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ABSTRACT
In this work we propose efficient codec algorithms for watermarking images that are intended for uploading on the web
under intellectual property protection. Headed to this direction, we recently suggested a way in which an integer number w
which being transformed into a self-inverting permutation, can be represented in a two dimensional (2D) object and thus,
since images are 2D structures, we have proposed a watermarking algorithm that embeds marks on them using the 2D
representation of w in the spatial domain. Based on the idea behind this technique, we now expand the usage of this concept
by marking the image in the frequency domain. In particular, we propose a watermarking technique that also uses the 2D rep-
resentation of self-inverting permutations and utilizes marking at specific areas thanks to partial modifications of the image’s
Discrete Fourier Transform (DFT). Those modifications are made on the magnitude of specific frequency bands and they
are the least possible additive information ensuring robustness and imperceptiveness. We have experimentally evaluated our
algorithms using various images of different characteristics under JPEG compression. The experimental results show an im-
provement in comparison to the previously obtained results and they also depict the validity of our proposed codec algorithms.

Keywords: Watermarking Techniques; Image Watermarking Algorithms; Self-inverting Permutations; 2D representations of
Permutations; Encoding; Decoding; Frequency Domain; Experimental Evaluation.

1 Introduction

Internet technology, in modern communities, be-
comes day by day an indispensable tool for everyday
life since most people use it on a regular basis and do
many daily activities online [1]. This frequent use of
the internet means that measures taken for internet se-
curity are indispensable since the web is not risk-free
[2, 3]. One of those risks is the fact that the web is
an environment where intellectual property is under
threat since a huge amount of public personal data is
continuously transferred, and thus such data may end
up on a user who falsely claims ownership.

It is without any doubt that images, apart from
text, are the most frequent type of data that can be
found on the internet. As digital images are a char-
acteristic kind of intellectual material, people hesitate
to upload and transfer them via the internet because
of the ease of intercepting, copying and redistribut-
ing in their exact original form [4]. Encryption is not
the problem’s solution in most cases, as most peo-
ple that upload images in a website want them to be
visible by everyone, but safe and theft protected as
well. Watermarks are a solution to this problem as
they enable someone to claim an image’s ownership

if he previously embedded one in it. Image water-
marks can be visible or not, but if we don’t want any
cosmetic changes in an image then an invisible water-
mark should be used. That’s what our work suggests
a technique according to which invisible watermarks
are embedded into images using features of the im-
age’s frequency domain and graph theory as well.

We next briefly describe the main idea behind the
watermarking technique, the motivation of our work,
and our contribution.

Watermarking. In general, watermarks are symbols
which are placed into physical objects such as docu-
ments, photos, etc. and their purpose is to carry infor-
mation about objects’ authenticity [5].

A digital watermark is a kind of marker embed-
ded in a digital object such as image, audio, video, or
software and, like a typical watermark, it is used to
identify ownership of the copyright of such an object.
Digital watermarking (or, hereafter, watermarking) is
a technique for protecting the intellectual property of
a digital object; the idea is simple: a unique marker,
which is called watermark, is embedded into a digi-
tal object which may be used to verify its authenticity
or the identity of its owners [6, 7]. More precisely,



watermarking can be described as the problem of em-
bedding a watermark w into an object I and, thus, pro-
ducing a new object Iw, such that w can be reliably
located and extracted from Iw even after Iw has been
subjected to transformations [7]; for example, com-
pression, scaling or rotation in case where the object
is an image.

In the image watermarking process the digital in-
formation, i.e., the watermark, is hidden in image
data. The watermark is embedded into image’s data
through the introduction of errors not detectable by
human perception [8]; note that, if the image is copied
or transferred through the internet then the watermark
is also carried with the copy into the image’s new lo-
cation.

Motivation. Intellectual property protection is one of
the greatest concerns of internet users today. Digital
images are considered a representative part of such
properties so we consider important, the development
of methods that deter malicious users from claiming
others’ ownership, motivating internet users to feel
safer to publish their work online.

Image Watermarking, is a technique that serves
the purpose of image intellectual property protection
ideally as in contrast with other techniques it allows
images to be available to third internet users but si-
multaneously carry an “identity” that is actually the
proof of ownership with them. This way image wa-
termarking achieves its target of deterring copy and
usage without permission of the owner. What is more
by saying watermarking we don’t necessarily mean
that we put a logo or a sign on the image as research
is also done towards watermarks that are both invisi-
ble and robust.

Our work suggests a method of embedding a nu-
merical watermark into the image’s structure in an
invisible and robust way to specific transformations,
such as JPEG compression.

Contribution. In this work we present an efficient
and easily implemented technique for watermarking
images that we are interested in uploading in the web
and making them public online; this way web users
are enabled to claim the ownership of their images.

What is important for our idea is the fact that it
suggests a way in which an integer number can be rep-
resented with a two dimensional representation (or,
for short, 2D representation). Thus, since images are
two dimensional objects that representation can be ef-
ficiently marked on them resulting the watermarked
images. In a similar way, such a 2D representation
can be extracted for a watermarked image and con-
verted back to the integer w.

Having designed an efficient method for encoding

integers as self-inverting permutations, we propose an
efficient algorithm for encoding a self-inverting per-
mutation π∗ into an image I by first mapping the el-
ements of π∗ into an n∗× n∗ matrix A∗ and then us-
ing the information stored in A∗ to mark specific ar-
eas of image I in the frequency domain resulting the
watermarked image Iw. We also propose an efficient
algorithm for extracting the embedded self-inverting
permutation π∗ from the watermarked image Iw by lo-
cating the positions of the marks in Iw; it enables us to
recontract the 2D representation of the self-inverting
permutation π∗.

