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Abstract. Given a simple graph G, a harmonious coloring of G is a
proper vertex coloring such that each pair of colors appears together on
at most one edge. The harmonious chromatic number is the least integer
k for which G admits a harmonious coloring with k colors. Extending
previous NP-completeness results of the harmonious coloring problem on
subclasses of chordal and co-chordal graphs, we prove that the problem
remains NP-complete for split undirected path graphs; we also prove that
the problem is NP-complete for colinear graphs by showing that split
undirected path graphs form a subclass of colinear graphs. Moreover, we
provide a polynomial solution for the harmonious coloring problem for
the class of split strongly chordal graphs, the interest of which lies on
the fact that the problem has been proved to be NP-complete on both
split and strongly chordal graphs.
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1 Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that
each pair of colors appears together on at most one edge, while the harmonious
chromatic number h(G) is the least integer k for which G admits a harmonious
coloring with k colors [5].

Several NP-complete problems on arbitrary graphs admit polynomial solu-
tions when restricted to the classes of strongly chordal graphs and undirected
path graphs and, thus, interval graphs (see e.g. [12, 18]). However, the harmo-
nious coloring problem, which is NP-hard on arbitrary graphs [22], remains NP-
complete even when restricted to graphs that are simultaneously interval and
cographs [3]. More specifically, Bodlaender [3] provides a proof that establishes
the NP-completeness of the harmonious coloring problem for disconnected inter-
val graphs and cographs. Recently, we extended Bodlaender’s results by showing
that the problem remains NP-complete for connected interval graphs [1]. Note
that the problem of determining the harmonious chromatic number of connected
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cographs is trivial, since in such a graph each vertex must receive a distinct
color as it is at distance at most 2 from all other vertices [5]. Therefore, the
harmonious coloring problem has been proved to be NP-complete on the class
of interval graphs and, thus, on the classes of strongly chordal and undirected
path graphs.

Additionally, the NP-completeness of the problem has been also proved for
the classes of split graphs [1], trees and disconnected bipartite permutation
graphs [9, 10], connected bipartite permutation graphs [2], and disconnected
quasi-threshold graphs [2]. Since the problem of determining the harmonious
chromatic number of a connected cograph is trivial, the harmonious coloring
problem is polynomially solvable on connected quasi-threshold graphs and thresh-
old graphs.

In this paper we study the complexity status of the harmonious coloring
problem on two subclasses of colinear graphs [17, 16]. We first show that the
harmonious coloring problem is NP-complete on split undirected path graphs
and, then, we show that the class of split undirected path graphs forms a sub-
class of colinear graphs; thus, we obtain the NP-completeness of the harmonious
coloring problem on colinear graphs as well. Moreover, we provide a polynomial
solution for the harmonious coloring problem on split strongly chordal graphs,
the interest of which lies on the fact that the problem is NP-complete on both
split graphs and strongly chordal graphs [1, 3]. However, the complexity status
of the problem for the class of connected linear graphs still remains an open
question; note that the harmonious coloring problem is NP-complete on discon-
nected linear graphs, since it is NP-complete on disconnected quasi-threshold
graphs [2] and quasi-threshold graphs form a subclass of linear graphs [17, 16].

2 Background Results

In this section we provide some basic graph theory definitions and give some
background results on colinear coloring, colinear graphs, and linear graphs. For
basic definitions in graph theory refer to [4, 15], and for more details on colinear
coloring, colinear and linear graphs refer to [17, 16].

2.1 Preliminaries

Let G be a finite undirected graph with no loops or multiple edges. We denote
by V (G) and E(G) the vertex set and edge set of G. An edge is a pair of distinct
vertices x, y ∈ V (G), and is denoted by xy if G is an undirected graph and by
−→xy if G is a directed graph. For a set A ⊆ V (G) of vertices of the graph G,
the subgraph of G induced by A is denoted by GA or G[A]. Additionally, the
cardinality of a set A is denoted by |A|. The set N(v) = {u ∈ V (G) : uv ∈ E(G)}
is called the open neighborhood of the vertex v ∈ V (G) in G, sometimes denoted
by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is called the closed
neighborhood of the vertex v ∈ V (G) in G. Also, by G we denote the complement
graph of a graph G.



