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Abstract

In the present paper, we examine the problem of sup-
porting application-specific computation within a network
file server. Our objectives are (i) to introduce an easy to
use yet powerful architecture for executing both custom-
developed and legacy applications close to the stored data,
(ii) to investigate the performance improvement that we get
from data proximity in I/O-intensive processing, and (iii) to
exploit the I/O-traffic information available within the file
server for more effective resource management. One main
difference from previous active storage research is our em-
phasis on the expressive power and usability of the network
server interface. We describe an extensible active storage
framework that we built in order to demonstrate the feasi-
bility of the proposed system design. We show that access-
ing large datasets over a wide-area network through a regu-
lar file system can penalize the system performance, unless
application computation is moved close to the stored data.
Our conclusions are substantiated through experimentation
with a popular multi-layer map warehouse application.

1 Introduction

Recently deployed high-speed connectivity across wide-
area networks encourages collaboration and resource shar-
ing among autonomous groups at an unprecedented scale.
Scientific and commercial data are undoubtedly recognized
as invaluable resources, and several new systems have been
proposed to facilitate wide-area information sharing in a se-
cure, flexible and cost-effective way [5, 6, 9, 12]. Since the
price of network bandwidth remains significant and laten-
cies due to the speed of light make round-trip delays un-

∗Current affiliation of S. V. Anastasiadis: Department of Electronic
and Computer Engineering, Technical University of Crete, Chania 73100,
Greece and Institute of Computer Science, Foundation of Research and
Technology Hellas, Heraklion 71110, Greece.

avoidable, it makes sense to move data processing close to
the storage servers.

In order to address these issues, researchers usually do
on-demand replication of entire files locally to the sites
where computational resources exist to run the applications
[8]. But entire file downloading remains non-practical in
several cases due to the excessive local storage space re-
quired, the long delays involved in bulky data transfers, or
consistency issues arising when creating multiple file repli-
cas. Alternatively, there are studies advocating to run ap-
plication code within the storage devices themselves, capi-
talizing on technological advances in processing power and
memory density [22]. This is not likely to become practical
very soon, either, due to the challenges involved in enhanc-
ing the currently simple disk interface to allow execution
of application code in a general, safe and inexpensive way.
Finally, middleware solutions have been developed that dy-
namically transform data close to the storage server [9, 12].
Even though such functionality is available today, existing
systems usually require customization of the applications
that they provide support for.

In the past, data communication through files has served
as a convenient medium for applications to receive input
and generate output. Distributed file systems have general-
ized this model across different hosts without the need to
change the file system interface. Nevertheless, transfer of
control to local or remote computation usually follows its
own separate path through local or remote procedure calls.
The picture is blurred in database systems and web servers
that dynamically interpret the data requests and return the
selected content to the user. However, dynamic interpre-
tation of data requests is currently only reachable through
specialized access interfaces or query languages, and appli-
cations should be custom-developed in order to take advan-
tage of them.

In this paper, we verify that accessing large datasets over
a wide-area network through existing file systems limits
the application performance due to round-trip delays and
network protocol processing involved in individual block



transfers. Then, we demonstrate how to functionally and
semantically enrich the file system interface to support in-
vocation of application code as a side-effect of I/O requests.
We significantly improve the data access throughput, and
increase the overall system performance. Thus we show
that any application communicating through files can make
use of distributed services running as plugins of a network
file server. Additionally, the network file server provides
the appropriate semantic level to intercept and meaningfully
analyze the system I/O traffic. Such information can offer
important insight about the usage pattern of the server re-
sources and help improving their management.

The remainder of this paper is organized as follows. In
Section 2 we provide additional motivation for the func-
tionality that we introduce, in Section 3 we get into details
about the architecture that we propose, and in Section 4 we
explain our system prototype and the operation of a multi-
layer map warehouse. In Section 5 we go over the experi-
mentation environment that we used, and present our exper-
imental results. Finally, in Section 6 and 7 we summarize
previous related work and outline our conclusions.

2 Motivation

From previous research, we already know that enabling
processing close to the stored data reduces the amount of
network bandwidth and client storage space required within
a distributed system [3, 9, 16, 22]. Published literature and
anecdotal evidence also supports the argument that build-
ing non-trivial I/O-intensive applications requires a signif-
icant amount of programming effort for transforming and
reading data [10, 12]. Usually the application user does
not control the specific format in which data are becom-
ing available. This makes necessary to run commodity or
custom-built software in order to provide a desirable data
view to the application. If the data is made available at a re-
mote site, extra effort may be needed to manually copy the
data locally, and keep the local replica up-to-date. In sum-
mary, distributed computation requires software that pro-
vides flow-control, filtering and aggregation functionality
between the data-producing source and the data-consuming
application.

In order to solve the problems involved in remotely ac-
cessing heterogeneous data, several solutions have been
proposed in the past:

• The database community advocates placing mediator
software close to the data storage to unify accesses
through some relational, or object-oriented data model
[12, 20].

• The supercomputing community has developed ap-
proaches that automate the replication of entire files
between sites that produce and consume the data [5, 8].

• The systems community previously described object-
oriented file systems that attach data transformation
methods to the stored data, and migrate the execution
close to the client or server depending on the run-time
conditions [3, 26].

