
Counting Spanning Trees using Modular

Decomposition∗

Stavros D. Nikolopoulos† Leonidas Palios† Charis Papadopoulos‡

Abstract

In this paper we present an algorithm for determining the number of spanning trees of

a graph G which takes advantage of the structure of the modular decomposition tree of G.

Specifically, our algorithm works by contracting the modular decomposition tree of the input

graph G in a bottom-up fashion until it becomes a single node; then, the number of span-

ning trees of G is computed as the product of a collection of values which are associated

with the vertices of G and are updated during the contraction process. In particular, when

applied on a (q, q − 4)-graph for fixed q, a P4-tidy graph, or a tree-cograph, our algorithm

computes the number of its spanning trees in time linear in the size of the graph, where the

complexity of arithmetic operations is measured under the uniform-cost criterion. Therefore

we give the first linear-time algorithm for the counting problem in the considered graph classes.

Keywords: number of spanning trees, modular decomposition, Kirchhoff matrix tree theo-

rem, linear-time algorithms, (q, q − 4)-graph, P4-tidy graph, tree-cograph.

1 Introduction

A spanning tree of a connected undirected graph G on n vertices is a connected (n− 1)-edge

subgraph of G. The number of spanning trees of a graph G, also called the complexity of G, is

an important, well-studied quantity in graph theory, and appears in a number of applications.

Most notable application fields are network reliability [27], computing the total resistance along

an edge in an electrical network [7], enumerating certain chemical isomers [10], and counting the

number of Eulerian circuits in a graph [21]. In particular, counting spanning trees is an essential

step in many methods for computing, bounding, and approximating network reliability [11]; in a

network modeled by a graph, intercommunication between all nodes of the network implies that

the graph must contain a spanning tree and, thus, maximizing the number of spanning trees is a

way of maximizing reliability.

Thus, both for theoretical and for practical purposes, we are interested in deriving a formula

for computing the number of spanning trees of a graph G, and also of the Kn-complement of G

(for any subgraph H of the complete graph Kn, the Kn-complement of H, denoted by Kn−H, is

∗A preliminary version of this work was presented at WALCOM 2011.
†Department of Computer Science, University of Ioannina, Greece; e-mails: {stavros, palios}@cs.uoi.gr
‡Department of Mathematics, University of Ioannina, Greece; e-mail: charis@cs.uoi.gr

1

defined as the graph obtained from Kn by removing the edges of H; note that, if H has n vertices,

then Kn−H coincides with the complement H of H). Many cases have been examined depending

on the choice of G, such as when G is a labeled molecular graph [10], a circulant graph [1, 37], a

complete multipartite graph [36], a multi-star related graph [30], a quasi-threshold graph [2, 28];

see Berge [5] for an exposition of the main results.

The purpose of this paper is to study the general problem of finding the number of spanning

trees of an input graph. Traditionally, the number of spanning trees of a graph is computed by

means of the classic Kirchhoff matrix tree theorem [21], which expresses the number of spanning

trees of a graph G in terms of the determinant of a cofactor of the so-called Kirchhoff Matrix that

can be easily constructed from the adjacency relation (adjacency matrix, adjacency lists, etc) of

G. Thus, counting spanning trees reduces to evaluating the determinant of an ((n−1)× (n−1))-

size matrix, where n is the number of vertices of the input graph. This approach has been used

for computing the number of spanning trees of families of graphs (see [2, 5, 19, 30, 36]), but

it requires Θ(n2.376) arithmetic operations on matrix entries and Θ(n2) space [13]; in fact, the

algorithm that achieves this time and space complexity appears to have so large a constant factor

that for practical combinatorial computations the naive O(n3)-time algorithm turns out to be the

sensible choice. We also mention that in some special classes of graphs, the determinant can be

computed in O(n1.5) time, using the planar separator theorem [23]. In a few cases, the number of

spanning trees of a graph has been computed without the evaluation of a determinant. Colbourn

et al. in [12] have proposed an algorithm which runs in O(n2) time for an n-vertex planar graph.

Their algorithm is based on some particular transformations (known as the delta-wye technique)

that can be applied on planar graphs; unfortunately, it is hard to study such or other kinds of

transformations on general graphs (besides planar graphs).

In order to obtain an efficient solution for this problem, we take advantage of the modular

decomposition (a form of graph decomposition which associates the graph with its maximal

homogeneous sets) of the input graph G and especially the properties of its modular decomposition

tree. The usage of modular decomposition has been proposed for solving several optimization

problems (see the surveys [20, 26] on modular decomposition). To name a few of them we refer to

the problem of computing the treewidth and the minimum fill-in [6]. Also, it has been proposed to

obtain efficient algorithms by expressing optimization problems in monadic second-order logic [14].

Other application areas of modular decomposition arise in graph drawing [32] and in biological

strategies of proteins [17].

Our algorithm uses the modular decomposition and relies on tree contraction operations

which are applied in a systematic fashion from bottom to top in order to shrink the modular

decomposition tree of the graph G into a single node, while at the same time certain parameters

are appropriately updated; the updating essentially implements transformations on a cofactor of

the Kirchhoff Matrix towards evaluating its determinant, yet the fact that we are dealing with

modules (that is, any vertex outside the module is adjacent to either all or none of the vertices

in the module) allows us to beat the O(n2.376) time complexity for many classes of graphs. In

the end, the number of spanning trees of G is obtained as the product of n numbers, where n is

the number of vertices of G; this multiplication takes O(n) time under the uniform-cost criterion

[31]. Our algorithm is easy to implement; its correctness is established by means of the Kirchhoff

2

(q, q − 4) brittle
P4-tidy (8,4) split-perfe
t

P4-extendible (7,3) extended
P4-sparse P4-laden superbrittle

P4-litetree-
ographs P4-extend.-C5-free (6,2) extended
P4-redu
ible P4-sparse(5,1) splitforests P4-redu
ibletrees
ographs (P4-free)(4,0) spider

Figure 1: A Hasse diagram of class inclusions. For the classes to the left of the dashed line, the

number of spanning trees can be computed in linear time.

matrix tree theorem along with standard techniques from linear algebra and matrix theory.

In particular, for certain classes of graphs, the structure of their modular decomposition trees

(and in fact their prime graphs) ensures that each tree node can be processed in time linear in

the size of the contracted part of the tree; thus, since the modular decomposition tree of a graph

can be constructed in time and space linear in the size of the graph [15, 25, 34], the processing

of the entire modular decomposition tree and consequently the number of its spanning trees

takes time and space linear in the size of the input graph. Such classes are the classes of tree-

cographs, (q, q− 4)-graphs for fixed q, and P4-tidy graphs, along with their numerous subclasses,

such as, the cographs, the P4-reducible, the extended P4-reducible, the P4-sparse, the P4-lite, the

P4-extendible, and the extended P4-sparse graphs. Our findings are summarized in Figure 1.

The paper is organized as follows. In Section 2 we establish the notation and related terminol-

ogy and we present background results. In Section 3, we describe the algorithm for determining

the number of spanning trees of an arbitrary graph. In Section 4 we prove its correctness, while

in Section 5 we compute its time and space complexity. In Section 6 we show that the number

of spanning trees of some classes of graphs can be computed in linear time. Finally, in Section 7,

we conclude the paper and discuss possible extensions.

3

2 Preliminaries

We consider finite undirected graphs with no self-loops or multiple edges. For a graph G, we

denote by V (G) and E(G) the vertex set and edge set of G, respectively. Let S be a subset of the

vertex set of a graph G. Then, the subgraph of G induced by S is denoted by G[S]. Moreover,

we denote by G− S the subgraph G[V (G)− S] and by G− v the graph G[V (G)−{v}]. A clique

is a set of pairwise adjacent vertices; a stable set is a set of pairwise non-adjacent vertices.

The neighborhood N(x) of a vertex x of the graph G is the set of all the vertices of G which

are adjacent to x. The degree of a vertex x in the graph G, denoted d(x), is the number of edges

incident on x; thus, d(x) = |N(x)|. If two vertices x and y are adjacent in G, we say that x

sees y; otherwise we say that x misses y. We extend this notion to vertex sets: Vi ⊆ V (G) sees

(misses) Vj ⊆ V (G) if and only if every vertex x ∈ Vi sees (misses) every vertex y ∈ Vj .