The greatest integer r for which a graph G contains an independent set of
size r is called the independence number or otherwise the stability number of G
and is denoted by α(G). The cardinality of the vertex set of the maximum clique
in G is called the clique number of G and is denoted by ω(G). A proper vertex
coloring of a graph G is a coloring of its vertices such that no two adjacent
vertices are assigned the same color. The chromatic number χ(G) of G is the
least integer k for which G admits a proper vertex coloring with k colors. For
the numbers ω(G) and χ(G) of an arbitrary graph G the inequality ω(G) ≤ χ(G)
holds. In particular, G is a perfect graph if the equality ω(GA) = χ(GA) holds
∀A ⊆ V (G).

Next, definitions of some graph classes mentioned throughout the paper fol-
low. A graph is called a chordal graph if it does not contain an induced subgraph
isomorphic to a chordless cycle of four or more vertices. A graph is called a
co-chordal graph if it is the complement of a chordal graph [15]. A hole is a
chordless cycle Cn if n ≥ 5; the complement of a hole is an antihole. Thresh-
old graphs are defined as those graphs where stable subsets of their vertex sets
can be distinguished by using a single linear inequality. Threshold graphs were
introduced by Chvátal and Hammer [7] and characterized as (2K2, P4, C4)-free.
Quasi-threshold graphs are characterized as the (P4, C4)-free graphs and are also
known in the literature as trivially perfect graphs [15].

A graph G is a split graph if there is a partition of the vertex set V (G) = K+I,
where K induces a clique in G and I induces an independent set. Split graphs
are characterized as (2K2, C4, C5)-free [15]. A chordal graph is an undirected
path graph if it is the vertex intersection graph of undirected paths in a tree [14,
20, 21]. A graph is strongly chordal if it admits a strong elimination ordering.
Strongly chordal graphs were introduced by Farber in [11] and are character-
ized completely as those chordal graphs which contain no k-sun as an induced
subgraph (for the definition of a k-sun see Section 4).

2.2 Colinear Coloring and Colinear Graphs

Motivated by the definition of linear coloring on simplicial complexes associated
to graphs, first introduced in the context of algebraic topology [8], we recently
introduced the colinear coloring on graphs [17].

Definition 1. Let G be a graph and let v ∈ V (G). The clique set of a vertex v
is the set of all maximal cliques of G containing v and is denoted by CG(v).

Definition 2. Let G be a graph and let k be an integer. A surjective map κ :
V (G) → {1, 2, . . . , k} is called a k-colinear coloring of G if the collection {CG(v) :
κ(v) = i} is linearly ordered by inclusion for all i ∈ {1, 2, . . . , k}. Equivalently,
for two vertices v, u ∈ V (G), if κ(v) = κ(u) then either CG(v) ⊆ CG(u) or
CG(v) ⊇ CG(u). The least integer k for which G is k-colinear colorable is called
the colinear chromatic number of G and is denoted by λ(G).

The interest to provide boundaries for the chromatic number χ(G) of an
arbitrary graph G through the study of different simplicial complexes associated
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Fig. 1. Illustrating a colinear coloring of the graphs 2K2, C4 and P4 with the least
possible colors.

to G, which is found in algebraic topology bibliography, drove the motivation
for studying the relation between the chromatic number χ(G) and the colinear
chromatic number λ(G). In Figure 1 we depict a colinear coloring of the well
known graphs 2K2, C4 and P4, using the least possible colors, and show the
relation between the chromatic number χ(G) of each graph G ∈ {2K2, C4, P4}
and the colinear chromatic number λ(G).

In [17] we presented a polynomial time algorithm for colinear coloring which
can be applied to any graph G and, also, we proved the following results.