It is worth noting that although digital watermark-
ing has made considerable progress and became a
popular technique for copyright protection of multi-
media information [8], our work proposes something
new. We first point out that our watermarking method
incorporates such properties which allow us to suc-
cessfully extract the watermark w from the image Iw
even if the input image has been compressed with a
lossy method. In addition, our embedding method can
transform a watermark from a numerical form into a
two dimensional (2D) representation and, since im-
ages are 2D structures, it can efficiently embed the
2D representation of the watermark by marking the
high frequency bands of specific areas of an image.
The key idea behind our extracting method is that it
does not actually extract the embedded information
instead it locates the marked areas reconstructing the
watermark’s numerical value.

We have evaluated the embedding and extracting
algorithms by testing them on various and different
in characteristics images that were initially in JPEG
format and we had positive results as the watermark
was successfully extracted even if the image was con-
verted back into JPEG format with various compres-
sion ratios. What is more, the method is open to ex-
tensions as the same method might be used with a dif-
ferent marking procedure such as the one we used in
our previous work. Note that, all the algorithms have
been developed and tested in MATLAB [9].

Road Map. The paper is organized as follows. In
Section 2 we present an efficient transformation of
a watermark from an integer form to a two dimen-
sional (2D) representation through the exploitation of
self-inverting permutation properties. In Section 3 we
briefly describe the main idea behind our recently pro-
posed image watermarking algorithm, while in Sec-
tion 4 we present our contribution with this paper.
In Section 5 we show properties of our image wa-
termarking technique and evaluate the performance
of the corresponding watermarking algorithms. Sec-
tion 6 concludes the paper and discusses possible fu-
ture extensions.



2 Theoretical Framework

In this section we first describe discrete structures,
namely, permutations and self-inverting permuta-
tions, and briefly discuss a codec system which en-
codes an integer number w into a self-inverting per-
mutation π. Then, we present a transformation of a
watermark from a numerical form to a 2D form (i.e.,
2D representation) through the exploitation of self-
inverting permutation properties.

2.1 Self-inverting Permutations

Informally, a permutation of a set of objects S is an
arrangement of those objects into a particular order,
while in a formal (mathematical) way a permutation
of a set of objects S is defined as a bijection from S to
itself (i.e., a map S→ S for which every element of S
occurs exactly once as image value).

Permutations may be represented in many ways.
The most straightforward is simply a rearrange-
ment of the elements of the set Nn = {1,2, . . . ,n};
in this way we think of the permutation π =
(5,6,9,8,1,2,7,4,3) as a rearrangement of the ele-
ments of the set N9 such that “1 goes to 5”, “2 goes to
6”, “3 goes to 9”, “4 goes to 8”, and so on [10, 11].
Hereafter, we shall say that π is a permutation over
the set N9.

Definition 2.1.1. Let π = (π1,π2, . . . ,πn) be a permu-
tation over the set Nn, where n > 1. The inverse of the
permutation π is the permutation q = (q1,q2, . . . ,qn)
with qπi = πqi = i. A self-inverting permutation (or,
for short, SiP) is a permutation that is its own inverse:
ππi = i.

By definition, a permutation is a SiP (self-
inverting permutation) if and only if all its cycles
are of length 1 or 2; for example, the permutation
π = (5,6,9,8,1,2,7,4,3) is a SiP with cycles: (1,5),
(2,6), (3,9), (4,8), and (7).

2.2 Encoding Numbers as SiPs

There are several systems that correspond integer
numbers into permutations or self-inverting permuta-
tion [10]. Recently, we have proposed algorithms for
such a system which efficiently encodes an integer w
into a self-inverting permutations π and efficiently de-
codes it. The algorithms of our codec system run in
O(n) time, where n is the length of the binary repre-
sentation of the integer w, while the key-idea behind
its algorithms is mainly based on mathematical ob-
jects, namely, bitonic permutations [12].

We briefly describe below our codec algorithms
which in fact correspond integer numbers into self-
inverting permutations; we show the correspondence
between the integer w = 12 and the self-inverting per-
mutation π = (5,6,9,8,1,2,7,4,3) by the help of an
example.

Example W-to-SiP: Let w = 12 be the given water-
mark integer. We first compute the binary representa-
tion B= 1100 of the number 12; then we construct the
binary number B′ = 0000||1100||1 and the binary se-
quence B∗ = (1,1,1,1,0,0,1,1,0) by flipping the el-
ements of B′; we compute the sequences X = (5,6,9)
and Y = (1,2,3,4,7,8) by taking into account the in-
dices of 0s and 1s in B∗, and then the bitonic permu-
tation π = (5,6,9,8,7,4,3,2,1) on n′ = 9 numbers by
taking the sequence X ||Y R; since n′ is odd, we select
4 cycles (5,1), (6,2), (9,3), (8,4) of lengths 2 and
one cycle (7) of length 1, and then based on the se-
lected cycles construct the self-inverting permutation
π = (5,6,9,8,1,2,7,4,3).

Example SiP-to-W: Let π = (5,6,9,8,1,2,7,4,3) be
the given self-inverting permutation produced by our
method. The cycle representation of π is the follow-
ing: (1,5), (2,6), (3,9), (4,8), (7); from the cycles we
construct the permutation π = (5,6,9,8,7,4,3,2,1);
then, we compute the first increasing subsequence
X = (5,6,9) and the first decreasing subsequence
Y = (8,7,4,3,2,1); we then construct the binary se-
quence B∗ = (1,1,1,1,0,0,1,1,0) of length 9; we
flip the elements of B∗ and construct the sequence
B′ = (0,0,0,0,1,1,0,0,1); the binary number 1100
is the integer w = 12.