2.1 Modular Decomposition

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is

either adjacent to all the vertices in M or to none of them. The empty set, the singletons, and

the vertex set V are trivial modules and whenever G has only trivial modules it is called a prime

graph. We note that a chordless path on n ≥ 4 vertices and a chordless cycle on n ≥ 5 vertices

are prime graphs. Furthermore, a module M of G is called strong, if there is no module M ′ such

that M ′ ∩M 6= ∅, M \M ′ 6= ∅, and M ′ \M 6= ∅.

The modular decomposition of a graph G is represented by a tree T (G) which we call the

modular decomposition tree of G; the leaves of T (G) are the vertices of G, whereas each internal

node t corresponds to a strong module, denoted Mt, which is induced by the set of vertices/leaves

of the subtree rooted at t. Thus, T (G) represents all the strong modules of G. Each internal node

is labeled by either P for parallel module, S for series module, or N for neighborhood module.

The module corresponding to a P-node induces a disconnected subgraph of G, that of an S-node

induces a connected subgraph of G whose complement is a disconnected subgraph and that of

an N-node induces a connected subgraph of G whose complement is also a connected subgraph.

Figure 2 shows a graph and its modular decomposition tree.

In particular, let t be an internal node of the modular decomposition tree T (G). If t has

children u1, u2, . . . , up, then we define the representative graph Gt of the module Mt as follows:

• V (Gt) = {u1, u2, . . . , up}, and

• E(Gt) = {uiuj | vivj ∈ E(G), vi ∈Mui
and vj ∈Muj

}.

Note that by the definition of a module, if a vertex of Mui
is adjacent to a vertex of Muj

then

every vertex of Mui
is adjacent to every vertex of Muj

. Thus Gt is isomorphic to the graph

induced by a subset of Mt consisting of a single vertex from each maximal submodule of Mt in

T (G). Then: (i) if t is a P-node, Gt is an edgeless graph, (ii) if t is an S-node, Gt is a complete

graph, and (iii) if t is an N-node, Gt is a prime graph.

The modular decomposition tree T (G) of a graph G is constructed recursively as follows:

parallel modules are decomposed into their connected components, series modules into their co-

connected components, and neighborhood modules into their strong submodules. The efficient

4

v1
v5

v8

v2 v6

v3
v9

v7
v4

v11 v10

v15
v12

v14 v13

(a)

P

N

b

v1

b

v2
P

b

v3

b

v4

b

v5

b

v6

b

v7
P

b

v8

b

v9

S

b

v10
N

b

v11

b

v12

b

v13

b

v14

b

v15

(b)

Figure 2: (a) A disconnected graph and (b) its modular decomposition tree.

construction of the modular decomposition tree of a graph has received a great deal of attention.

It is well known that for any graph G the tree T (G) is unique up to isomorphism and it can be

constructed in linear time [15, 25, 34]. A graph is called cograph if it has no induced path on four

vertices. Note that a graph G is a cograph if and only if T (G) contains no N-node, since every

prime graph contains an induced path on four vertices (see for e.g., [20]).

2.2 Contractible Subtrees

In general, using modular decomposition for solving problems can be quite challenging. A typical

algorithm for exploiting the modular decomposition tree starts with computing the optimal value

of each interior node u by using the optimal values of all the children of u depending on the

type of the node. Then the optimal value of the root is the optimal value of the problem for the

input graph G. Thus, to specify such a modular-decomposition-based algorithm, we only have

to describe how to obtain the value for the leaves and which formula to evaluate a P-node, an

S-node, and an N-node in terms of the values of all children.

Definition 2.1. Let T be a tree. A subtree rooted at an internal node t of T is a contractible

subtree iff all the children of t are leaves of T .

Note that every non-empty rooted tree has at least one contractible subtree and, thus, T (G) has

at least one contractible subtree. Furthermore the set of leaves of a contractible subtree in T (G)

form a module in G, since any two leaves of the set have the same neighborhood outside the set.

2.3 Basic and Non-Basic Graphs

Let T (G) be the modular decomposition of a graph G and let t be an N-node. We will show

that if the prime graph Gt belongs to a certain family F of graphs to be described later then its

processing takes time linear in the size of Gt. Next we formally define the family of graphs F .

A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for

i = 1, 2, . . . , k. A path is called simple if none of its vertices occurs more than once. A path (sim-

ple path) v0v1 · · · vk is a cycle (simple cycle) if v0vk ∈ E(G). A simple path (cycle) v0v1 · · · vk is

5

chordless if vivj /∈ E(G) for any two non-consecutive vertices vi, vj in the path (cycle). Through-

out the paper, the chordless path (cycle) on k vertices is denoted by Pk (respectively Ck). In

particular, a chordless path on 4 vertices is denoted by P4; in a P4 abcd, the vertices b, c are the

midpoints and the vertices a, d are the endpoints of the P4.

Let T be a rooted tree. The parent of a node x of T is denoted by p(x), whereas the node set

containing the children of x in T is denoted by ch(x). We denote by Li the node set containing

the nodes of the i-th level of T , for each value of i from 0 to the height of the tree T .

A graph is called a spider if its vertex set admits a partition into sets S, K, and R such that:

(S1) |S| = |K| ≥ 2, S is a stable set, and K is a clique;

(S2) the vertex set R sees K and misses S;

(S3) there exists a bijection f : S −→ K such that exactly one of the following statements holds:

(i) for each vertex v ∈ S, N(v) ∩K = {f(v)};

(ii) for each vertex v ∈ S, N(v) ∩K = K − {f(v)}.

The triple (S,K,R) is called the spider partition. A graph G is a prime spider if G is a spider

with vertex partition (S,K,R) and |R| ≤ 1. For the prime spiders, in order that cases (i) and

(ii) in condition S3 are distinguished, they are referred to as the thin spider and the thick spider,

respectively. Note that, the complement of a thin spider is a thick spider and vice versa.

Definition 2.2. The family F contains thin spiders, prime trees, chordless cycles of length greater

than four, and the complements of thin spiders (thick spiders), the complements of prime trees,

and the complements of chordless cycles of length greater than four; we call these graphs basic

graphs. A prime graph which is not in F is called non-basic graph.

Next, we introduce the definitions of the non-basic cost of a graph and of a contractible subtree

of the modular decomposition tree which we will need in our algorithm. We recall that evaluating

the determinant of an n × n matrix (and subsequently the number of spanning trees of a graph

on n vertices) requires O(n2.376) time [13].

Definition 2.3. Let F be the family of basic graphs, G be a graph, T (G) be its modular

decomposition tree, and let α(G) be the set of those N-nodes of T (G) whose representative graphs

are not in F . We define the non-basic cost of G as the value φ(G) =
∑

t∈α(G) |V (Gt)|
2.376 =

∑

t∈α(G) |ch(t)|
2.376, where ch(t) denotes the set of children of node t in T (G).

Note that the size of the modular decomposition tree is O(n) which implies that for any n-vertex

graph G, we have φ(G) = O(n2.376). Furthermore for a cograph we have φ(G) = 0 since the

corresponding modular decomposition tree has no N-nodes and α(G) = ∅.

2.4 Kirchhoff Matrix

For an n× n matrix Z, the (n− 1)-st order minor µi
j is the determinant of the (n− 1)× (n− 1)

matrix obtained from Z after having deleted row i and column j. The i-th cofactor equals µi
i. For

an undirected graph G on n vertices, let A be its adjacency matrix and D be its degree matrix,

i.e., the diagonal matrix with the degrees of the vertices of G in its main diagonal. The Kirchhoff

6

matrix K for the graph G is the matrix D −A. The Kirchhoff matrix tree theorem is one of the

most famous results in graph theory; it provides a formula for the number of spanning trees of a

graph G in terms of the cofactors of G’s Kirchhoff matrix.

Theorem 2.4 ((Kirchhoff Matrix Tree Theorem [21])). For any graph G with matrix K defined

as above, the cofactors of K have the same value, and this value equals the number of spanning

trees of G.

