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Abstract

In this paper, we consider the recognition problem on a class of perfectly orderable graphs,

namely, the HHD-free graphs; such graphs do not contain any induced subgraph isomorphic to

a house, a hole, or a domino. We prove properties of the HHD-free graphs which enable us to

present an O(n m)-time and O(n + m)-space algorithm for determining whether a graph on n

vertices and m edges is HHD-free; currently, this is the fastest algorithm for this problem. We also

describe how the algorithm can be augmented to provide a certificate (an induced house, hole,

or domino) whenever it decides that the input graph is not HHD-free, thus answering an open

question posed by Hoàng and Sritharan (Theoretical Computer Science 259 (2001) 233-244). The

certificate computation requires O(n + m) additional time and O(n) space.

Keywords: HHD-free graphs, perfectly orderable graphs, certifying algorithms, recognition.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced
P4 abcd (i.e., a chordless path on the 4 vertices a, b, c, d) with a ≺ b and d ≺ c; such a P4 is called an
obstruction. In the early 1980s, Chvátal [4] defined the class of graphs that admit a perfect order and
called them perfectly orderable graphs.

Chvátal proved that if a graph G admits a perfect order ≺, then the greedy coloring algorithm
applied to (G,≺) produces an optimal coloring using only ω(G) colors, where ω(G) is the clique
number of G. This implies that the perfectly orderable graphs are perfect; a graph G is perfect if for
each induced subgraph H of G, the chromatic number χ(H) equals the clique number ω(H) of the
subgraph H . The class of perfect graphs was introduced in the early 1960s by Berge [1], who also
conjectured that a graph is perfect if and only if it contains no induced subgraph isomorphic to an
odd cycle of length at least five, or to the complement of such an odd cycle. This conjecture, known
as the strong perfect graph conjecture, has been recently established due to the work of Chudnovsky et
al. [3].

The interest in perfectly orderable graphs comes from the fact that several problems in graph
theory, which are NP-complete in general graphs, have polynomial-time solutions in graphs that admit
a perfect order [2, 7]; unfortunately, it is NP-complete to decide whether a graph admits a perfect
order [16]. Since the recognition of perfectly orderable graphs is NP-complete, we are interested in
characterizing graphs which form polynomially recognizable subclasses of perfectly orderable graphs.
Many such classes of graphs, with very interesting structural and algorithmic properties, have been
defined so far and shown to admit polynomial-time recognitions (see [2, 7]); note however that not all
subclasses of perfectly orderable graphs admit polynomial-time recognition [10].
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Figure 1: (a) The forbidden graps for the class of HHD-free graphs; (b) The graphs ‘P’, ‘A’, and the
building.

Several subclasses of the class of perfectly orderable graphs have been extensively studied in the
last decades due to their wide applicability in many fields of computer and engineering sciences; the
most notable subclasses include the chordal, co-chordal, comparability, P4-comparability, permutation,
chordal bipartite, and distance-hereditary graphs [2, 7]. It is worth noting that many optimization
problems, such as, coloring, max-clique, clique-cover, path-cover, domination set, independent set,
cliquewidth, treewidth, and also the recognition problem admit polynomial solutions on theses classes
of graphs.

An algorithm for the recognition problem is one that takes as input a graph G and decides whether
G has a certain property; such an algorithm, which we call recognition algorithm, returns “yes” if the
input graph has the property or “no” if it does not. A certifying recognition algorithm is a recognition
algorithm that provides a certificate with each answer that it produces [9, 14]. The certificate is a piece
of evidence that proves that the algorithm’s answer is correct; in particular, in case of membership
(i.e., the input graph G belongs to a given graph class G) a certifying algorithm usually provides
as certificate a structure for the input graph that characterizes the class G, while in case of non-
membership it provides as certificate a forbidden induced subgraph of the class G. For an extensive
discussion on certificates, see [14].

In this paper, we study the recognition problem for the class of HHD-free graphs, which properly
generalizes the well-known class of chordal graphs [7]: a graph is HHD-free if it contains no induced
subgraph isomorphic to a house, a hole (i.e., a chordless cycle on ≥ 5 vertices), or a domino (see
Figure 1(a)). In [11], Hoàng and Khouzam proved that the HHD-free graphs admit a perfect order,
and thus are perfectly orderable. A superclass of the HHD-free graphs, which also properly generalizes
the class of chordal graphs, is the class of HH-free graphs: a graph is HH-free if it contains no induced
subgraph isomorphic to a house or a hole. Although an HH-free graph is not necessarily perfectly
orderable, the complement of any HH-free graph is; this was conjectured by Chvátal and proved by
Hayward [8].

Hoàng and Khouzam [11], while studying the class of brittle graphs (a class of perfectly orderable
graphs which contains the HHD-free graphs), showed that HHD-free graphs can be recognized in O(n4)
time, where n denotes the number of vertices of the input graph. An improved result was obtained
by Hoàng and Sritharan [12] who presented an O(n3)-time algorithm for recognizing HH-free graphs
and showed that HHD-free graphs can be recognized in O(n3) time as well; for each vertex v of the
input graph, their algorithm relies on computing the chordal completion of the (ordered) non-neighbors
of v, and checking whether the resulting graph is chordal. A further improvement was achieved by
Nikolopoulos and Palios [18]: based on properties characterizing the chordal completion of a graph,
they were able to avoid performing the chordal completion step, which is the most time-consuming
ingredient of the algorithm in [12], and described algorithms for recognizing HH-free and HHD-free
graphs that require O(n min{m α(n, n), m+n log n}) time and O(n+m)-space, where m is the number
of edges of the input graph, and α( , ) denotes the very slowly growing functional inverse of Ackermann’s
function. On other related classes of perfectly orderable graphs, Eschen et al. [6] recently described
recognition algorithms for several of them, among which a recognition algorithm for HHP-free graphs;
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a graph is HHP-free if it contains no hole, no house, and no “P” as induced subgraphs (see Figure 1(b)).
Their algorithm is based on the property that every HHP-free graph is HHDA-free graph (a graph
with no induced hole, house, domino, or “A”), and thus a graph G is HHP-free graph if and only if
G is HHDA-free and contains no “P” as an induced subgraph. The characterization of HHDA-free
graphs due to Olariu [20] (a graph G is HHDA-free if and only if every induced subgraph of G either
is chordal or contains a non-trivial module) and the use of modular decomposition [15] allowed Eschen
et al. to present an O(n m)-time recognition algorithm for HHP-free graphs.

In this paper, we present a new, faster algorithm for recognizing HHD-free graphs. For each
vertex v of a given graph G, our algorithm computes the partition of the non-neighbors of v into sets
of vertices based on their common neighbors with v, and following that, the connected components of
the subgraphs induced by these partition sets. We show that if G is HHD-free, the graph obtained from
G by shrinking each of these connected components into a single vertex is “almost chordal.” As a result,
we obtain an O(n m)-time and O(n+m)-space algorithm for determining whether a graph on n vertices
and m edges is HHD-free. Our approach is different from the approach of [12, 18], where the decision
is based on properties of the graph obtained by considering the chordal completion of the subgraph
induced by the non-neighbors of each vertex v; the chordal completion is explicitly computed in [12]
whereas it is implicitly maintained by means of the array NextNeighbor in [18]. Our result improves
upon the algorithms in [12] and [18]: our algorithm is no slower than the O(n3)-time algorithm in [12]
and achieves a better time complexity than [18] in the case where m = o(n log n) while it matches its
time complexity of [18] otherwise (recall that the algorithm in [18]requires O(n min{m α(n, n), m +
n log n}) time).

An additional advantage of our recognition algorithm is that it is certifying since it provides a
certificate in the case of non-membership. In particular, we describe an augmented version of our
recognition algorithm which provides a forbidden induced subgraph of the class of HHD-free graphs
(an induced house, hole, or domino) whenever it decides that the input graph is not HHD-free; the
certificate computation requires O(n + m) additional time and O(n) space. This answers an open
question posed by Hoàng and Sritharan [12]. An early version of this work has appeared in [19].

The paper is structured as follows. In Section 2, we review the terminology and the notation
that we use throughout the paper. In Section 3, we establish properties that enable us to efficiently
determine whether a given graph is HHD-free, describe the algorithm, and give its analysis. Section 4
presents the certificate computation while Section 5 summarizes our results and presents some open
problems.

2 Terminology - Notation

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,
V (G) and E(G) denote the set of vertices and of edges of G respectively. The subgraph of G induced
by a subset S of G’s vertices is denoted by G[S]. The neighbors of a vertex x of G, i.e., the vertices
adjacent to a x, form the neighborhood NG(x) of x; the cardinality of NG(x) is the degree of x. The
closed neighborhood of x is defined as NG[x] := NG(x) ∪ {x}. For simplicity, we denote the set of
non-neighbors of x in G by MG(x), i.e., MG(x) = V (G) −NG[x].

