Poster at EuroSys 2008, Glasgow, UK

Hades-Managing storage in caching proxies for distributed filesystems
Lamprini Konsta and Stergios V.Anastasiadis
Department of Computer Science, University of loannina, Greece

Introduction Experiments Approach
. . | ESSS—————
® Recent trends in business and research ® Platform ® Explore alternative methods for the mapping of
collaboration within and across organizations - Open-source variant (OpenAFS v.1.4.5) over theliemote dataitollocalifiles indiskicacheito

encourage secure data sharing over wide area Linux kernel v. 2.6.18 e Cﬁgg%;tae existing periormance of retrieving
n?twmi?{ilr(ﬁal At 6 e c] WEer ® Parameters = match or improve the performance of accessing
- best possible performance - Default chunk size of 256 KB data directly from the local file system
= Cache partition in the local filesystem large °
o Treahitonel il ErsiEr M Ernsmns suEh 63 enough to store the requested files in their entirety T-htlfé ewxitmé)?n%%%éggtgg;ggs that change
FTP have long been used for secure data and ® Measurements - the way remote data chunks are organized into
file transferring] S Tl i pesess dme local cache files
- Get the user explicitly initiate the whole file - Disk cache file access time through OpenAFS L
- Manage multiple copies e Results Existi ng methods
: : . - One large file
® Caching proxies have been lately introduced -)) I ——
: » The time to fetch a large file from the remote file
as an alternative approach i] ® One chunk file per remote file
- Reduce WAN latency by caching data closer to severlisit.s2itimesigreatenthanithe 2 The dominant brganization in recent published
the client corresponding retrieval time from the OpenAFS iteratire
) . disk cache) _ - Offers a consistent view of the remote data as they
® Nache: a representative example of a caching » The time to retrieve a large file from the disk appear at the remote server
file server proxy for NFSv4 cache through OpenAFsS is 2-3 times greater in) i]
- Plesigned to reta:ji_n ta. tc):otnséjstent cache ?f remote comparison to retrieving it from the local file ° Mu)AI}'LpJSIe chunk fllest per remote file
ile servers in a distributed environmen - mapping strategy
= Improves file accesses performance by system - Depending on the size of the remote file, it is saved
redirecting requests that were initially intended for in one or more files in local disk cache
the file server to the intermediate cache proxy 80" | [@tocalflesystem = Appropriate structures are used to find all the
2 W Disk cache corresponding cached files for a remote file
] || ORemote Sener
s - ® ® Multiple remote files per chunk file
@ 50 - Web proxies
——— | = o = WEERE (e E2 i SN it eSS il Cosign
* Topic < objectives
T30
- Caching proxy facilities for distributed filesystems € L 1
o Focus 0 Proposed methods
- Efficient storage management i o - I ——
- Improve the performance of accessing cached 1File 10MB 1 File 1008 LFile 108 ° .
data from proxies File size Storage management in cache
- Make performance comparable to or better than Time to retrieve a large file directly from the local filesystem in = separate from storage management at the remote
direct disk accesses from local file system comparison to accessing it through OpenAFS from the local disk SENE]}
or the remote server .
] ® Remote small files

- Organize in multiple files per local chunk file
Bac kg round - Numerous small files - Create few large chunk files in cache
> The time to fetch numerous small files from the - Store the remote chunks of data on demand

* Traditonal cisbuted fle systems femete e sevr (526 05 mes Srealerhan y pornore farge fes
- Originally designed for serving the storage needs - - Organize in one or few local chunk files per remote
of users at local area networks OpenAFS disk cache . fileg P
= Limited client-side caching to main memory or > The time to retrieve numerous small files from - Contiguously store chunks of the remote file to the
local file system . . the disk cache through OpenAFS is 1.3-1.8 appropriate local chunk file on demand
B Ma‘ﬂ? Unlsgesalyy s wontssparel dlldbasse times greater in COMPArison (o retrieving tem e —————
caching from the local file system
® Network-based filesystems, like Andrew File Expected results
System . 120 oo e ——
- WANS introduce latencies that may be orders of — mDisk cache ® |mprove performance by reducing
magnitudes greater than direct disk accesses 0 Remote Senver - storage space fragmentation

