
Poster at EuroSys 2008, Glasgow, UK
Hades-Managing storage in caching proxies for distributed filesystems

Lamprini Konsta and Stergios V.Anastasiadis
Department of Computer Science, University of Ioannina, Greece

Introduction

•• Recent trends in business and research Recent trends in business and research
collaboration within and across organizations collaboration within and across organizations
encourage secure data sharing over wide area encourage secure data sharing over wide area
networksnetworks
-- minimal intervention of the end user minimal intervention of the end user
-- best possible performancebest possible performance

•• Traditional file transfer mechanisms such as Traditional file transfer mechanisms such as
FTP have long been used for secure data and FTP have long been used for secure data and
file transferringfile transferring
-- Get the user explicitly initiate the whole file Get the user explicitly initiate the whole file

transfertransfer
-- Manage multiple copiesManage multiple copies

•• Caching proxies have been lately introduced Caching proxies have been lately introduced
as an alternative approachas an alternative approach
-- Reduce WAN latency by caching data closer to Reduce WAN latency by caching data closer to

the clientthe client

•• NacheNache: a representative example of a caching : a representative example of a caching
file server proxy for NFSv4file server proxy for NFSv4
-- Designed to retain a consistent cache of remote Designed to retain a consistent cache of remote

file servers in a distributed environmentfile servers in a distributed environment
-- Improves file accesses performance by Improves file accesses performance by

redirecting requests that were initially intended for redirecting requests that were initially intended for
the file server to the intermediate cache proxythe file server to the intermediate cache proxy

Research

Andrew File System

Experiments

Existing methods

References

[1] A.Gulati et al., Nache: Design and Implementation of a
Caching Proxy for NFSV4, USENIX FAST, Feb 2007

[2] M. Satyanarayanan, Scalable, Secure and Highly
Available Distributed File Access, IEEE Computer
23(5): 9-21 (1990)

[3] E. Markatos et al., Secondary Storage Management
for Web Proxies, USENIX Symposium on Internet
Technologies and Systems, 1999

[4] Gopalan Sivathanu and Erez Zadok, A Versatile
Persistent Caching Framework for File Systems, Stony
Brook University, Technical Report FSL-05-05, 2005

Background

Measurements

Approach

Proposed methods

Expected results

•• Distributed file system that is better used for fileDistributed file system that is better used for file--
sharing in widesharing in wide--area networks area networks
-- Provides the capability to temporarily store data in a Provides the capability to temporarily store data in a

disk cache at the local file system of each client disk cache at the local file system of each client
machinemachine

-- Improves scalability and availability in distributed Improves scalability and availability in distributed
environmentsenvironments

-- Reduces network traffic and server loadReduces network traffic and server load

•• Chunk fileChunk file
-- data transfer and store unit data transfer and store unit

•• It initially creates a number of fixedIt initially creates a number of fixed--size chunk size chunk
files in the local files in the local filesystemfilesystem of the clientof the client
-- Used to store chunks of remote dataUsed to store chunks of remote data

•• Successfully used in general file systemsSuccessfully used in general file systems
-- Does not offer a proxy caching serviceDoes not offer a proxy caching service
-- Limits caching to the local Limits caching to the local filesystemfilesystem

•• Distributed environments in engineering and Distributed environments in engineering and
scientific collaborationscientific collaboration
-- Transfer numerous small or enormously large filesTransfer numerous small or enormously large files
-- Existing approach of one local file per chunk file is Existing approach of one local file per chunk file is

not the best possible solution in terms of data not the best possible solution in terms of data
access or metadata management efficiencyaccess or metadata management efficiency

For further information

•• Please contact Please contact {{lkonstalkonsta, , stergios}@cs.uoi.grstergios}@cs.uoi.gr

•• More information on this and related projects can be More information on this and related projects can be
obtained at obtained at www.srg.cs.uoi.gr

•• Supported in part by Supported in part by InterregInterreg IIIA GreeceIIIA Greece--Italy 2000Italy 2000--
2006 Grant No I2101005 in the framework of the 2006 Grant No I2101005 in the framework of the
project "project "InterstoreInterstore: Decentralized data sharing with : Decentralized data sharing with
applications to biomedical image processing" applications to biomedical image processing"

0

20

40

60

80

100

120

R
et

rie
va

l t
im

e
(s

)

1KB 10KB 100KB

File size

Time to retrieve 10240 small fixed-size files directly from the
local filesystem in comparison to accessing them through

OpenAFS from the local disk or the remote server

Local filesystem
Disk cache
Remote Server

•• TopicTopic
-- Caching proxy facilities for distributed Caching proxy facilities for distributed filesystemsfilesystems

•• FocusFocus
-- Efficient storage managementEfficient storage management
-- Improve the performance of accessing cached Improve the performance of accessing cached

data from proxiesdata from proxies
-- Make performance comparable to or better than Make performance comparable to or better than

direct disk accesses from local file systemdirect disk accesses from local file system