2.3 2D Representations
We first define the two-dimensional representation
(2D representation) of a permutation π over the
set Nn = {1,2, . . . ,n}, and then its 2DM representa-
tion which is more suitable for efficient use in our
codec system.

In the 2D representation, the elements of the per-
mutation π = (π1,π2, . . . ,πn) are mapped in specific
cells of an n×n matrix A as follows:

number πi −→ entry A(π−1
i ,πi)

or, equivalently, the cell at row i and column πi is la-
beled by the number πi, for each i = 1,2, . . . ,n.

Figure 1(a) shows the 2D representation of the self-
inverting permutation π = (6,3,2,4,5,1).

Note that, there is one label in each row and in
each column, so each cell in the matrix A corresponds



to a unique pair of labels; see, [10] for a long bibliog-
raphy on permutation representations and also in [13]
for a DAG representation.

Based on the previously defined 2D representa-
tion of a permutation π, we next propose a two-
dimensional marked representation (2DM representa-
tion) of π which is an efficient tool for watermarking
images.

In our 2DM representation, a permutation π over
the set Nn = {1,2, . . . ,n} is represented by an n× n
matrix A∗ as follows:

◦ the cell at row i and column πi is marked by a
specific symbol, for each i = 1,2, . . . ,n;

◦ in our implementation, the used symbol is the as-
terisk, i.e., the character “*”.

Figure 1(b) shows the 2DM representation of the per-
mutation π. It is easy to see that, since the 2DM repre-
sentation of π is constructed from the corresponding
2D representation, there is also one symbol in each
row and in each column of the matrix A∗.

We next present an algorithm which extracts the
permutation π from its 2DM representation matrix.
More precisely, let π be a permutation over Nn and let
A∗ be the 2DM representation matrix of π (see, Fig-
ure 1(b)); given the matrix A∗, we can easily extract π
from A∗ in linear time (i.e., linear in the size of matrix
A∗) by the following algorithm:

Algorithm Extract π from 2DM
Input: the 2DM representation matrix A∗ of π;
Output: the permutation π;
1. For each row i of matrix A∗, 1≤ i≤ n, and

for each column j of matrix A∗, 1≤ j ≤ n,
if the cell (i, j) is marked then πi← j;

2. Return the permutation π;

Remark 2.3.1. It is easy to see that the resulting per-
mutation π, after the execution of Step 1, can be taken
by reading the matrix A∗ from top row to bottom
row and write down the positions of its marked cells.
Since the permutation π is a self-inverting permuta-
tion, its 2D matrix A has the following property:

◦ A(i, j) = j if πi = j, and
◦ A(i, j) = 0 otherwise, 1≤ i, j ≤ n.

Thus, the corresponding matrix A∗ is symmetric:

◦ A∗(i, j) = A∗( j, i) = “mark” if πi = j, and
◦ A∗(i, j) = A∗( j, i) = 0 otherwise, 1≤ i, j ≤ n.

Based on this property, it is also easy to see that the
resulting permutation π can be also taken by reading
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Figure 1: The 2D and 2DM representations of the self-
inverting permutation π = (6,3,2,4,5,1).

the matrix A∗ from left column to right column and
write down the positions of its marked cells.

Hereafter, we shall denote by π∗ a SiP and by n∗

the number of elements of π∗.

2.4 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to de-
compose an image into its sine and cosine compo-
nents. The output of the transformation represents
the image in the frequency domain, while the input
image is the spatial domain equivalent. In the image’s
fourier representation, each point represents a particu-
lar frequency contained in the image’s spatial domain.

If f (x,y) is an image of size N ×M we use the
following formula for the Discrete Fourier Transform:

F(u,v) =
N−1

∑
x=0

M−1

∑
y=0

f (x,y)e− j2π( ux
N + vy

M ) (1)

for values of the discrete variables u and v in the
ranges u = 0,1, . . . ,N−1 and v = 0,1, . . . ,M−1

In a similar manner, if we have the transform
F(u,v) i.e the image’s fourier representation we can
use the Inverse Fourier Transform to get back the im-
age f (x,y) using the following formula:

f (x,y) =
1

NM

N−1

∑
u=0

M−1

∑
v=0

F(u,v)e j2π( ux
N + vy

M ) (2)

for x = 0,1, . . . ,N−1 and y = 0,1, . . . ,M−1

Typically, in our method, we are interested in
the magnitudes of DFT coefficients. The magnitude
|F(u,v)| of the Fourier transform at a point is how
much frequency content there is and is calculated by
Equation (1) [14].



3 Previous Results

Recently, we proposed a watermarking technique
based on the idea of interfering with the image’s pixel
values in the spatial domain. In this section, we
briefly describe the main idea of the proposed tech-
nique and state main points regarding some of its ad-
vantages and disadvantages. Recall that, in the current
work we suggest an expansion to this idea by moving
from the spatial domain to the image’s frequency do-
main.

3.1 Method Description

The algorithms behind the previously proposed tech-
nique were briefly based on the following idea.

The embedding algorithm first computes the 2DM
representation of the permutation π∗, that is, the n∗×
n∗ array A∗ (see, Subsection 2.3); the entry (i,π∗i ) of
the array A∗ contains the symbol “*”, 1≤ i≤ n∗.