3 The Main Idea and the Contraction Process

Let G be a graph on n vertices and let the p vertices v1, v2, . . . , vp be the leaves of a contractible

subtree of T (G). As already explained right after Definition 2.1, the set {v1, v2, . . . , vp} forms

a module in G. The Kirchhoff matrix tree theorem (Theorem 2.4) implies that the number

of spanning trees of a graph G on n vertices is equal to any of the cofactors of the Kirchhoff

matrix K, and thus, to the determinant of the (n − 1) × (n − 1) submatrix K ′ of K formed by

the first n− 1 rows and the first n− 1 columns. In terms of the module {v1, v2, . . . , vp}, the form

of matrix K ′ is as follows:

K ′ =









































d(v1) (−1)i,j′ (−1)1,p+1 (−1)1,n−1

. . .
... (−1)i,j

...

(−1)j′,i d(vp) (−1)p,p+1 (−1)p,n−1

(−1)p+1,1 · · · (−1)p+1,p d(vp+1)

. . . (−1)i′,j′

(−1)j,i d(vj)

(−1)j′,i′
. . .

(−1)n−1,1 · · · (−1)n−1,p d(vn−1)









































, (1)

where d(vi), 1 ≤ i ≤ n − 1, is the degree of vertex vi in graph G. The notation (−1)i,j for the

off-diagonal (i, j)-elements means that the element is equal to −1 if the vertices vi and vj are

adjacent in G and are 0 otherwise.

It is clear by Theorem 2.4 that τ(G) = det (K ′); recall that τ(G) denotes the number of

spanning trees of G. We associate each of the n − 1 vertices with an s-value which is equal to

the vertex’s degree in G, i.e., s(vi) = d(vi), where d(vi), 1 ≤ i ≤ n − 1, is the degree of vertex vi

in graph G. For the p × p submatrix of the first p rows and p columns of K ′ we let r be equal

to −1 if vertices vi and vj′ are adjacent in G and 0 otherwise, 1 ≤ i, j′ ≤ p. Note also that the

vertices vi and vj′ are adjacent in G iff they are adjacent in the representative graph Gt, where

t is the parent of v1, v2, . . . vp in T (G). With respect to the values of s(vi) and r, the matrix K ′,

next denoted as M0, is formed as follows:

7

M0 =









































s(v1) (r)i,j′ (c)1,p+1 (c)1,n−1

. . .
... (c)i,j

...

(r)j′ ,i s(vp) (c)p,p+1 (c)p,n−1

(c)p+1,1 · · · (c)p+1,p s(vp+1)

. . . (−1)i′,j′

(c)j,i s(vj)

(−1)j′,i′
. . .

(c)n−1,1 · · · (c)n−1,p s(vn−1)









































, (2)

where the values (c)i,j and their symmetric ones, 1 ≤ i ≤ p ≤ j ≤ n − 1, are equal to −1 if the

vertices vi ∈ V (Gt) and vj ∈ V (G)− V (Gt) are adjacent in G and are 0 otherwise.

In order to compute the determinant of matrix M0 we zero the off-diagonal elements formed

by the p × p submatrix of the first p rows and p columns. Note that the form of this submatrix

depends on the structure of the graph Gt (i.e., on the type of the internal node t of T (G)).

This task is accomplished by standard techniques from linear algebra. Thus we transform the

matrix M0 into another matrix M1 by making the p× p submatrix a diagonal matrix, such that

det (M0) = det (M1). For example, these transformations can be applied by the well-known

Gauss-Jordan elimination on the p×p submatrix. We call this process elimination of the s-values

of the vertices v1, v2, . . . vp of Gt. It is important to note that the elimination of the s-values

applied on the rows and columns of the p × p submatrix effects the diagonal elements of the

positions (i, i) and the off-diagonal elements of the positions (i, j) and (j, i) of the matrix M0,

1 ≤ i ≤ p ≤ j ≤ n − 1. Let s1(vi) be the values of the elements of the positions (i, i) and

(c1)i,j and (c1)j,i be the values of the elements of the positions (i, j) and (j, i) after applying the

elimination on the p vertices. Then matrix M1 is of size (n− 1)× (n− 1), similar to the matrix

M0, and has the following form:

M1 =









































s1(v1) 0 (c1)1,p+1 (c1)1,n−1

. . .
... (c1)i,j

...

0 s1(vp) (c1)p,p+1 (c1)p,n−1

(c1)p+1,1 · · · (c1)p+1,p s(vp+1)

. . . (−1)i′,j′

(c1)j,i s(vj)

(−1)j′,i′
. . .

(c1)n−1,1 · · · (c1)n−1,p s(vn−1)









































. (3)

Observation 3.1. There exists a series of manipulations on matrix M0 of Eq. (2) which trans-

forms it into matrix M1 of Eq. (3) such that det (M0) = det (M1).

The difference of matrix M1 from matrix M0 is that of having all the off-diagonal elements of the

first p rows and p columns equal to zero. The values of c1 of the corresponding rows and columns

of matrix M1 depend on the type of transformations that we apply on M0. Due to the fact that

the vertices v1, v2, . . . , vp form a module in G, it follows that in row i all the elements (c1)i,j , for

8

p ≤ j ≤ n− 1, have the same value, denoted by c1(i), and similarly in column i all the elements

(c1)j,i, for p ≤ j ≤ n − 1, have the same value which is equal to c1(i), since the initial values

where both equal to −1. The following lemma proves the essential step of contracting a subtree

into its highest indexed vertex vp, which is applied after the elimination function.

Lemma 3.2. For the determinant of matrix M1 of Eq. (3) we have that

det (M1) =

(

p−2
∏

i=1

s1(vi)

)

· s1(vp−1) · s1(vp) · θ · det (M
′),

where θ =

p
∑

i=1

c21(i)

s1(vi)
and M ′ is a (n− p)× (n− p) matrix of the form

M ′ =























s′(vp) (−1)p,j
s(vp+1)

. . . (−1)i′,j′

(−1)j,p s(vj)

(−1)j′,i′
. . .

s(vn−1)























,

where s′(vp) =
1
θ
.

Proof. In order to compute the determinant of matrix M1, we zero the off-diagonal elements of

its first p− 1 rows: for each i = 1, 2, . . . , p− 1, we multiply row p by −c1(i)/c1(p) and we add it

to row i, and subsequently, for each i = 1, 2, . . . , p − 1, we multiply column i by
c1(i)·s1(vp)
c1(p)·s1(vi)

and

add it to column p. As a result, only the diagonal elements of the first p− 1 rows have non-zero

values, which are equal to s1(vi). Moreover, if θ is the value defined in the statement, all the

non-zero elements in positions (i, p) of column p have now the same value
s1(vp)
c1(p)

· θ and all the

non-zero elements in positions (p, i) of row p have now the same value c1(p), p + 1 ≤ i ≤ n − 1;

these non-zero elements were equal to −1 in the original matrix M0. In order to make them equal

to −1, we divide the entries of row p by c1(p) and column p by
s1(vp)
c1(p)

· θ, and then in order to

maintain the value of the determinant unchanged, we multiply row p − 1 by s1(vp) · θ. Thus,

expanding in terms of the first p− 1 rows, we find that the determinant of M1 is

det(M1) =

(

p−1
∏

i=1

s′(vi)

)

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s′(vp) (−1)p,j
s(vp+1)

. . . (−1)i′,j′

(−1)j,p s(vj)

(−1)j′,i′
. . .

s(vn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

p−1
∏

i=1

s′(vi)

)

· det(M ′),

9

where

s′(vi) = s1(vi), 1 ≤ i ≤ p− 2

s′(vp−1) = s1(vp−1) · s1(vp) · θ

s′(vp) = s1(vp) ·
1

c1(p)
·

c1(p)

s1(vp) · θ
=

1

θ
.

We call this process contraction of the module formed by the vertices v1, v2, . . . vp. We observe

that the matrix M ′ is an (n − p) × (n − p) matrix similar to the original matrix M0; in fact,

it is identical to the submatrix of the original matrix M0 formed by rows p, p + 1, . . . , n − 1

and columns p, p + 1, . . . , n − 1, with the only exception that the value s′(vp) is different from

s(vp). Thus, if we assume (in an inductive fashion) that the determinant of the matrix M ′ can be

expressed as the product of appropriate values s′(vp), s
′(vp+1), . . . , s

′(vn−1), then the determinant

of the original matrix M0 is equal to the product of these values multiplied by the product of

s(v1), s(v2), . . . , s(vp−1). The recursive application of an elimination process of the s-values (see

Eq. (3)) and the contraction process of the module (see Lemma 3.2) will be our main tools for

presenting the following algorithm in the next section which computes the desired product of the

s-values, i.e., the number of spanning trees.