Proposition 1. ([17]) For any graph G, λ(G) ≥ χ(G).

Proposition 2. ([17]) Let G be a graph. A coloring κ : V (G) → {1, 2, . . . , k} of
G is a k-colinear coloring of G if and only if either NG[u] ⊆ NG[v] or NG[u] ⊇
NG[v] holds in G, for every u, v ∈ V (G) with κ(u) = κ(v).

Motivated by these results and the Perfect Graph Theorem [15], we stud-
ied those graphs for which the equality χ(G) = λ(G) holds for every induced
subgraph and characterized known graph classes in terms of the χ-colinear and
the α-colinear properties [17]. Moreover, it was interesting to study those graphs
which are characterized completely by the χ-colinear or the α-colinear prop-
erty. The outcome of this study was to conclude that these graphs form two
new classes of perfect graphs, which we call colinear and linear graphs, respec-
tively [16].

Definition 3. A graph G is called colinear if and only if χ(GA) = λ(GA), ∀A ⊆
V (G). A graph G is called linear if and only if α(GA) = λ(GA), ∀A ⊆ V (G).

We also showed inclusion relations between the classes of colinear and linear
graphs and other subclasses of co-chordal and chordal graphs [16]. More specifi-
cally, the class of colinear graphs is a subclass of co-chordal graphs, a superclass
of threshold graphs, and is distinguished from the class of split graphs. Addi-
tionally, linear graphs form a subclass of chordal graphs and a superclass of
quasi-threshold graphs. We also proved that any P6-free strongly chordal graph
is a linear graph.

The inclusion relations among the classes of colinear graphs, linear graphs,
and other subclasses of co-chordal and chordal graphs are depicted in Figure 2.
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Fig. 2. Illustrating the complexity status of the harmonious coloring problem, and the
inclusion relations, for the classes of colinear graphs, linear graphs, and other subclasses
of co-chordal and chordal graphs.

Note that since any P6-free strongly chordal graph is a linear graph, it follows
that split strongly chordal graphs form a subclass of linear graphs. Then, we can
easily obtain that any split strongly chordal graph is a colinear graph, since if a
graph G is strongly chordal then G is also a strongly chordal graph.

3 Harmonious Coloring on Colinear Graphs

The formulation of the harmonious coloring problem in [5] is equivalent to the
following formulation.

Harmonious Coloring Problem
Instance: Graph G, positive integer K ≤ |V (G)|.
Question: Is there a positive integer k ≤ K and a proper coloring using k colors
such that each pair of colors appears together on at most one edge?

In this section we show that the harmonious coloring problem remains NP-
complete when restricted to the class of colinear graphs, which is a subclass
of co-chordal graphs and a superclass of threshold graphs. The problem is NP-
complete on co-chordal graphs, since it is NP-complete on split graphs [1], and
it has a polynomial solution on threshold graphs. Therefore, it is interesting to
study the complexity of the problem on colinear graphs.

We first show that the problem remains NP-complete even when restricted
to graphs which are simultaneously split graphs and undirected path graphs.
Then, we show that every split undirected path graph is a colinear graph, thus,
proving that the problem is NP-complete on colinear graphs.



The following characterization of undirected path graphs will be used for
obtaining our results. Note that, C denotes the set of all maximal cliques of a
graph G; recall that, C(v) denotes the set of all maximal cliques containing v.

Theorem 1. ([14, 20]) A graph G is an undirected path graph if and only if there
exists a tree T whose set of vertices is C, so that for every vertex v ∈ V (G), the
subgraph T [C(v)] of T induced by the vertex set C(v), is a path in T . Such a tree
will be called characteristic tree of G.

We next show that the harmonious coloring problem is NP-complete for split
undirected path graphs by exhibiting a reduction from the chromatic number
problem for general graphs, which is known to be NP-complete [13].

