
Algorithmica
DOI 10.1007/s00453-009-9292-5

The 1-Fixed-Endpoint Path Cover Problem
is Polynomial on Interval Graphs

Katerina Asdre · Stavros D. Nikolopoulos

Received: 1 April 2008 / Accepted: 11 February 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider a variant of the path cover problem, namely, the k-fixed-
endpoint path cover problem, or kPC for short, on interval graphs. Given a graph
G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with
respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that
the k vertices of T are all endpoints of the paths in P . The kPC problem is to find
a k-fixed-endpoint path cover of G of minimum cardinality; note that, if T is empty
the stated problem coincides with the classical path cover problem. In this paper, we
study the 1-fixed-endpoint path cover problem on interval graphs, or 1PC for short,
generalizing the 1HP problem which has been proved to be NP-complete even for
small classes of graphs. Motivated by a work of Damaschke (Discrete Math. 112:49–
64, 1993), where he left both 1HP and 2HP problems open for the class of interval
graphs, we show that the 1PC problem can be solved in polynomial time on the class
of interval graphs. We propose a polynomial-time algorithm for the problem, which
also enables us to solve the 1HP problem on interval graphs within the same time and
space complexity.

Keywords Perfect graphs · Interval graphs · Path cover · Fixed-endpoint path
cover · Linear-time algorithms

1 Introduction

Framework—Motivation A well studied problem with numerous practical appli-
cations in graph theory is to find a minimum number of vertex-disjoint paths of a

K. Asdre · S.D. Nikolopoulos (�)
Department of Computer Science, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
e-mail: stavros@cs.uoi.gr

K. Asdre
e-mail: katerina@cs.uoi.gr

mailto:stavros@cs.uoi.gr
mailto:katerina@cs.uoi.gr

Algorithmica

graph G that cover the vertices of G. This problem, also known as the path cover
problem (PC), finds application in the fields of database design, networks, code opti-
mization among many others (see [1, 2, 19, 28]); it is well known that the path cover
problem and many of its variants are NP-complete in general graphs [10]. A graph
that admits a path cover of size one is referred to as Hamiltonian. Thus, the path cover
problem is at least as hard as the Hamiltonian path problem (HP), that is, the prob-
lem of deciding whether a graph is Hamiltonian. The path cover problem is known
to be NP-complete even when the input is restricted to several interesting special
classes of graphs; for example, it is NP-complete on planar graphs [11], bipartite
graphs [12], chordal graphs [12], chordal bipartite graphs [20] and strongly chordal
graphs [20]. Bertossi and Bonuccelli [6] proved that the Hamiltonian Circuit problem
is NP-complete on several interesting classes of intersection graphs.

Several variants of the HP problem are also of great interest, among which is the
problem of deciding whether a graph admits a Hamiltonian path between two points
(2HP). The 2HP problem is the same as the HP problem except that in 2HP two
vertices of the input graph G are specified, say, u and v, and we are asked whether G

contains a Hamiltonian path beginning with u and ending with v. Similarly, the 1HP
problem is to determine whether a graph G admits a Hamiltonian path starting from
a specific vertex u of G, and to find one if such a path does exist. Both 1HP and 2HP
problems are also NP-complete in general graphs [10].

The path cover problem as well as several variants of it have been extensively
studied due to their wide applicability in many fields. Some of these problems, of
both theoretical and practical importance, are in the context of communication and/or
transposition networks [29]. In such problems, we are given a graph (network) G and
two disjoint subsets T1 and T2 of vertices of G, and the objective is to determine
whether G admits λ vertex-disjoint paths with several conditions on their endpoints
with respect to T1 and T2, e.g., paths with both their endpoints in T1 ∪ T2, paths with
one endpoint in T1 and the other in T2, etc. [3, 4, 29]; note that, the endpoints of a
path P are the first vertex and the last vertex visited by P .

A similar problem that has received increased attention in recent years is in the
context of communication networks. The only efficient way to transmit high volume
communication, such as in multimedia applications, is through disjoint paths that are
dedicated to pairs of processors. To efficiently utilize the network, one needs a simple
algorithm that, with minimum overhead, constructs a large number of edge-disjoint
paths between pairs of two given sets T1 and T2 of requests.

Furthermore, in the study of interconnection networks, the reliability of the in-
terconnection network subject to node failures corresponds to the connectivity of
an interconnection graph. It is well-known that the connectivity of a graph G is
characterized in terms of vertex-disjoint paths joining a pair of vertices in G. Thus,
one-to-many vertex-disjoint paths joining a vertex s (source) and k distinct vertices
t1, t2, . . . , tk (sinks) are required. A related work was presented by Park in [23].

Another related problem is the disjoint paths (DP) problem, which is defined as
follows: Given a graph G and pairs (s1, t1), (s2, t2), . . . , (sk, tk) of vertices of G, the
objective is to determine whether G admits k vertex-disjoint paths P1,P2, . . . ,Pk in
G such that Pi joins si and ti (1 ≤ i ≤ k). The problem was shown to be NP-complete
by Karp [17] if k is a variable part of the input. For fixed k, however, the problem

Algorithmica

is more tractable; a polynomial-time algorithm was described by Robertson and Sey-
mour [25]. Note that, for k = 2, there are several polynomial-time algorithms in the
literature for the DP problem [26, 27, 30]. In contrast, the corresponding question for
directed graphs G where we seek directed paths P1,P2, . . . ,Pk is NP-complete even
for k = 2 [9].

In [8], Damaschke provided a foundation for obtaining polynomial-time algo-
rithms for several problems concerning paths in interval graphs, such as finding
Hamiltonian paths and circuits, and partitions into paths. In the same paper, he stated
that the complexity status of both 1HP and 2HP problems on interval graphs remains
an open question.

Motivated by the above issues, we state a variant of the path cover problem,
namely, the 1-fixed-endpoint path cover (1PC) problem, which generalizes the 1HP
problem.

Problem 1PC Given a graph G and a vertex u ∈ V (G), a 1-fixed-endpoint path cover
of the graph G with respect to u is a path cover of G such that the vertex u is an
endpoint of a path in the path cover; a minimum 1-fixed-endpoint path cover of G

with respect to u is a 1-fixed-endpoint path cover of G with minimum cardinality;
the 1-fixed-endpoint path cover problem (1PC) is to find a minimum 1-fixed-endpoint
path cover of the graph G.

Contribution In this paper, we study the complexity status of the 1-fixed-endpoint
path cover problem (1PC) on the class of interval graphs [7, 12], and show that this
problem can be solved in polynomial time. The proposed algorithm runs in O(n3)

time on an interval graph G on n vertices and m edges and requires linear space. The
proposed algorithm for the 1PC problem can also be used to solve the 1HP problem
on interval graphs within the same time and space complexity. Using our algorithm
for the 1PC problem and a simple reduction described by Müller in [20], we solve
the HP problem on a X-convex graph G(X,Y,E) with |Y | − |X| = 1, which was left
open in [31]. We also show that the 1HP problem on a biconvex graph G is solvable
in O(n3) time. Figure 1 shows a diagram of class inclusions for a number of graph
classes, subclasses of comparability and chordal graphs, and the current complexity
status of the 1HP problem on these classes; for definitions of the classes shown,
see [7, 12].

Related Work Interval graphs form an important class of perfect graphs [12] and
many problems that are NP-complete on arbitrary graphs are shown to admit poly-
nomial time algorithms on this class [2, 12, 18]. Both Hamiltonian Circuit (HC) and
Hamiltonian Path (HP) problems are polynomially solvable for the class of interval
and proper interval graphs. Keil introduced a linear-time algorithm for the HC prob-
lem on interval graphs [18] and Arikati and Rangan [2] presented a linear-time al-
gorithm for the minimum path cover problem on interval graphs. Bertossi [5] proved
that a proper interval graph has a Hamiltonian path if and only if it is connected. He
also gave an O(n logn) algorithm for finding a Hamiltonian circuit in a proper in-
terval graph. Recently, Asdre and Nikolopoulos proposed a linear-time algorithm for
the k-fixed-endpoint path cover problem (kPC) on cographs and on proper interval

Algorithmica

Fig. 1 The complexity status (NP-complete, unknown, polynomial) of the 1HP problem for some graph
subclasses of comparability and chordal graphs. A → B indicates that class A contains class B

graphs [3, 4]. Furthermore, Lin et al. [19] proposed an optimal algorithm for the path
cover problem on cographs while Nakano et al. [21] proposed an optimal parallel
algorithm which finds and reports all the paths in a minimum path cover of a co-
graph in O(logn) time using O(n/ logn) processors on a PRAM model. Hsieh et al.
[14] presented an O(n + m)-time sequential algorithm for the Hamiltonian problem
on a distance-hereditary graph and also proposed a parallel implementation of their
algorithm which solves the problem in O(logn) time using O((n+m)/ logn) proces-
sors on a PRAM model. A unified approach to solving the Hamiltonian problems on
distance-hereditary graphs was presented in [15], while Hsieh [13] presented an effi-
cient parallel strategy for the 2HP problem on the same class of graphs. Algorithms
for the path cover problem on other classes of graphs were proposed in [16, 22, 28].

Road Map The paper is organized as follows. In Sect. 2 we establish the notation
and related terminology, and we present background results. In Sect. 3 we describe
our algorithm for the 1PC problem, while in Sect. 4 we prove its correctness and
compute its time and space complexity. Section 5 presents some related results and
in Sect. 6 we conclude the paper and discuss possible future extensions.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G,
we denote its vertex and edge set by V (G) and E(G), respectively. Let S be a subset
of the vertex set of a graph G. Then, the subgraph of G induced by S is denoted by
G[S]. Furthermore, we say that a vertex v sees vertex v′ if and only if vv′ ∈ E(G).

Algorithmica

A graph G is an interval graph if its vertices can be put in a one-to-one correspon-
dence with a family F of intervals on the real line such that two vertices are adjacent
in G if and only if their corresponding intervals intersect. F is called an intersec-
tion model for G [2]. Interval graphs find applications in genetics, molecular biology,
archeology, and storage information retrieval [12]. Interval graphs form an important
class of perfect graphs [12] and many problems that are NP-complete on arbitrary
graphs are shown to admit polynomial time algorithms on this class [2, 12, 18]. The
class of interval graphs is hereditary, that is, every induced subgraph of an interval
graph G is also an interval graph. We state the following numbering for the vertices
of an interval graph proposed in [24].

Lemma 2.1 (Ramalingam and Rangan [24]) The vertices of any interval graph G

can be numbered with integers 1,2, . . . , |V (G)| such that if i < j < k and ik ∈ E(G)

then jk ∈ E(G).

As shown in [24], the numbering of Lemma 2.1, which results from numbering the
intervals after sorting them on their right ends [2], can be obtained in linear time, that
is, O(m + n) time. An ordering of the vertices according to this numbering is found
to be quite useful in solving many problems on interval graphs [2, 24]. Throughout
the paper, the vertex numbered with i will be denoted by vi , 1 ≤ i ≤ n, and such an
ordering will be denoted by π . We say that vi < vj if i < j , 1 ≤ i, j ≤ n.

Let G be an interval graph with vertex set V (G) and edge set E(G), T be a set
containing a single vertex of V (G), and let PT (G) be a minimum 1-fixed-endpoint
path cover of G with respect to T of size λT (G) (or λT for short); recall that the
size of P T (G) is the number of paths it contains. The vertex belonging to the set T
is called terminal vertex, and the set T is called the terminal set of G, while those of
V (G) − T are called non-terminal vertices. Thus, the set PT (G) contains two types
of paths, which we call terminal and non-terminal paths: a terminal path Pt is a path
having the terminal vertex as an endpoint and a non-terminal path Pf is a path having
both its endpoints in V (G)− T . The set of the non-terminal paths in a minimum 1PC
of the graph G is denoted by N , while T denotes the set containing the terminal path.
Clearly, |T | = 1 and λT = |N | + 1.

Our algorithm for computing a 1PC of an interval graph is based on a greedy
principle, visiting the vertices according to the ordering π = (v1, v2, . . . , vk, . . . , vn),
and uses three operations on the paths of a 1PC of G[S], where S = {v1, v2, . . . , vk},
1 ≤ k < n. These three operations, namely connect, insert and bridge opera-
tions, are described below and are illustrated in Fig. 2:

• Connect operation. Let vi be a non-terminal endpoint of a path P of PT (G[S])
and let vk+1 be a non-terminal or a terminal vertex such that vk+1 sees vi . We say
that we connect vertex vk+1 to the path P , or, equivalently, to the vertex vi , if we
extend the path P by adding an edge which joins vertex vk+1 with vertex vi .