3.1 The Algorithm

In order to compute the number of spanning trees of a graph G on vertices v1, v2, . . . , vn, we make

use of Theorem 2.4 and Lemma 3.2: we delete an arbitrary vertex vn ∈ V (G) and all the edges

incident on vn, we associate each of the remaining vertices with an s-value which is initialized to

the vertex’s degree in G, and we construct the modular decomposition tree of the graph G− vn.

Next, in a bottom-up fashion, we process each of the contractible subtrees of the tree and we

update the s-values of its vertices/leaves by applying the following two processes:

⊲ Elimination process: we eliminate the s-values in order to make diagonal the corresponding

submatrix of Eq. (2). During that process we compute the values s1(vi) and c1(i) of Eq. (3).

⊲ Contraction process: we contract the subtree into the leaf-node corresponding to its highest-

index vertex/leaf by updating the desired values according to Lemma 3.2.

Eventually, the entire tree becomes a single vertex/leaf, and the number of spanning trees of G

is then equal to the product of the final values of the s-values of all the vertices in V (G)− {vn}.

We note that the elimination process can be achieved by executing an appropriate Gauss-

Jordan elimination. We will prove later that if the representative graph Gt of the subtree belongs

to the family of basic graphs F then the elimination can be executed in a more efficient way than

the straight forward Gauss-Jordan elimination. Thus before applying the elimination process we

need to identify if Gt belongs to F or not. The algorithm for computing the number of spanning

trees of a graph G is given in detail in Fig. 2; the input graph G is assumed to be connected

(otherwise it has no spanning trees).

The elimination is applied on a contractible node t and is done by means of two functions,

namely, Handle-Basic, in the case where Gt belongs to one of the graph classes of the family of

10

Spanning Trees-Number

Input: A connected graph G on n vertices v1, v2, . . . , vn and m edges.

Output: The number of spanning trees τ(G) of the graph G.

1. for every vertex vi, 1 ≤ i ≤ n− 1, do

compute its degree d(vi) in G;

s(vi)← d(vi);

2. T ←− the modular decomposition tree T of the graph G− vn;

3. Compute the node sets L0, L1, . . . , Lh of the levels 0, 1, . . . , h of T ;

4. for i = h− 1 down to 0 do {the subtree rooted at t is contractible}

for every internal node t ∈ Li do {update the s-values of the children of t}

4.1 if the representative graph Gt belongs to the family F

then T ← Handle-Basic(t, T);

else T ← Handle-NonBasic(t, T);

4.2 Compute the following value: θ ←

p
∑

i=1

c(i)2

s(vi)
;

4.3 Update the s-values of vertices vp−1 and vp as follows:

s(vp−1)← s(vp−1) · s(vp) · θ; s(vp)←
1

θ
;

4.4 Replace the subtree rooted at node t by the leaf-node

associated with vertex vp;

5. τ(G)←
n−1
∏

i=1

s(vi);

Figure 2: Algorithm Spanning Trees-Number.











{elimination}



































{contraction}

basic graphs, and Handle-NonBasic, otherwise. The first function handles basic graphs and is

described in Section 4. The second function is basically a well-known Gauss-Jordan elimination

applied on the Kirchhoff matrix of a graph that is not basic. Below we give in details function

Handle-NonBasic.

In order to apply such a function we use an array B[,] of size p×p. We note also that during

the elimination process we keep track of the values c(i) as described in Eq. (3). At the end we

update the proper s-values of the corresponding vertices and the values of c(i) which are needed in

the contraction process. The formal description of the function Handle-NonBasic is given below:

Function Handle-NonBasic(t, T)

1. Construct the p × p Kirchhoff matrix B of the graph Gt, where v1, v2, . . . , vp are the ver-

tices/children of node t;

for i = 1, 2, . . . , p do

B[i, i]← s(vi);

c(i)← −1;

2. for i = 1, 2, . . . , p− 1 do {Gauss-Jordan elimination}

2.1 for j = i+ 1, i+ 2, . . . , p do

11

r ← B[j, i]/B[i, i] ;

c(j)← c(j)− r · c(i) ;

for k = i, i+ 1, . . . , p do

B[j, k]← B[j, k]− r ·B[i, k] ;

3. Update the s-values of vertices v1, v2, . . . , vp and the values of b(i) as follows :

for i = 1, 2, . . . , p do

s(vi)← B[i, i] ;

4 Processing Edgeless and Basic Graphs

As described in the previous section, in order to compute the determinant of matrix M0 we zero

the off-diagonal elements formed by the p× p submatrix of the first p rows and p columns. This

task is accomplished by the elimination process of the s-values of v1, v2, . . . , vp. Note that, the

structure of the given submatrix depends on the type of the graph Gt.

◦ Let Gt be an edgeless graph on p vertices (induced by the P-node t). Then the p×p subma-

trix is diagonal since there are no edges in Gt. We call such a function Eliminate Edgeless

which is responsible for assigning the p values of c(i) equal to −1; note that the s-values

do not need to be changed. The case of Gt associated with an S-node (complete graph) is

handled in the case of a complement of a P-node.

◦ Let Gt be a tree. In [28], a determinant-based formula was shown in order to compute the

number of spanning trees of the graph Kn−G, where G is a tree. Function Eliminate Tree

is based on a similar approach; for a detailed proof, see [28].

◦ Let Gt be a chordless cycle graph. In this case, the form of the p × p submatrix is similar

to a tridiagonal symmetric matrix. A tridiagonal matrix is a square matrix with nonzero

elements only on the main diagonal and on the first diagonals below and above the main di-

agonal. The inversion of a symmetric tridiagonal matrix requires only O(n) transformations

which are performed by a function which we call Eliminate-Cycle.

◦ Let Gt be a thin spider. This case is rather complicated, even though it is based on standard

matrix operations. We establish these transformations through function Eliminate-Spider.

◦ Let Gt be the complement of a basic graph. In this case we refer to function Eliminate-

Complement.

Let t be an internal node of T (G) and Gt ∈ F . First, we need to recognize, in which of

the classes of the family F the graph Gt belongs. Function Handle-Basic settles this case and is

responsible to apply the corresponding elimination process. More formally,

• if Gt is an edgeless graph then T ← Eliminate-Edgeless(t, T,−1);

• if Gt is a thin spider then T ← Eliminate-Spider(t, T,−1);

• if Gt is a prime tree then T ← Eliminate-Tree(t, T,−1);

12

• if Gt is a chordless cycle then T ← Eliminate-Cycle(t, T,−1);

• if Gt is the complement of an edgeless graph, a thin spider, a prime tree, or a chordless

cycle then T ← Eliminate-Complement(t, T).

Note that the parameter −1 of the functions for the elimination of an edgeless graph, a thin spider,

a prime tree, or a chordless cycle is to signal that the input graph is edgeless, a thin spider, a

prime tree, or a chordless cycle and not their complements. If these functions are applied on

the complements of an edgeless graph, a thin spider, a prime tree, or a chordless cycle, then this

parameter is 1 (see function Eliminate-Complement).

In what follows, we give in details the corresponding functions that handle edgeless graphs

and basic graphs. We begin with the description of edgeless graphs and complements of basic

graphs, since those functions are needed in a succeeding case.

4.1 Processing Edgeless Graphs and Complements of Basic Graphs

Let t be a contractible node and assume that the vertices/children of t are v1, v2, . . . , vp. As

already explained if t is a P-node then Gt is an edgeless graph and the matrix M0 in Eq. (2) is

already of the form of matrix M1 in Eq. (3). Thus the s-values of the p vertices are unaffected

and we only need to set the values of c(i) to −1. Function Eliminate-Edgeless is responsible for

this simple computation, as shown below.