Next, the algorithm computes the size N ×M of
the input image I and according to its size, covers it
with an n∗× n∗ imaginary grid C, which divides the
image into n∗×n∗ grid-cells Ci j of size

⌊ N
n∗
⌋
×
⌊M

n∗
⌋
,

1≤ i, j ≤ n∗.
Then the algorithm goes first to each grid-cell Ci j,

locates its central pixel p0
i j and also the four pixels

p1
i j, p2

i j, p3
i j, p4

i j around it, 1 ≤ i, j ≤ n∗ (these five
pixels are called cross pixels), and then computes the
difference between the brightness of the central pixel
p0

i j and the average brightness of twelve neighboring
pixels around the cross pixels, and stores the result-
ing value in the variable dif(p0

i j). Finally, it computes
the maximum absolute value of all n∗×n∗ differences
dif(p0

i j), 1 ≤ i, j ≤ n∗, and stores it in the variable
Maxdif(I).

The embedding algorithm goes again to each cen-
tral pixel p0

i j of each grid-cell Ci j, 1 ≤ i, j ≤ n∗, and
if the corresponding entry A∗(i, j) contains the sym-
bol “*”, then it increases the value of each one of the
five cross pixels by Maxdif(I) − dif(p0

i j) + c, where
c is a positive number used to make marks robust to
transformations.

In a similar manner, the extracting algorithm is
searching each line i of the imaginary grid C to find
among the n∗ grid-cells Ci1,Ci2, . . . ,Cin∗ the column
j of the one that has the greatest difference between
the twelve neighboring and the five cross pixels, 1 ≤
i, j ≤ n∗; then, the element π∗i is set equal to j.

3.2 Main Points

First we should mention that for images with general
characteristics and relatively large size this method

delivers optically good results. By saying “good re-
sults” we mean that the modifications made are quite
invisible. Also the method’s algorithms run really
fast as they simply access a finite number of pixels.
Furthermore, both the embedding and extracting al-
gorithms are easy to modify and adjust for various
scenarios.

On the other hand, the method fails to deliver good
results either for relatively small images or for im-
ages that depict something smooth which allows the
eye to distinct the modifications on the image. Also
we decided to move to a new method as there were
also problems due to the fact that the positions of the
crosses are centered at strictly specific positions caus-
ing difficulties in the extracting algorithm even for the
smallest geometric changes such as scaling or crop-
ping where we may lose the marked positions.

4 The Frequency Domain Approach

Having described an efficient method for encoding in-
tegers as self-inverting permutations using the 2DM
representation of self-inverting permutations, we next
describe codec algorithms that efficiently encode and
decode a watermark into the image’s frequency do-
main [15, 16, 17, 14].

4.1 Embed Watermark into Image

We next describe the embedding algorithm of our pro-
posed technique which encodes a self-inverting per-
mutation (SiP) π∗ into a digital image I. Recall that,
the permutation π∗ is obtained over the set Nn∗ , where
n∗ = 2n+1 and n is the length of the binary represen-
tation of an integer w which actually is the image’s
watermark [12]; see, Subsection 2.2.

R2

R1

Pr

Pb

Figure 2: The “Red” and “Blue” ellipsoidal annuli.



The watermark w, or equivalently the self-
inverting permutation π∗, is invisible and it is inserted
in the frequency domain of specific areas of the im-
age I. More precisely, we mark the DFT’s magnitude
of an image’s area using two ellipsoidal annuli, de-
noted hereafter as “Red” and “Blue” (see, Figure 2).
The ellipsoidal annuli are specified by the following
parameters:

◦ Pr, the width of the “Red” ellipsoidal annulus,

◦ Pb, the width of the “Blue” ellipsoidal annulus,

◦ R1 and R2, the radiuses of the “Red” ellipsoidal
annulus on y-axis and x-axis, respectively.

The algorithm takes as input a SiP π∗ and an image I,
in which the user embeds the watermark, and returns
the watermarked image Iw; it consists of the following
steps.

Algorithm Embed SiP-to-Image
Input: the watermark π∗ ≡ w and the host image I;
Output: the watermarked image Iw;

Step 1: Compute first the 2DM representation of the
permutation π∗, i.e., construct an array A∗ of size n∗×
n∗ such that the entry A∗(i,π∗i ) contains the symbol
“*”, 1≤ i≤ n∗.

Step 2: Next, calculate the size N ×M of the input
image I and cover it with an imaginary grid C with
n∗×n∗ grid-cells Ci j of size

⌊ N
n∗
⌋
×
⌊M

n∗
⌋
, 1≤ i, j≤ n∗.

Step 3: For each grid-cell Ci j, compute the Dis-
crete Fourier Transform (DFT) using the Fast Fourier
Transform (FFT) algorithm, resulting in a n∗×n∗ grid
of DFT cells Fi j, 1≤ i, j ≤ n∗.

Step 4: For each DFT cell Fi j, compute its magni-
tude Mi j and phase Pi j matrices which are both of size⌊ N

n∗
⌋
×
⌊M

n∗
⌋
, 1≤ i, j ≤ n∗.