• Insert operation. Let P = (. . . , vi, vj , . . .), i �= j , i, j ∈ [1, k], be a path of
PT (G[S]) and let vk+1 be a non-terminal vertex such that vk+1 sees vi and vj .
We say that we insert vertex vk+1 into P (between vi and vj), if we replace the
path P with the path P ′ = (. . . , vi, vk+1, vj , . . .).

Algorithmica

Fig. 2 Illustrating
(a) connect, (b) insert, and
(c) bridge operations;
P,P1,P2 ∈ PT (G[S])

• Bridge operation. Let P1 and P2 be two paths of P T (G[S]) and let vk+1 be a
non-terminal vertex that sees at least one non-terminal endpoint of P1 and at least
one of P2. We say that we bridge the two paths P1 and P2 using vertex vk+1 if
we connect vk+1 with a non-terminal endpoint of P1 and a non-terminal endpoint
of P2.

Let P be a path of P T (G) and let vi and vj be its endpoints. We say that vi is
the left (resp. right) endpoint of the path and vj is the right (resp. left) endpoint of
the path if vi < vj (resp. vj < vi). Throughout the paper, a trivial path (i.e. a path
consisting of one vertex) is considered to have two endpoints, while a trivial path
consisting of the terminal vertex u ∈ T is considered to have one terminal endpoint
and one non-terminal endpoint.

Let G be an interval graph on n vertices and let PT (G) be a minimum 1PC of size
λT . Since a trivial path is considered to have two endpoints, the number of endpoints
in P T (G) is 2λT . For each vertex vi we denote by d(vi) the number of neighbors of
vi in P T (G); that is, d(vi) ∈ {0,1,2}. We call d-connectivity of PT (G) the sum of
d(v1), d(v2), . . . , d(vn). It is easy to see that

∑n
i=1 d(vi) = 2(n − λT). Clearly, any

minimum 1PC P T (G) has d-connectivity equal to 2(n − λT).

3 The Algorithm

In this section we present an algorithm for the 1PC problem on interval graphs. Our
algorithm takes as input an interval graph G on n vertices and m edges and a set
T = {u} containing the terminal vertex u ∈ V (G), and computes a minimum 1PC
P T (G) of G in O(n3) time. The algorithm is based on a greedy principle to extend a
path of a minimum 1PC using operations on the left and right endpoints of its paths
and properties of the graph G[{v1, v2, . . . , vi} − {u}], 1 ≤ i ≤ n; if a vertex sees the
two endpoints of only one non-terminal path P , it is connected to the left endpoint
of the path P . Furthermore, for each vertex vi , 1 ≤ i < j , we denote by ε

(j)
i the

number of endpoints vκ belonging to different paths in P T (G[v1, v2, . . . , vj]) with

index κ ∈ (i, j]. We also define ε
(i)
i = 0 and ε

(i)
0 = λT (G[v1, v2, . . . , vi]), 1 ≤ i ≤ n.

Algorithmica

Fig. 3 Illustrating some cases of the bridge operation

Before describing our algorithm, let us present the operation bridge in detail.
In most cases we bridge two paths that have the leftmost non-terminal endpoints.
Suppose that when vertex vi is processed it sees at least one non-terminal endpoint of
a non-terminal path P1, say, vj , and at least the non-terminal endpoint of the terminal
path P2, say, v�, and both endpoints of a non-terminal path P3, say, vr and vs . Let
vz, vt and vr be the left endpoints and vj , v� and vs be the right endpoints of the
paths P1, P2 and P3, respectively. There exist three cases where, in order to obtain
the maximum possible value for every ε

(j)
i , we do not bridge two paths through the

leftmost non-terminal endpoints (see Fig. 3(a)–(c)). In these three cases the bridge
operation works as follows:

(a) vz < vj < vt < v� < vr < vs : we bridge P1 and P3 through vz (or, vj if vz /∈
N(vi)) and vr .

(b) vz < vt < v� < vj < vr < vs : if vz /∈ N(vi) we bridge P2 and P3 through v� and
vr ; otherwise, we bridge P1 and P2 through vz and v�.

(c) vz < vt < vj < v� < vr < vs : we bridge P1 and P3 through vz (or, vj if vz /∈
N(vi)) and vr .

Suppose now that P1 is a non-terminal path having vz and vj as its left and right
endpoints, respectively, P2 is the terminal path with left endpoint vt and right end-
point v�. Also, let P3 be a non-terminal path with left and right endpoints vr and
vs , respectively, and P4 a non-terminal path with left and right endpoints vf and vg ,
respectively (see Fig. 3(d)–(e)). We distinguish the following two cases:

(d) vz < vj < vt < vr < v� < vs < vf < vg : if vz ∈ N(vi) or vj ∈ N(vi) we bridge
P1 and P3 through vz (vj if vz /∈ N(vi)) and vr . If v� ∈ N(vi) and vr /∈ N(vi) we
bridge P2 and P4 through v� and vf .

(e) vz < vj < vt < vr < vs < v� < vf < vg : if vz ∈ N(vi) or vj ∈ N(vi) we bridge
P1 and P3 through vi (vj if vz /∈ N(vi)) and vr ; otherwise, we bridge P3 and P4
through vr (vs if vr /∈ N(vi)) and vf .

Figure 3 presents cases (a)–(e). Suppose that we have the two paths P2 and P3 of
case (e) and vertex vi sees both vr and vs , that is, P2 = (vt , . . . , va, vb, vc, . . . , v�)

Algorithmica

and P3 = (vr , . . . , vs), where va < vs < vb and vs < vc. Then, the bridge oper-
ation constructs the path P = (vt , . . . , va, vb, vs, . . . , vr , vi, vc, . . . , v�). Suppose
now that we have the two paths P1 and P2 of case (c) and vertex vi sees all
vertices with index greater or equal to z, that is, P1 = (vz, . . . , vj) and P2 =
(vt , . . . , va, vb, vc, . . . , v�), where va < vj < vb and vj < vc. Then, the bridge op-
eration constructs the path P = (vt , . . . , va, vb, vj , . . . , vz, vi, vc, . . . , v�). Suppose
that there exist two paths P2 and P3 as in case (d) and vertex vi sees all ver-
tices with index k, d ≤ k, where r < d ≤ �, that is, P2 = (vt , . . . , va, vb, vc, . . . , v�)

and P3 = (vr , . . . , vs), where va < vr < vb and vr < vc. If d < c then the bridge
operation constructs the path P = (vt , . . . , va, vb, vr , . . . , vs, vi, vc, . . . , v�); other-
wise, it constructs the path P = (vt , . . . , va, vb, vr , . . . , vs, vi, v�, . . . , vc). If there
exist two paths P1 and P2 as in case (b) and vertex vi sees all vertices with
index greater or equal to z, that is, P1 = (vz, . . . , va, vb, vc, . . . , vj) and P2 =
(vt , . . . , v�), where va < v� < vb and v� < vc, then the bridge operation constructs
the path P = (vt , . . . , v�, vb, va, . . . , vz, vi, vc, . . . , vj), if c < j , or the path P =
(vt , . . . , v�, vb, va, . . . , vz, vi, vj , . . . , vc), if j < c.

We next describe the operation new_path of our algorithm which creates a
new path when the vertex vi is processed. There exist three cases where opera-
tion new_path creates a new non-trivial path while in all other cases it creates a
new trivial path. Suppose that vi sees an internal vertex vj belonging to a path
P = (vs, . . . , vr , vj , v�, . . . , vt) such that vr < vs < vt < v� < vj . We remove the
edge vjv� from P and we obtain P1 = (vs, . . . , vr , vj) and P2 = (vt , . . . , v�). Then,
we connect vi to vj . The case where vjvs ∈ E(G) and vjvr /∈ E(G) is similar.
If vi sees an internal vertex vj belonging to a path P = (vr , . . . , vs, vj , v�, . . . , vt)

such that vr < vt < v� < vs < vj , we remove the edge vsvj from P and we obtain
P1 = (vr , . . . , vs) and P2 = (vt , . . . , v�, vj). Then, we connect vi to vj . Suppose now
that vi sees an internal vertex vj belonging to a path P = (v�, . . . , vs, vj , vr , . . . , vt)

such that v� < vt < vs < vr < vj . We remove the edge vjvr from P and we obtain
P1 = (v�, . . . , vs, vj) and P2 = (vt , . . . , vr). Then, we connect vi to vj . The above
cases, where the operation new_path creates a new non-trivial path, are described
below:

(a) vr < vs < vt < v� < vj . We create paths P1 = (vs, . . . , vr , vj , vi) and P2 =
(vt , . . . , v�). The case where vjvs ∈ E(G) and vjvr /∈ E(G) is similar.

(b) vr < vt < v� < vs < vj . We create paths P1 = (vr , . . . , vs) and P2 = (vt , . . . ,

v�, vj , vi).
(c) v� < vt < vs < vr < vj . We create paths P1 = (v�, . . . , vs, vj , vi) and P2 =

(vt , . . . , vr).

Note that, the rightmost endpoint of a path in P T (G[{v1, v2, . . . , vi−1}]) is vt and,
thus, ε

(i−1)
t = 0. The 1PC P T (G) of the graph G in each of the above cases con-

tains two new endpoints, vertices vi and vk′ such that t < k′; thus, ε
(i)
t = 2. Figure 4

presents the above cases.
The operation connect_break of our algorithm is similar to the operation

new_path. Specifically, suppose that in the above cases (a)–(c) there exists a path
P = (va, . . . , vb) such that vj < va < vb < vi . Then, the operation connect_break
works similarly to the operation new_path; the only difference is that vi is also con-
nected to va .

Algorithmica

Fig. 4 Illustrating some cases of the new_path operation

We next present our algorithm which works as follows.

Algorithm 1PC_INTERVAL

Input: an interval graph G on n vertices and m edges and a vertex u ∈ V (G);
Output: a minimum 1PC P T (G) of the interval graph G, where T = {u};
1. Construct the ordering π of the vertices of G. Let t be the index of the terminal

vertex u;
2. λT ← 1; PλT ← (v1); ε

(1)
0 ← 1;

v1 is the left and right endpoint of the path PλT ;
3. for i = 2 to n do

if i �= t then execute the procedure process_non_terminal;
else execute the procedure process_terminal;

4. PT (G) = {P1,P2, . . . ,PλT };
End_of_Algorithm 1PC_INTERVAL.

The procedures process_non_terminal and process_terminal are de-
scribed in Figs. 5 and 6, respectively. We point out that, if no vertex is specified as
the terminal vertex then Algorithm 1PC_INTERVAL returns a minimum path cover
of G.

We next show that, if λT (G) is the size of a minimum 1PC of G with respect to
T = {vt } then the size of a minimum 1PC of G−{vt } is either λT (G) or λT (G)− 1.

Lemma 3.1 Let G be an interval graph and λT (G) be the size of a minimum 1PC
of G with respect to T = {vt }. The size of a minimum PC of G−{vt } is either λT (G)

or λT (G) − 1.

Proof Suppose that the size of a minimum PC of G−{vt } is at least λT (G)+1. Since
a terminal vertex cannot decrease the size of a minimum 1PC, we have λT (G) ≥
λT (G − {vt }). Thus, λT (G) ≥ λT (G) + 1, a contradiction. Suppose now that the
size of a minimum PC PT (G−{vt }) of G−{vt } is at most λT (G)− 2. Then, adding
a trivial path containing vertex vt to P T (G − {vt }) results to a 1PC of G of size
λT (G) − 1, a contradiction. �

Algorithmica

Process_non_terminal

{the vertex vi of π = (v1, v2, . . . , vi , . . . , vn) is not terminal, that is, i �= t}
{let N ′(vi) = {vj ∈ N(vi) : j < i}, vj is the leftmost neighbor of vi ∈ N ′(vi)}

• if N ′(vi) �= ∅ and ε
(i−1)
j−1 ≥ 2 then

if at least two endpoints are non-terminal vertices then bridge; λT ← λT − 1;

else {ε
(i−1)
j−1 = 2 and one endpoint is the terminal vertex vt .}

if 1PC_INTERVAL on G[{v1, . . . , vi−1}−{vt }] returns a path cover of λT −1 paths
then {let P T (G[{v1, . . . , vi−1} − {vt }]) be such a path cover}

connect vi to the leftmost endpoint of P T (G[{v1, . . . , vi−1} − {vt }]);
connect vt to vi ;
λT ← λT − 1;

else-if 1PC_INTERVAL on G[{v1, . . . , vi−1} − {vt }] returns a path cover of λT
paths then

if during the execution of 1PC_INTERVAL on G[{v1, . . . , vi−1}] and vt

the following hold:

(i) there exists vb such that vt ∈ N ′(vb);
(ii) breaking vt from its path and connecting vt to vb results to a 1PC

P ′
T (G[{v1, . . . , vi−1}]) of λT paths;

(iii) ε
(i−1)
j−1 = 2 and both endpoints are non-terminal vertices

then P T (G[{v1, . . . , vi−1}]) ← P ′
T (G[{v1, . . . , vi−1}]); bridge; λT ← λT − 1;

else connect_break;
• if N ′(vi) �= ∅ and ε

(i−1)
j−1 = 1 and the endpoint vf , j ≤ f ≤ i − 1, is non terminal then

if vi sees an internal vertex vs then connect_break;
else connect vi to the leftmost non-terminal endpoint;

• if N ′(vi) = ∅ or ε
(i−1)
j−1 = 0 or

(ε(i−1)
j−1 = 1 and the endpoint vt , j ≤ t ≤ i − 1, is the terminal vertex) then

if vi has two consecutive neighbors into a path then insert vi into the path;
else-if vi sees an internal vertex vs then

if vsva is an edge of a path Pk and va sees an endpoint vb of a path Pk′ , k �= k′
then remove the edge vsva of P ; connect va to vb ; connect vi to vj ;
else new_path; λT ← λT + 1;

else λT ← λT + 1; PλT ← (vi);

• update the values ε
(i)
k

, 0 ≤ k ≤ i, and the left and right endpoints of the paths;

Fig. 5 The procedure process_non_terminal of the Algorithm 1PC_INTERVAL

Process_terminal

{the vertex vi of π = (v1, v2, . . . , vi , . . . , vn) is terminal, that is, i = t}

• if ε
(i−1)
j−1 ≥ 1 then connect vi to the leftmost endpoint of P T (G[{v1, . . . , vi−1}]);

else λT ← λT + 1; PλT ← (vi);

• update the values ε
(i)
k

, 0 ≤ k ≤ i, and the left and right endpoints of the paths;

Fig. 6 The procedure process_terminal of the Algorithm 1PC_INTERVAL

Algorithmica

Concerning the ordering of the endpoints of the paths of the 1PC constructed by
Algorithm 1PC_INTERVAL, we prove the following lemma.