Function Eliminate-Edgeless(t, T, r)

1. for i = 1, 2, . . . , p do

c(i)← −1;

Now let us assume that t is an S-node or an N-node such that Gt is an edgeless graph, a thin

spider, a tree, or a chordless cycle. In this case, the matrix M0 has the form of Eq. (2). We add

a new first row and column to the matrix M0. The entries of the first row (1, i), 2 ≤ i ≤ p, are

equal to −1, except its diagonal element which has value 1, and all the other entries of the new

row and column are equal to 0. This row and column augmentation preserves the value of the

determinant of matrix M0 which has the following form:

M0 =















































1 r · · · r 0 · · · 0

0 s(v1) (r)i,j′ (c)1,p+1 (c)1,n−1

...
. . .

... (c)i,j
...

0 (r)j′ ,i s(vp) (c)p,p+1 (c)p,n−1

0 (c)p+1,1 · · · (c)p+1,p s(vp+1)

. . . (−1)i′,j′

... (c)j,i s(vj)

(−1)j′,i′
. . .

0 (c)n−1,1 · · · (c)n−1,p s(vn−1)















































,

13

where the values (c)i,j and their symmetric ones, 1 ≤ i ≤ p ≤ j ≤ n − 1, are equal to −1 if the

vertices vi ∈ V (Gt) and vj ∈ V (G)− V (Gt) are adjacent in G and are 0 otherwise.

In order to compute the determinant det(M0), we multiply the first row by −1 and add it to

the next p rows. Now the (r)i,j′ entries of the initial matrix, will have value 0, if they were −1

in the initial matrix, and additionally they will have value 1, if they were 0 in the initial matrix.

Then, the determinant of matrix M0 becomes as follows:

det (M0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 b(1) · · · b(p) 0 · · · 0

b(1) s(v1)− r (−r)i,j′ (c)1,p+1 (c)1,n−1

...
. . .

... (c)i,j
...

b(p) (−r)j′,i s(vp)− r (c)p,p+1 (c)p,n−1

0 (c)p+1,1 · · · (c)p+1,p s(vp+1)

. . . (−1)i′,j′

... (c)j,i s(vj)

(−1)j′,i′
. . .

0 (c)n−1,1 · · · (c)n−1,p s(vn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the entries (−r)i,j′ and (−r)j′,i of the off-diagonal position (i′, j) and (j, i′) of the matrixM0

are both 0 if the vertices vi′ and vj are adjacent in Gt (or else, are 1 if the vertices vi′ and vj

are adjacent in Gt) and are 1 otherwise, 1 ≤ i, j′ ≤ p. The non-zero values of the first row and

column except the diagonal element are equal to b(i) where b(i) = −1, for 1 ≤ i ≤ p. We observe

that the p× p submatrix formed by the 2, 3, . . . , p+1 row and column of M0 is similar to the one

corresponding to the basic graph Gt. The basic graph Gt can be viewed as a basic graph with

two additional differences:

◦ the initial s-values are s′(vi) = s(vi) + 1, 1 ≤ i ≤ p;

◦ if two vertices vi and vj , 0 ≤ i, j ≤ p are adjacent in Gt, then the corresponding entry of

the (p+1)× (p+1) submatrix is equal to 1 (recall, that its initial value would be −1); thus,

the corresponding functions are applied by the parameter r, which is −1 if Gt is a basic

graph and which is 1 if the complement of Gt is a basic graph.

Keeping these constraints, we can apply the same operations to that we have applied for the basic

graph Gt. Such operations affect the s-values of the vertices v1, v2, . . . vp and the s-values become

s′(vi) while the corresponding values c(i) and b(i) become c′(i) and b′(i). Then the determinant

det (M0) is equal to:

14

det (M0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 b′(1) · · · b′(p) 0 · · · 0

b′(1) s′(v1) 0 (c′)1,p+1 (c′)1,n−1

...
. . .

... (c′)i,j
...

b′(p) 0 s′(vp) (c′)p,p+1 (c′)p,n−1

0 (c′)p+1,1 · · · (c′)p+1,p s(vp+1)

. . . (−1)i′,j′

... (c′)j,i s(vj)

(−1)j′,i′
. . .

0 (c′)n−1,1 · · · (c′)n−1,p s(vn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In order to change the values of the off-diagonal elements of the first row into zero, we multiply

rows 2, 3 . . . p + 1 by −b′(i)/s′(vi) and add them to the first row. This operation will effect

the values of the positions (1, 1) and (1, p + 2), (1, p + 3), . . . , (1, n − 1). More specifically their

corresponding values become: 1 −
∑p

i=1
c′(i)b′(i)
s′(vi)

and −
∑p

i=1
c′(i)b′(i)
s′(vi)

. Similarly in order to make

zero the off-diagonal elements of the first column we multiply columns 2, 3 . . . p+1 by −b′(i)/s′(vi)

and add them to the first row; note that the second operation will not effect the value of position

(1, 1) but it will change the values of the positions (p+2, 1), (p+3, 1), . . . , (n− 1, 1). Finally the

determinant of matrix M0 becomes:

det (M0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s′(v0) 0 (c′)0,p+1 (c′)0,n−1

s′(v1) (c′)1,p+1 (c′)1,n−1

. . .
... (c′)i,j

...

0 s′(vp) (c′)p,p+1 (c′)p,n−1

(c′)p+1,0 (c′)p+1,1 · · · (c′)p+1,p s(vp+1)

. . . (−1)i′,j′

(c′)j,i s(vj)

(−1)j′,i′
. . .

(c′)p+1,0 (c′)n−1,1 · · · (c′)n−1,p s(vn−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the value c′(0) = −
∑p

i=1
c′(i)b′(i)
s′(vi)

, and the value of the position (1, 1) is equal to s′(v0) =

1 −
∑p

i=1
c′(i)b(i)
s′(vi)

. Thus we transform the p × p submatrix into a diagonal (p + 1) × (p + 1)

submatrix by applying the corresponding elimination function for Gt. Note that in all cases we

have b′(i) = c′(i), since they are both initialized to −1. Below we describe in details Function

Eliminate-Complement by keeping the values of b′(i) because the elimination of a thin spider

presented in the next section is based on these values.

Function Eliminate-Complement(t, T)

1. for every vertex vi, 1 ≤ i ≤ p, do

s(vi)← s(vi) + 1;

for i = 1, 2, . . . , p do

b(i)← −1;

15

2. Depending on the type of the complement of the representative graph Gt call the appropriate

function:

Gt is edgeless: T ← Eliminate-Edgeless(t, T, 1);

Gt is a thin spider: T ← Eliminate-Spider(t, T, 1);

Gt is a tree: T ← Eliminate-Tree(t, T, 1);

Gt is a chordless prime cycle: T ← Eliminate-Cycle(t, T, 1);

3. for i = 1, 2, . . . , p do

b(i)← c(i);

4. Increase the number of vertices p by one and add a dummy vertex v0 with the corresponding

values:

s(v0)← 1−

p
∑

i=1

c(i)b(i)

s(vi)
; c(0)← −

p
∑

i=1

c(i)b(i)

s(vi)
;

4.2 Processing Spiders

Let t be an N-node such that the subtree rooted at t is contractible and the representative graph Gt

is a thin spider. Then, if we assume without loss of generality that the vertices/children of t are

v1, v2, . . . , vp, they can be partitioned into sets S = {v1, v2, . . . , vk}, K = {vk+1, vk+2, . . . , v2k},

and R which is either empty (in this case, p = 2k) or R = {v2k+1} (then, p = 2k + 1). Let us

suppose for the time being that R 6= ∅; then, the matrix M0 is:

M0 =

















































s(v1) 0 0 r 0

0 s(v2) r 0

. . .
. . .

...

0 s(vk) r 0

r s(vk+1) r · · · r r Z1

r r s(vk+2) · · · r r

. . .
...

...
. . .

...
...

r r r · · · s(v2k) r

0 0 · · · 0 r r · · · r s(v2k+1)

Z2 Z0

















































,

where the parameter r is equal to −1 or 1 reflecting the adjacencies in a thin or thick spider,

respectively; recall that the complement of a thin spider is a thick spider. The elements of the

matrices Z1 and Z2 are equal to −1 and 0 depending on whether the corresponding vertices are

adjacent in the graph or not, and the matrix Z0 is an (n− p− 1)× (n− p− 1) submatrix of the

form

Z0 =



















s(vp+1)
. . . (−1)j′,i

s(vi)

(−1)i,j′
. . .

s(vn−1)



















.