•• Traditional distributed file systemsTraditional distributed file systems
-- Originally designed for serving the storage needs Originally designed for serving the storage needs

of users at local area networksof users at local area networks
-- Limited clientLimited client--side caching to main memory or side caching to main memory or

local file systemlocal file system
-- Made unnecessary the corresponding diskMade unnecessary the corresponding disk--based based

cachingcaching

•• NetworkNetwork--based based filesystemsfilesystems, like Andrew File , like Andrew File
SystemSystem
-- WANs introduce latencies that may be orders of WANs introduce latencies that may be orders of

magnitudes greater than direct disk accessesmagnitudes greater than direct disk accesses
-- Long latencies encourage the design of a clientLong latencies encourage the design of a client--

side disk cache for effective storage managementside disk cache for effective storage management

•• PlatformPlatform
-- OpenOpen--source variant (source variant (OpenAFSOpenAFS v.1.4.5) over v.1.4.5) over

Linux kernel v. 2.6.18Linux kernel v. 2.6.18

•• ParametersParameters
-- Default chunk size of 256 KBDefault chunk size of 256 KB
-- Cache partition in the local Cache partition in the local filesystemfilesystem large large

enough to store the requested files in their entiretyenough to store the requested files in their entirety

•• MeasurementsMeasurements
-- Local file access timeLocal file access time
-- Disk cache file access time through Disk cache file access time through OpenAFSOpenAFS

•• ResultsResults
-- One large fileOne large file

The time to fetch a large file from the remote file The time to fetch a large file from the remote file
server is server is 1.5-2 times greater than the than the
corresponding retrieval time from the corresponding retrieval time from the OpenAFSOpenAFS
disk cachedisk cache
The time to retrieve a large file from the disk The time to retrieve a large file from the disk
cache through cache through OpenAFSOpenAFS is is 2-3 times greater in in
comparison to retrieving it from the local file comparison to retrieving it from the local file
systemsystem

-- Numerous small filesNumerous small files
The time to fetch numerous small files from the The time to fetch numerous small files from the
remote file server is remote file server is 2.5-5.5 times greater than than
the corresponding retrieval time from the the corresponding retrieval time from the
OpenAFSOpenAFS disk cachedisk cache
The time to retrieve numerous small filesThe time to retrieve numerous small files from from
the disk cache through the disk cache through OpenAFSOpenAFS is is 1.3-1.8
times greater in comparison to retrieving them in comparison to retrieving them
from the local file systemfrom the local file system

•• One large fileOne large file
-- Stored in multiple chunk filesStored in multiple chunk files
-- Large time to find and read all the chunk files for a Large time to find and read all the chunk files for a

single remote filesingle remote file
-- Open/close overheadOpen/close overhead
-- Metadata management overheadMetadata management overhead
-- Fragmentation/Disk access overheadFragmentation/Disk access overhead

•• Numerous small filesNumerous small files
-- Open/close overheadOpen/close overhead
-- Metadata management overheadMetadata management overhead
-- Fragmentation/Disk access overheadFragmentation/Disk access overhead

•• Explore alternative methods for the mapping of Explore alternative methods for the mapping of
the remote data to local files in disk cache to the remote data to local files in disk cache to
-- enhance the existing performance of retrieving enhance the existing performance of retrieving

cached data cached data
-- match or improve the performance of accessing match or improve the performance of accessing

data directly from the local file system data directly from the local file system

•• Thus, we propose two methods that changeThus, we propose two methods that change
-- the existing mapping strategies the existing mapping strategies
-- the way remote data chunks are organized into the way remote data chunks are organized into

local cache fileslocal cache files

•• One chunk file per remote fileOne chunk file per remote file
-- The dominant organization in recent published The dominant organization in recent published

literatureliterature
-- Offers a consistent view of the remote data as they Offers a consistent view of the remote data as they

appear at the remote serverappear at the remote server

•• Multiple chunk files per remote fileMultiple chunk files per remote file
-- AFS mapping strategyAFS mapping strategy
-- Depending on the size of the remote file, it is saved Depending on the size of the remote file, it is saved

in one or more files in local disk cachein one or more files in local disk cache
-- Appropriate structures are used to find all the Appropriate structures are used to find all the

corresponding cached files for a remote filecorresponding cached files for a remote file

•• Multiple remote files per chunk fileMultiple remote files per chunk file
-- Web proxiesWeb proxies
-- Manage local data in a way that serves their design Manage local data in a way that serves their design

objectivesobjectives

•• Storage management in cacheStorage management in cache
-- separate from storage management at the remote separate from storage management at the remote

server server

•• Remote small filesRemote small files
-- Organize in multiple files per local chunk file Organize in multiple files per local chunk file
-- Create few large chunk files in cache Create few large chunk files in cache
-- Store the remote chunks of data on demandStore the remote chunks of data on demand

•• Remote large filesRemote large files
-- Organize in one or few local chunk files per remote Organize in one or few local chunk files per remote

filefile
-- Contiguously store chunks of the remote file to the Contiguously store chunks of the remote file to the

appropriate local chunk file on demand appropriate local chunk file on demand

•• Improve performance by reducingImprove performance by reducing
-- storage space fragmentation storage space fragmentation
-- metadata management overheadmetadata management overhead

0

10

20

30

40

50

60

70

80

R
et

rie
va

l t
im

e
(s

)

1 File 10MB 1 File 100MB 1 File 1GB

File size

Time to retrieve a large file directly from the local filesystem in
comparison to accessing it through OpenAFS from the local disk

or the remote server

Local filesystem
Disk cache
Remote Server

http://www.srg.cs.uoi.gr/

Hades – Managing storage in caching proxies
for distributed filesystems1

general file system use, Andrew has been widely
successful for over two decades. However, in modern
scientific and business environments it is usual to have
extreme cases of numerous small files or enormously
large ones. Then, the approach of having a separate local
file per chunk might not be the best possible in terms of
data access or metadata management efficiency.