Lemma 3.2 Let G be an interval graph with no terminal vertex. Let Ps , 1 ≤
s ≤ λT , be a path in the 1PC P T (G) of the graph G constructed by Algorithm
1PC_INTERVAL and let vi and vj be the left and right endpoints of Ps , respectively.
Then, there is no path Pt ∈ P T (G), 1 ≤ t ≤ λT , t �= s, such that vi < vk < vj or
vi < v� < vj , where vk and v� are the left and right endpoints of Pt , respectively.

Proof Let Ps , 1 ≤ s ≤ λT be a path in the 1PC P T (G) constructed by Algorithm
1PC_INTERVAL and let vi and vj be its left and right endpoints, respectively. Let
Pt ∈ P T (G), 1 ≤ t ≤ λT , t �= s, and let vk and v� be its left and right endpoints,
respectively. Suppose that vi < vk < vj . Since vi and vj are the endpoints of Ps and
vi < vk < vj , the path Ps contains at least one edge, say, vavb, such that va < vk < vb.
Clearly, vertices va and vb are non-terminal vertices. Since vavb ∈ E(G), we also
have vkvb ∈ E(G). Then, according to Algorithm 1PC_INTERVAL, when vertex vb

is processed, vertex vk is an endpoint of the path Pt , and, thus, vb bridges the paths
Ps and Pt through vertices va and vk , a contradiction. Similarly, we can prove that
v� < vi or v� > vj . �

Using similar arguments we can prove the following lemma.

Lemma 3.3 Let G be an interval graph containing a terminal vertex. Let Ps ,
1 ≤ s ≤ λT , be a non-terminal path in the 1PC P T (G) of the graph G constructed by
Algorithm 1PC_INTERVAL and let vi and vj be the left and right endpoints of Ps , re-
spectively. Then, there is no non-terminal path Pt ∈ P T (G), 1 ≤ t ≤ λT , t �= s, such
that vi < vk < vj or vi < v� < vj , where vk and v� are the left and right endpoints
of Pt , respectively.

4 Correctness and Time Complexity

Let G be an interval graph on n vertices and m edges and let T be a subset of V (G)

containing a single vertex v ∈ V (G). In order to prove the correctness of Algorithm
1PC_INTERVAL, we use induction on n. We also prove a property of the minimum
1PC P T (G) of G constructed by our algorithm, namely, Property 1PC-on-H:

Property 1PC-on-H Let H be an interval graph with vertex set V (H) = {u1, u2,

. . . , un}, let P T (H) be a minimum 1PC of the graph H , and let ε
(n)
i be the number

of endpoints vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n.
The minimum 1PC P T (H) satisfies Property 1PC-on-H if there is no other mini-

mum 1PC P ′
T (H) having ε

′(n)
i endpoints vκ ′ belonging to different paths with index

κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i < �, where � is the index of the rightmost

endpoint of a path in P T (H), and exactly one of the following holds:

Algorithmica

(i) ε
′(n)
i ≤ ε

(n)
i , � ≤ i ≤ n;

(ii) ε
′(n)
i = ε

(n)
i + 1, � ≤ i < �′ and ε

′(n)
i = ε

(n)
i , �′ ≤ i ≤ n, where �′ is the index of

the rightmost endpoint of a path in P ′
T (H), and there exists a vertex vz such that

ε
(n)
z > ε

′(n)
z and there exists no vertex vz′ such that ε

′(n)

z′ > ε
(n)

z′ , 1 ≤ z, z′ < �.

Recall that a trivial path has two endpoints that coincide. We next prove Lem-
mas 4.1–4.6 that concern the operations performed by the Algorithm 1PC_INTERVAL

when vertex vn is processed. These lemmas make the proof of Theorem 4.1 easier to
follow.

Lemma 4.1 Let G be an interval graph and suppose that Algorithm 1PC_Interval
computes a minimum 1PC PT (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1}, on
at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the size
of P T (G[S]) and let vn be a non-terminal vertex. If the algorithm uses vn to bridge
two paths (operation bridge), then Algorithm 1PC_Interval computes a minimum 1PC
P T (G) of the graph G satisfying Property 1PC-on-G.

Proof Let λT (G) be the size of P T (G). Clearly, the size λ′
T (G) of a minimum

1PC of G is equal to λT (G[S]) − 1 or λT (G[S]) or λT (G[S]) + 1. When the al-
gorithm processes vertex vn, it uses vn to bridge two paths (operation bridge), that
is, λT (G) = λT (G[S]) − 1; consequently, P T (G) is a minimum 1PC of G, that is,
λ′

T (G) = λT (G).
Algorithm 1PC_INTERVAL computes a minimum 1PC PT (G[S]) of the interval

graph G[S], S = {v1, v2, . . . , vn−1}, on at most n−1 vertices having ε
(n−1)
i endpoints

vκ belonging to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1, such that
there is no other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′ belonging to

different paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i , 1 ≤ i < d , where

d is the index of the rightmost endpoint of a path in PT (G[S]), and exactly one of
the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

We distinguish the following cases:
Case 1. Suppose that ε

′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1. We show that the algorithm

computes a minimum 1PC P T (G) of the graph G having ε
(n)
i endpoints vκ belonging

to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no other mini-
mum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths with index

κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n. Clearly, vertex vn is an internal vertex

of a path in any other minimum 1PC P ′
T (G), otherwise removing it from P ′

T (G)

would result to a 1PC of G[S] of size ≤ λT (G[S]) − 1, a contradiction. Assume that
there exists a minimum 1PC P ′

T (G) having an index, say, k − 1, for which we have

Algorithmica

ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈ (k − 1, n] such that

ε
′(n)
k−1 > ε

(n)
k−1. Suppose that ε

′(n)
k−1 −ε

(n)
k−1 = 1. Note that ε

(n)
1 ≥ ε

′(n)
1 . Indeed, let P ′

T (G)

be a minimum 1PC of G having ε
′(n)
1 = ε

(n)
1 + 1 endpoints vκ ′ belonging to different

paths with index κ ′ > 1. Suppose that vertex v1 is an internal vertex in P T (G). Then,
the algorithm constructs ε

(n)
1 paths while P ′

T (G) contains at least ε
(n)
1 + 1 paths, a

contradiction. Suppose that vertex v1 is an endpoint in P T (G). Note that, according
to the algorithm, if v1 has degree greater or equal to one, then it belongs to a path con-
taining more than one vertex. Consequently, the other endpoint of the path containing
v1 is one of the ε

(n)
1 endpoints, and, thus, the algorithm constructs ε

(n)
1 paths while

P ′
T (G) contains at least ε

(n)
1 + 1 paths, a contradiction. Since ε

(n)
1 ≥ ε

′(n)
1 there exists

a vertex vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j . This implies that vertex vj+1 is the

right endpoint of a path P in the minimum 1PC PT (G) constructed by the algorithm.
Without loss of generality, we assume that ε

′(n)
i = ε

(n)
i + 1, j + 1 ≤ i < k − 1.

Let P ′ = (. . . , va, vn, vb, . . .) be the path of P ′
T (G) containing vertex vn. Then,

j + 1 < a and j + 1 < b. Indeed, suppose that at least one of va and vb has index
less or equal to j + 1, say, a < j + 1. Since vavn ∈ E(G) we have vj+1vn ∈ E(G).
Let P = (. . . , vc, vn, vd, . . .) be the path of P T (G) containing vertex vn. Suppose
that vc < vj+1 and vd < vj+1. Then, due to the induction hypothesis, both of the
endpoints of P have index greater than j + 1. However, according to the algorithm
(operation bridge), such an ordering of the endpoints cannot exist, a contradiction.
Suppose that vc > vj+1 and vd > vj+1. Then, due to the induction hypothesis, at
least one of the endpoints of P should have index greater than j +1. Again, according
to the algorithm (operation bridge), such an ordering of the endpoints cannot exist,
a contradiction. Suppose now that vc < vj+1 and vd > vj+1. Then, due to the in-
duction hypothesis, computing a 1PC of G[S] we had case (e) which is described
in Sect. 3 and vj+1 = vs . However, in this case, vertex vj+1 would not be the right
endpoint of a path in PT (G[S]), a contradiction.

Consequently, j + 1 < a and j + 1 < b. Then, both endpoints of P have indexes
less than j + 1. This implies that vertex vn has bridged two non-terminal paths for
which we have an endpoint of one path between the endpoints of the other, which is
a contradiction according to Lemma 3.3.

Consequently, we have shown that there does not exist a minimum 1PC P ′
T (G)

having an index, say, k − 1, for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to

different paths with index κ ′ ∈ (k − 1, n], where ε
′(n)
k−1 > ε

(n)
k−1.

Case 2. Suppose that ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤

i ≤ n− 1, where d ′ is the index of the rightmost endpoint of a path in P ′
T (G[S]), and

there exists a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex v′

q such

that ε′(n−1)
q > ε

(n−1)
q , 1 ≤ q, q ′ < d . We show that the algorithm computes a minimum

1PC P T (G) of the graph G having ε
(n)
i endpoints vκ belonging to different paths with

index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no other minimum 1PC P ′
T (G) having

ε
′(n)
i endpoints vκ ′ belonging to different paths with index κ ′ ∈ (i, n], 1 ≤ i ≤ �, such

that ε
′(n)
i > ε

(n)
i , 1 ≤ i < �, where � is the index of the rightmost endpoint of a path

in P T (G), and exactly one of the following holds:

Algorithmica

(i) ε
′(n)
i ≤ ε

(n)
i , � ≤ i ≤ n;

(ii) ε
′(n)
i = ε

(n)
i + 1, � ≤ i < �′ and ε

′(n)
i = ε

(n)
i , �′ ≤ i ≤ n, where �′ is the index of

the rightmost endpoint of a path in P ′
T (G), and there exists a vertex vz such that

ε
(n)
z > ε

′(n)
z , and there exists no vertex v′

z such that ε
′(n)
z > ε

(n)
z , 1 ≤ z, z′ < �.

Suppose that there exists a minimum 1PC P ′
T (G) such that ε

(n)
� = ε

′(n)
� = 0. Then,

similarly to Case 1, we show that there is no other minimum 1PC P ′
T (G) such that

ε
′(n)
i > ε

(n)
i , 1 ≤ i < n.

Suppose now that there exists a minimum 1PC P ′
T (G) such that ε

′(n)
i = ε

(n)
i + 1,

� ≤ i < �′ and ε
′(n)
i = ε

(n)
i , �′ ≤ i ≤ n, where �′ is the index of the rightmost endpoint

of a path in P ′
T (G). We show that there exists a vertex vz such that ε

(n)
z > ε

′(n)
z ,

1 ≤ z < � and there exists no vertex vz′ , 1 ≤ z′ < �, such that ε
′(n)

z′ > ε
(n)

z′ .