16

It is important to note that, because the spider is a module, the columns of the submatrix Z1 are

identical, and so are the rows of the submatrix Z2. In order to compute the determinant det(M0)

of matrix M0, we do the following: We zero the off-diagonal entries in the first k rows and columns

of matrix M0. In order to do that,

⊲ we multiply column j, for 1 ≤ j ≤ k, by −r/s(vj), and add it to column k+ j, respectively;

⊲ we multiply row j, for 1 ≤ j ≤ k, by −r/s(vj), and add it to row k + j, respectively.

We note that after the above operations the diagonal entries (i, i), for k + 1 ≤ i ≤ 2k, of the

matrix M0 have values s(vi)−
r2

s(vi−k)
. Since the value r is equal to −1 or 1, we have that r2 = 1.

All the off-diagonal elements of the (i, j) positions and their symmetric ones, for k + 1 ≤ i ≤ 2k

and p+ 1 ≤ j ≤ n− 1, have values

c′(i) = c(i) +
r · c(i − k)

s(vi−k)
.

The above operations result on a new matrix Q such that det(Q) = det(M0) which has the

following form:

Q =

















































s(v1) (c)1,j

s(v2) (c)2,j

. . .
...

s(vk) (c)k,j

s(vk+1)−
1

s(v1)
r · · · r r (c′)k+1,j

r s(vk+2)−
1

s(v2)
· · · r r (c′)k+2,j

...
...

. . .
...

...
...

r r · · · s(v2k)−
1

s(vk)
r (c′)2k,j

r r · · · r s(v2k+1) (c)2k+1,j

(c)j,1 (c)j,2 · · · (c)j,k (c′)j,k+1 (c′)j,k+2 · · · (c′)j,2k (c)j,2k+1 Z0

















































.

At that point we observe that the (k+1)×(k+1) submatrix formed by the k+1, k+2, . . . , 2k+1

rows and columns of Q is obtained by a complete graph on k + 1 vertices. Thus we apply the

corresponding elimination process for an S-node (when Gt is a complete graph). Notice that any

transformation applied on the specific submatrix in order to make it diagonal will not change the

values of the elements of the positions (i, j) and their symmetric ones, for 1 ≤ i ≤ k and k+ 1 ≤

j ≤ 2k+1. This observation arises from the fact that these values are equal to 0 in the matrix Q.

More specifically this elimination process changes the values of the diagonal positions, i.e., the

s-values of vk+1, vk+2, . . . , v2k+1 and the values of the positions (k+1, j), (k+2, j), . . . , (2k+1, j)

and their symmetric ones, for 2k + 1 < j ≤ n− 1, i.e., the values of c′(i), k + 1 ≤ i ≤ 2k + 1.

Recall that the elimination process for a complete graph is achieved through the complement

of an edgeless graph (see the previous section). Thus we apply the corresponding function for

an edgeless graph, i.e., function Eliminate-Edgeless, with the appropriate values being updated

as described in function Eliminate-Complement. We note also that function Eliminate-Edgeless

does not change the s-values of the corresponding vertices, since the corresponding submatrix is

diagonal.

17

The function Eliminate-Spider(t, T, r) first computes the spider partition (S,K,R) of the

graph Gt if r = −1 (in this case Gt is a thin spider), otherwise, it computes the spider partition

of the complement of the graph Gt (in this case Gt is a thick spider). Then it updates the s-

values of the vertices of the set K and the corresponding values of c(i). Next it assigns a value ℓ

according to whether or not R is an empty set. Finally using the value ℓ it updates the s-values

of the vertices of K ∪ R and the appropriate values of c(i) according to the steps described in

function Eliminate-Complement. More precisely, function Eliminate-Spider-N node is applied as

follows.

Function Eliminate-Spider(t, T, r)

1. If r = −1 then compute the sets S, K, and R of the graph Gt;

otherwise, if r = 1 compute these sets of the graph Gt;

let S = {v1, v2, . . . , vk} and K = {vk+1, . . . , v2k}; (note that if R 6= ∅ then R contains

for i = 1, 2, . . . , 2k do only one vertex, i.e., R = {v2k+1})

c(i)← −1;

2. Update the s-values of the vertices in K as follows:

for every vertex vi ∈ K do

s(vi)← s(vi)−
1

s(vi−k)
; c(i)← c(i) + r·c(i−k)

s(vi−k)
;

3. if R 6= ∅ then {R contains only one vertex, i.e., R = {v2k+1}}

ℓ← 2k + 1;

else {R = ∅}

ℓ← 2k;

4. for every vertex vi ∈ K ∪R do

s(vi)← s(vi) + 1;

b(i)← −1;

5. Increase by one the number of vertices p and add a dummy vertex v0 with the corresponding

values:

s(v0)← 1−
ℓ
∑

i=k+1

c(i)b(i)

s(vi)
; c(0)← −

ℓ
∑

i=k+1

c(i)b(i)

s(vi)
;

4.3 Processing Trees

Let Gt be a prime tree. Based on the level sets of the prime tree we compute in a bottom-up

fashion the s-values of the vertices. Each s-value of a vertex is computed according to the s-values

of its children, while certain parameters are updated in similar way. We mention here that this

technique is based on a recursive formula given in [28] (see Theorem 3.1 in [28] for more details).

Function Eliminate-Tree(t, T, r)

1. If r = −1 then compute the node sets L0, L1, . . . , Lh of the levels 0, 1, . . . , h of the tree Gt,

otherwise, if r = 1 compute these sets of the graph Gt;

for i = 1, 2, . . . , p do

c(i)← −1;

18

2. In a bottom-up fashion and according to the set of children of each node in the tree, update

the s-values of vertices v1, v2, . . . , vp as follows :

for i = 1, 2, . . . , p do

s(vi)← s(vi)−
∑

j∈ch(i)

1

s(vj)
;

c(i)← c(i) − r ·
∑

j∈ch(i)

1

s(vj) · c(j)
;

4.4 Processing Cycles

Let Gt be a chordless cycle and let v1v2 · · · vp be the sequence of the vertices of Gt. The compu-

tation of the s-values of the vertices is applied in a sequential fashion. Each s-value of a vertex

is computed according to the s-value of the previous vertex in the sequence of the cycle. At the

same time, the s-value of the highest-indexed vertex is computed.

Function Eliminate-Cycle(t, T, r)

1. If r = −1 then compute the sequence of the vertices such that v1v2 · · · vp forms a chordless

cycle in the graph Gt, otherwise, if r = 1 compute such a sequence in the graph Gt;

e← r;

for i = 1, 2, . . . , p do

c(i)← −1;

2. Update the s-values of vertices v1, v2, . . . , vp−1 as follows :

for i = 2, 3 . . . , p − 1 do {elimination of a nearly tridiagonal matrix}

s(vi)← s(vi)−
r2

s(vi−1)
;

c(i)← c(i) − r ·
c(i− 1)

s(vi−1)
;

s(vp)← s(vp)−
e2

s(vi−1)
;

c(p)← c(p)−
e · c(i− 1)

s(vi−1)
;

e←
e

s(vi−1)
;

3. Update the s-value of vertex vp as follows :

e← e+ r;

s(vp)← s(vp)−
e2

s(vp−1)
;

c(p)← c(p)−
e · c(p − 1)

s(vp−1)
;

The processing on Steps 2 and 3 can be viewed as an elimination of a symmetric nearly tridiagonal

matrix of size p×p. Recall that a tridiagonal matrix is a square matrix with nonzero elements only

on the main diagonal and on the first diagonals below and above the main diagonal. A nearly

tridiagonal matrix is a tridiagonal matrix with two additional nonzero elements: the diagonal

elements of the matrix have value s(vi), the upper-diagonal and lower-diagonal elements have

19

value r and in positions (1, p) and (p, 1) it has value e. Thus, Steps 2 and 3 transform a nearly

tridiagonal matrix into a diagonal matrix, while certain parameters ci being updated during the

transformations.

5 Running Time

We next compute the time complexity of the algorithm.

Lemma 5.1. The algorithm Spanning Trees-Number runs in O(n + m + φ(G)) time, where n

is the number of vertices, m is the number of edges, and φ(G) is the non-basic cost of the input

graph G.