Despite the elegance of these approaches, none of them
is suitable for solving the general data transformation prob-
lem. System designers are still more comfortable with de-
veloping customized solutions for individual applications.
Reasons include preference towards using a particular pro-
gramming environment, interface limitations of the appli-
cations involved, software availability on specific hard-
ware platforms, and performance degradation as a result of
generic data transformation software. Under such circum-
stances, we believe that application development would be
facilitated considerably, if the underlying system provided
the necessary framework to allow (i) efficient execution of
computation close to the stored data, (ii) direct access to
the generated data by both legacy and custom-built appli-
cations, and (iii) resource utilization tracking for informed
data reorganization.

Indeed, we propose to make available within the net-
work file server an execution environment that will allow
both system administrators and regular file users to run ex-
ecutable code. Even though previous research has inde-
pendently proposed file system extensibility [24] and ap-
plication computation within a storage system [3, 22], we
attempt to unify the previous efforts into a more general fa-
cility that supports both these types of computation. We
strive to achieve our objective by hiding the data transfor-
mation operators behind regular file access requests. When
an access request to a particular file name fails, the server
can intercept the failure, decode appropriately the name,
and produce on-the-fly the requested content. A privileged
user can register methods in advance with the server to rec-
ognize specific types of access failures. Additionally, for
every request we can record its type and the time it takes
to complete. The approach that we propose is (i) intuitively
straightforward because data transformation operators are
triggered by usual file accesses, (ii) efficient due to the soft-
ware maturity of the file system access paths, and (iii) ex-
tensible because failure interception modules can be added
dynamically to the system.

Despite the similarity of the functionality that we pro-
pose to that of dynamic-content web servers, there is a main
difference between the two that arises from the inherent in-
terface simplicity of a network file server. This makes Lerna
appear as a local filesystem to the applications. As a result
user authentication and access control are simplified, while
data transfers can be done efficiently. It is exactly this ad-
vantage of the file servers that we are preserving in our ap-
proach so that we can allow the transformation and transfer
of remote data to be both cost-effective for the applications
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Figure 1. (a) An active storage system consists of front-end
and back-end nodes. Each node combines data storage function-
ality with application-level computation and system resource man-
agement. (b) Each node of the Lerna active file server consists of
application-specific computation and resource management mod-
ules running on top of a local file system.

and backwards compatible with legacy software.
Nevertheless, several questions remain open, and it is our

goal to clarify them. The main contributions of the present
paper include: (i) design and prototype implementation of
an interface architecture that allows integration of applica-
tions into the file server, (ii) performance measurements of
real applications that demonstrate the advantages of Lerna
in comparison to alternative remote data accesses, and (iii)
development of a statistics gathering facility for accumu-
lating I/O traffic pattern information within the file server,
which we use to balance the access load across multiple
storage devices.

3 The Lerna Architecture

The Lerna active storage system combines multiple pro-
cessing/storage server nodes into a multi-tier hierarchy
(Figure 1(a)). A server node can access data directly from
its storage devices, and also run application-specific tasks
for data filtering and transformation. In addition, it can is-
sue remote file system requests to access application ser-
vices running on a different server node. This provides the
framework for potentially decomposing an application ser-
vice into multiple stages each handled by a different server
node. We assume that all the server nodes have the same
multi-layer structure. Each request received through the in-
terface of a remotely mounted file system is passed to a ver-
tical stack of resource management layers. The top layer
forwards the request to one of the registered modules for
application-specific computation (ASC) (Figure 1(b)). In
the rest of this section, we describe in more detail the archi-
tecture of Lerna, and explain the mechanism that we use to

access remote application services through the regular file
system interface.

3.1 Remote Service Invocation

Clients mount the active storage server as a remote file
system (Figure 2). Access of existing files and directories
appears to the client as a normal file system request. In
addition, every request can potentially be intercepted by a
Lerna resource management layer for resource accounting
or scheduling. Access to an inexistent file triggers execution
of a registered ASC module. The name of a requested file
contains the identifier and the parameters of the requested
service invocation. It is possible to use filename encod-
ing schemes similar to naming conventions of either virtual
directories [13], or uniform resource locators for dynamic
web pages. In our prototype, we use the URL-encoding for-
mat [7] to transform arbitrary command-line statements into
permissible file name strings.

When a name LOOKUP fails, the demultiplexing layer
of Lerna decodes the name of the missing file to the iden-
tifier and the parameters of the implicitly requested service
(Figure 1(b)). Then, the missing file is created according
to the access permissions of the requesting user. Its file de-
scriptor becomes the standard output file descriptor of a new
process that is spawned for running the requested service.
We save the parameters of the failed LOOKUP call into the
data members of a new object that we instantiate. We use a
hash table to associate the reference of the new object with
the identifier of the service process. This is equivalent to a
callback registration for the failed request. In the meantime,
the LOOKUP call of the client application remains blocked.