Note that, there cannot exist a minimum 1PC P ′
T (G) such that ε

′(n)
i = ε

(n)
i + 2,

� ≤ i < �′. Indeed, suppose that there exists a minimum 1PC P ′
T (G) such that ε

′(n)
i =

ε
(n)
i + 2, � ≤ i < �′. Consider the case where vn belongs to a path in P ′

T (G) and it is
connected to vertices va′ and vb′ such that � < a′ and � < b′. Then, removing vn from
P ′

T (G) we obtain a minimum 1PC of G[S] such that ε
′(n−1)
� = ε

′(n)
� + 1 = ε

(n)
� + 3 or

ε
′(n−1)
� = ε

′(n)
� + 2 = ε

(n)
� + 4. If vn belongs to a path in P T (G) and it is connected to

vertices va and vb, then removing vn from P T (G) we obtain a minimum 1PC of G[S]
such that ε

(n−1)
� ≤ ε

(n)
� + 2. Thus, there exist three paths in P T (G) such that there

are no left endpoints between their right endpoints in π , a contradiction. Consider
now the case where vn belongs to a path in P ′

T (G) and it is connected to vertices
va′ and vb′ such that � < a′ and � > b′. Then, vnv� ∈ E(G). Note that vn belongs
to a path P in P T (G) and it is connected to vertices va and vb such that a < � and
� < b. Removing vn from P T (G) should result to a minimum 1PC of G[S] such
that ε

(n−1)
� = ε

(n)
� + 1. Consequently, both endpoints of P have index less than �,

which implies that there exists a specific ordering of the endpoints of the paths in
PT (G[S]), which, according to the algorithm, is not possible, a contradiction. The
case where vn belongs to a path in P ′

T (G) and it is connected to vertices va′ and vb′
such that � > a′ and � > b′ is similar.

Using similar arguments with Case 1, we show that there exists no vertex vz′ ,
1 ≤ z′ < �, such that ε

′(n)

z′ > ε
(n)

z′ . Suppose that ε
(n)
i = ε

′(n)
i , 1 ≤ i < �. Note that vn

belongs to a path P = (v�, . . . , va, vn, vb, . . . , vr) ∈ P T (G) such that a > � and b >

�. Thus, vn belongs to a path P ′ = (v�′ , . . . , va′ , vn, vb′ , . . . , vr ′) ∈ P ′
T (G) such that

a′ > � and b′ > �. If we remove vn from P ′
T (G) then there exists a vertex vz = vb′−1

such that ε
′(n−1)
z = ε

′(n)
z + 1. This implies that r ′ > b′. Furthermore, if we remove

vn from P T (G) and we obtain ε
(n−1)
z = ε

(n)
z + 1, which implies that b = b′, then

ε
(n−1)
i = ε

′(n−1)
i , 1 ≤ i < �, a contradiction. If we remove vn from P ′

T (G) and we

obtain ε
(n−1)
z = ε

(n)
z + 2, then there exists a specific ordering of the endpoints of the

paths in P T (G[S]) which, according to the algorithm, is not possible, a contradiction.
Consequently, there exists a vertex vz such that ε

(n)
z > ε

′(n)
z , 1 ≤ z < �. �

Algorithmica

Lemma 4.2 Let G be an interval graph and suppose that Algorithm 1PC_Interval
computes a minimum 1PC P T (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1}, on
at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the size of
P T (G[S]) and let vn be a non-terminal vertex. If during the process of vertex vn the
algorithm constructs a 1PC P T (G[S − {vt }]) of G[S − {vt }] of size λT (G[S]) − 1,
where vt is the terminal vertex, and then connects the path (vt , vn) to an exist-
ing path P , then Algorithm 1PC_Interval computes a minimum 1PC PT (G) of the
graph G satisfying Property 1PC-on-G.

Proof Algorithm 1PC_INTERVAL computes a minimum 1PC PT (G[S]) of the in-
terval graph G[S], S = {v1, v2, . . . , vn−1}, on at most n − 1 vertices having ε

(n−1)
i

endpoints vκ belonging to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1,
such that there is no other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′

belonging to different paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i ,

1 ≤ i < d , where d is the index of the rightmost endpoint of a path in PT (G[S]),
and, moreover, exactly one of the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

When the algorithm processes vertex vn, it constructs a 1PC P T (G[S − {vt }]) of
G[S − {vt }] of size λT (G[S])− 1, where vt is the terminal vertex, and then connects
the path (vt , vn) to an existing path P . This operation is performed when vertex
vn sees the endpoints of at least one non-terminal path, say P1 = (vr , . . . , vs), the
terminal vertex vt and no other endpoint of the terminal path, say, P2 = (vt , . . . , v�).
Then, the terminal path, P2, has the same endpoints as in P T (G[S]), the vertices of
P1 become internal vertices of P2, while all the other paths in P T (G) remain the same
as in P T (G[S]). It is easy to see that there exists a path P in P T (G[S −{vt }]) having
an endpoint, say, vs′ , with index greater than t , and thus, vs′ ∈ N(vn). Note that when
the connect operation is performed, it may use a vertex of the terminal path in order
to increase the value of an ε

(n−1)
i , 1 ≤ i < n − 1, and, in this case, ε

(n−1)
d < ε

′(n−1)
d .

Then, for the endpoints of the terminal path, say, vt ∈ T and v�, we have vt < v�.
Consequently, since vertex vn sees the endpoints of P1, the terminal vertex vt and no
other endpoint of the terminal path P2, if operation connect was called previously,
it cannot have used a vertex of the terminal path and, thus, ε

(n)
d < ε

′(n)
d cannot hold.

Consequently, ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1.

The above procedure results to a 1PC of G of size λT (G) = λT (G[S]) − 1; con-
sequently, P T (G) is a minimum 1PC of G, that is, λ′

T (G) = λT (G).
We show that the algorithm computes a minimum 1PC PT (G) of the graph G

having ε
(n)
i endpoints vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n,

such that there is no other minimum 1PC P ′
T (G) having ε

′(n)
i endpoints vκ ′ belonging

to different paths with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n. Clearly,

Algorithmica

vertex vn is an internal vertex of a path in any other minimum 1PC P ′
T (G), otherwise

removing it from P ′
T (G) would result to a 1PC of G[S] of size less or equal to

λT (G[S]) − 1, a contradiction. Suppose that there exists a minimum 1PC P ′
T (G)

having an index, say, k − 1, such that ε
′(n)
k−1 > ε

(n)
k−1 and 1 ≤ k − 1 < t − 1. This

implies that ε
′(n)
k = ε

(n)
k and there exists a vertex vk′−1 such that k′ − 1 < k − 1

and ε
′(n)

k′−1 = ε
(n)

k′−1. Clearly, vk′vn /∈ E(G). Removing vn from P ′
T (G) results to a

minimum 1PC of G[S] having at least two non-terminal neighbors of vn as endpoints
belonging to different paths, say, vf and vg ; suppose that at least one of them has

index greater than k. Then, ε
′(n−1)
k−1 > ε

(n−1)
k−1 , a contradiction. Thus, vk′ < vf < vk

and vk′ < vg < vk and the right endpoint of the path that they belong, has also index

less than k. Thus, ε
′(n−1)

k′ = ε
′(n)

k′ + 1 = ε
(n)

k′ + 1 + 1 = ε
(n−1)

k′ + 1 or ε
′(n−1)

k′ = ε
′(n)

k′ +
2 = ε

(n)

k′ + 1 + 2 = ε
(n−1)

k′ + 2, a contradiction. Suppose now that t ≤ k − 1 ≤ n.

Since there cannot exist a vertex v� such that 1 ≤ � < t − 1 and ε
′(n)
� > ε

(n)
� , there

exists a vertex vk′−1 such that k′ − 1 < k − 1 and ε
′(n)

k′−1 = ε
(n)

k′−1 and t ≤ k′. Clearly,
vk′vn ∈ E(G). If vs is the right endpoint of P1, then k − 1 < s and thus k′ − 1 < s.
However, according to the algorithm, there cannot exist an endpoint between vertices
vt and vs , a contradiction. �

Lemma 4.3 Let G be an interval graph and suppose that Algorithm 1PC_Interval
computes a minimum 1PC PT (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1}, on
at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the size of
P T (G[S]) and let vn be a non-terminal vertex. If during the process of vertex vn the
algorithm constructs a 1PC PT (G[S −{vt }]) of G[S −{vt }] of size λT (G[S]), where
vt is the terminal vertex, connects vt to the leftmost left endpoint it sees, and uses vn

to bridge two paths, then Algorithm 1PC_Interval computes a minimum 1PC PT (G)

of the graph G satisfying Property 1PC-on-G.

Proof Algorithm 1PC_INTERVAL computes a minimum 1PC PT (G[S]) of the in-
terval graph G[S], S = {v1, v2, . . . , vn−1}, on at most n − 1 vertices having ε

(n−1)
i

endpoints vκ belonging to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1,
such that there is no other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′

belonging to different paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i ,

1 ≤ i < d , where d is the index of the rightmost endpoint of a path in PT (G[S]),
and, moreover, one of the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

When the algorithm processes vertex vn, it constructs a 1PC P T (G[S − {vt }]) of
G[S − {vt }] of size λT (G[S]), where vt is the terminal vertex, it connects vt to the
leftmost left endpoint it sees, and it uses vn to bridge two paths. This operation is per-
formed when vertex vn sees the endpoints of at least one non-terminal path, say P1 =

Algorithmica

(vr , . . . , vs), the terminal vertex vt of the terminal path, say, P2 = (vt , vj , . . . , v�) and
an internal vertex vj of P2, and it does not see v�. Then, the terminal path, P2, has the
same endpoints as in PT (G[S]), the vertices of P1 become internal vertices of P2,
while all the other paths remain the same. Recall that, when the connect operation is
performed, it may use a vertex of the terminal path in order to increase the value of
an ε

(n−1)
i , 1 ≤ i < n − 1, and, in this case, ε

(n−1)
d < ε

′(n−1)
d . Then, for the endpoints

of the terminal path, say, vt ∈ T and v�, we have vt < v�. Consequently, since vertex
vn sees the endpoints of P1, the terminal vertex vt and not v�, if operation connect
was called previously, it cannot have used a vertex of the terminal path and, thus,
ε
(n−1)
d < ε

′(n−1)
d cannot hold. Consequently, ε

′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1.

Consider the case where vertex vn sees the endpoints of only one non-terminal
path, that is, of P1. If applying the algorithm to G[S − {vt }] results to a 1PC of size
λT (G[S]) − 1 then it contains a path with one endpoint vk such that t < k. Indeed,
suppose that there does not exist such a path and P1 consists of more than one vertex.
This implies that all vertices of P1 have bridged two paths and therefore we obtain a
1PC of size less than λT (G[S]) − 1, a contradiction. Suppose now that the algorithm
does not construct a path in the 1PC of G[S − {vt }] with one endpoint vk such that
t < k and let the path P1 consist of one vertex, say, vk′ . This implies that vertex
vk′ has bridged two paths and the same holds for every vertex vi , t ≤ i ≤ n − 1.
Thus, if vk′ is removed from G[S − {vt }], the algorithm would construct a minimum
1PC of size λT (G[S]). Since the size of P T (G[S]) constructed by the algorithm is
λT (G[S]), removing vt and vk′ results to a 1PC of size λT (G[S])−1. Consequently,
vk′ cannot be used for bridging two paths in PT (G[S − {vt }]). This implies that the
1PC of G[S − {vt }] constructed by the algorithm contains a path with an endpoint
vk such that t < k. It is easy to see that if vertex vn sees the endpoints of more than
one non-terminal path, applying the algorithm to G[S − {vt }] results to a 1PC of size
λT (G[S]) − 1 having a path with one endpoint vk such that t < k.

The above procedure results to a 1PC of G of size λT (G) = λT (G[S]) − 1; con-
sequently, P T (G) is a minimum 1PC of G, that is, λ′

T (G) = λT (G).
Using similar arguments as in the proof of Lemma 4.2, we show that the algorithm

computes a minimum 1PC PT (G) of the graph G having ε
(n)
i endpoints vκ belonging

to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no other minimum
1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths with index κ ′ ∈

(i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n. �

Lemma 4.4 Let G be an interval graph and suppose that Algorithm 1PC_Interval
computes a minimum 1PC PT (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1},
on at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the
size of P T (G[S]) and let vn be a non-terminal vertex. If during the process of ver-
tex vn the algorithm connects vn to a path or inserts vn into a path, then Algorithm
1PC_Interval computes a minimum 1PC P T (G) of the graph G satisfying Prop-
erty 1PC-on-G.

Proof Algorithm 1PC_INTERVAL computes a minimum 1PC PT (G[S]) of the in-
terval graph G[S], S = {v1, v2, . . . , vn−1}, on at most n − 1 vertices having ε

(n−1)
i

Algorithmica

endpoints vκ belonging to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1,
such that there is no other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′

belonging to different paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i ,

1 ≤ i < d , where d is the index of the rightmost endpoint of a path in PT (G[S]),
and, moreover, exactly one of the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

We distinguish the following cases, according to the operation performed by the
algorithm during the process of vertex vn.