Let G be an arbitrary graph with n vertices v1, v2, . . . , vn and m edges
e1, e2, . . . , em. We construct in polynomial time a split graph Ĝ, where V (Ĝ) =
K +I, as follows: the independent set I consists of n vertices v̂1, v̂2, . . . , v̂n which
correspond to the vertices v1, v2, . . . , vn of the graph G and the clique K con-
sists of m vertices û1, û2, . . . , ûm which correspond to the edges e1, e2, . . . , em

of G. A vertex ût ∈ K, 1 ≤ t ≤ m, is connected to two vertices v̂i, v̂j ∈ I,
1 ≤ i, j ≤ n, if and only if the corresponding vertices vi and vj are adjacent in
G. Note that, every ûi ∈ K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(Ĝ)| = m(m−1)

2 + 2m.
Moreover, we claim that the constructed split graph Ĝ is also an undirected

path graph. Indeed, we prove this by showing that the graph Ĝ has a charac-
teristic tree. Let C be the set of all maximal cliques of Ĝ. Note that K is a
maximal clique for Ĝ, thus, we have |C| = |I|+1. Every vertex v̂i ∈ I belongs to
exactly one maximal clique, i.e., |C(v̂i)| = 1. Additionally, every vertex ûi ∈ K
belongs to exactly three maximal cliques, one of which is maximal clique K, i.e.,
|C(ûi)| = |N [ûi]| − |K|+ 1 = 3.

Consider now a tree T with vertex set C, such that the maximal clique K
is connected by an edge to every maximal clique C(v̂i) for every v̂i ∈ I, i.e., T

is a star. We now show that T is a characteristic tree for Ĝ. Indeed, for every
vertex v̂i ∈ I, the subgraph T [C(v̂i)] induced by C(v̂i) is a path on one vertex,
and also for every vertex ûi ∈ K, the subgraph T [C(ûi)] is a path on three
vertices. Therefore, the constructed graph Ĝ has a characteristic tree and, thus,
from Theorem 1 it follows that Ĝ is a split undirected path graph.

We claim that the graph G has a chromatic number χ(G) if and only if
the split undirected path graph Ĝ has a harmonious chromatic number h(Ĝ) =
χ(G) + m. Note that the same arguments are used in [1] for proving the NP-
completeness of the problem for split graphs.

Let ci ∈ {1, . . . , χ(G)} be the color assigned to the vertex vi ∈ G, 1 ≤ i ≤ n,
in a minimum coloring of G. We assign the color ci to the vertex v̂i of the set I
and a distinct color from the set {χ(G)+ 1, . . . , χ(G)+m} to each vertex of the
clique K. Since two adjacent vertices of G receive a different color, the neighbors
of each ûi ∈ K belonging to the independent set have distinct colors. Moreover,
every vertex v̂i ∈ I sees |NG(vi)| vertices of the clique K, where NG(vi) is the
neighborhood of the vertex vi in G. Thus, every pair of colors appears in at most



one edge. In addition, the number of colors assigned to the set I is equal to χ(G)
and the number of colors assigned to the clique is equal to m. This results to a
harmonious coloring of Ĝ using χ(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of Ĝ using h(Ĝ) = χ(G)+m colors assigns
m colors to the vertices of the clique K and χ(G) colors to the vertices of the set
I. Note that, χ(G) is the minimum number of colors so that vertices v̂i, v̂j having
a neighbor in common are assigned different colors. Since vi, vj are adjacent in
G, it follows that we have a minimum coloring of G using χ(G) colors.

Thus, we have proved the following result.

Theorem 2. The harmonious coloring problem is NP-complete for split undi-
rected path graphs.

Next, we show the following result.

Theorem 3. Any split undirected path graph is a colinear graph.

Proof. Let G be a split undirected path graph. Assume that G is not a colinear
graph. Then, from Definition 3 there exists an induced subgraph GA of G such
that λ(GA) 6= χ(GA); thus, due to Proposition 1, λ(GA) > χ(GA).