When the service process exits, we use the registered
callback to resubmit the original LOOKUP request to the
local file system. The new LOOKUP request successfully
returns a file handle that is passed back to the file system
client. The original call of the client application returns as if
the accessed file was there before the request. At this point,
the client can proceed with a file READ request, and the file
system server returns the requested data block. This is ex-
actly the control sequence that we actually implemented for
initiating application-specific computation on the file server.
In our prototype, we left file writing unmodified so that
written data are passed verbatim to the specified file. In our
execution model, a remote service can receive data input
from the client through files specified as parameters during
its invocation. The invoking client places the input files in
the file system already mounted from the server. When the
remote service is called, it stores the output into the file that
the client attempted to read.

For instance, we make available the /path directory lo-
cally to the Lerna server, and remotely to the Lerna client.
We store a map configuration description in the text file



/path/foo.map, and use the binary /usr/bin/shp2img to trans-
late the map description into a map image. Assuming that
/path is the current working directory of the client, when
attempting to execute the command-line:

/bin/ls %2Fusr%2Fbin%2Fshp2img+-m+%2Fpath%2Ffoo.map

and the file:

%2Fusr%2Fbin%2Fshp2img+-m+%2Fpath%2Ffoo.map

does not exist, the Lerna server will URL-decode the file-
name into:

/usr/bin/shp2img -m /path/foo.map

and execute it. The computation output is subsequently
stored into the file:

/path/%2Fusr%2Fbin%2Fshp2img+-m+%2Fpath%2Ffoo.map

and the previous ls command returns as usual.
The above description easily extends to cover commu-

nication of control and data within a multi-tier server orga-
nization, where computation initiated by a front-end node
requests files generated by back-end nodes. Currently, a
READ access returns control to the client when the entire
requested file becomes available. Additionally, our model
can also handle the case where file blocks are generated in
a streaming fashion as a result of sequential access requests
from the client.

3.2 Namespace Structure

Ideally, the remote service and the client should have
the same view of the file name space in order to effectively
communicate via file exchange as described previously. For
example, when an input file is passed from the client, the
remote service should be able to find the file in the direc-
tory structure visible within the file server. Similarly, when
an inexistent file has to be created, the remote service needs
to create the file under the directory from which the client
requested it. In practice, there is the file server that lies
between the client and the application service. The server
itself communicates with the client through file handles in-
stead of entire directory paths. It also allows the application
to access data directly from the local file system through
local file names. Therefore when a new file has to be cre-
ated under a particular directory, the file server needs to re-
construct and pass to the local application service the entire
directory path. In other words, we need a lookup structure
that translates directory handles into paths.

One way to achieve that is to maintain within the file
server a data structure that keeps track of the hierarchy of
individual path components as they are requested by the
client. Every time a new edge of the directory tree is suc-
cessfully looked up, a new record can be created that as-
sociates the file handle with its name and a pointer to the

record of its parent. Thus, it is possible to gradually build a
data structure that we can use to look up file handles and re-
turn file path names. Then, when a new file has to be created
under a specific directory, we lookup the directory handle in
the data structure, and rebuild on the fly the entire path of
the file, which we can pass as a string to the application ser-
vice. An alternative approach that is simpler to support but
less intuitive to use would require from the client to pass
the path of the current working directory as an additional
parameter to the remote service.

3.3 Resource Management

Lerna provides the necessary framework to keep track of
the number and completion time of individual block READ
and WRITE requests handled by a server node. The to-
tal number of READ and WRITE requests along with their
average completion time are reported for each individual
accessed file. For each file system we use a separate hash
table to accumulate usage statistics for its files that have
been accessed. We demonstrate in Section 5.6 how we can
use this information to find out which files are responsi-
ble for most of the system load, and reorganize them ac-
cordingly across the different storage devices to improve
the system throughput. We should point out that intercept-
ing any accessed block can incur significant computational
overhead. Therefore, we normally expect that application
software running within the server will bypass the account-
ing overhead, and access the data directly from the local file
system in the common case.

The utilization information accumulated in resource
management modules can also be used to make schedul-
ing decisions about the rate of forwarding requests to other
parts of the system. Such forwarding can be based on the
identifier of the requesting user or the particular application
being invoked according to specific quality-of-service poli-
cies. Specialized block replacement policies can be used in
buffer management according to particular workloads that
the server is expected to handle. Blocking or asynchronous
semantics can be offered to the clients for accessing files
and application services with a desirable degree of flexibil-
ity and efficiency.

4 Implementation

In this section, we describe our prototype implementa-
tion, and the application that we used to demonstrate and
evaluate the system.

4.1 System Prototype

File systems have access to important information about
user credentials that can use to offer basic security against
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Figure 2. File access requests are intercepted on the server side
either for resource accounting, or for dynamic creation of missing
files.

unauthorized access to both data and application computa-
tion. Furthermore, the file system interface retains impor-
tant semantical information about both files and storage de-
vices, which is useful for reorganizing data files according
to specific access patterns. Traditionally, file systems were
built as part of the kernel in order to reduce data copying
and context switching. However, recent research has shown
the feasibility of implementing file systems at user space for
lightweight access to network storage and improved appli-
cation control over data movement, caching and prefetching
[17, 19]. Since user-level file systems run outside the ker-
nel, they also make straightforward the control transfer to
application code.