Case A When the algorithm processes vertex vn, it connects vn to a path, that is,
λT (G) = λT (G[S]). Suppose that there exists a 1PC P ′

T (G) of size λT (G[S]) − 1,
that is, vertex vn is an internal vertex of a path P in P ′

T (G). We distinguish the
following cases:

(i) P = (vk, . . . , vr , vn, vs, . . . , v�). Removing vn from P results to a minimum
1PC of G[S] having two (non-terminal) neighbors of vn as endpoints belonging to
different paths. Since the algorithm does not use vn to bridge two paths, the con-
structed minimum 1PC of G[S] does not have two (non-terminal) neighbors of vn

as endpoints belonging to different paths. Consequently, there is a minimum 1PC of
G[S] for which there exists an index i such that ε

′(n)
i > ε

(n)
i , a contradiction.

(ii) P = (vt , vn, . . . , vb), where vt is the terminal vertex. Removing vn and vt

from P results to a minimum 1PC of G[S] of size λT (G[S]) − 1, a contradiction.
Indeed, since the algorithm does not use vn to bridge two paths, removing vt from
G[S] results to λT (G[S]) paths.

Consequently, there does not exist a 1PC P ′
T (G) of size λT (G[S])− 1, and, thus,

the 1PC constructed by the algorithm is minimum.
Case A.1. Suppose that ε

′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1. We show that the algo-

rithm computes a minimum 1PC P T (G) of the graph G having ε
(n)
i endpoints vκ

belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no
other minimum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths

with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i < �, and exactly one of the follow-

ing holds:

(i) ε
′(n)
i ≤ ε

(n)
i , � ≤ i ≤ n;

(ii) ε
′(n)
i = ε

(n)
i + 1, � ≤ i < �′ and ε

′(n)
i = ε

(n)
i , �′ ≤ i ≤ n, and there exists a vertex

vz such that ε
(n)
z > ε

′(n)
z , and there exists no vertex vz′ such that ε

′(n)

z′ > ε
(n)

z′ ,
1 ≤ z, z′ < �.

Suppose that vn is not an endpoint in P T (G); let P = (. . . , va, vn, vb, . . .). Ac-
cording to operation connect, we break the terminal path of PT (G[S]), which has

Algorithmica

the terminal vertex, vt , as its right endpoint. Note that the terminal vertex is the
second rightmost endpoint in PT (G[S]) (see Sect. 3). The second rightmost end-
point of P T (G) has index greater than t , and vt becomes a left endpoint of a path
in P T (G). Assume that there exists a minimum 1PC P ′

T (G) having an index, say,

k − 1, for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index

κ ′ ∈ (k − 1, n], where ε
′(n)
k−1 > ε

(n)
k−1. Similarly, to Case 1 of Lemma 4.1, there exists a

vertex vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j .

Suppose that vn is an endpoint of a path P ′ = (vn, va′ , . . .) ∈ P ′
T (G). Then,

since �′ = n, ε
′(n)
i = ε

(n)
i + 1, � ≤ i ≤ n. Note that, there cannot exist a mini-

mum 1PC P ′
T (G) such that ε

′(n)
i = ε

(n)
i + 2, � ≤ i ≤ n. Indeed, suppose that there

exists a minimum 1PC P ′
T (G) such that ε

′(n)
i = ε

(n)
i + 2, � ≤ i ≤ n. If we re-

move vn from P ′
T (G) we obtain ε

′(n−1)
� = ε

′(n)
� or ε

′(n−1)
� = ε

′(n)
� − 1. However,

ε
′(n)
� = ε

(n)
� + 2 and ε

(n)
� = ε

(n−1)
� = 0, a contradiction. According to the connect

operation, vnvj+1 /∈ E(G), thus va′ > vj+1. If we remove vn from P ′
T (G) we obtain

ε
′(n−1)
j+1 = ε

′(n)
j+1 = ε

(n)
j+1 + 1. However, ε

(n)
j+1 = ε

(n−1)
j+1 or ε

(n)
j+1 = ε

(n−1)
j+1 + 1, a contra-

diction. Consequently, there exists no vertex vz′ , 1 ≤ z′ < �, such that ε
′(n)

z′ > ε
(n)

z′ .

Suppose that ε
′(n)
i = ε

(n)
i , 1 ≤ i < �. Let vr be the new endpoint created by the con-

nect operation. Again, since vnvr−1 /∈ E(G), va′ > vr−1 and if we remove vn from
P ′

T (G) we obtain ε
′(n−1)
r−1 = ε

′(n)
r−1 = ε

(n)
r−1. However, ε

(n)
r−1 = ε

(n−1)
r−1 + 1, a contradic-

tion. Consequently, if ε
′(n)
i = ε

(n)
i + 1, � ≤ i < �′ and ε

′(n)
i = ε

(n)
i , �′ ≤ i ≤ n then

there exists a vertex vz such that ε
(n)
z > ε

′(n)
z , 1 ≤ z < � and there exists no vertex

vz′ , 1 ≤ z′ < �, such that ε
′(n)

z′ > ε
(n)

z′ . Suppose that the second rightmost endpoint in
P T (G), say, vf , has index less than the second rightmost endpoint in P ′

T (G), say,

vf ′ , that is, vf < vf ′ . Then, ε
(n−1)
f −1 = ε

(n)
f −1 − 1 = ε

′(n)
f −1 − 2 and ε

′(n−1)
f −1 = ε

′(n)
f −1 − 1,

a contradiction.
Suppose that vn is not an endpoint in P ′

T (G); let P ′ = (. . . , va′ , vn, vb′ , . . .).
Clearly, one of va′ , vb′ is a vertex that could not be an endpoint in P ′

T (G). We show

that �′ ≤ �. Suppose that �′ > �. Since ε
(n−1)
� = ε

(n)
� = ε

′(n)
� − 1 = 0, then we have

ε
′(n−1)
� = ε

′(n)
� − 1, which implies that the new endpoint in P ′

T (G) has index greater
than the new endpoint created in PT (G), a contradiction. It is easy to see that there
cannot exist a minimum 1PC P ′

T (G) having an index, say, k − 1, for which we have

ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈ (k − 1, n] such that

ε
′(n)
k−1 = ε

′(n−1)
k−1 + 2. Let vt be the terminal vertex. We have ε

(n)
t−1 = ε

′(n−1)
t−1 . It is easy

to see that there cannot exist a minimum 1PC P ′
T (G) having an index, say, k − 1,

k −1 ≤ t −1, for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with

index κ ′ ∈ (k − 1, n], such that ε
′(n)
k−1 > ε

(n)
k−1.

Suppose that vn is the right endpoint of a path P = (vn, va, . . .) ∈ P T (G). Then,
there cannot exist a minimum 1PC P ′

T (G) such that 1 = ε
(n)
�−1 < ε

′(n)
�−1. We show that

the algorithm computes a minimum 1PC PT (G) of the graph G having ε
(n)
i end-

points vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there

Algorithmica

is no other minimum 1PC P ′
T (G) having ε

′(n)
i endpoints vκ ′ belonging to different

paths with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n. Assume that there exists

a minimum 1PC P ′
T (G) having an index, say, k − 1, for which we have ε

′(n)
k−1 end-

points vκ ′ belonging to different paths with index κ ′ ∈ (k − 1, n], where ε
′(n)
k−1 > ε

(n)
k−1.

Similarly, to Case 1 of Lemma 4.1, there exists a vertex vj , 1 ≤ j < k − 1, such that

ε
(n)
j = ε

′(n)
j .

Suppose that vn is an endpoint of a path P ′ = (vn, va′ , . . .) ∈ P ′
T (G). Note that

if va′ < vj+1, then vj+1vn ∈ E(G) and vk should be the terminal vertex belonging
to a non-trivial path, otherwise PT (G) would not be minimum. Thus, if vj+1 is not
the terminal vertex, va < vj+1 or va = vj+1. Then, if we remove vn from P ′

T (G)

and P T (G), we obtain ε
(n−1)
j+1 = ε

(n)
j+1 − 1 = ε

′(n)
j+1 − 2 and ε

′(n−1)
j+1 = ε

′(n)
j+1 − 1; thus,

ε
(n−1)
j+1 = ε

′(n−1)
j+1 − 1, a contradiction. On the other hand, if va′ > vj+1, then, if we

remove vn from P T (G) and P ′
T (G), we obtain ε

(n−1)
j+1 = ε

(n)
j+1 − 1 = ε

′(n)
j+1 − 2 or

ε
(n−1)
j+1 = ε

(n)
j+1 = ε

′(n)
j+1 − 1. Also, ε

′(n−1)
j+1 = ε

′(n)
j+1; thus, ε

(n−1)
j+1 = ε

′(n−1)
j+1 − 1, a contra-

diction.
Suppose that vn is not an endpoint in P ′

T (G); let P ′ = (. . . , va′ , vn, vb′ , . . .). If

va′vb′ ∈ E(G) then if we remove vn from P ′
T (G) and P ′

T (G), we obtain ε
(n−1)
j+1 =

ε
(n)
j+1 − 1 = ε

′(n)
j+1 − 2 or ε

(n−1)
j+1 = ε

(n)
j+1 = ε

′(n)
j+1 − 1. Also, ε

′(n−1)
j+1 = ε

′(n)
j+1; thus,

ε
(n−1)
j+1 = ε

′(n−1)
j+1 −1, a contradiction. Consequently, va′vb′ /∈ E(G); however, we have

shown that vn becomes an endpoint in P T (G) only when a new right endpoint cannot
be created by making vn an internal vertex, a contradiction.

Case A.2. Suppose that ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i ,

d ′ ≤ i ≤ n − 1 and there exists a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , 1 ≤ q < d and

there exists no vertex vq ′ , 1 ≤ q ′ < d , such that ε
′(n−1)

q ′ > ε
(n−1)

q ′ . We show that the

algorithm computes a minimum 1PC PT (G) of the graph G having ε
(n)
i endpoints

vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no
other minimum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths

with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n.

Assume that there exists a minimum 1PC P ′
T (G) having an index, say, k − 1,

for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈

(k−1, n], where ε
′(n)
k−1 > ε

(n)
k−1. Similarly, to Case 1 of Lemma 4.1, there exists a vertex

vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j . Using similar arguments as in Case A.1, we

show that vn is an endpoint of a path P ′ = (vn, va′ , . . .) ∈ P ′
T (G) and that there

cannot exist a minimum 1PC P ′
T (G) having an index, say, k − 1, for which we have

ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈ (k − 1, n], where

ε
′(n)
k−1 > ε

(n)
k−1.

Case B When the algorithm processes vertex vn, it inserts vn into a path, that is,
λT (G) = λT (G[S]). This implies that ∀i ≥ d we have ε

(n−1)
i ≤ 1. Suppose that there

exists a 1PC P ′
T (G) of size λT (G[S]) − 1, that is, vertex vn is an internal vertex of

Algorithmica

a path P in P ′
T (G). Then, removing vertex vn from P ′

T (G) results to a 1PC of G[S]
of size λT (G[S]), and, thus, minimum, such that there exists an index i, i ≥ d , for
which ε

′(n−1)
i = 2, a contradiction.

Consequently, there does not exist a 1PC P ′
T (G) of size λT (G[S])− 1, and, thus,

the 1PC constructed by the algorithm is minimum.
Case B.1. Suppose that ε

′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1. We show that the algo-

rithm computes a minimum 1PC PT (G) of the graph G having ε
(n)
i endpoints vκ

belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no
other minimum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths

with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n.

Assume that there exists a minimum 1PC P ′
T (G) having an index, say, k − 1,

for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈

(k − 1, n], where ε
′(n)
k−1 > ε

(n)
k−1. Similarly, to Case 1 of Lemma 4.1, there exists a

vertex vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j .

Suppose that vn is an endpoint of a path P ′ = (vn, vt) ∈ P ′
T (G), such that vt ∈ T .

Then, vtvn ∈ E(G) and the size of a minimum 1PC of G[S − {vt }] is λT (G) − 1, a
contradiction.

Suppose that vn is an endpoint of a path P ′ = (vn, va′ , . . . , vb′) ∈ P ′
T (G), such

that va′ /∈ T . Then, removing vertex vn from P ′
T (G) results to a 1PC of G[S] of size

λT (G[S]), and, thus, minimum, such that there exists an index i for which ε
′(n−1)
i =

1, i ≥ d . Then, d = d ′, which is equal to the index of the terminal vertex, and P ′ is the
terminal path such that its left endpoint in P ′

T (G[S]), that is, vertex va′ , has index
greater than the index of the left endpoint of the terminal path in PT (G[S]). Note
that, va′ cannot be an endpoint in P ′

T (G[S]) since ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1,

and, thus, a 1PC of G[S] having va′ as an endpoint cannot be minimum. However,
removing vn from P ′

T (G) results to a 1PC of G[S] of size λT (G[S]) having va′ as
an endpoint, a contradiction.