Step 5: Then, the algorithm takes each of the n∗×
n∗ magnitude matrices Mi j, 1 ≤ i, j ≤ n∗, and places
two imaginary ellipsoidal annuli, denoted as “Red”
and “Blue”, in the matrix Mi j (see, Figure 2). In our
implementation,

◦ the “Red” is the outer ellipsoidal annulus while
the “Blue” is the inner one. Both are concentric at
the center of the Mi j magnitude matrix and have
widths Pr and Pb, respectively;

◦ the radiuses of the “Red” ellipsoidal annulus are
R1 (on the y-axis) and R2 (on the x-axis), while the
“Blue” ellipsoidal annulus radiuses are computed
in accordance to the “Red” ellipsoidal annulus and
have values (R1−Pr) and (R2−Pr), respectively;

◦ the inner perimeter of the “Red” ellipsoidal annu-
lus coincides to the outer perimeter of the “Blue”
ellipsoidal annulus;

◦ the values of the widths of the two ellipsoidal an-
nuli are Pr = 2 and Pb = 2, while the values of
their radiuses are R1 =

⌊ N
2n∗

⌋
and R2 =

⌊ M
2n∗

⌋
.

The areas covered by the “Red” and the “Blue” el-
lipsoidal annuli determine two groups of magnitude
values on Mi j (see, Figure 2).

Step 6: For each magnitude matrix Mi j, 1≤ i, j ≤ n∗,
compute the average of the values that are in the areas
covered by the “Red” and the “Blue” ellipsoidal an-
nuli; let AvgRi j be the average of the magnitude values
belonging to the “Red” ellipsoidal annulus and AvgBi j
be the one of the “Blue” ellipsoidal annulus.

Step 7: For each magnitude matrix Mi j, 1≤ i, j ≤ n∗,
compute first the variable Di j as follows:

◦ Di j = |AvgBi j−AvgRi j|, if AvgBi j ≤ AvgRi j

◦ Di j = 0, otherwise.

Then, for each row i of the magnitude matrix Mi j,
1≤ i, j≤ n∗, compute the maximum value of the vari-
ables Di1,Di2, . . . ,Din∗ in row i; let MaxDi be the max
value.

Step 8: For each cell (i, j) of the 2DM representation
matrix A∗ of the permutation π∗ such that A∗i j = “ ∗ ”
(i.e., marked cell), mark the corresponding grid-cell
Ci j, 1 ≤ i, j ≤ n∗; the marking is performed by in-
creasing all the values in magnitude matrix Mi j cov-
ered by the “Red” ellipsoidal annulus by the value

AvgBi j−AvgRi j +MaxDi + c, (3)

where c = copt . The additive value of copt is calcu-
lated by the function f () (see, Subsection 4.3) which
returns the minimum possible value of c that enables
successful extracting.

Step 9: Reconstruct the DFT of the corresponding
modified magnitude matrices Mi j, using the trigono-
metric form formula [14], and then perform the In-
verse Fast Fourier Transform (IFFT) for each marked
cell Ci j, 1≤ i, j ≤ n∗, in order to obtain the image Iw.

Step 10: Return the watermarked image Iw.

In Figure 3, we demonstrate the main operations per-
formed by our embedding algorithm. In particular, we
show the marking process of the grid-cell C44 of the
Lena image; in this example, we embed in the Lena
image the watermark number w which corresponds to
SiP (6,3,2,4,5,1).
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Figure 3: A flow of the embedding process.

4.2 Extract Watermark from Image

In this section we describe the decoding algorithm of
our proposed technique. The algorithm extracts a self-
inverting permutation (SiP) π∗ from a watermarked
digital image Iw, which can be later represented as an
integer w.

The self-inverting permutation π∗ is obtained from
the frequency domain of specific areas of the water-
marked image Iw. More precisely, using the same two
“Red” and “Blue” ellipsoidal annuli, we detect certain
areas of the watermarked image Iw that are marked by
our embedding algorithm and these marked areas en-
able us to obtain the 2D representation of the permu-
tation π∗. The extracting algorithm works as follows:

Algorithm Extract SiP-from-Image
Input: the watermarked image Iw marked with π∗;
Output: the watermark π∗ = w;

Step 1: Take the input watermarked image Iw and
calculate its N ×M size. Then, cover it with the

same imaginary grid C, as described in the embed-
ding method, having n∗ × n∗ grid-cells Ci j of size⌊ N

n∗
⌋
×
⌊M

n∗
⌋
.

Step 2: Then, again for each grid-cell Ci j, 1 ≤ i, j ≤
n∗, using the Fast Fourier Transform (FFT) get the
Discrete Fourier Transform (DFT) resulting a n∗×n∗

grid of DFT cells.

Step 3: For each DFT cell, compute its magnitude
matrix Mi j and phase matrix Pi j which are both of
size

⌊ N
n∗
⌋
×
⌊M

n∗
⌋
.

Step 4: For each magnitude matrix Mi j, place the
same imaginary “Red” and “Blue” ellipsoidal annuli,
as described in the embedding method, and compute
as before the average values that coincide in the area
covered by the “Red” and the “Blue” ellipsoidal an-
nuli; let AvgRi j and AvgBi j be these values.

Step 5: For each row i of Mi j, 1 ≤ i ≤ n∗, search for
the jth column where AvgBi j −AvgRi j is minimized
and set π∗i = j, 1≤ j ≤ n∗.

Step 6: Return the self-inverting permutation π∗.

Having presented the embedding and extracting algo-
rithms, let us next describe the function f which re-
turns the additive value c = copt (see, Step 8 of the
embedding algorithm Embed SiP-to-Image).

4.3 Function f

Based on our marking model, the embedding algo-
rithm amplifies the marks in the “Red” ellipsoidal an-
nulus by adding the output of the function f . What
exactly f does is returning the optimal value that al-
lows the extracting algorithm under the current re-
quirements, such as JPEG compression, to still be
able to extract the watermark from the image.