One example of a user-level network file system is the
SFS toolkit [19]. SFS uses a user-level library to provide
secure asynchronous communication through the Network
File System (NFS). Users submit file access requests to their
local NFS client which typically runs within the kernel. The
NFS client passes the requests to a user-level client daemon
which is part of SFS. The SFS client translates the request
to its own format and then passes it through the network to
a user-level SFS daemon running on the server. The SFS
server daemon translates the request back to NFS format
and passes it to the NFS server of the same node. The NFS
server transforms the received request to access of the local
file system.

In this paper, we describe our experience from offering
application- specific computation (ASC) and resource us-
age accounting with extensions that we made to the SFS
toolkit. One advantage of SFS is the self-certifying host-
names that contain server certificates which allow the client
to verify the authenticity of the server. By taking advantage
of the modular architecture and the facilities of SFS, we
needed about 1,000 lines of code to build Lerna as part of
the server daemon. Our implementation mainly consists of
the functionality for demultiplexing failed LOOKUPs into
ASC invocations, the implementation of callback registra-
tions, and the usage statistics gathering.

Data Layer Description Format Size (KB)
States Shapefile 6,750
Cities and Towns Shapefile 8,832
County Boundaries Shapefile 13,346
Hydrologic Unit Boundaries Shapefile 20,132
Roads Shapefile 22,624
Federal Lands/Indian Reserv Shapefile 56,288
Streams and Waterbodies Shapefile 46,908
Shaded Relief of N.America GeoTIFF 73,794
Public Land Survey System Shapefile 74,448
Total 323,122

Table 1. These are datasets containing U.S. geographical infor-
mation, which are made publicly available by the U.S. Geological
Survey (Reston, VA). We distribute the data sets across four sepa-
rate disks. The shaded relief that is part of every requested map is
available across all the disks.

The client of Lerna uses SFS to pass input files to the
ASC and receive back the computation output. However,
the ASC accesses the bulk of the application datasets di-
rectly from the local file system of the server node. Thus,
we reduce the SFS protocol translation overhead to the min-
imum necessary. Even though our current prototype is
limited to modifying the behavior of READ accesses, and
measuring the number and server-side delay of READ and
WRITE requests, we believe that other operations can be
intercepted and enhanced in similar ways.

4.2 Mapserver

Online generation of geographical, astronomical or
biomedical maps generally can consume a large amount of
processing and bandwidth resources depending on the size
of the datasets involved [9, 25]. In the past, the problem of
handling terabyte-sized datasets has been kept manageable
by (i) limiting the accessible number of layers to one, and
(ii) producing raster images at all the supported resolutions
offline so that map rendering could be reduced to data re-
trieval. In that sense, large-scale management of multi-layer
map warehouses remains an interesting open problem with
significant implications to both basic scientific research and
everyday life. Offline preparation of multi-resolution im-
ages solves only partially the problem, due to the substantial
online processing required by frequently changing datasets,
or multiple layers dynamically selected.

Mapserver is an open-source application developed in a
NASA-sponsored project to provide configurable web ac-
cess to geographical data in the form of map images [18].
Although not a fully-fledged geographical information sys-
tem, it has sufficient functionality to integrate several dif-
ferent types of data that include raster or vector images,
and relational tables from commercial database systems.
The Mapserver library can transform map configuration text
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files into raster images that render the specified data layers
within a particular geographical region. The configuration
files can be generated either manually or through a graphi-
cal user interface.

Mapserver scans sequentially the files corresponding to
each data layer. The geometrical objects that fall within
a specified geographical region are selected and rendered
in an internal raster image format. The objects from each
layer are superimposed on the internal raster image accord-
ing to the order with which the layers appear in the con-
figuration file. When the objects rendering is complete, the
image is transformed into a supported format specified by
the user. We use the Mapserver as a prototype out-of-core
application to study the performance advantage from pro-
cessing proximity to the data, and to investigate the applica-
tion and system structure implications of invoking computa-
tion through file accesses. Our experimentation is limited to
servers consisting of a single node, which offers both local
access to secondary storage and processing power for im-
age rendering. Our expectation is that good understanding
of the client communication interactions with single-node

servers will provide important experience towards building
more complex servers consisting of multiple tiers.

5 Performance Evaluation

In our performance evaluation study, we consider the
system throughput and turnaround time when creating maps
with Mapserver by (a) running the application on the client
and accessing the data from a local filesystem (Local), (b)
running the application on the client and getting the data
from an NFSv3-mounted remote file system (NFS), (c) in-
voking the application to run through Lerna on a remote
file server that provides local access to the datasets (Lerna)
(Figure 3). We report how the system resource utilization
is affected by system parameters related to the load of the
workload, and the features of the communication system.

5.1 Experimentation Environment

All the nodes that we used are Dell PowerEdge 4400
servers with 733 MHz Intel Xeon processors and 256
MB main memory, running FreeBSD 4.5. Each node is
equipped with 100 MBit/s and 1 GBit/s network cards, and
is connected to multiple Seagate Cheetah 10 KRPM 18.2
GB SCSI disks over two 160 MB/s channels. Each disk has
nominal formatted internal transfer rate within the range 26-
40 MByte/s, but practically the individual disk throughput
drops to about 10 MB/s when head seeks are involved. We
control the round-trip delay of the client/server path through
Dummynet [23] running on the server. The Lerna imple-
mentation is based on SFS version 0.7.2. In our experi-
ments, we also use Network File System version 3. We set
the receiving socket buffer space of the client and the send-
ing socket buffer space of the server to 512 KB.

