
An O(n)-time Algorithm for the Paired-Domination

Problem on Permutation Graphs

Evaggelos Lappas Stavros D. Nikolopoulos Leonidas Palios

Department of Computer Science, University of Ioannina

P.O.Box 1186, GR-45110 Ioannina, Greece

{elappas, stavros, palios}@cs.uoi.gr

Abstract

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent

to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating

set S of G such that the subgraph induced by S contains a perfect matching; motivation for this

problem comes from the interest in finding a small number of locations to place pairs of mutually

visible guards so that the entire set of guards monitors a given area. The paired-domination problem

on general graphs is known to be NP-complete.

In this paper, we consider the paired-domination problem on permutation graphs. We define an

embedding of permutation graphs in the plane which enables us to obtain an equivalent version of

the problem involving points in the plane, and we describe a sweeping algorithm for this problem;

if the permutation over the set Nn = {1, 2, . . . , n} defining a permutation graph G on n vertices is

given, our algorithm computes a paired-dominating set of G in O(n) time, and is therefore optimal.

Keywords: permutation graphs, paired-domination, domination, algorithms, complexity.

1 Introduction

A subset D of vertices of a graph G is a dominating set if every vertex of G either belongs to D or is

adjacent to a vertex in D; the minimum cardinality of a dominating set of G is called the domination

number of G and is denoted by γ(G). The problem of computing the domination number of a graph has

received and keeps receiving considerable attention by many researchers (see [11] for a long bibliography

on domination). The problem finds many applications, most notably in relation to area monitoring

problems by the minimum number of guards: the potential guard locations are vertices of a graph in

which two locations are adjacent if a guard in one of them monitors the other; then, the minimum

dominating set of the graph determines the locations to place the guards.

The domination problem admits many variants; the most basic ones include: domination, edge dom-

ination, weighted domination, independent domination, connected domination, total/open domination,

locating domination, and paired-domination [11, 12, 13, 14, 18, 31]. Among these, we will focus on

paired-domination: a vertex subset S of a graph G is a paired-dominating set if it is a dominating set

and the subgraph induced by the set S has a perfect matching; the minimum cardinality of a paired-

dominating set in G is called the paired-domination number and is denoted by γp(G). Paired-domination

was introduced by Haynes and Slater [13]; their motivation came from the variant of the area monitoring

problem in which each guard has another guard as a backup (i.e., we have pairs of guards protecting each

other). Haynes and Slater noted that every graph with no isolated vertices has a paired-dominating set

(on the other hand, it easily follows from the definition that a graph with isolated vertices does not have

a paired-dominating set). Additionally, they showed that the paired-domination problem is NP-complete

on arbitrary graphs; thus, it is of theoretical and practical importance to find classes of graphs for which

this problem can be solved in polynomial time and to describe efficient algorithms for its solution.

1

Classes of graphs Complexity Authors

General graphs NP-complete Haynes and Slater [13]

Trees O(n) Qiao, Kang, Gardei, and Du [23]

Inflated trees O(n) Kang, Sohn, and Cheng [17]

Interval graphs O(n+m) Cheng, Kang, and Ng [5]

Circular-arc graphs O(m(n+m)) Cheng, Kang, and Ng [5]

Permutation graphs O(mn) Cheng, Kang, and Shan [6]

Permutation graphs O(n) Nikolopoulos and Palios [this paper]

Table 1: The complexity status of the paired-domination problem on several classes of graphs.

Trees have been one of the first targets of researchers working on paired-domination: Qiao et al. [23]

presented a linear-time algorithm for computing the paired-domination number of a tree and characterized

the trees with equal domination and paired-domination number; Henning and Plummer [16] characterized

the set of vertices of a tree that are contained in all, or in no minimum paired-dominating sets of the

tree. Kang et al. [17] considered “inflated” graphs (for a graph G, its inflated version is obtained from G

by replacing each vertex of degree d in G by a clique on d vertices), gave an upper and lower bound for

the paired-domination number of the inflated version of a graph, and described a linear-time algorithm

for computing a minimum paired-dominating set of an inflated tree. Bounds for the paired-domination

number have been established also for claw-free cubic graphs [9], for Cartesian products of graphs [3],

and for generalized claw-free graphs [7]; we call K1,3 a claw and K1,a a generalized claw, where a ≥ 3,

and thus a graph G is called claw-free (generalized claw-free, resp.) graph if G does not contain K1,3

(K1,a, resp.) as an induced subgraph. An O(n +m)-time algorithm for computing a paired-dominating

set of an interval graph on n vertices and m edges, when an interval model for the graph with endpoints

sorted is available has been given by Cheng et al. [5]; they also extended their result to circular-arc

graphs giving an algorithm running in O(m(m + n)) time in this case. Very recently, Cheng et al. [6]

gave an O(mn)-time algorithm for the paired domination problem on permutation graphs working on

the permutation defining the input graph; they use dynamic programming on subsequences of contiguous

elements of the permutation.