The function f takes as an input the characteristics
of the image and the parameters R1, R2, Pb, and Pr of
our proposed marking model (see, Step 5 of embed-
ding algorithm and Figure 2), and returns the mini-
mum possible value copt that added as c to the val-
ues of the “Red” ellipsoidal annulus enables extract-
ing (see, Step 8 of the embedding algorithm). More
precisely, the function f initially takes the interval
[0,cmax], where cmax is a relatively great value such
that if cmax is taken as c for marking the “Red” ellip-
soidal annulus it allows extracting, and computes the
copt in [0,cmax].

Note that, cmax allows extracting but because of
being great damages the quality of the image (see,
Figure 4). We mentioned relatively great because it
depends on the characteristics of each image. For a
specific image it is useless to use a cmax greater than a



specific value, we only need a value that definitely en-
ables the extracting algorithm to successfully extract
the watermark.

We next describe the computation of the value copt
returned by the function f ; note that, the parameters
Pb and Pr of our implementation are fixed with the
values 2 and 2, respectively. The main steps of this
computation are the following:

(i) Check if the extracting algorithm for c = 0 validly
obtains the watermark π∗ = w from the image Iw;
if yes, then the function f returns copt = 0;

(ii) If not, that means, c = 0 doesn’t allow extracting;
then, the function f uses binary search on [0,cmax]
and computes the interval [c1,c2] such that:

◦ c = c1 doesn’t allow extracting,
◦ c = c2 does allow extracting, and
◦ |c1− c2|< 0.2;

(iii) The function f returns copt = c2;

As mentioned before, the function f returns the opti-
mal value copt . Recall that, optimal means that it is
the smallest possible value which enables extracting
π∗ = w from the image Iw. It is important to be the
smallest one as that minimizes the additive informa-
tion to the image and, thus, assures minimum drop to
the image quality.

5 Experimental Evaluation

In this section we present the experimental results of
the proposed watermarking method which we have
implemented using the general-purpose mathematical
software package Matlab (version 7.7.0) [9].

We experimentally evaluated our codec algo-
rithms on digital color images of various sizes and
quality characteristics. Many of the images in our im-
age repository where taken from a web image gallery
[18] and enriched by some other images different in
sizes and characteristics. Our experimental evaluation
is based on two objective image quality assessment
metrics namely Peak Signal to Noise Ratio (PSNR)
and Structural Similarity Index Metric (SSIM) [19].

There are three main requirements of digital wa-
termarking: fidelity, robustness, and capacity [5]. Our
watermarking method appears to have high fidelity
and robustness against JPEG compression.

5.1 Design Issues
We tested our codec algorithms on various 24-bit dig-
ital color images of various sizes (from 200×130 up
to 4600×3700) and various quality characteristics.

Figure 4: The original images of Lena and Baboon followed
by their watermarked images with additive values c = cmax
and c = copt ; both images are marked with the same water-
mark (6,3,2,4,5,1).

In our implementation we set both of the parame-
ters Pr and Pb equal to 2; see, Subsection 4.1. Recall
that, the value 2 is a relatively small value which al-
lows us to modify a satisfactory number of values in
order to embed the watermark and successfully ex-
tract it without affecting images’ quality. There isn’t
a distance between the two ellipsoidal annuli as that
enables the algorithm to apply a small additive infor-
mation to the values of the “Red” annulus. The two
ellipsoidal annuli are inscribed to the rectangle mag-
nitude matrix, as we want to mark images’ cells on
the high frequency bands.

We mark the high frequencies by increasing their
values using mainly the additive parameter c = copt
because alterations in the high frequencies are less
detectable by human eye [20]. Moreover, in high fre-
quencies most images contain less information.

In this work we used JPEG images due to their
great importance on the web. In addition, they are
small in size, while storing full color information (24
bit/pixel), and can be easily and efficiently transmit-
ted. Moreover, robustness to lossy compression is an
important issue when dealing with image authentica-
tion. Notice that the design goal of lossy compression
systems is opposed to that of watermark embedding
systems. The Human Visual System model (HVS) of
the compression system attempts to identify and dis-
card perceptually insignificant information of the im-
age, whereas the goal of the watermarking system is
to embed the watermark information without altering
the visual perception of the image [21].

The quality factor (or, for short, Q factor) is a
number that determines the degree of loss in the com-
pression process when saving an image. In general,



JPEG recommends a quality factor of 75–95 for vi-
sually indistinguishable quality loss, and a quality
factor of 50–75 for merely acceptable quality. We
compressed the images with Matlab JPEG compres-
sor from imwrite with different quality factors; we
present results for Q = 90, Q = 75 and Q = 60.

The quality function f returns the factor c, which
has the minimum value copt that allows the extract-
ing algorithm to successfully extract the watermark.
In fact, this value copt is the main additive informa-
tion embedded into the image; see, Formula 3. De-
pending on the images and the amount of compres-
sion, we need to increase the watermark strength by
increasing the factor c. Thus, for the tested images
we compute the appropriate values for the parame-
ters of the quality function f ; this computation can be
efficiently done by using the algorithm described in
Subsection 4.3.

To demonstrate the differences on watermarked
image human visual quality, with respect to the values
of the additive factor c, we watermarked the original
images Lena and Baboon and we embedded in each
image the same watermark with c= cmax and c= copt ,
where cmax >> copt ; the results are demonstrated in
Figure 4.