A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for i = 1, 2, . . . , k;
we say that this is a path from v0 to vk and that its length is k. A path is called simple if none of
its vertices occurs more than once; it is called trivial if its length is equal to 0. A path (simple path)
v0v1 · · · vk is a cycle (simple cycle) of length k + 1 if v0vk ∈ E(G). An edge connecting two non-
consecutive vertices in a simple path (cycle) is called a chord ; then, a simple path (cycle) v0v1 · · · vk

of a graph G is chordless if G contains no chords of the path (cycle), i.e., vivj 6∈ E(G) for any two
non-consecutive vertices vi, vj in the path (cycle). The chordless path (chordless cycle, respectively)
on n vertices is commonly denoted by Pn (Cn, respectively).
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A connected component of a graph G is a maximal set A ⊆ V (G) such that the subgraph G[A] is
connected, i.e., there exists a path in G connecting any two vertices in A.

3 The Algorithm

3.1 Outline of the algorithm

Our algorithm works in a fashion similar to the algorithms in [12, 18] in that it processes each vertex v

of the input graph G seeking evidence that G contains an induced house, hole, or domino. If no
evidence is found, then the algorithm reports that G is HHD-free. Therefore, our algorithm follows
the outline shown in Figure 2.

Algorithm Recognize-HHD-free(graph G)

for each vertex v of G do
Process Vertex(G, v);

print(“The graph G is HHD-free”);

Figure 2: Algorithm Recognize-HHD-free.

Again, similarly to the algorithms in [12, 18], our Procedure Process Vertex works on the ordering
of the non-neighbors of v in non-decreasing number of common-neighbors with v. From that point on,
the three algorithms part ways. The algorithm in [12] performs chordal completion in the subgraph
of G induced by the (ordered) non-neighbors of v. The algorithm in [18] maintains this chordal
completion implicitly by means of the NextNeighbor array. The present algorithm works on a special
shrunk graph Gv (in fact, it computes the above mentioned ordering of non-neighbors of v in that
graph instead of working on G); the graph Gv possesses some very interesting properties: it maintains
information on whether the input graph G contains an induced house, hole, or domino, while at the
same time ensuring that if G does not contain an induced house, hole, or domino then the subgraph of
Gv induced by the non-neighbors of v is “nearly” chordal (to become more precise in Section 3.3). For
this reason, Procedure Process Vertex applied on the pair (G, v) is a careful extension of the perfect-
elimination-ordering (PEO) testing algorithm [21, 7] to handle the special structure of the graph Gv;
note that the PEO testing algorithm is used to detect whether a graph is chordal if an ordering
of its vertices produced by the algorithm LexBFS [21, 7] is given. More details on how Procedure
Process Vertex works are given in Section 3.4 after we have formally defined the graph Gv, established
its properties, and shown how we can take advantage of these properties to be able to detect whether
v participates in an induced house, hole, or domino.

3.2 The graph Gv

The motivation for the construction of the graph Gv comes from the observation that if a vertex v is
the top vertex of a house, participates in a hole, or is a corner vertex of a domino, all these subgraphs
include a path y1uvwy2 where y1, y2 are non-neighbors of v having different common neighbors with
v. This suggests that it may be a good idea to partition the set of non-neighbors of v based on their
common neighbors with v and then to work with the graph that results from shrinking each of the
partition sets into a single super-vertex.

However, shrinking each of the different partition sets into a single vertex leads to error as the
following example indicates: consider the graph G on the left of Figure 3 which contains no house,
hole, or domino; the partition of the non-neighbors of v based on the common neighbors with v yields
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Figure 3: Shrinking each partition set into a single vertex may lead to error.

the sets P, Q, R; shrinking these sets into vertices x, y, z, respectively, yields the graph on the right of
Figure 3, which contains the hole vaxyzc. That is, the shrunk graph cannot be used for the detection
of holes in G because it may contain a hole even if G does not contain one.

A closer look at the example reveals that the error is due to the fact that the two connected
components of the subgraph G[Q] induced by the partition set Q in Figure 3 were shrunk into the
same vertex. This suggests that if one intends to apply a shrinking mechanism, one needs to treat the
connected components of any partition set as separate entities.

Therefore, we do the following:

1. we compute the partition of the non-neighbors MG(v) of vertex v in G based on the common
neighbors of the vertices in MG(v) with v;

2. we order the partition sets by non-decreasing number of common neighbors with v (ties are
broken arbitrarily); let Sv = (S1, S2, . . . , Sℓ) be the resulting ordering;

3. for each set Si, we compute the connected components of the subgraph G[Si];

4. we construct an auxiliary graph Gv by shrinking each of the connected components into a single
vertex: namely, for each i = 1, 2, . . . , ℓ, let

Zi = { zC1, zC2 , . . . , zCti
| C1, C2, . . . , Cti are the conn. components of G[Si] }; (1)

then
V (Gv) = {v} ∪ NG(v) ∪

(⋃ℓ
i=1 Zi

)

E(Gv) = { u w | u, w ∈ {v} ∪ NG(v) : uw ∈ E(G) }
∪ { u zC | u ∈ NG(v), ∃x ∈ conn. component C of G[Si] : ux ∈ E(G) }
∪ { zC zC′ | ∃x, y ∈ conn. components C and C′ of G[Si] and G[Sj ], resp., where i 6= j :

xy ∈ E(G) }.

Note that when a component C is shrunk into a vertex zC , then

(i) zC is adjacent to a vertex u ∈ NG(v) iff there exists a vertex x ∈ C such that ux ∈ E(G), and

(ii) zC is adjacent to vertex zC′ that resulted from the shrinking of a component C′ 6= C iff there
exist vertices x ∈ C and y ∈ C′ such that xy ∈ E(G).

As an example, Figures 4(b) and (c) show the graphs Gv and Gu for the graph shown (in two different
ways) in Figure 4(a).

Notation: Since for vertex v, NG(v) = NGv(v), for simplicity, in the following we will write N(v)
instead.
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Figure 4: (a) The same graph shown in two different ways (with respect to vertices v and u);

(b) the graph Gv; (c) the graph Gu.

3.3 Properties of the graph Gv

In this subsection, we prove some properties that a graph Gv corresponding to vertex v of G possesses.

It follows from the definition of the graph Gv and of the sets Zi (1 ≤ i ≤ ℓ), that the ordering
(Z1, Z2, . . . , Zℓ) contains the sets ordered by non-decreasing number of common neighbors with v.
Then, the following lemma holds (the lemma holds for the ordering Sv of the given graph g as well):

Lemma 3.1 Let v be a vertex of a graph G and Gv the corresponding graph. Consider the partition of
the non-neighbors of vertex v in Gv based on their common neighbors with v and let (Z1, Z2, . . . , Zℓ) be
the ordering of the partition sets ordered by non-decreasing number of common neighbors with v (ties
are broken arbitrarily). Then, for any two sets Zi and Zj where i < j, the following hold:

(i) There exists a neighbor y of v such that y is adjacent to all the vertices in Zj and to no vertex
in Zi.

(ii) Let z ∈ Zi and z′ ∈ Zj such that zz′ ∈ E(Gv). If z has a common neighbor with v that is not a
neighbor of z′, then the graph Gv contains an induced house (with v at its top) or C5.

Proof: (i) Let ni and nj be the number of common neighbors of the vertices in Zi and in Zj ,
respectively, with v. The ordering of the partition sets implies that ni ≤ nj , since i < j. If ni < nj ,
then clearly there exists a vertex y as described in the statement of the lemma. Such a vertex also
exists if ni = nj , because the sets Zi, Zj are different and hence their sets of common neighbors with
v differ.
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(ii) Since i < j, statement (i) of this lemma holds and hence there exists a neighbor y of v such that
y is adjacent to z′ but is not adjacent to z. Suppose that there exists a vertex x that is a neighbor
of both z and v but not of z′. Then, the vertices v, x, z, z′, y induce a house (with v at its top) if
xy ∈ E(Gv) or a C5 if xy 6∈ E(Gv).

Additionally, the existence of chordless cycles in the graph Gv for some vertex v of the given
graph G implies that G contains a chordless cycle of at least equal length. In particular:

Lemma 3.2 Let G be a graph. Consider the graph Gv as defined above w.r.t. a vertex v of G and
let OGv = zA1zA2 · · · zAk

(k ≥ 3) be a chordless cycle in Gv. If zAi is v or a neighbor of v in
Gv, let Ai = {zAi}, whereas if zAi is a non-neighbor of v, let Ai be the connected component of a
subgraph G[Sti ] of G which was shrunk into vertex zAi . Then, G contains a chordless cycle

OG = x1,1 · · · x1,j1 x2,1 · · · x2,j2 · · · xk−1,1 · · · xk−1,jk−1 xk,1 · · · xk,jk
,

where ∀ i = 1, . . . , k, xi,1 · · ·xi,ji is a (chordless) path in G[Ai] and ji ≥ 1; the length of OG is equal
to

(∑k
i=1 ji

)
which is no less than the length of the cycle OGv (= k).