We used nine geographical datasets made available by
the U.S. National Survey (Table 1). One dataset is a to-
pographic map of North America in colormapped Geo-
TIFF raster format occupying 71 MB. The remaining eight
datasets contain U.S. geographical information in ESRI
Shapefile vector format and have size between 7 MB and
71 MB. Projection to a common system of coordinates al-
lows aligned data merging of different layers into a single
map.

The queried images are requested in compressed PNG
(Portable Network Graphics) format, have 600x300 pixels
and occupy map space 20x10 degrees. Each query involves
generating an image map according to a text configuration
and scanning the returned image on the client side. The
queries are uniformly distributed over the entire region of
the North America raster, and have two layers. One layer is
always the shaded relief, and the other is randomly chosen
among the remaining eight datasets. The datasets are dis-
tributed across four different disks. Only part of the total
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Figure 4. (a) We show the average turnaround time of a map request across different measured throughput values. We observe that when data
are accessed remotely through NFS, the turnaround time starts to increase significantly at lower throughput than the Local and Lerna cases. (b) On
the x-axis we illustrate the rate at which the computation node consumes data. We measure the network bandwidth in the NFS case, and the disk
bandwidth in the Local and Lerna cases. On the y-axis we show the processor utilization of the computation node. Note that the computation node is
the client in the NFS case, and the storage server in the Local and Lerna case. (c) We break down the processor utilization of the computation node
into interrupt, system, and user activity at two different bandwidth values. Lerna and Local are comparable across the different types of activities.
Instead, NFS incurs higher system and interrupt overhead at significantly lower data rates.

storage footprint of the datasets fits within the real mem-
ory of the server thus creating an I/O intensive environ-
ment. Map requests arrive to the system following a Pois-
son process. We measure the average amount of time that
it takes to complete a map generation request (turnaround
time) and the number of requests completed during an ex-
periment run (throughput). Each run lasts 10 minutes, and
the measurements of the first three minutes are discarded.
Independent runs of each experiment are repeated (up to 30
times) until the half-length of the 95% confidence interval
of the turnaround time lies within 5% of its estimated mean
value.

5.2 Local Network Measurements

We begin our performance experimentation by having
the client and server nodes of NFS and Lerna communicat-
ing over gigabit switched Ethernet at the minimum round-
trip delay of about 150 µs. The Local case has both the
server and client software running on the same node. We
investigate how the Local, NFS, and Lerna system config-
urations behave at different map request rates. Depending
on the node at which the computation takes place, we cor-
relate the processor utilization with the corresponding rate
of data that the processor consumes. Therefore, for NFS
we measure the client processor utilization and the network
bandwidth. Note that the reported network bandwidth is
higher than the utilized disk bandwidth due to the benefits
of caching in the NFS server. Instead, for the Lerna and Lo-
cal cases, we measure the server processor utilization and
the total disk bandwidth utilized.

From Figure 4(a) we observe that the average turnaround

time of NFS starts to increase at lower throughput than Lo-
cal and Lerna. In addition, Local and Lerna behave simi-
larly up to the point that the server processor starts to sat-
urate. Then Lerna shows higher turnaround time than Lo-
cal. In Figure 4(b) we compare the processor utilization of
the computation node with the consumed data bandwidth
across the different configurations. We notice that NFS re-
quires significantly higher processor utilization for consum-
ing lower data bandwidth. This also explains the higher
turnaround time of NFS in comparison to the other two
cases. In particular, NFS saturates the client processor at
roughly 10 MB/s, while Local and Lerna saturate the pro-
cessor when consuming more than 30 MB/s.

In Figure 4(c), we further break down the processor uti-
lization into interrupt, system and user activities. Even
though the system overhead is the dominant activity in all
cases, we show that NFS takes 50% more processing uti-
lization for less than half of consumed data bandwidth. In
addition, NFS demonstrates more than double the interrupt
processing activity at significantly lower data bandwidth.
On the other hand, both Local and Lerna require the same
processing utilization at all three types of activities.

We attribute the increased system overhead of NFS to
the network protocol processing involved in accessing each
data block scanned by the processor. Current file systems
and hard disks have the capability to recognize sequen-
tial access pattern and initiate readahead that fetches data
blocks into the buffer cache before being actually requested
by the processor. For both NFS and UFS we used the de-
fault parameters for readahead. However, as we describe
in Section 5.4, increasing the readahead or the blocksize of
NFS doesn’t seem to improve the performance sufficiently
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Figure 5. (a) We examine the impact of the client-server round-trip delay to throughput and turnaround time (shown at the top of the bars) at
different map request rates. We observe that the turnaround time of Lerna remains less than 2 seconds even at 100 ms. Instead, the turnaround
time of NFS-based computation increases linearly as a function of the network latency to several minutes. (b) As the round-trip delay increases, the
processor utilization of the server remains the same in the Lerna configuration, and equal to the Local case. Instead, the processor utilization of the
NFS client is higher at low network latencies but tends to drop as network latency increases. (c) It is notable that the utilized disk bandwidth remains
the same between Local and Lerna at different round-trip delays, while the network bandwidth of NFS drops significantly.