Proof. Step 1 of the algorithm Spanning Trees-Number clearly takes O(n+m) time and so does

the construction of the modular decomposition tree T (G) of the graph G [15, 25, 34]. The

computation of the level sets L0, L1, . . . , Lh−1 of the tree T (G) in Step 3 can be performed in

O(n) time, since the tree T (G) contains O(n) nodes. Additionally, note that exactly one of the

eliminate functions is applied on each of the nodes of T (G). Observe that functions Eliminate-

Tree and Eliminate-Cycle require O(|ch(t)|) time, since the number of the nodes are O(|ch(t)|).

When the function Eliminate-Spider is applied on t with representative graph a prime spider Gt,

we must compute the sets S,K, and R of Gt (this can be easily done in O(|V (Gt)| + |E(Gt)|)

time after having computed the degrees of the vertices of the spider; note that, if a graph is a

spider with partition (S,K,R), then for every choice of v, u, and r in S, K, and R respectively,

d(v) < d(r) < d(u)), update the s-values (this takes O(|ch(t)|) time), and update the modular

decomposition tree (this also takes O(|ch(t)|) time). Lastly, when the function Handle-Non-Basic

is applied on node t, it takes O(|V (Gt)|
2.376) time, so that the execution of this function on all the

non-basic N-nodes of the tree T (G) requires a total of O(φ(G)) time, where φ(G) is the non-basic

cost of G.

The construction ofGt on a node t takes O(|V (Gt)|+|E(Gt)|) time, since node t is contractible,

i.e. all the children of t are leaves in T (G). We mention here that Gt and its complement are

connected graphs, since node t is an N-node in T (G). In Step 4.1 and in function Eliminate-

Complement we need to recognize whether a graph Gt is a thin spider, a prime tree, a chordless

cycle or the complement of such a graph. As mentioned, for a spider graph, we can compute

its spider partition in O(|V (Gt)| + |E(Gt)|) time. Then, checking the degrees of the vertices in

S is sufficient to distinguish a thin spider from a thick spider. A graph Gt is a tree iff it is

connected and has |V (Gt)| − 1 edges; if Gt is connected and Gt has
k(k−1)

2 − k + 1 edges, where

k = |V (Gt)|, then Gt is the complement of a tree. The fact that a chordless cycle on k vertices

and its complement are connected and all its vertices have degree 2 and k − 3, respectively, is

sufficient to recognize them. Thus, the recognition takes time linear in the size of the input graph

Gt.

Given that the number of nodes of the tree T (G) is O(n), the fact that the number of edges

of G is no less than the total number of edges of all the representative graphs of T (G), and the

fact that checking whether a graph H is a basic graph takes O(|V (H)| + |E(H)|) time, then

Step 4 of the algorithm Spanning Trees-Number requires O(n+m+ φ(G)) time. Finally, Step 5

takes O(n) time under the uniform-cost criterion, according to which each instruction requires

20

one unit of time and each register requires one unit of space, implying that, no matter how large

the numbers are, an arithmetic operation involving ℓ numbers takes O(ℓ) time. Therefore, the

algorithm Spanning Trees-Number takes O(n+m+ φ(G)) time.

Remark 1. If a single computer word can store an integer as large as nn−2, where n is the number

of vertices of the input graph, then the uniform-cost criterion is certainly realistic (recall that

the number of spanning trees of a graph on n vertices is at most nn−2, which is achieved by the

complete graphKn). If however this is not the case, then the uniform-cost criterion is not realistic;

but, in such a case, even the logarithmic-cost criterion (which takes into account the limited size

of a real memory word which is logarithmic in the number stored) is somewhat unrealistic as well,

since it assumes that two integers i and j can be multiplied in time O(log(i) + log(j)), which is

not known to be possible (see [31]).

6 Counting Spanning Trees in Linear Time

Let G be a graph on n vertices and m edges and let φ(G) be its non-basic cost. From Lemma 5.1,

it is clear that if φ(G) is linear in the size of G, then the algorithm Spanning Trees-Number runs

in linear time. More precisely, followed by the functions applied in each internal neighborhood

node u of T (G), we have the following theorem.

Theorem 6.1. Let G be a graph on n vertices and m edges, and let T (G) be its modular decom-

position tree. If every prime graph in T (G) is (i) a spider graph, or (ii) a tree, or (iii) a cycle,

or (iv) the complement of a tree, or (v) the complement of a cycle, or (vi) a graph of restricted

(fixed) size, then the number of spanning trees of G can be computed in O(n+m) time and space.

We next investigate classes of graphs which have linear or constant non-basic cost.

Tree-cographs: Recently, many researchers have devoted their work on generalizing cographs.

Tinhofer in [35] introduced the tree-cographs where the recursion, instead with a single vertex,

starts with any tree. It follows that tree-cographs contain all trees and forests. Thus, every prime

graph on the modular decomposition tree of a tree-cograph induces a tree. Then by Definition 2.3

α(G) = ∅ which implies that the non-basic cost of a tree-cograph G is φ(G) = 0.

(q, q − 4)-graphs: Babel and Olariu in [4] proposed the generalizing concept of (q, t)-graphs.

In such a graph, no set of at most q vertices contains more than t distinct P4s. In particular, the

(q, q−4)-graphs possess important structural properties (they admit a unique tree representation;

see Theorem 6.2) [3], are brittle1 for q ≤ 8 [4] but are not brittle (and not perfect) for q ≥ 9. It

turns out that the cographs are precisely the (4, 0)-graphs, the P4-sparse graphs are the (5, 1)-

graphs, and the C5-free P4-extendible graphs are the (6, 2)-graphs. In our terminology, the

structure of (q, q − 4)-graphs can be described as follows.

Theorem 6.2 (Babel and Olariu [4]). Let G be a (q, q − 4)-graph. Then, every prime graph in

the modular decomposition of G is either a prime spider or a graph with fewer than q vertices.

1A graph G is called brittle if each induced subgraph H of G contains a vertex that is not a midpoint or not an

endpoint of any P4.

21

Based on the above result, many optimization and domination problems (such as the vertex

ranking, the path cover, the list coloring, the domination clique problem, etc.) can be solved in

linear time for the class of (q, q − 4)-graphs for fixed q [3]. The number of nodes of T (G) is O(n)

and, thus, according to Definition 2.3 α(G) = O(n). For a (q, q − 4)-graph G on n vertices α(G)

contains only nodes whose corresponding prime graphs have a fixed number of vertices. Since

computing the number of spanning trees of a graph on a fixed number of vertices takes constant

time, the non-basic cost of a (q, q − 4)-graph G on n vertices is φ(G) = O(n), for every fixed

q ≥ 4.

P4-tidy graphs: As mentioned in [18], the class of P4-tidy graphs was introduced by I. Rusu

in order to illustrate the notion of P4-domination in perfect graphs. A graph G is P4-tidy if for

any induced P4, say abcd, there exists at most one vertex v ∈ V (G) − {a, b, c, d} such that the

subgraph G[{a, b, c, d, v}] has at least two P4s (i.e., the P4 has at most one partner). The P4-tidy

graphs strictly contain the cographs, P4-reducible, P4-sparse, P4-extendible, and P4-lite graphs.

The P4-lite graphs were defined by Jamison and Olariu in [22]: a graph G is P4-lite if every

induced subgraph H of G with at most six vertices either contains at most two P4’s, or is a 3-sun,

or is the complement of a 3-sun (a 3-sun is a thick spider on six vertices with R = ∅). They

remark that every P4-sparse graph is P4-lite and prove that every P4-lite graph is brittle and is

thus perfect. We mention here that the P4-lite graphs coincide with the C5-free P4-tidy graphs.

Theorem 6.3 (Giakoumakis et al. [18]). Let G be a P4-tidy graph. Then, every prime graph in

the modular decomposition of G is a P5, a P5, a C5, an urchin, or a starfish2.

In [18], Theorem 6.3 played a crucial role in the linear-time recognition of P4-tidy graphs and in the

linear-time solution of the problems of calculating the clique and stability number, the chromatic

number, and the hamiltonian path. In connection to our work, it implies that according to

Definition 2.3 we have α(G) = ∅, since for every N-node of T (G) the corresponding representative

graph is a spider or a tree or a cycle or the complement of a tree. Therefore the non-basic cost

of a P4-tidy graph G on n vertices is φ(G) = 0.