From Theorem 1, we obtain that split undirected path graphs are hereditary,
that is, every induced subgraph GA of G is a split undirected path graph. Let
V (GA) = K + I be a partition of the vertex set of GA into a maximal clique
K and an independent set I. Also, from Theorem 1 we have that GA has a
characteristic tree T with vertex set C, where C is the set of all maximal cliques
of GA, such that for every vertex v ∈ V (GA), the subgraph T [C(v)] of T induced
by the vertex set C(v) is a path in T .

In particular, since GA is a split graph, for every vertex v ∈ I, the subgraph
T [C(v)] of T induced by the vertex set C(v) is a vertex in T that corresponds
to the unique maximal clique of GA that v belongs to; we will denote this clique
by Cv, i.e., Cv = NGA

[v] and C(v) = {Cv} for every vertex v ∈ I. Also, for
every vertex v ∈ K, the path (Cu, . . . , Cx,K, Cy, . . . , Cz) of T induced by the
vertex set C(v), always passes from the vertex K; equivalently, for every vertex
v ∈ K, the subgraph of T induced by the vertex set C(v), corresponds to the
vertex K and to at most two vertex disjoint paths (Cy, . . . , Cz) and (Cx, . . . , Cu)
where Cy and Cx are adjacent to K in T . Moreover, observe that for any path
(K,Cv1 , Cv2 , . . . , Cvk

) of the characteristic tree T of GA, we have Cv1 \ {v1} ⊇
Cv2 \ {v2} ⊇ . . . ⊇ Cvk

\ {vk}, since Cvi \ {vi} = NGA(vi) ⊂ K, where vi ∈ I for
every i, 1 ≤ i ≤ k.

Let κ : V (GA) → {1, 2, . . . , λ(GA)} be a colinear coloring of GA. In order
to see how a colinear coloring can be assigned to the vertices of GA we refer
to the colinear coloring algorithm presented in [17]. In particular, the algorithm
first constructs the directed acyclic graph (DAG) DGA

associated to the graph
GA and, then, finds a minimum path cover of the transitive DAG DGA

. The
size of the minimum path cover of DGA

equals the colinear chromatic number
λ(GA). Also, the algorithm assigns a colinear coloring κ to the vertices of GA



such that a set of vertices are assigned the same color in κ if and only if they
belong to the same path of the minimum path cover of DGA

. Moreover, the DAG
DGA

associated to the graph GA is constructed as follows: V (DGA
) = V (GA)

and E(DGA
) = {−→xy : x, y ∈ V (DGA

) and NGA
[x] ⊆ NGA

[y]}, where −→xy is a
directed edge from x to y. Note that DGA

is a transitive DAG [17]. For simplicity,
throughout the proof we will denote the DAG DGA

associated to the graph GA

by D.
The following observations will be useful in the rest of this proof. Two vertices

u, v ∈ V (D) are not adjacent in D if and only if neither NGA
[v] ⊆ NGA

[u] nor
NGA

[v] ⊇ NGA
[u]; we call two sets with this property incompatible. In GA

the vertices of I form a clique, therefore, for two vertices u, v ∈ I, u and v
are not adjacent in D if and only if the sets NGA

[u] ∩ K and NGA
[v] ∩ K are

incompatible. Note that, for any two vertices u, v of GA, NGA
[u] ⊆ NGA

[v] if
and only if NGA(u) ⊇ NGA(v). Additionally, for every vertex u ∈ I, we have
NGA

(u) ⊂ K.
Having assumed that λ(GA) > χ(GA) = |K|, there exists a minimum path

cover of D with size λ(GA) ≥ |K| + 1. The size of a minimum path cover of
D equals the cardinality of a maximum independent set ID of D [15]; thus,
|ID| ≥ |K|+ 1. Moreover, the independent set ID corresponds to a collection C
of mutually incompatible sets NGA

[v], for all v ∈ ID, that is, C = {NGA
[v] : v ∈

ID}. Thus, |C| ≥ |K| + 1 and the sets of C contain at most |K| vertices of K.
Also, recall that for any two vertices u, v ∈ V (D) such that u ∈ K and v ∈ I,
if uv ∈ E(GA) then NGA

[u] ⊂ NGA
[v]; thus, for any two vertices u, v ∈ V (D)

such that u ∈ K and v ∈ I, u and v are adjacent in GA if and only if u and v
are adjacent in D.