to bring it into par with the other two access configurations.
Even though protocol transformations within the SFS

toolkit are partly responsible for the Lerna processor uti-
lization, we observed the SFS server daemon to occupy only
2-3% of the processor. The SFS overhead is involved only
during the transfer of a map request to the server and the re-
turn of a complete map file to the client, rather than during
every data block transfer that would be the case with plain
NFS. Overall, we note that, at minimal round-trip delay in
the client/server path, Lerna demonstrates a behavior that is
similar from several aspects to the Local case, unlike NFS
that is penalized by the overhead involved in individual data
block transfers. The advantage of NFS from double caching
space across the server and the client does not seem to cre-
ate a measurable benefit in our experiments.

5.3 Effects of Server Proximity

Arguably, remote access of data over a wide-area net-
work can adversely affect the efficient execution of appli-
cations. This is true both because fine-granularity accesses
can be delayed by long latencies and network protocol pro-
cessing, and because local caching of large data amounts
occupies valuable resources. In the present section, we ver-
ify that Mapserver performs poorly as the network latency
from the NFS server increases. In contrast, running appli-
cations close to the data is both feasible and beneficial. In
Figure 5(a), we illustrate the turnaround time for generating
two-layer maps when the processing takes place either on a
remote server through Lerna, or locally with the dataset ac-
cessed from a remote server via NFS. For comparison pur-
poses, we also include the Local case, where the client and

server run on the same host.

From Figure 5(a) we notice a dramatic increase in the
turnaround time of NFS-based processing as the network
delay changes from < 1 ms to 100 ms. One main reason for
this behavior is that Mapserver lacks explicit prefetching or
asynchronous I/O for improved concurrency between com-
munication and computation. Additionally, unpredictable
data accesses would limit the potential benefit from com-
pounding multiple operations into single requests supported
by NFS version 4 [21]. Quite interestingly, Lerna performs
similarly to the Local case when the delay is less than 1
ms, and at slightly higher turnaround time when the delay
is 10 ms. Even when the network delay grows to 100ms,
the turnaround time remains within a factor of three of the
Local case. This increase is exclusively caused by transfer-
ring the requested maps from the server to the client, rather
than the map processing that takes place within the server.

It is somewhat surprising, that at latency < 1 ms (Figure
5(c)), the network bandwidth consumed by the NFS client
is about half the disk bandwidth consumed by Local and
Lerna. Nevertheless, all three configurations achieve the
same turnaround time. This indicates that the disk band-
width utilized by Local and Lerna is unecessarily high. We
believe that this is caused by the aggressive readahead auto-
matically enabled within the disk and the local file system.
We examine in the next section how manually increasing
the readahead over NFS can affect the measured network
bandwidth. In Figure 5(b), we also observe that the proces-
sor utilization of NFS is higher than that of Local but tends
to drop as the network latency increases. Similarly, the net-
work throughput of NFS is lower than that of Local, but
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Figure 6. We examine the sensitivity of NFS performance to al-
ternative transfer block sizes and readahead depths. We notice that
even though aggressive prefetching helps improve network band-
width, it is not sufficient to bring remote data access into par with
remote application execution using Lerna.

drops drastically with longer delays (Figure 5(c)). Finally,
the disk bandwidth utilized by Lerna remains insensitive to
the delay increase, and the server processor utilization re-
mains almost equal to that of the Local case across the dif-
ferent round-trip delays.

In order to explain the pathological behavior of NFS, we
measured the system throughput and turnaround time along
with the number of jobs concurrently running. We verified
that the entire system can be treated as a queue that fol-
lows Little’s law L = λR, where L is the queue length,
λ is the throughput and R is the turnaround time. There-
fore, when round-trip delays increase the turnaround time,
the multiprogramming level should also be high for the sys-
tem throughput to remain the same. However, high multi-
programming levels make the system operation expensive
due to the memory required to avoid thrashing. In fact,
turnaround time grows dramatically as more jobs remain
outstanding in a resource-constrained environment.

5.4 Effects of Blocksize and Readahead

In all our experiments with NFS, we used the UDP trans-
port protocol with twenty nfsiod and nfsd daemons run-
ning on the client and the server, respectively. Having a
large number of server daemons keeps the number of con-
current requests high, without necessarily improving the
system performance. In the present section, we examine
the performance sensitivity of NFS accesses to the transfer
block size, and the readahead depth during block prefetch-
ing.

In Figure 6 we measure the network bandwidth and
turnaround time with transfer block sizes of 8 KB (default)
and 16 KB. Additionally, we examine the performance im-
pact from setting the readahead depth to 1 (default) and 16.