Concluding, the number of spanning trees of the classes of tree-cographs, (q, q− 4)-graphs for

any fixed q ≥ 4, and of P4-tidy graphs can be efficiently computed. Moreover, it is not difficult to

see that for these graphs the space needed by the algorithm Spanning Trees-Number is O(n+m);

recall that the modular decomposition tree of a graph and its construction require space linear in

the size of the graph [15, 25, 34]. Thus, the results of this section are summarized in the following

theorem.

Theorem 6.4. The number of spanning trees of a tree-cograph, or of a (q, q − 4)-graph for any

fixed q ≥ 4, or of a P4-tidy graph can be computed in O(n+m) time and space, where n and m

are the number of vertices and edges of the input graph.

7 Concluding Remarks

In this paper we have presented a general approach for computing the number of spanning trees

of a graph using modular decomposition, which yields a linear-time algorithm for the problem on

2 An urchin is a thin spider; a starfish is a thick spider.

22

P4-tidy graphs, on (q, q − 4)-graphs for any fixed q ≥ 4, and on tree-cographs. We have taken

advantage of the structural properties of the modular decomposition tree of these graphs and used

the Kirchhoff matrix tree theorem as a tool for proving the correctness of the proposed algorithm.

We remark that several other subclasses of well-known graphs possess structural properties

that allow a linear-time computation of their number of spanning trees. Examples include the

classes of tree-perfect and forest-perfect graphs which were introduced in [9] and for which the

following holds (Lemma 4.1 in [9]): Let G have an induced path P6. Then G is tree-perfect if and

only if G is obtained from a tree by replacing the leaves by cographs or G is obtained from a prime

graph on eight vertices by replacing four of its vertices by cographs [9]. Based on the previous

result, it is straightforward that the number of spanning trees of a tree-perfect graph with an

induced P6 can be computed in linear time and space. Therefore we expect that our approach

applies to other types of prime graphs (besides spider graphs, prime trees, chordless cycles and

their complements), which would allow the efficient computation of the number of spanning trees

for additional classes as well, e.g., the semi-P4-sparse graphs [16] and the (P5, diamond)-free

graphs [8].

Other interesting problems involve counting other structures as well, e.g., the number of

perfect matchings, Hamiltonian cycles and Euler cycles. More precisely, it is known [24] that the

number of perfect matchings can be computed efficiently for graphs having a Pfaffian orientation.

As in the Kirchhoff matrix tree theorem, this method involves the computation of a determinant

followed by a square root calculation. Thus, given such an orientation, an algorithm implementing

our contraction approach may lead to efficient solutions for other combinatorial enumeration

problems. Further, as mentioned in the introduction, a uniformly-most reliable network (defined

in [11, 27]) must maximize the number of spanning trees. Thus, it is interesting to determine

the types of graphs which have the maximum number of spanning trees for fixed numbers of

vertices and edges (see [29, 33]). The problem may be approached as an optimization question

on the s-values of the vertices, which are calculated by the algorithm Spanning Trees-Number.

Work along these lines is currently in progress and some preliminary results suggest that almost

regularity seems to be the key to the solution.

Acknowledgements

The authors would like to thank the anonymous referees whose valuable suggestions helped im-

prove the presentation of the paper.

References

[1] T. Atajan, X. Yong, and H. Inaba, An efficient approach for counting the number of spanning trees

in circulant and related graphs, Discrete Math. 310 (2010) 1210–1221.

[2] R. B. Bapat, A. K. Lal, and S. Pati, Laplacian spectrum of weakly quasi-threshold graphs, Graphs

and Combinatorics 24 (2008) 273–290.

[3] L. Babel, T. Kloks, I. Kratochvil, D. Kratsch, H. Mueller, and S. Olariu, Efficient algorithms for

graphs with few P4’s, Discrete Math. 235 (2001) 29–51.

23

[4] L. Babel and S. Olariu, On the structure of graphs with few P4’s, Discrete Appl. Math. 84 (1998)

1–13.

[5] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.

[6] H.L. Bodlaender and U. Rotics, Computing the treewidth and the minimum fill-in with the modular

decomposition, Algorithmica 36 (2003) 375–408.

[7] B. Bollobás, Graph Theory, an Introductory Course, Springer-Verlag, New York, 1979.

[8] A. Brandstädt, (P5,Diamond)-free graphs revisited: structure and linear time optimization, Discrete

Appl. Math. 138 (2004) 13–27.

[9] A. Brandstädt and V.B. Le, Tree- and forest-perfect graphs, Discrete Appl. Math. 95 (1999) 141–162.

[10] T.J.N. Brown, R.B. Mallion, P. Pollak, and A. Roth, Some methods for counting the spanning trees in

labeled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math. 67 (1996)

51–66.

[11] C.J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, Oxford, 1974.

[12] C.J. Colbourn, J.S. Provan, and D. Vertigan, A new approach to solving three combinatorial enumer-

ation problems on planar graphs, Discrete Appl. Math. 60 (1995) 119–129.

[13] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Proc. 19th ACM

Symposium on the Theory of Computing, (1987) 1–6.

[14] B. Courcelle, J.A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs

of bounded clique-width, Theory Comput. Syst. 33 (2000) 125–150.

[15] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, Proc. 19th Int’l

Colloquium on Trees in Algebra and Programming (CAAP’94), LNCS 787 (1994) 68–84.

[16] J.-L. Fouquet and V. Giakoumakis, On semi-P4-sparse graphs, Discrete Math. 165-166 (1997) 277–

300.

[17] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari, Modular decomposition of protein-protein

interaction networks, Genome Biology 5:R57 (2004).

[18] V. Giakoumakis, F. Roussel, and H. Thuillier, On P4-tidy graphs, Discrete Math. and Theoret. Com-

put. Science 1 (1997) 17–41.

[19] M.J. Golin, X. Yong and Y. Zhang, Chebyshev polynomials and spanning tree formulas for circulant

and related graphs, Discrete Math. 298 (2005) 334-364.

[20] M. Habib and C. Paul, A survey of the algorithmic aspects of modular decomposition, Computer

Science Review 4 (2010) 41–59.

[21] F. Harary, Graph Theory, Addison-Wesley, 1969.

[22] B. Jamison and S. Olariu, A new class of brittle graphs, Studies Appl. Math. 81 (1989) 89–92.

[23] R.J. Lipton, D. Rose, and R.E. Tarjan, Generalized nested dissection, SIAM J. Numerical Anal. 16

(1979) 346–358.

[24] L. Lovasz and M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

[25] R.M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Math.

201 (1999) 189–241.

[26] R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete structures and connec-

tions with combinatorial optimization, Annals of Discrete Mathematics 19 (1984) 257–356.

24

[27] W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do not always

exist, Networks 21 (1991) 417–419.

[28] S.D. Nikolopoulos and C. Papadopoulos, The number of spanning trees in Kn-complements of quasi-

threshold graphs, Graphs and Combinatorics 20 (2004) 383–397.

[29] S.D. Nikolopoulos, L. Palios, and C. Papadopoulos, Maximizing the number of spanning trees in

Kn-complements of asteroidal graphs, Discrete Math. 309 (2009) 3049–3060.

[30] S.D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star related graphs,

Inform. Process. Lett. 65 (1998) 183–188.

[31] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[32] C. Papadopoulos and C. Voglis, Drawing graphs using modular decomposition, Journal of Graph

Algorithms and Applications 11 (2007) 481–511.

[33] L. Petingi and J. Rodriguez, A new technique for the characterization of graphs with a maximum

number of spanning trees, Discrete Math. 244 (2002) 351–373.

[34] M. Tedder, D. Corneil, M. Habib, and C. Paul, Simpler linear-time modular decomposition via recur-

sive factorizing permutations, Proc. 35th Int’l Colloquium on Automata, Languages and Programming

(ICALP’08), LNCS 5125 (2008) 634–645.

[35] G. Tinhofer, Strong tree-cographs are Birkhoff graphs, Discrete Appl. Math. 22 (1988) 275–288.

[36] W.-M. Yan, W. Myrvold, and K.-L. Chung, A formula for the number of spanning trees of a multi-star

related graph, Inform. Process. Lett. 68 (1998) 295–298.

[37] Y. Zhang, X. Yong, and M.J. Golin, The number of spanning trees in circulant graphs, Discrete Math.

223 (2000) 337–350.

25