Proof: Since zAizAi+1 ∈ E(Gv) (1 ≤ i < k) there exist vertices qi ∈ Ai and pi+1 ∈ Ai+1 such that
qipi+1 ∈ E(G) (note that if zAi is v or a neighbor of v then qi = zAi ; similarly for pi+1). Then, for
1 ≤ i ≤ k, since pi, qi ∈ Ai and since the subgraph G[Ai] is connected (no matter whether zAi is a
neighbor of v or not), there exists a (possibly trivial) path, say, ρi, in G[Ai] from pi to qi. Therefore,
the vertices of the paths ρ1, ρ2, . . . , ρk in order form a (not necessarily chordless) cycle O′

G in G, from
which we can obtain a chordless cycle OG. Since the cycle OGv is chordless, no vertex in Ai (1 ≤ i ≤ k)
is adjacent to vertices of the cycle O′

G other than vertices in the sets Aj preceding and following the
set Ai around the cycle. Therefore, the chordless cycle OG has to pass from vertices in each of Ai and
is of the form given in the statement on the lemma; consequently its length is at least equal to the
length of the cycle OGv .

The above property is crucial in showing the following very important result.

Corollary 3.1 Let G be a graph and consider the graph Gv as defined above w.r.t. any vertex v of G.
If Gv contains a house, hole, or domino then so does G.

Proof: Lemma 3.2 readily implies that the existence of an induced hole in Gv implies the existence of
an induced hole in G.

Now, consider that Gv contains a house induced by the vertices zA, zB, zC , zD, zE so that zAzBzCzDzE

is a cycle in Gv that has the chord zBzE, i.e., zA is the top vertex of the house with neighbors and
zB and zE . As in the statement of Lemma 3.2, let us associate the vertices zA, zB, zC , zD, zE with the
subsets A, B, C, D, E of V (G), respectively, i.e., if zX is a neighbor of v, then X = {zX} ⊆ V (G), oth-
erwise, X is the connected component of G which was shrunk into vertex zX (note that, in either case,
G[X ] is connected). In accordance with Lemma 3.2, the existence of the chordless cycle zBzCzDzE

in Gv implies that G contains a chordless cycle OG of length ≥ 4. If the length of OG is ≥ 5 then
G contains an induced hole; so, suppose that the length of the cycle OG is 4. Then, as proved in
Lemma 3.2, the cycle is b′cde′ where b′ ∈ B, c ∈ C, d ∈ D, and e′ ∈ E (see Figure 5(a)). Similarly,
the existence of the chordless cycle zAzBzE in Gv implies that G contains a chordless cycle O′

G of
length ≥ 3. If the length of O′

G is ≥ 5 then G contains an induced hole; so, suppose that the length
of the cycle O′

G is 3 or 4. In either case, the cycle contains an edge be where b ∈ B and e ∈ E (see
Figure 5(a)).

Since b, b′ ∈ B and since G[B] is connected, let ρB = x0x1 · · ·xk be a (possibly trivial) shortest
path in G[B] connecting b′ = x0 to b = xk. Similarly, let ρE = y0y1 · · · yℓ be a (possibly trivial)
shortest path in G[E] connecting e′ = y0 to e = yℓ. Next, among the vertices of ρB that are adjacent
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Figure 5: For the proof of Corollary 3.1; (a) for the case of a house (xi coincides with b);

(b) for the case of a domino.

to both c and e′ (note that b′ = x0 is such a vertex), select the vertex that is closest to b along ρB; let
xi be that vertex (in Figure 5(a), xi = b). Then, no vertex xi+1, . . . , xk is adjacent to both c and e′. If
there exist vertices among xi+1, . . . , xk that are adjacent to c, let xi′ be the vertex that is closest to xi

along ρB. Then: if i′ = i+1, then the vertices vi, vi′ , c, d, e′ induce a house in G; if i′ = i+2, then the
vertices vi, vi+1, vi′ , c, d, e′ induce a domino in G; finally, if i′ ≥ i + 3, then the vertices vi, vi+1, . . . , vi′

induce a hole in G. In a similar fashion, if there exist vertices among xi+1, . . . , xk that are adjacent to
e′, then G contains an induced house, hole, or domino. So, in the following, we assume that no vertex
among xi+1, . . . , xk is adjacent to c or e′.

Let us now work similarly on the path ρE . More specifically, let yj be the vertex of ρE that
is adjacent to both xi and d, and is closest to e along ρE (see Figure 5(a)). If any of the vertices
yj+1, . . . , yℓ is adjacent to xi or d, then, as in the previous paragraph, we conclude that the graph G

contains an induced house, hole, or domino. So, in the following, we assume that no vertex among
yj+1, . . . , yℓ is adjacent to xi or d.

If xi = b and yj = e, then the subgraph of G induced by the vertices c, d, and the vertices of the
cycle O′

G (of length 3 or 4) contains an induced house or domino: If O′
G is of length 3, then c, d, and

the vertices of O′
G induce a house. Next, suppose that O′

G is of length 4; in particular, let O′
G = befg.

If f, g ∈ A, then c, d, and the vertices of O′
G induce a domino. If f ∈ E, then g ∈ A. If vertex f is

adjacent to both b and d, then g, b, c, d, f induce a house (with g at its top). If f is adjacent to exactly
one of b and d, then f, b, c, d, e induce a house (with f at its top). If f is not adjacent to b or d, then
b, c, d, e, f, g induce a domino. Similarly if g ∈ B.

Now, if xi 6= b or yj 6= e, consider the shortest path connecting xi to yj in the subgraph of G induced
by the vertices xi, xi+1, . . . , xk−1, b, e, yℓ−1, . . . , yj+1, yj in which we have removed the edge xiyj . If
the shortest path is of length ≥ 4, then its vertices induce a hole in G. If its length is 2 or 3, then its
vertices along with c and d induce a house or a domino, respectively.

The proof for a domino is similar to that for the house. Suppose that Gv contains a domino
induced by the vertices zA, zB, zC , zD, zE, zF so that zAzBzCzDzEzF is a cycle in Gv that has the
chord zBzE . As in the case of the house, we associate the vertices zA, zB, zC , zD, zE , zF with the
subsets A, B, C, D, E, F of V (G), respectively (see Figure 5(b)). In accordance with Lemma 3.2, the
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existence of the chordless cycles zBzCzDzE and zAzBzEzF in Gv implies that G contains corresponding
chordless cycles OG and O′

G, respectively, each of length ≥ 4. If the length of any of these cycles is
≥ 5 then G contains an induced hole; so, suppose that the length of both OG and O′

G is 4 and let
them be OG = b′cde′ and O′

G = befg where g ∈ A, b, b′ ∈ B, c ∈ C, d ∈ D, e, e′ ∈ E, and f ∈ F (see
Figure 5(b)). From then on, the proof proceeds in the same way as in the case of the house under the
conditions that the length of O′

G is 4, and that f belongs to a separate set F and thus is not adjacent
to b or d.

On the other hand, due to the way the graph Gv is defined, if v is a (in some cases, special) vertex in
a house, hole, or domino in G then the graph Gv contains a house, hole, or domino. More specifically:

Lemma 3.3 If a graph G contains an induced house, hole, or domino then there exists a vertex v ∈
V (G) such that in the graph Gv (as defined in Subsection 3.2) w.r.t. vertex v:

(i) v is the top vertex of an induced house in Gv or

(ii) v belongs to an induced hole in Gv or

(iii) v is a corner vertex of an induced domino in Gv.

Proof: We assume that G contains an induced house, hole, or domino. We consider the following
cases:

(i) Suppose that G contains an induced house: Let v be the vertex at the top of the house and let
the remaining vertices be a, b, c, d such that vabcd is a cycle of G. For the non-neighbors b and
c of v, let b ∈ Si and c ∈ Sj . Clearly i 6= j since b and c have different common neighbors with
v. Consider the graph Gv w.r.t. vertex v. Let zB (zC , resp.) be the vertex of Gv which resulted
from the shrinking of the connected component B (C, resp.) of G[Si] (G[Sj ], resp.) containing
b (c, resp.). Then, the vertices v, a, zB, zC , d induce a house in Gv having v as its top vertex.