We consider all four combinations of the above parameter
values, thus varying the total transfer size per read request
between 8 KB and 256 KB. We notice that the larger the
aggregate transfer size, the higher the measured network
bandwidth. A noticeable exception to that is the case with
round-trip delay equal 100 ms, where increasing the reada-
head depth leaves the network throughput unchanged. Fur-
thermore, we observe a diminishing returns effect as the
aggregate request size becomes larger. For example, in-
creasing the request size by a factor of 32 only increases the
measured bandwidth by a factor of two. This is reasonable
given the fact that larger block sizes increase the contention
for memory space in the client buffer cache.

The most important observation, however, is that the
turnaround time (shown at the top of the bars) does not de-
crease considerably with increased prefetching, especially
at long round-trip delays. We conclude that NFS tuning can
have some positive impact to the NFS network throughput
but this depends on the network latency and the amount of
memory available for caching among other factors. Over-
all, we see inherent limitations in running applications that
access data remotely, unless the applications themselves are
modified for such operating conditions.

5.5 Microbenchmarks

In another set of experiments, we expose the amount of
time spent at different parts of the system at low and high
access loads. We control the demand for resources using al-
ternative map image sizes requested from the server, while
we keep the average request rate at 1 maps/second. The cre-
ation of the map description file involves LOOKUP, CRE-
ATE and WRITE RPCs, while the map access request in-
volves LOOKUP and READ RPCs. These are only few of
the remote procedure calls handled by the server.

In Table 2, we give a breakdown of the time spent on the
server and the client during the prevalent remote procedure
calls participating in accessing the mapserver through the
file system interface. Map images of minimal size cover-
ing zero geographical area are requested from the server. It
is notable, that the total time spent at user-level at both the
server and the client is comparable to the delay of in-kernel
server handling. We also measured the time spent within the
network according to the payload size of the packets trans-
mitted and received (shown between the parentheses). We
report separately the amount of time required for invoking
the mapserver application code on the server as a result of
failed LOOKUP requests. However, we omit the latency
on the client for transferring control from the application to
the user-level file system daemon through the kernel. Since
some system calls involve multiple remote procedure calls,
inclusion of the above would require nontrivial instrumenta-
tion of kernel-level code, which was beyond our objectives



Call User /ms Wire (Xmt/Rcv) Kernel
Type (cln+srv) /ms /bytes /ms (srv)
CREATE 0.465 0.197 (124/280) 0.760
LOOKUP 0.624 0.181 (144/184) 0.599
READ 0.698 0.312 (92/980) 0.602
WRITE 0.680 0.460 (1996/164) 0.668
app 142.246 0 (0/0) 0

Table 2. Breakdown of the time spent at different parts of the
system across a subset of remote procedure calls and the appli-
cation. A minimal image size spanning zero area across all the
data layers is requested from the server. The user-level component
refers to time on both the server and the client, while the reported
kernel-level time corresponds to NFS handling on the server. In ad-
dition, we measure the time spent over the network for the payload
size transmitted and received (shown in the parentheses).

Call User /ms Wire (Xmt/Rcv) Kernel
Type (cln+srv) /ms /bytes /ms (srv)
CREATE 2.495 0.197 (124/280) 7.111
LOOKUP 3.828 0.181 (144/184) 9.776
READ 8.790 0.722 (92/5145) 7.842
WRITE 1.964 0.460 (1996/164) 7.634
app 1,562.350 0 (0/0) 0

Table 3. We examine the time components of specific RPCs and
the application processing across our distributed testbed assuming
image and mapped area parameters equal to those used in the rest of
the study. In comparison to Table 2, we observe increased returned
packet payload in the READ call (5145 bytes instead of 980), and
a respective higher delay on the server and the client across all the
calls. Nevertheless, the RPC overhead remains insignificant rela-
tively to the application computation time.

in the current study.
In Table 3, we repeated the above experiments with map

images of size and spanned area equal to that used in the
rest of the study (specified in Section 5.1). The increase in
the resource consumption on the server leads to an order of
magnitude increase in the time spent on the server and the
client for each reported remote procedure call. The aver-
age application invocation time itself increases by an order
of magnitude from 142 ms to 1,562 s. However, the time
spent on the network remains about the same except for the
READ requests whose average reply payload size increases
from 980 to 5145 bytes. Overall, we found the file sys-
tem interface to incur an insignificant overhead when used
by the client for triggering remote invocation of application
computation on the server.

5.6 Accounting and Data Reorganization

In this section, we extend Lerna to accumulate usage
statistics for the datasets used by the application services.
We intercept each block request issued by Mapserver, and

measure its average completion time in the local file system.
We maintain the total number and average completion time
of the block requests in a hash table indexed by filesystem
identifier and file handle. Based solely on the statistics that
we accumulate, we make decisions of how to best redis-
tribute the datasets across the four disks in order to achieve
load balancing. We validate our hypotheses by measuring
the average utilized disk bandwidth on each disk. Note that
the server processor utilization increases as a result of hav-
ing each data block accessed through Lerna rather than di-
rectly from the local file system. Therefore, we expect to
activate usage accounting only for tuning purposes rather
than by default.