Assume that K ⊂ ID. Then, no vertex v ∈ I can belong to ID since every
vertex of I is adjacent to at least one vertex of K in GA and, thus, in D, due to
our assumption that K is a maximal clique of GA. Thus, not every vertex of K
can belong to ID, since |ID| ≥ |K|+ 1. Assume that a vertex u ∈ K belongs to
ID. Then, no vertex v ∈ I that is adjacent to u in D and, thus, in GA, belongs
to ID; equivalently, u /∈ NGA

[v], for every vertex v ∈ ID. Therefore, if we delete
the vertex u ∈ K from the set ID, we obtain an independent set I ′D = ID \ {u}
and a collection C ′ = C \ {NGA

[u]} of at least |K| mutually incompatible sets,
which contain at most |K| − 1 vertices of K. Using the same arguments, if we
delete every vertex of K from the independent set ID, we obtain an independent
set I ′′D, such that I ′′D ⊆ I and |I ′′D| ≥ k + 1 (where k ≤ |K|), which corresponds
to a collection C ′′ of at least k + 1 mutually incompatible sets NGA

[v], v ∈ I,
which contain at most k vertices of K.

A collection C ′′ of at least k + 1 mutually incompatible sets NGA
[v], v ∈ I,

corresponds to a collection F of at least k+1 mutually incompatible sets NGA(v),
v ∈ I. Since, for every vertex v ∈ I we have NGA

(v) = Cv \ {v}, it follows
that a collection F of at least k + 1 mutually incompatible sets NGA

(v), v ∈ I,
corresponds to a collection of at least k+1 maximal cliques Cv of GA, v ∈ I, each
of which must belong to a different path (K, Cv1 , Cv2 , . . . , Cvk

) of a characteristic
tree T of GA. However, every vertex z ∈ K belongs to at most two such paths,



Fig. 3. A split graph G which is not a colinear graph, since χ(G) = 4 and λ(G) = 5.
Also, G is not an undirected path graph.

therefore, every vertex z ∈ K belongs to at most two sets of the collection F .
Thus, every vertex z ∈ K belongs to at least |C ′′| − 2 sets of the collection C ′′.

Summarizing, we have a collection C ′′ of at least k+1 mutually incompatible
sets NGA

[v], v ∈ I, which contain at most k vertices of K and, also, every vertex
z ∈ K belongs to at least |C ′′| − 2 sets of the collection C ′′. Recall that for two
vertices u, v ∈ I, the sets NGA

[u] and NGA
[v] are incompatible if and only if

the sets NGA
[u] ∩ K and NGA

[v] ∩ K are incompatible. Therefore, we have a
collection of at least k + 1 mutually incompatible vertex sets on k vertices. It is
easy to see that it is impossible to find a collection of at least k + 1 mutually
incompatible sets on k vertices, if every vertex belongs to at least k sets of the
collection. This is a contradiction to our assumptions. Therefore, G is a colinear
graph. ut

Note that, not any split graph is a colinear graph (for example see Fig. 3).
From Theorems 2 and 3, we obtain the following result.

Corollary 1. The harmonious coloring problem is NP-complete on the class of
colinear graphs.