- Long latencies encourage the design of a client-
side disk cache for effective storage management

- metadata management overhead

References
I —

[1] A.Gulati et al., Nache: Design and Implementation of a
Caching Proxy for NESV4, USENIX FAST, Feb 2007

Retrievaltime (s)

Andrew File System

® Distributed file system that is better used for file-

sharing in wide-area networks e 10K 100k [2] M. Satyanarayanan, Scalable, Secure and Highly
- Provides the capability to temporarily store data in a File size Available Distributed File Access, IEEE Computer
disk cache at the local file system of each client Time to retrieve 10240 small fixed-size files directly from the 23(5): 9-21 (1990)
machine .. e e local filesystem in comparison to accessing them through [3] E. Markatos e.t al., Secondary Storé.lge Management
= Improves scalability and availability in distributed OpenAFS from the local disk o the remote server for Web Proxies, USENIX Symposium on Internet
environments Technologies and Systems, 1999)
- Reduces network traffic and server load [4] Gopalan Sivathanu and Erez Zadok, A Versatile
P Persistent Caching Framework for File Systems, Stony
® Chunk file M t Brook University, Technical Report FSL-05-05, 2005
- data transfer and store unit RTINS [
I ——
® [tinitially creates a number of fixed-size chunk _ For further information
files in the local filesystem of the client > OnpEmRil , [—
= Used to store chunks of remote data - EtOTEdt_In mtultflplg Chgnk ﬂ(ljesll SN
)) = LTS UL L) [TTs) Tl [(EEEXe) 1) Wals G Wl ES velr & ® Please contact {lkonsta, stergios}@cs.uoi.gr
® Successfully used in general file systems gggﬁéﬁ)r?gtg\fg?hea ’ { gios} 9
- Does not offer a proxy caching service - ® More information on this and related projects can be
- Limi i i - Metadata management overhead
lanag
Limits caching to the local filesystem - Fragmentation/Disk access overhead obtained at www.srg.cs.uoi.gr

° . ° i = o
Disrbuted environments n engineering and o Numerous small fes R A Y g A el 2000
- Transfer numerous small or enormously large files = (ICTEIEE QU] project "Interstore: Decentralized data sharing with
isti i Y A f - Metadata management overhead applications to biomedical image processing"”
- Existing approach of one local file per chunk file is - Fragmentation/Disk access overhead PP ge p 9
not the best possible solution in terms of data =
access or metadata management efficiency

http://www.srg.cs.uoi.gr/

Hades — Managing storage in caching proxies
for distributed filesystems®
Lamprini Konsta*
Stergios V. Anastasiadis
Department of Computer Science
University of loannina, GREECE
{lIkonsta, stergios}@cs.uoi.gr

Current trends in business and research
collaboration encourage secure data sharing over wide-
area networks with minimal intervention of the end user.
Instead of having users explicitly initiate traditional file
transfers that replicate datasets close to computation
resources, it would be preferable to have a caching proxy
to automatically replicate datasets and hide transfer delays
during the repetitive use of data. Lately, the design of
caching proxies for distributed filesystems is attracting
research interest from the systems community mostly in
terms of getting existing filesystems interoperational with
local file systems for persistent caching purposes. Here
we point out the need for efficient storage management in
caching proxies so that accesses of cached data from the
local disk of the proxy have performance comparable to
or better than direct disk accesses from the local file
system.