We too consider the paired domination problem on the class of permutation graphs, a well-known

subclass of perfect graphs. Given a permutation π = (π1, π2, . . . , πn) over the set Nn = {1, 2, . . . , n}, we

define the n-vertex graphG[π] with vertex set V (G[π]) = Nn and edge set E(G[π]) such that ij ∈ E(G[π])

if and only if (i − j)(π−1

i − π−1

j) < 0, for all i, j ∈ V (G[π]), where π−1

i is the index of the element i in

π. A graph G on n vertices is a permutation graph if there exists a permutation π on Nn such that G

is isomorphic to G[π] (the graph G[π] is also known as the inversion graph of G [10]). Therefore, in this

paper, we assume that a permutation graph G[π] is represented by the corresponding permutation π.

A lot of research work has been devoted to the study of permutation graphs, and several algorithms

have been proposed for recognizing permutation graphs and for solving combinatorial and optimization

problems on them. Pnueli et al. [22] gave an O(n3)-time algorithm for recognizing permutation graphs

using the transitive orientable graph test, where n is the number of vertices of the given graph. Later,

Spinrad [26] improved their results by designing an O(n2)-time algorithm for the same problem. In [19],

McConnell and Spinrad proposed an O(n+m)-time algorithm for modular decomposition and transitive

orientation, where n and m are the number of vertices and edges of the graph, which gave a linear time

bound for recognizing permutation graphs; a graph G is a permutation graph if and only if both G and

its complement are comparability graphs [10]. In [27], Spinrad et al. proved that a bipartite permutation

graph can be recognized in linear time by using some nice algorithmic properties of such a graph; they also

studied other combinatorial and optimization problems on permutation graphs. Supowit [29] solved the

coloring problem, the maximum clique problem, the clique cover problem, and the maximum independent

set problem, all in O(n logn) time. Nikolopoulos et al. [21] studied the behavior of the on-line coloring

algorithm First-Fit (FF) on the class of permutation graphs and proved that this class of graphs is not

FF-bounded. We also note that many parallel algorithms have also been proposed for the recognition

2

problem and various optimization problems on permutation graphs; see [15, 20, 24].

In addition to the result of Cheng et al. [6] on paired domination, several variants of the domination

problem have been considered on permutation graphs. Farber and Keil [8] solved the weighted domination

problem and the weighted independent domination problem in O(n3) time, using dynamic programming

techniques. Later, Brandstadt and Kratsch [2] published an O(n2)-time algorithm for the weighted inde-

pendent domination problem. Atallah et al. [1] solved the independent domination problem in O(n log2 n)

time, while Tsai and Hsu [30] solved the domination problem and the weighted domination problem in

O(n log logn) time and O(n2 log2 n) time, respectively. Rhee et al. [25] described an O(n+m)-time algo-

rithm for the minimum-weight domination problem, where m is the number of edges of the given graph.

Finally, Chao et al. [4] gave an O(n)-time algorithm for the minimum cardinality domination problem.

On bipartite permutation graphs, Srinivasan et al. [28] described and O(mn+n2)-time algorithm for the

edge domination problem.

In this paper, we study the paired-domination problem on permutation graphs following an approach

different from that of Cheng et al. [6]. We define an embedding of permutation graphs in the plane and

show that every permutation graph G with no isolated vertices admits a minimum-cardinality paired-

dominating set of a particular form in the embedding of G. We take advantage of this property to

describe an algorithm which “sweeps” the vertices of the embedding from left to right and computes a

minimum cardinality paired-dominating set if such a set exists (“sweeping” is a well-known technique

of computational geometry); if the permutation over the set Nn = {1, 2, . . . , n} defining a permutation

graph on n vertices is given, our algorithm runs in O(n) time using O(n) space, and is therefore optimal

(recall that the permutation corresponding to a permutation graph G can be computed in time linear in

the size of G by producing transitive orientations of G and its complement in O(n +m) time [19]).

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges; for a graph G, we denote its vertex

and edge set by V (G) and E(G), respectively.

Let π = (π1, π2, . . . , πn) be a permutation over the set Nn = {1, 2, . . . , n}. A subsequence of π is a

sequence α = (πi1 , πi2 , . . . , πik) such that i1 < i2 < · · · < ik. If, in addition, πi1 < πi2 < · · · < πik , then

we say that α is an increasing subsequence of π.