5.2 Image Quality Assessment

In order to evaluate the watermarked image quality
obtained from our proposed watermarking method we
used two objective image quality assessment metrics,
that is, the Peak Signal to Noise Ratio (PSNR) and the
Structural Similarity Index Metric (SSIM). Our aim
was to prove that the watermarked image is closely
related to the original (image fidelity), because wa-
termarking should not introduce visible distortions in
the original image as that would reduce images’ com-
mercial value.

The PSNR metric is the ratio of the reference sig-
nal and the distortion signal (i.e., the watermark) in
an image given in decibels (dB); PSNR is most com-
monly used as a measure of quality of reconstruction
of lossy compression codecs (e.g., for image com-
pression). The higher the PSNR value the closer the
distorted image is to the original or the better the wa-
termark conceals. It is a popular metric due to its sim-
plicity, although it is well known that this distortion
metric is not absolutely correlated with human vision.

For an initial image I of size N×M and its water-
marked image Iw, PSNR is defined by the formula:

PSNR(I, Iw) = 10log10
N2

max

MSE
, (4)

where Nmax is the maximum signal value that exists in

Original Watermarked

500 x 500

PSNR = 53.8c    = 2.6

 PSNR = 47.8

200 x 200

Size / Name

1024 x 1024

Ibook

City

Statue

c    = 1.2opt

opt

SSIM = 0.9870

SSIM = 0.9959

PSNR = 58.4c    = 4.5opt SSIM = 0.9957

Figure 5: Sample images of three size groups for JPEG
quality factor Q = 75 and their corresponding watermarked
ones; for each image, the copt , PSNR and SSIM values are
also shown.

the original image and MSE is the Mean Square Error
given by

MSE(I, Iw) =
1

N×M

N−1

∑
i=0

M−1

∑
j=0

(I(i, j)− Iw(i, j))2.

(5)

The SSIM image quality metric [19] is considered to
be correlated with the quality perception of the HVS
[22]. The SSIM metric is defined as follows:

SSIM(I, Iw) =
(2µµw +C1)(2σ(I, Iw)+C2)

(µ2 +µ2
w +C1)(σ(I)2 +σ(Iw)2 +C2)

, (6)

where µ and µw are the mean luminances of the origi-
nal and watermarked image I respectively, σ(I) is the
standard deviation of I, σ(Iw) is the standard devia-
tion of Iw, whereas C1 and C2 are constants to avoid
null denominator. We use a mean SSIM (MSSIM) in-
dex to evaluate the overall image quality over the M
sliding windows; it is given by the following formula:



PSNR VALUES

Image Size Qual. 90 Qual. 75 Qual. 60

Ibook 54.7 47.8 42.9
City 200 52.6 47.3 43.6
Statue 52.3 46.2 42.6
Ibook 58.2 54.5 46.5
City 500 58.7 53.8 44.7
Statue 60.7 51.5 49.6
Ibook 65.6 57.9 52.0
City 1024 64.4 56.7 49.6
Statue 67.5 58.4 51.4

Table 1: The PSNR values of watermarked images of dif-
ferent sizes under JPEG qualities Q = 90, 75 and 60.

SSIM VALUES

Image Size Qual. 90 Qual. 75 Qual. 60

Ibook 0.9972 0.9870 0.9670
City 200 0.9959 0.9860 0.9705
Statue 0.9898 0.9664 0.9419
Ibook 0.9981 0.9957 0.9782
City 500 0.9985 0.9959 0.9743
Statue 0.9978 0.9838 0.9767
Ibook 0.9995 0.9975 0.9913
City 1024 0.9995 0.9974 0.9884
Statue 0.9995 0.9957 0.9813

Table 2: The SSIM values of watermarked images of differ-
ent sizes under JPEG qualities Q = 90, 75 and 60.

MSSIM(I, Iw) =
1
M

M

∑
i=0

SSIM(I, Iw). (7)

The highest value of SSIM is 1, and it is achieved
when the original and watermarked images, that is, I
and Iw, are identical.

Our watermarked images have excellent PSNR
and SSIM values. In Figure 5, we present three im-
ages of different sizes, along with their corresponding
PSNR and SSIM values. Typical values for the PSNR
in lossy image compression are between 40 and 70
dB, where higher is better. In our experiments, the
PSNR values of 90% of the watermarked images were
greater than 40 dB. The SSIM values are almost equal
to 1, which means that the watermarked image is quite
similar to the original one, which proves the method’s
high fidelity.

In Table 1 and 2, we demonstrate the PSNR and
SSIM values of some selected images of various sizes
used in our experiments. We observe that both val-
ues, PSNR and SSIM, decrease as the quality factor
of the images becomes smaller. Moreover, the addi-
tive value c that enables robust marking under quali-
ties Q = 90, 75 and 60 does not result in a significant

image distortion as Tables 1 and 2 suggest; see also
the watermarked images on Figure 5.

In closing, we mention that Lena and Baboon im-
ages of Figure 4 are both of size 200× 200. Lena
image has PSNR values 55.4, 50.1, 46.2 and SSIM
values 0.9980, 0.9934, 0.9854 for Q = 90, 75 and
60, respectively, while Baboon image has PSNR val-
ues 52.7, 46.2, 42.5 and SSIM values 0.9978, 0.9908,
0.9807 for the same quality factors.

5.3 Other Experimental Outcomes

In the following, based on our experimental results,
we discuss several impacts concerning characteristics
of the host images and our embedding algorithm, and
also we justify them by providing explanations on the
observed outcomes.

