluster Storage Server. In IEEE International Symposium
High Performance Distributed Computing (Edinburgh, Scot-
land, July 2002), pp. 311–320.

6. Bent, J., Venkataramani, V., Leroy, N., Roy, A., Stanley, J.,
Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Livny, M.
Flexibility, Manageability, and Performance in a Grid Storage
Appliance. In IEEE International Symposium on High Per-
formance Distributed Computing (Edinburgh, Scotland, July
2002), pp. 3–12.



S. V. Anastasiadis et al.: Performance of Semantic Data Grids 15

7. Berners-Lee, Hendler, J., and Lassila, O. The Semantic Web.
Scientific American 284, 5 (May 2001), 34–43.

8. Beynon, M., Ferreira, R., Kurc, T. M., Sussman, A., and Saltz,
J. H. DataCutter: Middleware for Filtering Very Large Sci-
entific Datasets on Archival Storage Systems. In IEEE Sym-
posium on Mass Storage Systems (College Park, MD, Mar.
2000), pp. 119–134.

9. Brandt, S. A., Miller, E. L., Long, D. D., and Xue, L. Efficient
Metadata Management in Large Distributed Storage Systems.
In IEEE/NASA Goddard Conference on Mass Storage Systems
and Technologies (San Diego, CA, Apr. 2003), pp. 290–298.

10. Brin, S., and Page, L. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and ISDN
Systems 30, 1–7 (Apr. 1998), 107–117.

11. Carson, M., and Santay, D. NIST Net - A Linux-based Net-
work Emulation Tool. ACM Computer Communication Re-
view. (to appear).

12. Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Workshop on Design Issues in Anonymity and Unob-
servability (Berkeley, CA, July 2000), pp. 311–320.

13. Fielding, R. T., Jr., E. J. W., Anderson, K. M., Bolcer, G. A.,
Oreizy, P., and Taylor, R. N. Web-Based Development of
Complex Information Products. Communications of the ACM
41, 8 (Aug. 1998), 84–92.

14. Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. A Se-
curity Architecture for Computational Grids. In ACM Con-
ference on Computer and Communication Security (San Fran-
cisco, CA, Nov. 1998), pp. 83–92.

15. Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A.,
Satyanarayanan, M., Sidebotham, R. N., and West, M. J. Scale
and Performance in a Distributed File System. ACM Transac-
tions on Computer Systems 6, 1 (Feb. 1988), 51–81.

16. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells,
C., and Zhao, B. OceanStore: An Architecture for Global-
scale Persistent Storage. In ACM Symposium on Architectural
Support for Programming Languages and Operating Systems
(Cambridge, MA, Nov. 2000), pp. 190–201.

17. Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. Ivy:
A Read/Write Peer-to-Peer File System. In USENIX Sym-
posium on Operating Systems Design and Implementation
(Boston, MA, Dec. 2002), pp. 31–44.

18. Nallipogu, E., Ozguner, F., and Lauria, M. Improving the
Throughput of Remote Storage Access through Pipelining. In
International Workshop on Grid Computing (Baltimore, MD,
Nov. 2002), pp. 305–316.

19. Rajasekar, A., Wan, M., and Moore, R. MySRB & SRB: Com-
ponents of a Data Grid. In IEEE International Symp High Per-
formance Distributed Computing (Edinburgh, Scotland, July
2002), pp. 301–310.

20. Rajasekar, A., Wan, M., Moore, R., Jagatheesan, A., and
Kremenek, G. Real-life Experiences with Data Grids: Case
Studies using the SRB. In International Conference on High
Performance Computing - HPCAsia (Bangalore, India, Dec.
2002).

21. Rowstron, A., and Druschel, P. Storage Management and
Caching in PAST, A Large-scale, Persistent Peer-to-peer Stor-
age Utility. In ACM Symposium on Operating Systems Princi-
ples (Banff, Alberta, Oct. 2001), pp. 188–201.

22. Saito, Y., Karamanolis, C., Karlsson, M., and Mahalingham,
M. Taming Aggressive Replication in the Pangaia Wide-Area
File System. In USENIX Symposium on Operating Systems
Design and Implementation (Boston, MA, Dec. 2002), pp. 15–
30.

23. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kessel-
man, C., Manohar, M., Patil, S., and Pearlman, L. A Metadata
Catalog Service for Data Intensive Applications. In ACM Su-
percomputing Conference (Phoenix, AZ, Nov. 2003).

24. Stevens, R., Robinson, A., , and Goble, C. myGrid: Person-
alised Bioinformatics on the Information Grid. Bioinformatics
19, 1 (2003), 302–304.

25. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakr-
ishnan, H. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In ACM SIGCOMM Conference (San
Diego, CA, August 2001), pp. 149–160.

26. Tyler, T., and Fisher, D. Using distributed OLTP technology
in a high performance storage system. In IEEE Symposium on
Mass Storage Systems (Monterey, CA, Sept. 1995), pp. 45–45.

27. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski,
K., Gawor, J., Kesselman, C., Meder, S., Pearlman, L., and
Tuecke, S. Security for Grid Services. In International Sympo-
sium High Performance Distributed Computing (Seattle, WA,
June 2003), pp. 48–57.

28. Wilkes, J. Data Services - from data to containers, Mar.
2003. Keynote at the USENIX Conference for File and Stor-
age Technologies, San Francisco, CA.

29. Xu, Z., Karlsson, M., Tang, C., and Karamanolis, C. Towards
a Semantic-Aware File Store. In Workshop on Hot Topics in
Operating Systems (Lihue, HI, May 2003), pp. 145–150.