(ii) Suppose that G contains an induced hole: Let v be any vertex of the hole and let the hole
be vabp1p2 · · · pkcd, i.e., the vertices b, p1, . . . , pk, c are all non-neighbors of v in G. Consider
the graph Gv w.r.t. vertex v. The path bp1 · · · pkc in the subgraph of G induced by the non-
neighbors of v implies that there exists a non-simple path in the subgraph of Gv induced by the
non-neighbors of v connecting zB to zC , where zB, zC are the vertices of Gv that resulted from
the shrinking of the connected components containing b and c, respectively. From this path, we
can obtain a chordless path ρ connecting zB to zC (it suffices to apply breadth-first-search on
this path starting from zB until zc is reached, and then collect the BFS-tree edges from zB to
zC). Then, the vertices v, a, d and the vertices of the path ρ induce a hole in Gv containing v

(even when the length of ρ is equal to 1).

(iii) Suppose finally that G contains an induced domino: Let v be a corner vertex of such a domino
and let vabcde be the Hamilton cycle of the domino. Consider the graph Gv w.r.t. vertex v.
Let zB, zC , zD be the vertices of Gv corresponding to the connected components B, C, and D,
respectively, of G containing b, c, and d, respectively; zB, zC , zD are different as b, c, d have differ-
ent common neighbors with v. Due to the domino, the graph Gv contains the cycle vazBzCzDe.
Next, if there exist vertices b′ ∈ B and d′ ∈ D such that b′d′ ∈ E(G), then the vertices b′, d′, e, v, a

induce a house (with b′ at its top) in G, and according to case (i) the graph Gb′ corresponding
to b′ would contain an induced house with b′ at its top. Suppose now that no vertex in B is
adjacent to a vertex in D. Then, zBzD 6∈ Gv and the vertices v, a, zB, zC , zD, e induce a domino
in Gv having v as a corner vertex.
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Figure 6: For the proofs of: (a) Lemmas 3.4 and 3.6; (b) Lemmas 3.5 and 3.7
(edges that may or may not exist are shown dashed).

The above result readily implies a way to check if an input graph G is HHD-free: process the graph Gv

for each vertex v of G checking whether v is the top vertex of a house, or belongs to a hole, or is a corner
vertex of a domino in Gv; if it is/does so, then G is not HHD-free. Of course, if there exists another
induced house, hole, or domino in Gv, then, according to Corollary 3.1, again G is not HHD-free.

In this way, we reduced the problem of deciding whether a graph G is HHD-free into the problem
of deciding whether any of the graphs Gv for the vertices of G is HHD-free. It seems that we are
back at the beginning. However, this is not true because a graph Gv has the important property
that if G is HHD-free then its subgraph induced by the non-neighbors of v is “nearly” chordal, or
the contrapositive: if its subgraph induced by the non-neighbors of v is not “nearly” chordal then G

is not HHD-free; the latter property is proved in the next lemma and is crucial in achieving a faster
algorithm.

Lemma 3.4 Let v be a vertex of a graph G and zA, zB, zC three vertices of the graph Gv belonging to the
partition sets Zi, Zj, Zk, respectively, and assume that i < j < k. Suppose further that zAzB ∈ E(Gv)
and zAzC ∈ E(Gv). Then if zBzC 6∈ E(Gv), the graph G contains an induced house, hole, or domino.

Proof: Since i < j, in accordance with Lemma 3.1 (statement (i)), there exists a vertex x ∈ N(v)
such that xzB ∈ E(Gv) and xzA 6∈ E(Gv). Similarly, since j < k, there exists a vertex y ∈ N(v) such
that yzC ∈ E(Gv) and yzB 6∈ E(Gv); see Figure 6(a).

Now, if yzA ∈ E(G) then the vertices v, x, y, zA, zB induce a house (with v at its top) or a C5

in Gv depending on whether xy ∈ E(Gv) or not, respectively. So suppose next that yzA 6∈ E(Gv).
If xzC ∈ E(G) then the vertices x, zB, zA, zC induce a C4, and thus Gv contains a house induced
by x, y, zA, zB, zC (with y as its top vertex) if xy ∈ E(Gv) or a domino induced by v, x, y, zA, zB, zC

otherwise; if xzC 6∈ E(G) then Gv contains a C5 induced by x, y, zA, zB, zC if xy ∈ E(Gv) or a C6

induced by v, x, y, zA, zB, zC otherwise.

In all cases, the graph Gv contains an induced house, hole or domino; then, by Corollary 3.1, G

contains an induced house, hole, or domino.

Therefore, in the case in which each non-neighbor of v, belonging to a set Zi, is adjacent to at
most 1 element of Zj with j > i, this lemma has the following interesting implication: if the subgraph
of Gv induced by the non-neighbors of v is not chordal then the graph G is not HHD-free. Then, we
could apply a (linear-time) chordal recognition algorithm in that subgraph. If the algorithm returned
“no”, that is, the subgraph was not chordal, then we could safely answer that G is not HHD-free. If
the algorithm returned “yes”, then we could apply the algorithm of [12] without having to execute the
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chordal completion step, or the algorithm of [18] without having to compute the array NextNeighbor,
and we could answer whether G contains an induced house or building (see Figure 1(b)) with v at
its top. If any graph Gv contained a house or a building, we could correctly report that G was not
HHD-free; if none of them did, then G would not contain an induced house or hole. Then, all that
would be needed, would be to test for an induced domino. By avoiding the chordal completion and
the computation of the array NextNeighbor, we would have reduced the time complexity of the overall
algorithm, as all the other steps in the algorithms of [12] and [18] can be done in O(nm) time.

The above method relies on the assumption that no non-neighbor of v in a set, say, Zi, is adjacent
to more than 1 element of sets Zj with j > i, which is not true in general. Nevertheless, even if this
assumption is not true, we can still detect houses, holes, or dominoes, if there exist in Gv, by taking
advantage of the following property.

Lemma 3.5 Let v be a vertex of a graph G and zA, zB, zC three vertices of the graph Gv belonging to
the partition sets Zi, Zj , Zk, respectively, where i < j < k, such that zAzB ∈ E(Gv) and zBzC ∈ E(Gv).
Suppose further that there exists a vertex zB′ ∈ Zj such that zAzB′ ∈ E(Gv) and zB′zC 6∈ E(Gv). Then,
the graph G contains an induced house, hole, or domino.

Proof: Since i < j, in accordance with Lemma 3.1 (statement (i)), there exists a vertex x ∈ N(v) such
that xzB ∈ E(Gv), xzB′ ∈ E(Gv), and xzA 6∈ E(Gv). Additionally, in accordance with Lemma 3.1
(statement (ii)) due to the edges zBzC and xzB , if x 6∈ NGv (zc) then Gv contains an induced house or
C5. So, next consider that xzC ∈ E(Gv); see Figure 6(b).

If zAzC ∈ E(G) then the conditions of Lemma 3.4 for zA, zB′ , and zC would be met and then
the graph Gv would contain an induced house, hole, or domino. If zAzC 6∈ E(G), the vertices
x, zA, zB, zB′ , zC induce a house with zC at its top; note that zBzB′ 6∈ E(Gv) since the vertices
zB, zB′ resulted from shrinking different connected components of the subgraph G[Sj ].

In all cases, the graph Gv contains an induced house, hole or domino; then, by Corollary 3.1, G

contains an induced house, hole, or domino.

The lemma implies that in Gv whenever a non-neighbor z of v with z ∈ Zi is adjacent to two other
non-neighbors z′ and z′′ belonging to the same set, say, Zj with j > i, then we check whether z′ and
z′′ have the same neighbors “to the right”; if they don’t, then the graph G is not HHD-free.

3.4 Description of the Algorithm

Based on the results in Lemmas 3.4 and 3.5, in Figure 7 we give a detailed description of Procedure
Process Vertex with parameters the input graph G and one of its vertices v. From G, we construct the
auxiliary graph Gv by shrinking each of the connected components of each of the subgraphs G[Si], i =
1, 2, . . . , ℓ, into a single vertex; the components in G[Si] yield the vertices in the set Zi (Step 2). Then,
for each i = 1, 2, . . . , ℓ, we process all the vertices in the set Zi together (note that, by construction,
in the graph Gv there are no edges between any two vertices in Zi).

For any two vertices z′, z′′ in each set Zi that are neighbors of a vertex in some set Zt with t < i,
we intend to check that z′ and z′′ have the same neighbors “to the right” and if not, to report that G

is not HHD-free in accordance with Lemma 3.5. This checking is delayed until the processing of the
set Zi and thus, we construct a partition PZi of each set Zi into sets of vertices that should have the
same neighbors “to the right” if G is HHD-free: Initially, each vertex belongs to a separate partition
set (Step 3). Whenever, a non-neighbor z of v in Gv has more than one immediately next neighbors
(i.e., neighbors in the minimum-index set, say, Zk, among all the sets containing neighbors of z “to
the right”), then the partition sets containing these neighbors are unioned (Step 4.3); in fact, checking
only the immediately next neighbors of a representative of each partition set, instead of each vertex z,
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suffices since this is done after all the vertices in a partition set have been found to have the same
neighbors “to the right” (Step 4.2).