4 Harmonious Coloring on Split Strongly Chordal
Graphs

In this section we show that the harmonious coloring problem admits a poly-
nomial solution on the class of split strongly chordal graphs. Strongly chordal
graphs form a known subclass of chordal graphs [4, 11] and were first introduced
by Farber [11]. A graph is strongly chordal iff it admits a strong elimination
ordering; a vertex ordering σ = (v1, v2, . . . , vn) is a strong elimination ordering
of a graph G iff σ is a perfect elimination ordering and also has the property
that for each i, j, k and `, if i < j, k < `, vk, v` ∈ N [vi], and vk ∈ N [vj ], then
v` ∈ N [vj ] [6, 11].

Let us now give the definitions of a k-sun and an incomplete k-sun. An
incomplete k-sun Sk (k ≥ 3) is a chordal graph on 2k vertices whose vertex set
can be partitioned into two sets, U = {u1, u2, . . . , uk} and W = {w1, w2, . . . , wk},
so that W is an independent set, and wi is adjacent to uj if and only if i = j or
i = j + 1 (mod k); the graph Sk (k ≥ 3) is a k-sun if U is a complete graph.



The following characterization of strongly chordal graphs was proved by Far-
ber [11] and turns up to be useful in obtaining a polynomial solution for the
harmonious coloring problem on split strongly chordal graphs.

Proposition 3. (Farber [11]) A chordal graph G is strongly chordal if and only
if it contains no induced k-sun.

Note also that a bipartite graph G is chordal bipartite if and only if the
split graph obtained from G by making one of its two color classes complete is
strongly chordal [19].

Next, we present a polynomial solution for the harmonious coloring problem
on split strongly chordal graphs. Before describing our algorithm, we first con-
struct a graph HG from a split graph G, which we call neighborhood intersection
graph of G, and we use it in the proposed algorithm.

The neighborhood intersection graph HG of a split graph G. Let G be
a split graph, and let V (G) = K + I be a partition of its vertex set, where
K induces a clique in G and I induces an independent set. We first compute
the open neighborhood NG(v) of each vertex v ∈ I and, then, we construct the
following graph HG, which depicts all intersection relations among the vertices’
open neighborhoods: V (HG) = I and E(HG) = {xy : x, y ∈ I and NG(x) ∩
NG(y) 6= ∅}. It is easy to see that the resulting graph HG is unique up to
isomorphism.

The following result is important for proving the correctness of our algorithm.

Lemma 1. The neighborhood intersection graph HG of a split strongly chordal
graph G is a chordal graph.

Proof. Let G be a split strongly chordal graph and let HG be the neighborhood
intersection graph of G. We will show that HG is a chordal graph, i.e., that
HG is a Ck-free graph, for every k ≥ 4. Since G is a split graph, there exists
a partition of its vertex set V (G) = K + I, where K induces a clique and I
induces an independent set in G. By the construction of HG, there is a one to
one correspondence between the vertices of V (HG) and the vertices of V (G)∩ I.

Assume that HG is not a chordal graph and let Ck = (v1, v2, . . . , vk) be a
chordless cycle of HG on k vertices, k ≥ 4; thus, vivj ∈ E(HG) if and only if
j = i + 1 (mod k). Therefore, we have that NG(vi) ∩ NG(vj) 6= ∅ if and only
if j = i + 1 (mod k) or, equivalently, there exists at least one vertex wi ∈ K
in G such that wi ∈ NG(vi) ∩ NG(vj) if and only if j = i + 1 (mod k); note
that, the set W = {w1, w2, . . . , wk} consists of distinct vertices, since Ck is a
chordless cycle. Thus, U = {v1, v2, . . . , vk} induces an independent set in G,
W = {w1, w2, . . . , wk} induces a clique in G, and wi is adjacent to vj if and
only if j = i or j = i + 1 (mod k). Therefore, the subgraph of G induced by
the vertices U ∪ W is a k-sun, k ≥ 4. It follows that G is a split graph and,
thus, it is a chordal graph, which contains a k-sun as an induced subgraph. This
is a contradiction to our assumption that G is a strongly chordal graph due to
Proposition 3. Therefore, we conclude that HG is a chordal graph. ut



The algorithm for a harmonious coloring of a split strongly chordal
graph. The proposed algorithm computes a harmonious coloring and the har-
monious chromatic number h(G) of a split strongly chordal graph G, and works
as follows:

Input: a split strongly chordal graph G, and a partition of its vertex set V (G) =
K + I, where I induces an independent set in G and K induces a clique.