Suppose now that vn is not an endpoint in P ′
T (G); let P ′ = (. . . , va′ , vn, vb′ , . . .).

If va′vb′ ∈ E(G) then if we remove vn from P ′
T (G) and P ′

T (G), we obtain ε
(n−1)
k−1 =

ε
(n)
k−1 = ε

′(n)
k−1 − 1 and ε

′(n−1)
k−1 = ε

′(n)
k−1, a contradiction. Consequently, va′vb′ /∈ E(G).

Suppose that the value of d-connectivity of PT (G[S]) is c; then the value of d-
connectivity of P T (G) is c + 2. However, the corresponding value of P ′

T (G) is not
increased by vertices va′ , vn and vb′ , since va′ and vb′ are internal vertices not succes-
sive into a path in a 1PC of G[S] and there exist two vertices connected to va′ and vb′
in P T (G[S]), say, vf and vg , respectively, for which d(vf) and d(vg) are reduced,
and, thus, they reduce the d-connectivity by two. In order to obtain c + 2 for P ′

T (G)

the vertices of V (G) − {va′ , vb′ , vn} must increase the d-connectivity by two. How-
ever, the size of P ′

T (G) is also λT (G) and vertices va′ , vb′ and vn are also internal
in PT (G). Thus, increasing the d-connectivity by two is not possible and we have a
contradiction. Note that vf vg /∈ E(G); otherwise we would have also vnvf ∈ E(G)

and vnvg ∈ E(G) and there would exist a 1PC having the same endpoints as P ′
T (G)

and containing a path P = (. . . , vf , vn, vg, . . .) with vf vg ∈ E(G), a contradiction.

Case B.2. Suppose that ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i ,

d ′ ≤ i ≤ n − 1 and there exists a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , 1 ≤ q < d

Algorithmica

and there exists no vertex vq ′ , 1 ≤ q ′ < d , such that ε
′(n−1)

q ′ > ε
(n−1)

q ′ . Using similar
arguments as in Case A.1 where vn is not an endpoint in P T (G[S]), we show that the
algorithm computes a minimum 1PC P T (G) of the graph G having ε

(n)
i endpoints

vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no
other minimum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths

with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i < �. Furthermore, if ε

′(n)
i = ε

(n)
i +1,

� ≤ i < �′ and ε
′(n)
i = ε

(n)
i , �′ ≤ i ≤ n then there exists a vertex vz such that ε

(n)
z >

ε
′(n)
z , 1 ≤ z < � and there exists no vertex vz′ , 1 ≤ z′ < �, such that ε

′(n)

z′ > ε
(n)

z′ . �
�

Lemma 4.5 Let G be an interval graph and suppose that Algorithm 1PC_Interval
computes a minimum 1PC PT (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1}, on
at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the size
of P T (G[S]) and let vn be a non-terminal vertex. If during the process of vertex vn

the algorithm creates a new path having vertex vn as an endpoint then Algorithm
1PC_Interval computes a minimum 1PC PT (G) of the graph G satisfying Prop-
erty 1PC-on-G.

Proof Algorithm 1PC_INTERVAL computes a minimum 1PC PT (G[S]) of the in-
terval graph G[S], S = {v1, v2, . . . , vn−1}, on at most n − 1 vertices having ε

(n−1)
i

endpoints vκ belonging to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1,
such that there is no other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′

belonging to different paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i ,

1 ≤ i < d , where d is the index of the rightmost endpoint of a path in PT (G[S]),
and, moreover, exactly one of the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

When the algorithm processes vertex vn, it creates a new path having vertex vn

as an endpoint, that is, λT (G) = λT (G[S]) + 1. This implies that ∀i ≥ d we have
ε
(n−1)
i ≤ 1. Suppose that there exists a 1PC P ′

T (G) of size λT (G[S]) − 1, that is,
vertex vn is an internal vertex of a path P in P ′

T (G). Then, removing vertex vn from
P ′

T (G) results to a 1PC of G[S] of size λT (G[S]), and, thus, minimum, such that

there exists an index i for which ε
′(n−1)
i = 2, a contradiction.

Suppose now that there exists a 1PC P ′
T (G) of size λT (G[S]). Let vn be an end-

point of a path P in P ′
T (G). We distinguish the following cases:

(i) P = (vn, vr , . . . , vs). Removing vertex vn from P ′
T (G) results to a 1PC of

G[S] of size λT (G[S]), and, thus, minimum, such that there exists an index i for
which ε

′(n−1)
i = 1, i ≥ d . Then, d = d ′, which is equal to the index of the terminal

vertex, and P is the terminal path such that its left endpoint in P ′
T (G[S]), that is,

vertex vr , has index greater than the index of the left endpoint of the terminal path in

Algorithmica

P T (G[S]). Note that, vr cannot be an endpoint in P ′
T (G[S]) since ε

′(n−1)
i ≤ ε

(n−1)
i ,

d ≤ i ≤ n − 1, and, thus, a 1PC of G[S] having vr as an endpoint cannot be mini-
mum. However, removing vn from P ′

T (G) results to a 1PC of G[S] of size λT (G[S])
having vr as an endpoint, a contradiction.

(ii) P = (vt , vn), where vt is the terminal vertex. Removing vn and vt from P

results to a 1PC of G[S − {vt }] of size λT (G[S]) − 1, a contradiction. Indeed, since
the algorithm does not use vn to bridge two paths, removing vt from G[S] results to
λT (G[S]) paths.

Now let vn be an internal vertex of a path P = (vr , . . . , vi, vn, vj , . . . , vs) in
P ′

T (G). Suppose that N(vn) > 0 (the case where N(vn) = 0 is trivial) and vt /∈
N(vn), where vt is the terminal vertex. Since the algorithm constructs λT (G[S]) + 1
paths, at least |N(vn)| − 1 neighbors of vn have bridged paths reducing the size
of the 1PC and at most one of them was inserted; otherwise there would exist at
least two successive neighbors into a path or at least one of them would be an end-
point. Suppose that vi and vj have both bridged paths. Then, applying the algo-
rithm to G − {vi, vj , vn} would result to a minimum 1PC of G − {vi, vj , vn} of size
λT (G[S]) + 2. However, if we remove vertices vi, vj and vn from P ′

T (G) we obtain
a 1PC of G−{vi, vj , vn} of size λT (G[S])+ 1, a contradiction. Suppose now that vi

was inserted and vj has bridged paths. We distinguish the following cases:
(i) j < i. Clearly, applying the algorithm to G′ = G − {vi, vn} results to a mini-

mum 1PC of G′ of size λT (G[S]). Furthermore, applying the algorithm to G′ − {vj }
results to a minimum 1PC P ′′

1(G) of G′ − {vj } of size λT (G[S]) + 1 such that no
non-terminal neighbor of vi is an endpoint and if vi sees the terminal vertex vt , it
is not a trivial path in P ′′

1(G). Indeed, any neighbor va of vi such that i < a < n

cannot be an endpoint in P ′′
1(G) since every vertex va such that i < a < n is also a

neighbor of vn. Note that, t < j . Furthermore, since vi is inserted, when vertex vj+1
was processed, no neighbor of vi was an endpoint and if vivt ∈ E(G) vertex vt does
not belong to a trivial path. Indeed, let vk ∈ N(vi) be an endpoint when the algorithm
processes vertex vj+1 or vt belongs to a trivial path. This implies that, when we apply
the algorithm to G[S], we have one neighbor of vn, say, v�, bridging through vertex
vk or vertex vt ; then vi would be inserted through the edge vkv� or vtv�, which is a
contradiction since this results to two neighbors of vn being successive. Additionally,
no neighbor of vi becomes an endpoint and vertex vt does not belong to a trivial path
until vertex vn−1 is processed, since all vertices with index greater than j + 1 are
neighbors of vn, and, thus, they are used to bridge paths reducing the size of the 1PC.
Note that, according to the algorithm, vertex vt cannot belong to a trivial path until
vertex vn−1 is processed, since no bridge operation results to vt belonging to a trivial
path. Consequently, applying the algorithm to G′ − {vj } results to a minimum 1PC
P ′′

1(G
′ − {vj }) of size λT (G[S]) + 1 such that no non-terminal neighbor of vi is an

endpoint and if vi sees the terminal vertex vt , it is not a trivial path in P ′′
1(G

′ −{vj }).
(ii) i < j . Similarly to case (i), applying the algorithm to G′ − {vj } results to

a minimum 1PC P ′′
1(G

′ − {vj }) of size λT (G[S]) + 1 such that no non-terminal
neighbor of vi is an endpoint and if vi sees the terminal vertex vt , it is not a trivial
path in P ′′

1(G
′ − {vj }). Indeed, when vertex vi+1 is processed, no neighbor of vi is

an endpoint and if vi sees the terminal vertex vt , it is not a trivial path. Furthermore,
since no neighbor of vn can be an endpoint, no vertex with index greater than i + 1 is

Algorithmica

an endpoint. Additionally, no neighbor of vi becomes an endpoint and if vtvi ∈ E(G),
vertex vt does not belong to a trivial path until vertex vn−1 is processed, since all
vertices with index greater than i + 1 are neighbors of vn, and, thus, they are used
to bridge paths reducing the size of the 1PC. Note that, according to the algorithm,
vertex vt cannot belong to a trivial path until vertex vn−1 is processed. Consequently,
applying the algorithm to G′ − {vj } results to a minimum 1PC P ′′

1(G
′ − {vj }) of

size λT (G[S]) + 1 such that no non-terminal neighbor of vi is an endpoint and if vi

sees the terminal vertex vt , it is not a trivial path in P ′′
1(G

′ − {vj }).
Since vn is an internal vertex of a path P = (vr , . . . , vi, vn, vj , . . . , vs) in P ′

T (G)

which has size λT (G[S]), if we remove vertices vi, vj and vn from P we obtain a
1PC of G′ − {vj } of size λT (G[S]) + 1 such that a non-terminal neighbor of vi is an
endpoint, a contradiction; the same holds when P = (vr , . . . , vi, vn, vj , vt). If P =
(vt , vi, vn, vj , . . . , vs) then vt belongs to a trivial path in P ′′

1(G), a contradiction.
If P = (vi, vn, vj , . . . , vs) or P = (vr , . . . , vi, vn, vj), then removing vertices vi, vj

and vn from P results to a 1PC of G′ − {vj } of size λT (G[S]), a contradiction.
Now let vt ∈ N(vn), where vt is the terminal vertex. The case where vn is an

internal vertex of a path P = (vr , . . . , vi, vn, vj , . . . , vs) in P ′
T (G) which has size

λT (G[S]) leads to a contradiction similarly to the case where vt /∈ N(vn). Suppose
that vn is an internal vertex of a path P = (vt , vn, vj , . . . , vs) in P ′

T (G) which has
size λT (G[S]). According to the algorithm, no neighbor of vn is inserted until vertex
vt is processed. Also, it is easy to see that, no neighbor of vn with index greater than t

is inserted, either. Indeed, let va , t < a < n, be a neighbor of vn which is inserted into
the terminal path. Since the algorithm results to λT (G[S]) + 1 paths, va is inserted
through an edge vkv� such that vk, v� /∈ N(vn) and vt is connected to a vertex vq

such that vq /∈ N(vn). This implies that the ordering of the vertices vt , vk, v� and vq

of the terminal path is as follows: vq < vk < v� < vt or vq < v� < vk < vt . Without
loss of generality suppose that vq < vk < v� < vt . Let vb be the other endpoint of
the terminal path. Clearly vb < vk . Also, without loss of generality, suppose that
vb < vq . Consequently, when vertex vt is processed, the algorithm has constructed a
path having two successive vertices, vk and v�, which have indexes greater than those
of the endpoints of the path, that is, vb and vq . This is a contradiction, since it implies
that there exists at least one vertex with index greater than q which sees vq ; in this
case the algorithm could not result to a path having vq as an endpoint. Consequently,
we have shown that if we apply the algorithm to G[S], no neighbor of vn is inserted
into the terminal path. Furthermore, since there are no neighbors of vn successive into
a path, all neighbors of vn bridge paths reducing the size of the 1PC. This implies that,
if we apply the algorithm to G[S −{vt }], we obtain a minimum 1PC of G[S −{vt }] of
size λT (G[S]). Furthermore, if we apply the algorithm to G[S − {vt , vj }], we obtain
a minimum 1PC of G[S − {vt , vj }] of size λT (G[S]) + 1. However, removing vt , vn

and vj from P = (vt , vn, vj , . . . , vs) which is a path in P ′
T (G), we obtain a 1PC

of G[S − {vt , vj }] of size at most λT (G[S]), a contradiction; thus, vn cannot be an
internal vertex of a path P = (vt , vn, vj , . . . , vs) in P ′

T (G) which has size λT (G[S]).
We have shown that there does not exist a 1PC P ′

T (G) of size λT (G[S]), and,
thus, P T (G) is a minimum 1PC of G, that is, λ′

T (G) = λT (G) = λT (G[S]) + 1.
Using similar arguments as in Case A.1 where vn is an endpoint in P T (G[S]),

we show that the algorithm computes a minimum 1PC P T (G) of every interval

Algorithmica

graph G with n vertices having ε
(n)
i endpoints vκ belonging to different paths with

index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no other minimum 1PC P ′
T (G) hav-

ing ε
′(n)
i endpoints vκ ′ belonging to different paths with index κ ′ ∈ (i, n] such that

ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n. �

Lemma 4.6 Let G be an interval graph and suppose that Algorithm 1PC_INTERVAL

computes a minimum 1PC P T (G[S]) of the graph G[S], S = {v1, v2, . . . , vn−1}, on
at most n − 1 vertices satisfying Property 1PC-on-G[S]. Let λT (G[S]) be the size of
P T (G[S]) and let vn be the terminal vertex; then Algorithm 1PC_INTERVAL com-
putes a minimum 1PC P T (G) of the graph G satisfying Property 1PC-on-G.