Caching proxies behind web servers have
already been broadly used for over a decade in content
distribution networks. Originally, copies of web pages
requested by users were replicated on proxy servers close
to the web browsers over traditional local file systems
(e.g. UFS). However, related experimentation in
published literature demonstrated several performance
deficiencies related to metadata management of multiple
small files, frequent creation and deletion of files,
excessive disk head movement from poor clustering of
jointly used data or access overheads from multiple small
writes. Subsequently, customized file systems emerged
that complementarily addressed the above issues through
special internal architectures and new access interfaces.

On the other hand, most distributed filesystems
were originally designed for serving the storage needs of
users within the same organization at a single
geographical site. The assumed use of a local-area
network limited client-side caching to main memory and
made unnecessary the corresponding disk-based caching.
One notable exception is the Andrew File System and its
descendants that provided the capability to temporarily
store data at the local file system of the client machine for
purposes of improved scalability and availability in
distributed environments [1]. However, Andrew makes
the basic assumption that client machines belonging to
individual users are powerful enough to relieve
centralized servers from computations which might not be
necessarily the case when building caching proxies to be
shared by large numbers of clients within an organization.

In fact, Andrew replicates remote data in chunks
of a configurable fixed size. Initially, it creates a large
number of individual files on the local file system of the
client and subsequently uses each of them to store an
individual chunk requested from the server. In the case of

! Supported in part by INTERREG Il1A Greece-ltaly
Grant No 12101005.

general file system use, Andrew has been widely
successful for over two decades. However, in modern
scientific and business environments it is usual to have
extreme cases of numerous small files or enormously
large ones. Then, the approach of having a separate local
file per chunk might not be the best possible in terms of
data access or metadata management efficiency.

The dominant organization in recent published
literature is to map each remote file to a local file in the
caching proxy [2]. However, we claim that apart from
offering a consistent view of the remote data as they
appear at the remote server, the caching proxy should be
free to manage its local data in whatever way serves its
design objectives better. The experience from the web
proxy research [3] may provide useful lessons with
respect to avoiding unnecessary metadata management or
improving disk access efficiency through appropriate file
structuring approaches or data layouts on disk.

In our effort to understand the caching efficiency
of Andrew, we experimented with its open-source variant
(OpenAFS v. 1.4.5) over Linux kernel v. 2.6.18. We
assume the default chunk size of 256KB and sufficient
disk space to fit the entire requested dataset. As we see in
Filgure 1, the retrieval time from the disk cache through
OpenAFsS is about 2-3 times greater for large files and
1.3-1.8 times greater for numerous small files in
comparison to the retrieval time from the local file
system. On the other hand, fetching files from the remote
server (another node on the same gigabit Ethernet switch
in our experiments) costs about 150-200% the retrieval
time from the OpenAFS disk cache for large files and
250-550% for numerous small files.

o DLecal flesystem
1o ¢ I| WOiskcache
o ORemote Server L} -]

me | |BLlocd !i!s',lmm;

.~ B Disk cathe ,—'
¥ |ORamaots Server | |

Retrieval time (s}
Rotrieval time (s)

-
Ve
o I
v

1Fie 10MB 1File 100MB 1 File 1GB 1KE 10KE 100KE
File size File size
Figure 1. Time to retrieve one large file or numerous small files
directly from the local file system in comparison to accessing them
through OpenAFS from the local disk or the remote server.

In our current research, we use kernel profiling
to explain the above overhead of OpenAFS. In general,
we plan to use OpenAFS as a testbed for experimentally
evaluating alternative policies of mapping remote data to
local files and organizing data chunks within each local
file in a way that matches or improves the performance of
accessing data directly from the local file system.

[1] M. Satyanarayanan, Scalable, Secure, and Highly
Available Distributed File Access, IEEE Computer 23(5):
9-21 (1990).

[2] A. Gulati et al. Nache: Design and Implementation of
a Caching Proxy for NFSv4, USENIX FAST, Feb 2007.
[3] E. Markatos et al., Secondary Storage Management
for Web Proxies, USENIX Symposium on Internet
Technologies and Systems, 1999

* Graduate student

	Slide Number 1