 Lamprini Konsta*
Stergios V. Anastasiadis

Department of Computer Science
University of Ioannina, GREECE

{lkonsta, stergios}@cs.uoi.gr The dominant organization in recent published
literature is to map each remote file to a local file in the
caching proxy [2]. However, we claim that apart from
offering a consistent view of the remote data as they
appear at the remote server, the caching proxy should be
free to manage its local data in whatever way serves its
design objectives better. The experience from the web
proxy research [3] may provide useful lessons with
respect to avoiding unnecessary metadata management or
improving disk access efficiency through appropriate file
structuring approaches or data layouts on disk.

 Current trends in business and research
collaboration encourage secure data sharing over wide-
area networks with minimal intervention of the end user.
Instead of having users explicitly initiate traditional file
transfers that replicate datasets close to computation
resources, it would be preferable to have a caching proxy
to automatically replicate datasets and hide transfer delays
during the repetitive use of data. Lately, the design of
caching proxies for distributed filesystems is attracting
research interest from the systems community mostly in
terms of getting existing filesystems interoperational with
local file systems for persistent caching purposes. Here
we point out the need for efficient storage management in
caching proxies so that accesses of cached data from the
local disk of the proxy have performance comparable to
or better than direct disk accesses from the local file
system.

 In our effort to understand the caching efficiency
of Andrew, we experimented with its open-source variant
(OpenAFS v. 1.4.5) over Linux kernel v. 2.6.18. We
assume the default chunk size of 256KB and sufficient
disk space to fit the entire requested dataset. As we see in
Filgure 1, the retrieval time from the disk cache through
OpenAFS is about 2-3 times greater for large files and
1.3-1.8 times greater for numerous small files in
comparison to the retrieval time from the local file
system. On the other hand, fetching files from the remote
server (another node on the same gigabit Ethernet switch
in our experiments) costs about 150-200% the retrieval
time from the OpenAFS disk cache for large files and
250-550% for numerous small files.

 Caching proxies behind web servers have
already been broadly used for over a decade in content
distribution networks. Originally, copies of web pages
requested by users were replicated on proxy servers close
to the web browsers over traditional local file systems
(e.g. UFS). However, related experimentation in
published literature demonstrated several performance
deficiencies related to metadata management of multiple
small files, frequent creation and deletion of files,
excessive disk head movement from poor clustering of
jointly used data or access overheads from multiple small
writes. Subsequently, customized file systems emerged
that complementarily addressed the above issues through
special internal architectures and new access interfaces.

 On the other hand, most distributed filesystems
were originally designed for serving the storage needs of
users within the same organization at a single
geographical site. The assumed use of a local-area
network limited client-side caching to main memory and
made unnecessary the corresponding disk-based caching.
One notable exception is the Andrew File System and its
descendants that provided the capability to temporarily
store data at the local file system of the client machine for
purposes of improved scalability and availability in
distributed environments [1]. However, Andrew makes
the basic assumption that client machines belonging to
individual users are powerful enough to relieve
centralized servers from computations which might not be
necessarily the case when building caching proxies to be
shared by large numbers of clients within an organization.

Figure 1. Time to retrieve one large file or numerous small files
directly from the local file system in comparison to accessing them
through OpenAFS from the local disk or the remote server.

 In our current research, we use kernel profiling
to explain the above overhead of OpenAFS. In general,
we plan to use OpenAFS as a testbed for experimentally
evaluating alternative policies of mapping remote data to
local files and organizing data chunks within each local
file in a way that matches or improves the performance of
accessing data directly from the local file system.

 [1] M. Satyanarayanan, Scalable, Secure, and Highly
Available Distributed File Access, IEEE Computer 23(5):
9-21 (1990).
[2] A. Gulati et al. Nache: Design and Implementation of
a C ching Proxy for NFSv4, USENIX FAST, Feb 2007.

 In fact, Andrew replicates remote data in chunks
of a configurable fixed size. Initially, it creates a large
number of individual files on the local file system of the
client and subsequently uses each of them to store an
individual chunk requested from the server. In the case of

a
[3] E. Markatos et al., Secondary Storage Management
for Web Proxies, USENIX Symposium on Internet
Technologies and Systems, 1999

 * Graduate student
1 Supported in part by INTERREG IIIA Greece-Italy
Grant No I2101005.

	Slide Number 1