The rest of the algorithm is an extension of the linear-time perfect-elimination-ordering test al-
gorithm of Rose, Tarjan, and Lueker [21, 7] applied on the graph Gv. With each non-neighbor z of
vertex v in the graph Gv, we associate an (initially empty) set A(z) (Step 3) which collects all the
vertices that will eventually have to be checked for adjacency with z. This checking is also delayed
until the partition set, say, Pj , containing z gets processed; in fact, the elements of A(z) are checked
for adjacency with a representative of the set Pj (Step 4.4), which is correct since all the vertices in
Pj have been checked to have the same neighbors “to the right” (and of course they have the same
common neighbors with v).

For example, when applied on the graph Gv in Figure 4(b), we have: the set Z1 contains a single
vertex z1, whose processing in Step 4.3 produces W = {z2, z3} and thus these two vertices are unioned
in a single partition set; when Z2 gets processed, the partition set {z2, z3} is processed and in Step 4.2,
we find out that the two vertices do not have the same neighbors “to the right” (no matter which one
is picked as the representative zR), and the algorithm correctly concludes that the given graph G is
not HHD-free. If the algorithm is applied on the graph Gu in Figure 4(c), then we have: the set Z1

contains a single vertex z′1, whose processing in Step 4.3 produces W = {z′3} and X ′ = {z′3, z′4}, and
thus the set A(z′3) becomes {z′4}; next, during the processing of Z2 and its element z′2, we have that
W = {z′3} and X ′ = {z′3, v}, and thus the vertex v is added to A(z′3); finally, when Z3 gets processed,
in Step 4.4 of the processing of z′3, we find that A(z′3) cobtains v and z′4, none of which is a neighbor
of z′3, and thus the algorithm correctly concludes that the given graph G is not HHD-free.

3.5 Correctness

The correctness of Procedure Process Vertex, and consequently Algorithm Recognize-HHD-free, is
established in Theorem 3.1 with the help of Lemmas 3.6-3.8 through which we establish that Procedure
Process Vertex reports that the given graph is not HHD-free under certain conditions that are often
met in Theorem 3.1. In particular, these 3 lemmas prove the afore mentioned result for Procedure
Process Vertex if the conditions of Lemmas 3.4, 3.5, and 3.1(ii) respectively, hold.

Lemma 3.6 Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2
and suppose that there exist zA ∈ Zi, zB ∈ Zj, and zC ∈ Zk with i < j < k such that zAzB ∈ E(Gv),
zBzC ∈ E(Gv), and zBzC 6∈ E(Gv); see Figure 6(a). Then Procedure Process Vertex, when run on the
pair (G, v), reports that the graph G is not HHD-free.

Proof: Among all triples of vertices zA, zB, zC meeting the conditions of the lemma, consider a triple
such that j − i is minimum.

Consider the processing of the graph Gv and in particular the processing of the partition set
containing zA. Clearly, X ′ 6= ∅, since zB, zC ∈ X ′; let zX be the vertex chosen at the end of Step 4.3 in
order that the set X−W be concatenated to A(zX). Then, zX belongs to Zj (as does zB). Suppose for
contradiction that zX belongs to Zq where q < j. Then zXzB ∈ E(Gv) otherwise the triple zA, zX , zB

would contradict the minimality of the triple zA, zB, zC . Similarly, zXzC ∈ E(Gv). But then again,
the triple zX , zB, zC contradicts the minimality of the triple zA, zB, zC . Therefore, zX ∈ Zj (as does
zB) and the vertices zX and zB both end up belonging to the set W in Step 4.3 during the processing of
the partition set containing zA; due to that, the partition sets to which zX and zB belong get unioned
(if they have not got unioned earlier). Later the vertices in X −W are concatenated to A(zX) and
thus zC is concatenated to A(zX).

Consider now the processing of the partition set containing zX (and zB) and let zR be the arbitrary
vertex selected in Step 4.1. If zC ∈ NGv(zR) then Procedure Process Vertex reports that the graph G

is not HHD-free in Step 4.2 because zB is not adjacent to zC . If zC 6∈ NGv(zR) then Procedure
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Procedure Process Vertex (graph G, vertex v)

1. Compute the set N(v) of neighbors and the set of non-neighbors of v in G;
partition the non-neighbors of v based on their common neighbors with v in G, and order the
partition sets by non-decreasing number of such common neighbors; let Sv = (S1, S2, . . . , Sℓ) be
the resulting ordering;

2. Construct the auxiliary graph Gv from a copy of G by shrinking each connected component C

of the subgraphs G[Si], i = 1, 2, . . . , ℓ, into a single vertex zC ; let Zi (i = 1, 2, . . . , ℓ) be the set
of vertices of Gv obtained from shrinking the connected components of G[Si];

3. for i← 1 to ℓ do
form a partition PZi of the set Zi by placing each element of Zi in a separate partition set;
for each vertex zC ∈ Zi do

associate with zC an initially empty set A(zC);

4. for i← 1 to ℓ do
let the partition PZi of Zi be PZi = {P1, P2, . . . , Pt};
for j ← 1 to t do
4.1 let zR be any vertex contained in the set Pj ; {a representative of Pj}

X ′ ← NGv(zR) ∩
(⋃ℓ

r=i+1 Zr

)
; {neighbors of zR “to the right”}

4.2 if Pj is not a singleton set
then {check that all vertices in Pj have the same neighbors “to the right”}

if there exists a vertex in Pj that is not adjacent in Gv to a vertex in X ′ or
is adjacent to a vertex in

(⋃ℓ
r=i+1 Zr

)
−X ′

then print(“The graph G is not HHD-free”); exit;
4.3 if X ′ 6= ∅

then let Zk be the minimum-index set such that X ′ ∩ Zk 6= ∅;
W ← X ′ ∩ Zk; {closest neighbors of zR “to the right”}
if |W | > 1
then union the sets of the partition PZk

(of Zk) containing the vertices in W ;
X ← X ′ ∪

(
NGv(zR) ∩N(v)

)
; {include neighbors in N(v)}

choose any zX ∈ W and concatenate the set X −W to A(zX);
4.4 if

(⋃
z∈Pj

A(z)
)
−NGv(zR) 6= ∅

then print(“The graph G is not HHD-free”); exit;

Figure 7: Procedure Process Vertex.

Process Vertex again reports that the graph G is not HHD-free; in Step 4.4, the set
⋃

z∈Ps
A(z)

includes A(zX) which contains zC whereas zC is not adjacent to zR.

Lemma 3.7 Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and
suppose that there exist zA ∈ Zi, zB, zB′ ∈ Zj, and zC ∈ Zk with i < j < k such that zAzB ∈ E(Gv),
zAzB′ ∈ E(Gv), zBzC ∈ E(Gv), and zB′zC 6∈ E(Gv); see Figure 6(b). Then, Procedure Process Vertex,
when run on the pair (G, v), reports that the graph G is not HHD-free.

Proof: Fix vertices zB and zB′ ; among all possible vertices zA as described in the lemma, select a zA

such that j − i is minimum.

Consider the processing of the graph Gv and in particular the processing of the partition set
containing zA. Clearly, X ′ 6= ∅, since zB, zB′ ∈ X ′; let zX be the vertex chosen at the end of Step 4.3
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in order that the set X −W be concatenated to A(zX). Suppose that zX ∈ Zq where q < j. The
minimality of the choice of zA implies that zX is not adjacent to at least one of zB and zB′ thus,
suppose without loss of generality that zXzB 6∈ E(Gv). Then, the triple zA, zX , zB would satisfy the
conditions of Lemma 3.6 and Procedure Process Vertex reports that the graph G is not HHD-free.
Now suppose that zX ∈ Zj (as do zB and zB′). Therefore, all three vertices zX , zB, and zB′ belong to
the set W in Step 4.3 during the processing of the partition set containing zA, and the partition sets
to which they belong get unioned (if they have not got unioned earlier).

Consider now the processing of the partition set of Zj containing zX , zB, and zB′ , and let zR be
the arbitrary vertex selected in Step 4.1. Clearly, the partition set is not a singleton and in Step 4.2
it is checked whether any member of the set has different neighborhood “to the right” from that of
zR. Since zC ∈ Zk (where k > j) is adjacent to zB but not to zB′ , and both zB and zB′ belong to the
partition set containing zR, the neighborhood “to the right” of zR will disagree to at least one of the
neighborhoods of zB or zB′ , and therefore Procedure Process Vertex reports that the graph G is not
HHD-free.