In Figure 7(a) we show the number of block requests
across the nine datafiles. These measurements were
recorded during an operation period of ten minutes at map
generation rate of 0.5 requests/s. Each I/O request corre-
sponds to an 8 KB data block. Note that the shaded relief is
available on all four disks. In each map request we retrieve
the shaded relief from the same disk that stores the other re-
quested layer. Obviously, disks 3 and 4 received more block
READ requests than disks 1 and 2 during our experiments.
Consistently, we notice on Figure 7(b) that the utilized disk
bandwidth of disks 3 and 4 is almost twice as high that of
disks 1 and 2.

Based on the recorded block requests that each file
received from Figure 7(a), we manually reorganize the
datasets across the disks as shown on Figure 7(c). We no-
tice that the total number of requests is now balanced across
the four disks. Additionally, the measured disk bandwidth
is about the same across the disks and roughly equal to 0.7
MB/s, as shown in Figure 7(d). We conclude that the file
usage statistics made available by Lerna provide important
information about the access frequency of the disks, which
can be used for valuable data reorganization decisions. Ar-
guably, the load-balancing problem is trivially solved in
several cases by having the datasets stored on disk arrays
or other types of storage systems, instead of manually dis-
tributing them across individual disks. On the other hand, it
is very typical in large data centers to use multiple storage
systems which make data distribution decisions unavoid-
able [2]. We believe that statistics gathering facilities of
the type that we describe here should be standard function-
ality of commodity file system software in order to simplify
and ultimately automate the solution of the data organiza-
tion problem.

6 Related Work

In previous work, Wickremesinghe et al. introduced the
notion of computation-enabled storage nodes called Active
Storage Units (ASU) [27]. The present paper expands that
work towards examining related system interfacing and per-
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Figure 7. (a). Using the Lerna framework, we accumulate measurements of the block requests received for each dataset across the four disks.
Note that the shaded relief file is accessed from the same disk that the other layer is requested on each map request. (b) We measure independently
of Lerna, the utilized disk bandwidth across the four disks. The measured bandwidth is consistent with the block request measurement of (a). (c)
By reorganizing the datasets across the four disks according to the block requests of Figure 7(a), we manage to keep the four disks almost equally
utilized. (d). The measured bandwidth across the four disks after the reorganization validates the usefulness of the data gathered by Lerna.

formance evaluation issues in a file server accessed over a
wide-area network.

Several research studies propose active disk systems that
run application-level code on disk drives in order to re-
duce data traffic and improve parallelism [1, 22]. The per-
formance and services of file server operations can be en-
hanced through a remote procedure call framework that al-
lows running scripts securely on the server [24]. In clusters
of clients and servers, application and file system functions
can be partitioned and automatically placed on the server
or the client according to dynamic application behavior and
resource availability [3]. Services can be associated with
virtual disks attached to block address ranges beyond the
physical storage space of existing devices [16]. General
data manipulation is possible through extra layers that can
be statically embedded within the file system stack [4]. In
the Hurricane File System complex file structures can be
composed using simple building blocks [14]. Filter drivers
can be used to trace system activity, but require tedious de-
bugging in kernel mode [15].

The Data Grid architecture specifies several design prin-
ciples for managing large data sets potentially distributed
in a wide area [11]. Nest is a grid-enabled storage sys-
tem that supports multiple data transfer protocols, models
of concurrency, and request scheduling [6]. The Chimera
architecture proposes a language to express derivations of
relational data [12]. Datacutter is a middleware system that
enables handling of spatial range queries and data filter-
ing operations close to a multidimensional dataset archive
[9]. The GASS service uses local reference counts to auto-
mate replication of a remote file into the local storage space
[8]. LegionFS is an object-oriented file system that offers
location-independent object naming, secure object access,
system load distribution across multiple resources, and ser-
vice extensibility [26]. The Storage Resource Broker mid-
dleware provides unified attribute-based access to data and

metadata that are distributed across file systems, databases,
and archives [5].

Middleware systems have been proposed by the database
research community to allow integrated data access across
multiple types of data repositories through a unified object-
oriented data model [20]. The SDSS Science Archive pro-
vides access to astronomical object information via a three-
tier architecture consisting of a user interface, an intelligent
query engine, and a data warehouse [25]. Instead, we focus
on specifying the systems infrastructure to facilitate remote
access of data without enforcing a particular data model.

7 Conclusions and Future Work

In the present paper, we introduce a flexible system ar-
chitecture that provides support for running application-
specific computation within network file servers. We pre-
serve the traditionally simple interface of file system ac-
cesses in order to invoke plug-in applications as a side-
effect of regular I/O transfers. Additionally, we accumulate
access performance measurements within the file server,
and use them to effectively reorganize the stored data across
multiple disks. We use a multi-layer mapping application to
experimentally demonstrate significant performance advan-
tages in comparison to alternative remote data access meth-
ods. We show that remote access of large datasets through
traditional distributed file systems can significantly penalize
the application processing performance, unless the unmod-
ified application is enabled close to the stored data.

Our experience with the system so far has been very
positive in terms of operation robustness and stability. In
our future work, we plan to investigate the support of data
streaming that will enable remote clients to gradually re-
ceive output as processing proceeds. Another issue is the
decomposition of processing across multiple storage nodes,
each adopting the Lerna internal organization. Finally, it is



important to examine the security implications of limiting
the user-initiated computation through file access permis-
sions.
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