(i) construct the neighborhood intersection graph HG of G.
(ii) compute a minimum proper vertex coloring κ : V (HG) → {1, 2, . . . , χ(HG)},

and the chromatic number χ(HG), of the chordal graph HG (see e.g. [15]).
(iii) compute a coloring κ′ : V (G) → {1, 2, . . . , h(G)} of G, by assigning κ′(v) =

κ(v) to each vertex v ∈ I, and a distinct color κ′(v) from the set {χ(HG) +
1, χ(HG) + 2, . . . , χ(HG) + |K|} to each vertex v ∈ K.

(iv) return the value κ′(v) for each vertex v ∈ V (G) and the size χ(HG) + |K|
of the number of different colors used in κ′; the coloring κ′ is a harmonious
coloring of G, and χ(HG) + |K| equals the harmonious chromatic number
h(G) of G.

Correctness of the algorithm. Let G be a split strongly chordal graph, and
let V (G) = K+I be a partition of its vertex set, where I induces an independent
set in G and K induces a clique. Let HG be the neighborhood intersection graph
of G.

We claim that the split strongly chordal graph G has a harmonious chromatic
number h(G) = |K|+r, where r equals the chromatic number χ(HG) of the graph
HG. Indeed, a harmonious coloring of G, using h(G) = |K| + r colors, assigns
a distinct color from the set {1, 2, . . . , |K|} to each vertex of the clique K, and
also assigns r colors to the vertices of the set I. Note that, r is the minimum
number of colors so that vertices vi, vj ∈ I having a neighbor in common are
assigned different colors. Since vi, vj are adjacent in HG, it follows that r is the
minimum number of colors for which a proper vertex coloring of HG exists, i.e.,
r = χ(HG).

Therefore, the split strongly chordal graph G has a harmonious chromatic
number h(G) = |K| + χ(HG), where χ(HG) is the chromatic number of the
neighborhood intersection graph HG of G. Additionally, it is easy to see that
the coloring κ′ computed by the algorithm is a harmonious coloring of G using
h(G) = |K|+ χ(HG) colors.

Complexity of the algorithm. Let G be a split strongly chordal graph on n
vertices and m edges. Let V (G) = K + I be a partition of its vertex set into a
clique K and an independent set I, and let HG be the neighborhood intersection
graph of G. Step (i) of the algorithm, which includes the construction of the graph
HG, takes O(n3) time. Step (ii) computes a minimum proper vertex coloring of
HG; since from Lemma 1, HG is a chordal graph, the problem is solvable in
O(n+m′) time (see e.g. [15]), where m′ = |E(HG)| = O(n2). Finally, both Steps
(iii) and (iv) can be executed in O(n) time. Therefore, the complexity of the
algorithm is O(n3) time.

Therefore, the following result holds.



Theorem 4. The harmonious coloring problem has a polynomial solution on
split strongly chordal graphs.

5 Concluding Remarks

In this paper we show that the harmonious coloring problem is NP-complete on
the classes of split undirected path graphs and colinear graphs. We also present
a polynomial solution for the same problem on the class of split strongly chordal
graphs. The interest of this result lies on the fact that the harmonious coloring
problem is NP-complete on split graphs and strongly chordal graphs. In addi-
tion, polynomial solutions for the problem are only known for the classes of
threshold graphs and connected quasi-threshold graphs; note that, the harmo-
nious coloring problem is NP-complete on disconnected quasi-threshold graphs.
Since linear graphs form a superclass of both split strongly chordal graphs and
quasi-threshold graphs, the harmonious coloring problem is NP-complete on dis-
connected linear graphs, while it still remains open on connected linear graphs.
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