Lemma 3.8 Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2
and suppose that zAzB ∈ E(Gv) where zA ∈ Zi and zB ∈ Zj are two non-neighbors of v in Gv with
i < j. If there exists a vertex x that is a common neighbor of zA and v in Gv, which is not a neighbor
of zB (see the left graph in Figure 8(b)), then Procedure Process Vertex when run on the pair (G, v)
reports that the graph G is not HHD-free.

Proof: Among all pairs of vertices zA, zB meeting the conditions of the lemma, consider a pair such
that j − i is minimum.

Consider the processing of the graph Gv and in particular the processing of the partition set
containing zA; let zX be the vertex chosen at the end of Step 4.3 in order that the set X −W be
concatenated to A(zX). Then, since x ∈ NGv(zA)∩N(v), the vertex x will be concatenated to A(zX).
Suppose that zX belongs to Zk; clearly, i < k ≤ j.

Consider the case where k < j. Since zAzX ∈ E(Gv), if x 6∈ NGv(zX). then the pair zX , zB would
contradict the minimality of the pair zA, zB. Thus x ∈ NGv(zX); then zXzB 6∈ E(Gv) otherwise the
pair zX , zB would contradict the minimality of the pair zA, zB. Since zAzX ∈ E(Gv), zAzB ∈ E(Gv),
and zXzB 6∈ E(Gv), the vertices zA, zX , zB satisfy the conditions of Lemma 3.6 and we have that
Procedure Process Vertex reports that the graph G is not HHD-free.

Consider now the case where k = j. Since k = j and since both zX and zB are neighbors of
zA, the vertices zX and zB both belong to the set W computed in Step 4.3 while processing the
partition set containing zA, and hence the partition sets containing these vertices (if different) are
unioned. During the processing of the partition set Ps containing zX and zB, in Step 4.1 an arbitrary
vertex zR is selected from Ps; since zR ∈ Zj (as does zB), x 6∈ NGv(zR) as well. Next, in Step 4.2,
the set

⋃
z∈Ps

A(z) includes A(zX) which contains x. On the other hand, x is not adjacent to zR and
Procedure Process Vertex reports that the graph G is not HHD-free.

Now we are ready to prove the theorem establishing the correctness of our algorithm.

Theorem 3.1 When Algorithm Recognize-HHD-free is run on a graph G, it reports that G is not
HHD-free if and only if G is indeed not HHD-free.

Proof: (=⇒) Suppose that the algorithm prints that G is not HHD-free while Procedure Pro-
cess Vertex runs on the pair (G, v). This may happen either in Step 4.2 or in Step 4.4 while processing
a partition set Ph of a set Zj of vertices of Gv; let zR be the vertex selected in Step 4.1 of the processing
of Ph. Then:
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Figure 8: For the proof of Theorem 3.1.

• Step 4.2: there exists a vertex in Ph whose neighborhood “to the right” differs from that of
vertex zR, i.e., there exists a vertex zC ∈

(⋃ℓ
r=i+1 Zr

)
−X ′ such that some vertices in Pj are

adjacent to z in the graph Gv while the remaining vertices in Ph are not adjacent to z.
The set Ph has been formed by unions of disjoint subsets of the set Zj ; a union of such subsets
is done in Step 4.4 during the processing of a partition set which is a subset of a set Zi (with
i < j) and contains a vertex adjacent in Gv to elements of these subsets that belong to the
set W . Thus, in the history of the formation of the set Ph, there is a moment when a subset of
Ph is formed while unioning a subset Pq1 of vertices of Zj all of which are adjacent to zC with
a subset Pq2 of vertices of Zj none of which is adjacent to zC . This union has been performed
at an earlier iteration of the for-loop in Step 4, i.e, while processing a subset of a set Zi with
i < j because the vertex selected in Step 1.4, say, zA, is adjacent to a vertex zB in Pq1 and to a
vertex zB′ in Pq2 . But then the vertices zA, zB, zB′ , zC meet the conditions of Lemma 3.5, and
thus G contains an induced house, hole, or domino.

• Step 4.4: there exists a vertex x ∈
(⋃

z∈Ph
A(z)

)
−NGv(zR), where zR is the vertex selected from

the set Ph in Step 4.1 when processing Ph. The vertex x belongs to
⋃

z∈Ph
A(z) because it has

been added to some A(zB), where zB ∈ Ph; this addition was done earlier in Step 4 for a value i

of the index of the for-loop (i.e. i < j) while processing a subset P of the set Zi′ of vertices of
Gv; let zA be the vertex selected from P in Step 4.1 during its processing. Then, zAzB ∈ E(Gv)
and zAx ∈ E(Gv). Since

⋃
z∈Ph

A(z) ⊆
(⋃ℓ

r=i+1 Zr

)
∪ N(v), we distinguish the following two

cases:

Suppose that x ∈ ⋃ℓ
r=i+1 Zr: Let x ∈ Zq where q > j (see Figure 8(a)). Since the processing

of the set Ph did not stop at Step 4.2, then all the vertices in Ph have the same neighbors “to
the right” as zR; since x is not a neighbor of zR, then x is not a neighbor of zB either (recall
zR, zB ∈ Ph). But then the vertices zA, zB, x meet the conditions of Lemma 3.4, and thus G

contains an induced house, hole, or domino.

Next, suppose that x ∈ N(v) (see Figure 8(b)). Since zA ∈ Zi and zB ∈ Zj , there exist connected
components A of G[Si] and B of G[Sj ] such that A, B were shrunk into vertices zA and zB,
respectively. Since xzA ∈ E(Gv) and xzB 6∈ E(Gv), in G, vertex x is adjacent to all the vertices
in A and to no vertex in B. Additionally, because zAzB ∈ E(Gv), there exist vertices a ∈ A and
b ∈ B such that ab ∈ E(G). Moreover, since i < j, there exists a vertex w ∈ N(v) such that
w ∈ NG(b)−NG(a). Then, the vertices v, x, w, a, b induce a house or a C5 in G.

(⇐=) Now, suppose that the graph G is not HHD-free; we will show that Algorithm Recognize-HHD-
free will report that.
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Suppose that G contains a house or a C5 induced by the vertices v, x, w, a, b that form a cycle
vxabw; in case of a house, let v be its top vertex (see Figure 8(b)). Without loss of generality suppose
that in the partition of the non-neighbors of v, the vertices a, b belong to the connected components
A and B of the sets Si and Sj , respectively, with i < j. Consider the graph Gv and let zA, zB be
the vertices of Gv to which the components A, B shrunk. Then, in Gv, zA ∈ Zi, zB ∈ Zj with i < j,
and the neighbor x of v is adjacent to zA but not to zB. Then, from Lemma 3.8, we conclude that
Procedure Process Vertex when run on the pair (G, v) reports that the graph G is not HHD-free.

Suppose that G contains a hole vua1a2 · · · ahw, where h ≥ 3. Again, if Algorithm Recognize-HHD-
free does not stop early (and reports that the graph G is not HHD-free), it eventually executes the body
of the for-loop of Step 1 for the vertex v. Note that the vertices a1, a2, . . . , ah are all non-neighbors of
v; let A1, A2, . . . , Ah, respectively, be the connected components of the subgraphs of G induced by the
sets of the partition Sv to which the vertices a1, a2, . . . , ah belong (note that the components A1 and
Ah differ from each other and from all other components, whereas A2, A3, . . . , Ah−1 are not necessarily
distinct). Then, the graph Gv contains vertices zA1 , zA2 , . . . , zAh

corresponding to the above connected
components, and because G contains the path a1a2 · · ·ah, the subgraph Gv[{zA1 , zA2 , . . . , zAh

}] is
connected; let ρ be a chordless path in this subgraph from zA1 to zAh

. If ρ is of length 1, then as
in the case of a house, we show that Procedure Process Vertex when run on (G, a1) reports that the
graph G is not HHD-free. So, let ρ = zA1zB2 · · · zAh

. Further, without loss of generality suppose
that zA1 ∈ Zi and zAh

∈ Zj where i < j. Then, if zB2 ∈ Zp with p > i, Lemma 3.8 implies that
Procedure Process Vertex when run on (G, v) reports that the graph G is not HHD-free because of
the edge zA1zB2 and the fact that u is adjacent to zA1 but not to zB2 . So, suppose that p < i, that is,
walking from zA1 to zB2 we walk towards the left in the ordered set of non-neighbors of v (based on
the number of their common neighbors with v). From zA1 keep walking along the path ρ for as long
as you go left. Since zAh

belongs to Zj with j > i, eventually we will find a vertex zBt such that both
zBt−1 (which may be zA1) and zBt+1 are to the right of zBt . If zBt−1 and zBt+1 do not belong to the
same set Zq, then the vertices zBt , zBt−1 , and zBt+1 meet the conditions of Lemma 3.6 and therefore
Procedure Process Vertex when run on (G, v) reports that the graph G is not HHD-free. If zBt−1 and
zBt+1 belong to the same set Zq then none of them is zA1 since no vertex in ρ other than zA1 is adjacent
to u. Then zBt−2 (which may be zA1) belongs to a set Zq′ with q′ > q and zBt−2zBt+1 6∈ E(Gv); then
the vertices zBt , zBt−1 , zBt+1 , and zBt−2 meet the conditions of Lemma 3.7 and therefore Procedure
Process Vertex when run on (G, v) reports that the graph G is not HHD-free.