Proof Clearly, the size λ′
T (G) of a minimum 1PC of G is equal to λT (G[S]) or

λT (G[S]) + 1. We distinguish the following cases:

Case 1 When the algorithm processes vertex vn, it connects vn to a path, that is,
λT (G) = λT (G[S]). Since vn is the terminal vertex, the 1PC P T (G) is a minimum
1PC of G, that is, λ′

T (G) = λT (G) = λT (G[S]).
We show that the algorithm computes a minimum 1PC P T (G) of the graph G

having ε
(n)
i endpoints vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n,

such that there is no other minimum 1PC P ′
T (G) having ε

′(n)
i endpoints vκ ′ belonging

to different paths with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n.

Suppose that vn ∈ P = (vn, va, . . .) ∈ P T (G). Then, there cannot exist a minimum
1PC P ′

T (G) such that 1 = ε
(n)
�−1 < ε

′(n)
�−1. Assume that there exists a minimum 1PC

P ′
T (G) having an index, say, k − 1, for which we have ε

′(n)
k−1 endpoints vκ ′ belonging

to different paths with index κ ′ ∈ (k − 1, n], where ε
′(n)
k−1 > ε

(n)
k−1. Similarly, to Case 1

of Lemma 4.1, there exists a vertex vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j .

Suppose that vn ∈ P ′ = (vn, va′ , . . .) ∈ P ′
T (G). If va′ < vj+1, then vj+1vn ∈

E(G), and, thus, va < vj+1. Then, if we remove vn from P T (G) and P ′
T (G), we ob-

tain ε
(n−1)
j+1 = ε

(n)
j+1 − 1 = ε

′(n)
j+1 − 2 and ε

′(n−1)
j+1 = ε

′(n)
j+1 − 1; thus, ε

(n−1)
j+1 = ε

′(n−1)
j+1 − 1,

a contradiction. On the other hand, if va′ > vj+1, then, if we remove vn from P T (G)

and P ′
T (G), we obtain ε

(n−1)
j+1 = ε

(n)
j+1 − 1 = ε

′(n)
j+1 − 2 or ε

(n−1)
j+1 = ε

(n)
j+1 = ε

′(n)
j+1 − 1.

Also, ε
′(n−1)
j+1 = ε

′(n)
j+1; thus, ε

(n−1)
j+1 = ε

′(n−1)
j+1 − 1, a contradiction.

Case 2 When the algorithm processes vertex vn, it constructs a new trivial path,
that is, λT (G) = λT (G[S]) + 1. Suppose that there exists a 1PC P ′

T (G) of size
λT (G[S]). Clearly, vertex vn cannot belong to a trivial path in P ′

T (G), since re-
moving it results to a 1PC of G[S] of size λT (G[S]) − 1, a contradiction. Thus,
let P = (vn, vr , . . .) ∈ P ′

T (G) be the path containing vn. Removing vertex vn from
P ′

T (G) results to a 1PC of G[S] of size λT (G[S]), and, thus, minimum, having a
neighbor of vn, that is, vertex vr , as an endpoint of a path. Since G[S] does not con-
tain the terminal vertex this is a contradiction. Consequently, the 1PC PT (G) is a
minimum 1PC of G, that is, λ′

T (G) = λT (G) = λT (G[S]) + 1.
We show that the algorithm computes a minimum 1PC P T (G) of the graph G

having ε
(n)
i endpoints vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n,

Algorithmica

such that there is no other minimum 1PC P ′
T (G) having ε

′(n)
i endpoints vκ ′ belonging

to different paths with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i ≤ n.

Since P = (vn) there cannot exist a minimum 1PC P ′
T (G) such that 1 = ε

(n)
�−1 <

ε
′(n)
�−1. Assume that there exists a minimum 1PC P ′

T (G) having an index, say, k − 1,

for which we have ε
′(n)
k−1 endpoints vκ ′ belonging to different paths with index κ ′ ∈

(k −1, n], where ε
′(n)
k−1 > ε

(n)
k−1. Suppose that ε

(n)
k−1 = x and ε

′(n)
k−1 = x +1. Similarly, to

Case 1 of Lemma 4.1, there exists a vertex vj , 1 ≤ j < k − 1, such that ε
(n)
j = ε

′(n)
j .

Suppose that vn ∈ P ′ = (vn, va′ , . . .) ∈ P ′
T (G); the case where P ′ = (vn) is trivial.

If va′ < vj+1, then vj+1vn ∈ E(G), and, thus, vertex vn would be connected, a con-
tradiction. If va′ > vj+1, then, if we remove vn from P T (G) and P ′

T (G), we obtain

ε
(n−1)
j+1 = ε

(n)
j+1 − 1 = ε

′(n)
j+1 − 2 and ε

′(n−1)
j+1 = ε

′(n)
j+1, a contradiction. �

Consequently, we prove the following theorem.

Theorem 4.1 Let G be an interval graph on n vertices and m edges and let T = {v},
where v ∈ V (G). Algorithm 1PC_Interval computes a minimum 1PC PT (G) of the
graph G satisfying Property 1PC-on-G.

Proof We use induction on n. The basis n = 1 is trivial. Assume now that Algorithm
1PC_INTERVAL computes a minimum 1PC P T (G[S]) of every interval graph G[S],
S = {v1, v2, . . . , vn−1}, on at most n − 1 vertices having ε

(n−1)
i endpoints vκ belong-

ing to different paths with index κ ∈ (i, n − 1], 1 ≤ i ≤ n − 1, such that there is no
other minimum 1PC P ′

T (G[S]) having ε
′(n−1)
i endpoints vκ ′ belonging to different

paths with index κ ′ ∈ (i, n − 1] such that ε
′(n−1)
i > ε

(n−1)
i , 1 ≤ i < d , where d is the

index of the rightmost endpoint of a path in PT (G[S]), and, moreover, exactly one
of the following holds:

(i) ε
′(n−1)
i ≤ ε

(n−1)
i , d ≤ i ≤ n − 1;

(ii) ε
′(n−1)
i = ε

(n−1)
i + 1, d ≤ i < d ′ and ε

′(n−1)
i = ε

(n−1)
i , d ′ ≤ i ≤ n − 1, where d ′

is the index of the rightmost endpoint of a path in P ′
T (G[S]), and there exists

a vertex vq such that ε
(n−1)
q > ε

′(n−1)
q , and there exists no vertex vq ′ such that

ε
′(n−1)

q ′ > ε
(n−1)

q ′ , 1 ≤ q, q ′ < d .

Let λT (G[S]) be the size of P T (G[S]). Using Lemmas 4.1–4.6, we show that the
algorithm computes a minimum 1PC P T (G) of the graph G having ε

(n)
i endpoints

vκ belonging to different paths with index κ ∈ (i, n], 1 ≤ i ≤ n, such that there is no
other minimum 1PC P ′

T (G) having ε
′(n)
i endpoints vκ ′ belonging to different paths

with index κ ′ ∈ (i, n] such that ε
′(n)
i > ε

(n)
i , 1 ≤ i < �, where � is the index of the

rightmost endpoint of a path in P T (G), and, moreover, exactly one of the following
holds:

Algorithmica

(i) ε
′(n)
i ≤ ε

(n)
i , � ≤ i ≤ n;

(ii) ε
′(n)
i = ε

(n)
i + 1, � ≤ i < �′ and ε

′(n)
i = ε

(n)
i , �′ ≤ i ≤ n, where �′ is the index of

the rightmost endpoint of a path in P ′
T (G), and there exists a vertex vz such that

ε
(n)
z > ε

′(n)
z , and there exists no vertex vz′ such that ε

′(n)

z′ > ε
(n)

z′ , 1 ≤ z, z′ < �.

Thus the theorem follows. �

Let us now compute the time and space complexity of Algorithm 1PC_INTERVAL.
As mentioned in the description of the algorithm, it constructs the ordering π =
(v1, v2, . . . , vn) of the vertices of the input graph G and, using a greedy approach
on π , computes a minimum 1PC P (G) of the interval graph G. In particular, it visits
the vertices in the ordering π = (v1, . . . , vi, . . . , vn) from left to right, and computes a
minimum 1PC of the graph G([S ∪{vi}]) from a minimum 1PC of G([S]), 1 ≤ i ≤ n,
where S = {v1, v2, . . . , vi−1}, using the operations connect, insert, bridge,
new_path, and connect_break. It is easy to see that each one of these opera-
tions takes time linear to the size of the graph G[{v1, v2, . . . , vi−1}]. Note that, if no
vertex is specified to be terminal the algorithm uses only the operations connect,
bridge or new_path and, thus, it constructs a minimum PC P (G) of G in O(n2)

time.
Let G be an interval graph on n vertices and m edges and let T be a terminal set

containing a vertex v ∈ V (G). Suppose that Algorithm 1PC_INTERVAL processes
vertex vi , 1 ≤ i ≤ n, and t is the index of the terminal vertex; we consider the follow-
ing cases:

Case i < t . The algorithm processes vertex vi , where i < t . In this case, one of
the following operations is performed: connect, bridge or new_path. Each
operation includes searching for endpoints of paths in PT (G[{v1, v2, . . . , vi−1}]) that
are neighbors of vi . Thus, a minimum 1PC of G[{v1, v2, . . . , vi}] is constructed in
time linear to the size of G[{v1, v2, . . . , vi−1}].

Case i = t . The algorithm processes vertex vt . Then, either operation con-
nect or operation new_path is performed; specifically, the procedure process_
terminal is searching for the leftmost endpoint, say, v�, of a path in P T (G[{v1, v2,

. . . , vt−1}]) being a neighbor of vt , and, either connects vt to v� or creates a new triv-
ial path. Thus, a minimum 1PC of G[{v1, v2, . . . , vt }] is constructed in time linear to
the size of G[{v1, v2, . . . , vt−1}].

Case i > t . The algorithm processes vertex vi , where t < i. Unless the com-
putation of a minimum PC of G[{v1, v2, . . . , vi−1} − {vt }] is required or a mini-
mum 1PC of G[{v1, . . . , vt , . . . , vi−1}] is reconstructed, the algorithm processes ver-
tex vi using the operations connect, insert, bridge, new_path, and con-
nect_break. Since each one of these operations takes O(i) time, in this case a
minimum 1PC of G[{v1, . . . , vt , . . . , vi}] is computed in O(i) time. In the case where
a minimum PC of G[{v1, v2, . . . , vi−1} − {vt }] is computed or a minimum 1PC of
G[{v1, . . . , vt , . . . , vi−1}] is reconstructed, the algorithm computes a minimum 1PC
of G[{v1, v2, . . . , vi}] in O(i2) time. Thus, a minimum 1PC of G[{v1, v2, . . . , vi}] is
constructed in time quadratic to the size of G[{v1, v2, . . . , vi−1}].

Taking into consideration the time complexity of the operations performed by the
algorithm in each case, we conclude that it computes a minimum 1PC PT (G) of G

Algorithmica

in O(n3) time and, since no additional space is needed, requires linear space. Recall
that the ordering π of the vertices is constructed in linear time [24]. Hence, we can
state the following result.

Theorem 4.2 Let G be an interval graph on n vertices and let T be a subset of V (G)

containing a single vertex. A minimum 1-fixed-endpoint path cover of G with respect
to T can be computed in O(n3) time.