The Additive Value Influences. As the experimen-
tal results show the PSNR and SSIM values decrease
after embedding the watermark in images with lower
quality index in its JPEG compression; see, Tables 1
and 2. That happens since our embedding algorithm
adds more information in the frequency of marked im-
age parts. By more information we mean a greater
additive factor c; see, Equetion 3.

We next discuss an important issue concerning the
the additive value c= copt returned by function f ; see,
Subsection 4.3. In Table 3, we show a sample of our
results demonstrating for each JPEG quality the re-
spective values of the additive factor copt . The figures
show that the copt value increases as the quality factor
of JPEG compression decreases. It is obvious that the
embedding algorithm is image dependent. It is worth
noting that copt values are small for images of rela-
tively small size while they increase as we move to
images of greater size.

ADDITIVE VALUES

Image Size Qual. 90 Qual. 75 Qual. 60

Ibook 0.4 1.2 2.3
City 200 0.5 1.2 2.0
Statue 0.6 1.5 2.4
Ibook 1.4 2.3 6.1
City 500 1.4 2.6 7.6
Statue 1.1 3.5 4.4
Ibook 1.7 4.7 9.5
City 1024 1.9 5.3 12.5
Statue 1.4 4.5 10.5

Table 3: The c = copt values for watermarking image sam-
ples with respect to JPEG qualities Q = 90, 75 and 60.

Moving beyond the sample images in order to
show the behaviour of additive value copt under dif-
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Figure 6: The average copt values for the tested images
grouped in three deferent sizes under the JPEG quality fac-
tors Q = 90, 75 and 60.

ferent image sizes, we demonstrate in Figure 6 the
average copt values of all the tested images grouped in
three different sizes. We decided to select three repre-
sentative groups for small, medium, and large image
sizes, that is, 200×200, 500×500 and 1024×1024,
respectively. For each size group we computed the
average copt under the JPEG quality factors Q = 90,
75 and 60.

As the experimental results suggest the embed-
ding process requires greater optimal values copt for
the additive variable c as we get to JPEG compres-
sions with lower qualities. The reason for that can be
found looking at the three main steps of JPEG com-
pression:

1. In the first step, the image is separated into 8× 8
blocks and converted to a frequency-domain rep-
resentation, using a normalized, two-dimensional
discrete cosine transform (DCT) [23].

2. Then, quantization of the DCT coefficients takes
place. This is done by simply dividing each com-
ponent of the DCT coefficients matrix by the cor-
responding constant from the same sized Quan-
tization matrix, and then rounding to the nearest
integer.

3. In the third step, it’s entropy coding which in-
volves arranging the image components in a
“zigzag” order employing run-length encoding
(RLE) algorithm that groups similar frequencies
together, inserting length coding zeros, and then
using Huffman coding on what is left.

Focusing on the second step, we should point out
that images with higher compression (lower quality)
make use of a Quantization matrix which typically
has greater values corresponding to higher frequen-
cies meaning that information for high frequency is
greatly reduced as it is less perceivable by human eye.

As we mentioned our method marks images in
the higher frequency domain which means that as
the compression ratio increases marks gradually be-
come weaker and thus copt increases to strengthen the
marks.

Furthermore, someone may notice that copt also
increases for larger images. That is because regard-
less of the image size the widths of the ellipsoidal
annuli remain the same meaning that the larger the
image the less frequency amplitude is covered by the
constant sized annuli. That makes marks less robust
and require a greater copt to strengthen them.

Frequency Domain Imperceptiveness. It is worth
noting that the marks made to embed the watermark
in the image are not just invisible in the image it-
self but they are also invisible in the image’s overall
Discrete Fourier Transform (DFT). More precisely, if
someone suspects the existence of the watermark in
the frequency domain and gets the image’s DFT, it is
impossible to detect something unusual. This is also
demonstrated in Figure 7, which shows that in con-
trast with using the ellipsoidal marks in the whole im-
age, using them in specific areas makes the overall
DFT seem normal.

(a) (b)

Figure 7: (a) The DFT of a watermarked image marked on
the full image’s frequency domain. (b) The DFT of a water-
marked image marked partially with our technique.

6 Concluding Remarks

In this paper we propose a method for embedding in-
visible watermarks into images and their intention is
to prove the authenticity of an image. The watermarks
are given in numerical form, transformed into self-
inverting permutations, and embedded into an image
by partially marking the image in the frequency do-
main; more precisely, thanks to 2D representation of
self-inverting permutations, we locate specific areas
of the image and modify their magnitude of high fre-



quency bands by adding the least possible information
ensuring robustness and imperceptiveness.

We experimentally tested our embedding and ex-
tracting algorithms on color JPEG images with vari-
ous and different characteristics; we obtained positive
results as the watermarks were invisible, they didn’t
affect the images’ quality and they were extractable
despite the JPEG compression. In addition, the ex-
perimental results show an improvement in compar-
ison to the previously obtained results and they also
depict the validity of our proposed codec algorithms.

It is worth noting that the proposed algorithms are
robust against cropping or rotation attacks since the
watermarks are in SiP form, meaning that they deter-
mine the embedding positions in specific image ar-
eas. Thus, if a part is being cropped or the image is
rotated, SiP’s symmetry property may allow us to re-
construct the watermark. Furthermore, our codec al-
gorithms can also be modified in the future to get ro-
bust against scaling attacks. That can be achieved by
selecting multiple widths concerning the ellipsoidal
annuli depending on the size of the input image.

Finally, we should point out that the study of our
quality function f remains a problem for further in-
vestigation; indeed, f could incorporate learning al-
gorithms [24] so that to be able to return the copt ac-
curately and in a very short computational time.
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