Finally, suppose that G contains a domino D induced by the cycle vudefw with a single chord uf

(i.e., v is a corner vertex of D). Again, if Algorithm Recognize-HHD-free does not stop early (in which
case, it reports that the input graph G is not HHD-free), it will eventually execute the body of the for-
loop of Step 4 for the vertex v. The vertex adjacencies in the domino D imply that the vertices d, e, f

belong to distinct sets of the partition Sv; let D, E, F be the connected components of the subgraphs
G[Sj ], G[Si], G[Sk] to which d, e, f belong, respectively, where i 6= j, i 6= k, and j 6= k. Because
de ∈ E(G) and ef ∈ E(G), then {zDzE , zEzF } ⊆ E(Gv). If zDzF ∈ E(Gv), then there exist vertices
x ∈ D and y ∈ E such that xy ∈ E(G); but then, the vertices v, u, x, y, w induce a house in G with
x at its top, and as proved earlier for the case of an induced house or C5, Procedure Process Vertex
when run on (G, x) reports that the graph G is not HHD-free. So let us assume that zDzF 6∈ E(Gv).
If i > j, Lemma 3.8 applies to the edge zDzE of Gv, and because u is adjacent to zD but not to zE , it
implies that Procedure Process Vertex when run on (G, v) reports that G is not HHD-free. Similarly,
if i > k due to the edge zEzF . So, suppose that i < min{j, k}. But then the vertices zE, zD, zF meet
the conditions of Lemma 3.6 which again implies that Procedure Process Vertex when run on (G, v)
reports that the graph G is not HHD-free.

Since Algorithm Recognize-HHD-free calls Procedure Process Vertex for all pairs (G, x), where x is
any vertex of G, then in all the above cases Algorithm Recognize-HHD-free reports that the graph G

is not HHD-free.
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3.6 Time and Space Complexity

Let n be the number of vertices and m be the number of edges of the graph G. Since each of the
forbidden subgraphs that we are looking for (a house, a hole, or a domino) is connected, we may
assume that G is connected, otherwise we work on G’s connected components which we can compute
in O(n + m) time [5]; thus, n = O(m). Below, we give the time and space complexity of each step of
Procedure Process Vertex when applied on a graph G and a vertex v from which we obtain the time
and space complexity of Algorithm Recognize-HHD-free.

The neighbors and non-neighbors of vertex v in the graph G can be stored in O(n)-size arrays for
constant-time access; this takes O(n) time. The partition of the non-neighbors of v based on their
common neighbors with v can be computed in O(m + n deg(v)) time and O(n) space, where deg(v)
denotes the degree of v in G; see [17]1. After having computed for a vertex of each of the partition sets
the number of its common neighbors with v, which can be done in O(n + m) time, we can form the
ordered sequence (S1, S2, . . . , Sℓ) in O(ℓ + deg(v)) = O(n) time and O(n) space using bucket sorting.
Thus, Step 1 of Procedure Process Vertex takes O(m + n deg(v)) time and O(n) space in total.

Adjacency-list representations of the subgraphs G[Si], i = 1, 2, . . . , ℓ, can be obtained in O(n + m)
time and space by appropriate partitioning of a copy of an adjacency-list representation of the graph G

and removal of unneeded records; then, computing the connected components of all these subgraphs
takes a total of O(n + m) time and space, from which the graph Gv can be constructed in O(n + m)
additional time and space. Thus, Step 2 of Procedure Process Vertex takes a total of O(n + m) time
and space. It is important to note that the graph Gv has O(n) vertices and O(m) edges.

Crucial for Steps 3 and 4 of Procedure Process Vertex is the construction and processing of the
partitions PZi , i = 1, 2, . . . , ℓ. These are maintained by means of an auxiliary multi-graph Hv repre-
sented by means of adjacency lists: members of the same partition set belong to the same connected
component of Hv. The graph Hv has one vertex for each non-neighbor of v in Gv and, with a slight
abuse of notation, we can write that V (Hv) =

⋃ℓ
i=1 Zi; thus, |V (Hv)| = O(n). Initially, the graph Hv

has no edges. Then

⊲ whenever, for a non-neighbor zR of v in Gv, we need to union the sets of a partition PZk
that

contain the vertices in a set W in Step 4, we pick a vertex, say, z ∈ W , and add edges (in
an adjacency list representation of Hv) connecting z to all the other vertices in W ; this takes
O(|W |) = O(|X ′|) = O(degGv (zR)) time and space.

Since each non-neighbor of v in Gv can be the representative of a partition set at most once, then

|E(Hv)| = O


 ∑

zR 6∈N [v]

degGv(zR)


 = O

(
|E(Gv)|

)
= O

(
m

)
.

Then, when the time comes in Step 4 to process the partition PZi of the set Zi,

⊲ we compute the connected component of the graph Hv to which each vertex in Zi belongs; graph
traversal algorithms, such as, depth-first search and breadth-first search, can be used on Hv to
yield the connected components in time linear in the number of vertices and edges of Hv[Zi].

In summary, constructing Hv without any edges, or equivalently, forming the initial partitions PZi

(i = 1, 2, . . . , ℓ) where each vertex in Zi is placed in a separate partition set, takes O(n) time and
space; computing the partition PZi in Step 4 for all i = 1, 2, . . . , ℓ takes O(n + m) time; the space
required for the multi-graph Hv is also O(n + m).

1 An algorithm to construct a partition of a set L2 in terms of adjacency to elements of a set L1 is given in Section 3.2

of [17] with a stated time complexity of O(m+n |L2|); yet, it can be easily seen that the algorithm has a time complexity

of O(m + |L1| · |L2|), which in our case gives O(m + n deg(v)) since |L1| = deg(v) and |L2| = O(n).
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Since, initializing the sets A( ) for all the vertices in
⋃ℓ

i=1 Zi takes O(n) time and space, Step 3 of
Procedure Process Vertex takes O(n) time and space.

Next, let us consider the processing of a set Pj of the partition PZi in Step 4. Computing the
set X ′ takes O(degGv (zR)) time and space, where degGv(zR) denotes the degree of vertex zR in the
graph Gv. Checking if Pj is a singleton set takes O(1) time, and checking if all the vertices in Pj

are adjacent to exactly the vertices in X ′ among the vertices in
⋃ℓ

i=i+1 Zi takes O(
∑

z∈Pj
degGv(z))

time. Next, checking whether X ′ is non-empty takes O(1) time and doing all the processing if X ′ 6= ∅
takes O(degGv (zR)) time and space; note that |W | ≤ |X ′| ≤ degGv(zc). Finally, checking whether(⋃

z∈Pj
A(z)

)
− NGv(zR) 6= ∅ takes O

(⋃
z∈Pj

|A(z)|
)

time. In summary, processing the set Pj takes
O

(∑
z∈Pj

(
degGv(z) + |A(z)|

))
time and O(degGv (zR)) space. Since the sets of each partition PZi of

the set Zi are disjoint and the sets Zi are disjoint, we have that O
(∑ℓ

i=1

∑
Pj∈PZi

∑
z∈Pj

degGv(z)
)

=
O

(
|V (Gv)|+|E(Gv)|

)
= O(n+m). Additionally, since the sets A( ) are formed by concatenating some of

the neighbors in Gv of one vertex zR from each set Pj , we have that O
(∑ℓ

i=1

∑
Pj∈PZi

∑
z∈Pj

|A(z)|
)

=

O
(∑ℓ

i=1

∑
Pj∈PZi

∑
z∈Pj

degGv(z)
)

= O
(
|V (Gv)|+|E(Gv)|

)
= O(n+m) as well. Thus, in total, Step 4

of Procedure Process Vertex takes O(n + m) time and space.

Since Steps 1-4 of Procedure Process Vertex are executed for each vertex v of the input graph G,
we have that the overall time complexity of Algorithm Recognize-HHD-free is:

[ ∑

v∈V (G)

(
O(m + n deg(v))

)
+ O(n + m)

]
+ O(1) = O(n m).