5 Related Results on Convex and Biconvex Graphs

Based on the results for the 1PC problem on interval graphs, and also on the reduction
described by Müller in [20], we study the HP and 1HP problems on convex and
biconvex graphs. A bipartite graph G(X,Y ;E) is called X-convex (or simply convex)
if there exists an ordering of its vertices such that for all y ∈ Y the vertices of N(y)

are consecutive [20]; G is biconvex if it is convex on both X and Y .
In this section, we solve the HP and 1HP problems on a biconvex graph

G(X,Y ;E). Moreover, we show that the HP problem on an X-convex graph
G(X,Y ;E) on n vertices can be solved in O(n4) time if |X| = |Y | or |X| − |Y | = 1
and a 1HP starting at vertex u, if there exists, can be computed in O(n3) time if
(|X| = |Y | and u ∈ Y) or |X| − |Y | = 1.

We next describe an algorithm for the HP problem on a biconvex graph
G(X,Y ;E). To simplify our description we use two functions, namely Minimum
_HP(G) and Minimum_1PC(G,u): the function Minimum_HP(G) corre-
sponds to the algorithm for computing a minimum path cover of an interval graph
G described in [2], while Minimum_1PC(G,u) corresponds to the algorithm for
computing a minimum path cover with specified endpoint u of an interval graph G

described in this paper.

Algorithm HP_BICONVEX

Input: a biconvex graph G(X,Y ;E) on n vertices;
Output: a Hamiltonian path of G, if one exists:

1. if ||X| − |Y || > 1 then return G does not have a Hamiltonian path;
2. if |X| = |Y | then

construct the interval graph G′ such that:
V (G′) = X ∪ Y , E(G′) = E ∪ EY , where EY is as follows:
y1y2 ∈ EY iff y1, y2 ∈ Y and N(y1) ∩ N(y2) �= ∅;

if there exists yj ∈ Y such that |N(yj)| = 1 then
P T (G) ← Minimum_1PC(G′,yj);
if λT (G) = 1 then return P T (G);
else return G does not have a Hamiltonian path;

else
for i = 1 to |Y | do

PT (G) ← Minimum_1PC(G′, yi);
if λT (G) = 1 then return P T (G);

end-for;
return G does not have a Hamiltonian path;

Algorithmica

3. if |X| − |Y | = 1 then
P T (G) ← Minimum_HP(G′);
if λT (G) = 1 then return P T (G);
else return G does not have a Hamiltonian path;

4. if |Y | − |X| = 1 then
construct the interval graph G′ such that:

V (G′) = X ∪ Y , E(G′) = E ∪ EX , where EX is as follows:
x1x2 ∈ EX iff x1, x2 ∈ X and N(x1) ∩ N(x2) �= ∅;

P T (G) ← Minimum_HP(G′);
if λT (G) = 1 then return P T (G);
else return G does not have a Hamiltonian path;

End_of_Algorithm HP_BICONVEX.

Observation 5.1 Uehara and Uno in [31] claim that the HP problem on a bicon-
vex graph G(X,Y ;E) on n vertices can be solved in O(n2) time even if |X| = |Y |.
Specifically, they claim that G has an HP iff the interval graph G′ has an HP,
where G′ is an interval graph such that V (G′) = X ∪ Y and E(G′) = E ∪ EY ,
where EY is as follows: y1y2 ∈ EY iff y1, y2 ∈ Y and N(y1) ∩ N(y2) �= ∅. How-
ever, this is not true, since there exists a counterexample, which is presented in
Fig. 7. Indeed, the biconvex graph G of Fig. 7 does not have an HP while for G′
we have P = (x1, y2, x2, y1, y4, x3, y3, x4). Suppose that we construct an interval
graph G′ such that V (G′) = X ∪ Y and E(G′) = E ∪ EX , where EX is as fol-
lows: x1x2 ∈ EX iff x1, x2 ∈ X and N(x1) ∩ N(x2) �= ∅. Then, G′ has an HP, that
is, P = (y4, x3, y3, x4, x1, y2, x2, y1). Thus, there exists no algorithm with time com-
plexity O(n2) and we can state the following result.

Theorem 5.1 The Hamiltonian path problem on a biconvex graph G on n vertices
can be solved in O(n4) time.

Similarly, we show that the Hamiltonian path problem on an X-convex graph
G(X,Y ;E) on n vertices can be solved in O(n4) time when |X| = |Y | or |X|− |Y | =
1. It is easy to see that if |Y | − |X| = 1 then the X-convex graph G(X,Y ;E) has a
Hamiltonian path iff the interval graph G′ has a 2HP between any two vertices of Y .
Thus, we can state the following result.

Corollary 5.1 The Hamiltonian path problem on an X-convex graph G(X,Y ;E) on
n vertices can be solved in O(n4) time if |X| = |Y | or |X| − |Y | = 1.

Fig. 7 A biconvex graph
G = (X,Y ;E) with |X| = |Y |

Algorithmica

We next describe an algorithm for the 1HP problem on a biconvex graph
G(X,Y ;E). Recall that the function Minimum_1PC(G,u) corresponds to the al-
gorithm for computing a minimum path cover with specified endpoint u of an interval
graph G described in this paper.

Algorithm 1HP_BICONVEX

Input: a biconvex graph G(X,Y ;E) on n vertices and a vertex yt ∈ Y ;
Output: a Hamiltonian path of G starting at vertex yt , if one exists:

1. if ||X| − |Y || > 1 then return G does not have a 1HP;
2. if |X| = |Y | then

construct the interval graph G′ such that:
V (G′) = X ∪ Y , E(G′) = E ∪ EY , where EY is as follows:
y1y2 ∈ EY iff y1, y2 ∈ Y and N(y1) ∩ N(y2) �= ∅;

P T (G) ← Minimum_1PC(G′, yt);
if λT (G) = 1 then return P T (G);
else return G does not have a 1HP;

3. if |X| − |Y | = 1 then return G does not have a 1HP;
4. if |Y | − |X| = 1 then

construct the interval graph G′ such that:
V (G′) = X ∪ Y , E(G′) = E ∪ EX , where EX is as follows:
x1x2 ∈ EX iff x1, x2 ∈ X and N(x1) ∩ N(x2) �= ∅;

P T (G) ← Minimum_1PC(G′, yt);
if λT (G) = 1 then return P T (G);
else return G does not have a 1HP;

End_of_Algorithm 1HP_BICONVEX.

Since the function Minimum_1PC requires O(n3) time to compute a 1HP of an
interval graph on n vertices and the graph G′ can be constructed in O(|X ∪Y |2) time
[20], Algorithm 1HP_BICONVEX returns a 1HP, if there exists, of a biconvex graph
on n vertices in O(n3) time. Hence, we can state the following result.

Theorem 5.2 Let G be a biconvex graph on n vertices and let u be a vertex of V (G).
The 1HP problem on G and u can be solved in O(n3) time.

Let G(X,Y ;E) be an X-convex graph on n vertices and let u be a vertex of V (G).
Similarly, we show that the 1HP problem on G and u can be solved in O(n3) time
when (|X| = |Y | and u ∈ Y) or |X| − |Y | = 1. Clearly, if |Y | − |X| = 1 and u ∈ X

then G does not have a 1HP. It is easy to see that if (|Y | − |X| = 1 and u ∈ Y) or
(|X| = |Y | and u ∈ X) then the X-convex graph G(X,Y ;E) has a Hamiltonian path
if the interval graph G′ has a 2HP between u and a vertex of Y . Thus, we can state
the following result.

Corollary 5.2 Let G(X,Y ;E) be an X-convex graph on n vertices and let u be
a vertex of V (G). The 1HP problem on G and u can be solved in O(n3) time if
(|X| = |Y | and u ∈ Y) or |X| − |Y | = 1. If |Y | − |X| = 1 and u ∈ X then G does not
have a 1HP.

Algorithmica

6 Concluding Remarks

In this paper we presented a polynomial-time algorithm for the 1PC problem on in-
terval graphs and, thus, we answered the question left open by Damaschke [8] of
whether the 1HP problem is polynomially solvable on interval graphs. We also pre-
sented polynomial-time algorithms for the HP and 1HP problems on biconvex graphs,
and showed that the HP problem on X-convex graphs G(X,Y,E) with |Y |− |X| = 1,
which was left open in [31], has polynomial solution iff the 2HP problem on interval
graphs is polynomial.

An interesting open question is whether the k-fixed-endpoint path cover problem
(kPC) can be polynomially solved on interval graphs. Note that, the kPC problem
generalizes both the 1HP and 2HP problems; the complexity status of the 2HP prob-
lem on interval graphs remains an open question.

References

1. Adhar, G.S., Peng, S.: Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle
in cographs. In: International Conference on Parallel Processing, vol. III: Algorithms and Architec-
ture, pp. 364–365. Pennsylvania State University Press, Pennsylvania (1990)

2. Arikati, S.R., Rangan, C.P.: Linear algorithm for optimal path cover problem on interval graphs. Inf.
Process. Lett. 35, 149–153 (1990)

3. Asdre, K., Nikolopoulos, S.D.: A linear-time algorithm for the k-fixed-endpoint path cover problem
on cographs. Networks 50, 231–240 (2007)

4. Asdre, K., Nikolopoulos, S.D.: A polynomial solution for the k-fixed-endpoint path cover problem on
proper interval graphs. In: Proc. of the 18th International Conference on Combinatorial Algorithms
(IWOCA’07), Lake Macquarie, Newcastle, Australia (2007)

5. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Process. Lett. 17, 97–101
(1983)

6. Bertossi, A.A., Bonuccelli, M.A.: Finding Hamiltonian circuits in interval graph generalizations. Inf.
Process. Lett. 23, 195–200 (1986)

7. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes—A Survey. SIAM Monographs in Discrete Math-
ematics and Applications. SIAM, Philadelphia (1999)

8. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete Math. 112, 49–64 (1993)
9. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. J. Theor.

Comput. Sci. 10, 111–121 (1980)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complet-

eness. Freeman, San Francisco (1979)
11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete.

SIAM J. Comput. 5, 704–714 (1976)
12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

(2nd edn., in Ann. Discrete Math. 57, Elsevier, 2004)
13. Hsieh, S.Y.: An efficient parallel strategy for the two-fixed-endpoint Hamiltonian path problem on

distance-hereditary graphs. J. Parallel Distributed Comput. 64, 662–685 (2004)
14. Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T.: The Hamiltonian problem on distance-hereditary graphs.

Discrete Appl. Math. 154, 508–524 (2006)
15. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems on distance-

hereditary graphs. Theor. Comput. Sci. 341, 411–440 (2005)
16. Hung, R.W., Chang, M.S.: Solving the path cover problem on circular-arc graphs by using an approx-

imation algorithm. Discrete Appl. Math. 154, 76–105 (2006)
17. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)
18. Keil, J.M.: Finding Hamiltonian circuits in interval graphs. Inf. Process. Lett. 20, 201–206 (1985)
19. Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs. Comput. Math. Appl.

30, 75–83 (1995)

Algorithmica

20. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)
21. Nakano, K., Olariu, S., Zomaya, A.Y.: A time-optimal solution for the path cover problem on

cographs. Theor. Comput. Sci. 290, 1541–1556 (2003)
22. Nikolopoulos, S.D.: Parallel algorithms for Hamiltonian problems on quasi-threshold graphs. J. Par-

allel Distributed Comput. 64, 48–67 (2004)
23. Park, J.H.: One-to-many disjoint path covers in a graph with faulty elements. In: Proc. of the 10th

International Computing and Combinatorics Conference (COCOON’04), pp. 392–401 (2004)
24. Ramalingam, G., Rangan, C.P.: A unified approach to domination problems on interval graphs. Inf.

Process. Lett. 27, 271–274 (1988)
25. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser.

B 63, 65–110 (1995)
26. Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293–309 (1980)
27. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. Assoc. Comput. Mach.

27, 445–456 (1980)
28. Srikant, R., Sundaram, R., Singh, K.S., Rangan, C.P.: Optimal path cover problem on block graphs

and bipartite permutation graphs. Theor. Comput. Sci. 115, 351–357 (1993)
29. Suzuki, Y., Kaneko, K., Nakamori, M.: Node-disjoint paths algorithm in a transposition graph. IEICE

Trans. Inf. Syst. E89-D, 2600–2605 (2006)
30. Thomassen, C.: 2-linked graphs. Eur. J. Comb. 1, 371–378 (1980)
31. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Int. J. Found. Comput. Sci.

18, 911–930 (2007)

	The 1-Fixed-Endpoint Path Cover Problem is Polynomial on Interval Graphs
	Abstract
	Introduction
	Framework-Motivation
	Contribution
	Related Work
	Road Map

	Theoretical Framework
	The Algorithm
	Correctness and Time Complexity
	Related Results on Convex and Biconvex Graphs
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

