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Current trends in business and research
collaboration encourage secure data sharing over wide-
area networks with minimal intervention of the end user.
Instead of having users explicitly initiate traditional file
transfers that replicate datasets close to computation
resources, it would be preferable to have a caching proxy
to automatically replicate datasets and hide transfer delays
during the repetitive use of data. Lately, the design of
caching proxies for distributed filesystems is attracting
research interest from the systems community mostly in
terms of getting existing filesystems interoperational with
local file systems for persistent caching purposes. Here
we point out the need for efficient storage management in
caching proxies so that accesses of cached data from the
local disk of the proxy have performance comparable to
or better than direct disk accesses from the local file
system.

Caching proxies behind web servers have
already been broadly used for over a decade in content
distribution networks. Originally, copies of web pages
requested by users were replicated on proxy servers close
to the web browsers over traditional local file systems
(e.g. UFS). However, related experimentation in
published literature demonstrated several performance
deficiencies related to metadata management of multiple
small files, frequent creation and deletion of files,
excessive disk head movement from poor clustering of
jointly used data or access overheads from multiple small
writes. Subsequently, customized file systems emerged
that complementarily addressed the above issues through
special internal architectures and new access interfaces.

On the other hand, most distributed filesystems
were originally designed for serving the storage needs of
users within the same organization at a single
geographical site. The assumed use of a local-area
network limited client-side caching to main memory and
made unnecessary the corresponding disk-based caching.
One notable exception is the Andrew File System and its
descendants that provided the capability to temporarily
store data at the local file system of the client machine for
purposes of improved scalability and availability in
distributed environments [1]. However, Andrew makes
the basic assumption that client machines belonging to
individual users are powerful enough to relieve
centralized servers from computations which might not be
necessarily the case when building caching proxies to be
shared by large numbers of clients within an organization.

In fact, Andrew replicates remote data in chunks
of a configurable fixed size. Initially, it creates a large
number of individual files on the local file system of the
client and subsequently uses each of them to store an
individual chunk requested from the server. In the case of
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general file system use, Andrew has been widely
successful for over two decades. However, in modern
scientific and business environments it is usual to have
extreme cases of numerous small files or enormously
large ones. Then, the approach of having a separate local
file per chunk might not be the best possible in terms of
data access or metadata management efficiency.

The dominant organization in recent published
literature is to map each remote file to a local file in the
caching proxy [2]. However, we claim that apart from
offering a consistent view of the remote data as they
appear at the remote server, the caching proxy should be
free to manage its local data in whatever way serves its
design objectives better. The experience from the web
proxy research [3] may provide useful lessons with
respect to avoiding unnecessary metadata management or
improving disk access efficiency through appropriate file
structuring approaches or data layouts on disk.

In our effort to understand the caching efficiency
of Andrew, we experimented with its open-source variant
(OpenAFS v. 1.4.5) over Linux kernel v. 2.6.18. We
assume the default chunk size of 256KB and sufficient
disk space to fit the entire requested dataset. As we see in
Filgure 1, the retrieval time from the disk cache through
OpenAFsS is about 2-3 times greater for large files and
1.3-1.8 times greater for numerous small files in
comparison to the retrieval time from the local file
system. On the other hand, fetching files from the remote
server (another node on the same gigabit Ethernet switch
in our experiments) costs about 150-200% the retrieval
time from the OpenAFS disk cache for large files and
250-550% for numerous small files.
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Figure 1. Time to retrieve one large file or numerous small files
directly from the local file system in comparison to accessing them
through OpenAFS from the local disk or the remote server.

In our current research, we use kernel profiling
to explain the above overhead of OpenAFS. In general,
we plan to use OpenAFS as a testbed for experimentally
evaluating alternative policies of mapping remote data to
local files and organizing data chunks within each local
file in a way that matches or improves the performance of
accessing data directly from the local file system.
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