Therefore, we obtain the following result.

Theorem 3.2 Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-
HHD-free determines whether G is an HHD-free graph in O(nm) time and O(n + m) space.

4 Providing a Certificate

Algorithm Recognize-HHD-free can be made to provide a certificate (a house, a hole, or a domino)
whenever it decides that the input graph G is not HHD-free. The algorithm reports that the graph G

is not HHD-free in two occasions, in Step 4.2 and in Step 4.4 of Procedure Process Vertex.

In order to be able to efficiently produce a certificate when Procedure Process Vertex reports that
the input graph G is not HHD-free, we do the following additional work:

W1: Whenever, during the processing of a set Pj of a partition PZi , we need to union the sets of
a partition PZk

containing the vertices in the set W , which is done by adding edges in the
auxiliary multi-graph Hv (as explained in Section 3.6), we associate with each such edge the
selected vertex zR of Pj .

W2: When processing a set Pj , we store with each element of the set X−W , which is added to A(zX)
for zX ∈ W , a reference to the selected vertex zR of Pj ; in this way, for each vertex z, each
element of the set A(z) carries a reference to a vertex of the set during whose processing this
element was added to A(z).

Note that this additional work does not increase asymptotically the time and space complexity of the
algorithm.

Next, let us see what we do in order to compute a certificate in the two cases that Procedure
Process Vertex reports that the graph G is not HHD-free:
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1. Step 4.2: There exists a vertex in a set Ph of a partition PZj that is not adjacent to a vertex in
X ′ or is adjacent to a vertex in

(⋃ℓ
r=j+1 Zr

)
−X ′. In any case, there exist vertices zA, zB, zB′ , zC of

the graph Gv where zA ∈ Zi, zB, zB′ ∈ Ph (and thus zB, zB′ ∈ Zj), and zC ∈ Zk with i < j < k, such
that {zAzB, zAzB′ , zBzC} ⊆ E(Gv), and zB′zC 6∈ E(Gv). Additionally, because i < j < k, Lemma 3.1
statement (i) implies that there exist vertices x, y ∈ N(v) such that x is adjacent to all the vertices
in Zj and to no vertex in Zi, and y is adjacent to all the vertices in Zk and to no vertex in Zj; see
Figure 6(b).

We can find the vertices zA, zB, zB′ , zC by processing the edges of the tree that was traversed when
computing the connected component of the graph Hv that produced the partition set Ph: for each edge
in the tree, we test whether its endpoints have the exact same neighbors in

⋃ℓ
r=j+1 Zr; note that (i) if

this is true for each edge, then clearly all the vertices in Pj have the same neighbors in
⋃ℓ

r=j+1 Zr,
and (ii) this test takes O

(∑
z∈Ph

degGv(z)
)

time as in the algorithm’s analysis. In our case, we will
be able to find an edge in the tree with endpoints z1 and z2, and a vertex z3 ∈

⋃ℓ
r=j+1 Zr such that

z1 is adjacent to z3 in Gv whereas z2 is not; then, zB = z1, zB′ = z2, zC = z3, while zA is the vertex
associated with the tree edge z1z2 (see W1).

Let A, B, B′, C be the connected components whose shrinking produced the vertices zA, zB, zB′ , zC

of the graph Gv. We consider the following two cases depending on whether zA, zC are adjacent in Gv

or not:

1a. zAzC 6∈ E(Gv): We traverse the adjacency lists of the vertices in B′ until we find a vertex b ∈ B′

which is adjacent to a vertex in A. Next, we run breadth-first search in the subgraph G[{b}∪A∪
B∪C] starting at b until a vertex c ∈ C is encountered; let ρ be the path in the breadth-first search
tree connecting b to c. Clearly, ρ is chordless and because zAzC 6∈ E(Gv) and zBzB′ 6∈ E(Gv),
it is of the form ρ = ba1 · · · arb1 · · · bsc where r, s ≥ 1, a1, . . . , ar ∈ A, and b1, . . . , bs ∈ B; see
Figure 9(a). If r > 1, then the vertices x, b, a1, . . . , ar, b1 induce a hole in G. If r = 1 and s > 1,
the vertices x, b, a1, b1, b2 induce a house in G with b2 at its top. Finally, if r = 1 and s = 1, then
if xc ∈ E(G), the vertices x, b, a1, b1, c induce a house with c at its top, whereas if xc 6∈ E(G),
the vertices v, x, b1, c, y induce a house (with v at its top) or a C5 in G depending on whether
xy ∈ E(G) or not.

1b. zAzC ∈ E(Gv): See Figure 8(a). As in the previous case, we traverse the adjacency lists of
the vertices in B′ until we find a vertex b ∈ B′ that is adjacent to a vertex in A. Next, we
run breadth-first search in the subgraph G[{b} ∪ A ∪ C] starting at b until a vertex c ∈ C is
encountered; let ρ be the path in the breadth-first search tree connecting b to c; see Figure 9(b).
Again, ρ is chordless and because zB′zC 6∈ E(Gv), it is of the form ρ = ba1 · · · arc where r ≥ 1
and a1, . . . , ar ∈ A. Consider first that xc ∈ E(G). If r > 1, the vertices xca1 · · · arb induce a
hole in G. If r = 1, then if ya1 ∈ E(G), the vertices v, x, b, a1, y induce a house or a C5 in G

depending on whether xy ∈ E(G) or not, whereas if ya1 6∈ E(G), G contains a house induced by
the vertices x, b, a1, c, y or a domino induced by v, x, b, a1, c, y depending on whether xy ∈ E(G)
or not. Suppose next that xc 6∈ E(G). Then, if ya1 ∈ E(G), the vertices v, x, b, ar, y induce a
house or a C5 depending on whether xy ∈ E(G), whereas if ya1 6∈ E(G), G contains the hole
ca1 · · · arbxy or vyca1 · · ·arbx depending on whether xy ∈ E(G).

2. Step 4.4: For a set Ph of a partition PZj , we have that
(⋃

z∈Ph
A(z)

)
− NGv(zR) 6= ∅, i.e.,

there exist vertices zB ∈ Ph (zB has resulted from the shrinking of a component B of G[Sj ]) and
z′ ∈

(⋃ℓ
r=j+1 Zr

)
∪ N(v) such that z′ ∈ A(zB) and z′ 6∈ NGv(zR); note that since the algorithm

has not stopped earlier, zB and zR have the exact same neighbors in
⋃ℓ

r=j+1 Zr, which implies that
z′ 6∈ NGv(zB). Since z′ ∈ A(zB), by means of W2, z′ is associated with a vertex zA ∈

⋃j−1
r=1 Zr such

that zB, z′ ∈ NGv(zA). If z′ ∈ N(v), we locate two vertices a ∈ A and b ∈ B such that ab ∈ E(G);
because z′ ∈ NGv(zA)−NGv (zB), z′ is adjacent to a in G but is not adjacent to b (see Figure 8(b) with
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Figure 9: For the certificate computation at Step 4.2.

z′ = x). Moreover, there exists a neighbor w of v such that w ∈ NG(b) − NG(a); then, the vertices
v, z′, w, a, b induce a house or a C5 in G depending on whether z′w ∈ E(G) or not. Now, if z′ 6∈ N(v),
then z′ = zC corresponding to a component C of a subgraph G[Sk] with k > j. This case is identical
to Case 1b above for the vertices zA, zB, zC .

It is not difficult to see that doing the work described above and checking the adjacencies in each
of the aforementioned cases can be performed in O(n + m) time using O(n) space. Thus, we have:

Theorem 4.1 Let G be an undirected graph on n vertices and m edges. Then, Procedure pro-
cess Vertex can be augmented so that Algorithm Recognize-HHD-free produces a house, a hole, or
a domino whenever it decides that G is not an HHD-free graph in O(n + m) additional time and O(n)
additional space.

5 Concluding Remarks

We have presented a recognition algorithm for the class of HHD-free graphs that runs in O(n m) time
and requires O(n + m) space, where n is the number of vertices and m is the number of edges of the
input graph. Moreover, we show how our algorithm can be augmented to yield, in O(n + m) time and
O(n) space, a certificate (a house, a hole, or a domino) whenever it decides that the input graph is
not HHD-free.

Despite the close relation between HHD-free and HH-free graphs, our results do not lead to an
improvement in the recognition time complexity for HH-free graphs; therefore, we leave as an open
problem the design of an O(n m)-time algorithm for recognizing HH-free graphs. Additionally, it would
be interesting to obtain faster recognition algorithms for other related classes of graphs, such as, the
brittle and the semi-simplicial graphs.
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[11] C.T. Hoàng and N. Khouzam, On brittle graphs, J. Graph Theory 12, 391–404, 1988.
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