A left-to-right maximum of π is an element πi, 1 ≤ i ≤ n, such that πi > πj for all j < i. The first

element in every permutation is a left-to-right maximum. If the largest element is the first, then it is the

only left-to-right maximum; otherwise there are at least two (the first and the largest). The increasing

subsequence α = (πi1 , πi2 , . . . , πik) is called a left-to-right maxima subsequence if it consists of all the

left-to-right maxima of π; clearly, πi1 = π1. For example, the left-to-right maxima subsequence of the

permutation (4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10) is (4, 6, 9, 12).

The right-to-left minima subsequence of π is defined analogously: α′ = (πj1 , πj2 , . . . , πjk′) is called

a right-to-left minima subsequence if it is an increasing subsequence and consists of all the right-to-left

minima of π, where an element πi, 1 ≤ i ≤ n, is a right-to-left minimum if πi < πj for all j > i. The

last element in every permutation is a right-to-left minimum, and thus πjk′ = πn. For the permutation

(4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10), the right-to-left minima subsequence is (1, 3, 5, 8, 10).

We will also be considering points in the plane. For such a point p, we denote by x(p) and y(p) the

x- and y-coordinate of p, respectively.

An embedding of permutation graphs. Given a permutation π over the set Nn = {1, 2, . . . , n},

we define and use an embedding of the vertices of the permutation graph G[π] in the plane based on the

mapping:

vertex corresponding to the integer i −→ point pi = (i, n+ 1− π−1

i). (1)

We note that similar representations have been used by other authors as well; see [1, 21]. In our represen-

tation, all the points pi, 1 ≤ i ≤ n, are located in the first quadrant of the Cartesian coordinate system and

no two such points have the same x- or the same y-coordinate (see Figure 1(a)). Let Pπ = {p1, p2, . . . , pn}.

3

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

(a) (b)

Figure 1: (a) The embedding of the permutation graph corresponding to the

permutation (4, 2, 6, 1, 9, 3, 7, 5, 12, 11, 8, 10); (b) A minimum paired-dominating set.

pi
e

pi

pj

C(e)

Q(e)

Figure 2:

e1

e2

e3

Q(e1)

Q(e2)

Q(e3)

Q

Figure 3:

The adjacency condition ij ∈ E(G[π]) iff (i − j)(π−1

i − π−1

j) < 0 (for all i, j ∈ Nn) for the permutation

graph G[π] implies that two points pi and pj are adjacent iff
(

x(pi)−x(pj)
)

·
(

y(pi)− y(pj)
)

> 0, i.e., the

one of the points is below and to the left of the other. Thus, all the edges have a down-left to up-right

direction (Figure 1(a)).

Due to the bijection between the vertices of the permutation graph and the points pi, with a slight

abuse of notation, in the following, we will regard the points pi as the vertices of the permutation graph.

In terms of the above embedding, a point pi dominates all points p ∈ Pπ such that
(

x(p) − x(pi)
)

·
(

y(p)− y(pi)
)

≥ 0, i.e., p is either below and to the left or above and to the right of pi (the shaded area

in Figure 2 (left)). Then,

Definition 2.1 For any edge e = pipj, where pi, pj ∈ Pπ, the portion of the plane covered by e is the

portion of the plane

{ q ∈ R
2 |

(

x(q) − x(pi)
)

·
(

y(q)− y(pi)
)

≥ 0 or
(

x(q) − x(pj)
)

·
(

y(q)− y(pj)
)

≥ 0 }

dominated by pi or pj.

The part of the plane not covered by e consists of two disjoint open quadrants, one occupying the upper

left corner and the other the bottom right corner. For simplicity, we introduce the following notation

(see Figure 2 (right)):

Notation 2.1 For an edge e, we denote by

C(e) the portion of the plane covered by e, and

Q(e) the bottom right quadrant not covered by e.

Moreover, a left-to-right maximum of a permutation π defining a permutation graph is mapped to

a point p ∈ Pπ that is a vertex of the upper envelope of the point set Pπ (i.e., there does not exist a

4

point q ∈ Pπ − {p} for which x(p) ≤ x(q) and y(p) ≤ y(q)1. For example, the 4 left-to-right maxima

of the permutation defining the graph of Figure 1(a) correspond to the points (4, 12), (6, 10), (9, 8), and

(12, 4). Similarly, a right-to-left minimum is mapped to a point p ∈ Pπ that is a vertex of the lower

envelope of the point set Pπ (i.e., there does not exist a point q ∈ Pπ − {p} for which x(p) ≥ x(q) and

y(p) ≥ y(q)); the 5 right-to-left minima of the graph of Figure 1(a) correspond to the points (1, 9), (3, 7),

(5, 5), (8, 2), and (10, 1) of the lower envelope of Pπ . For convenience, each point in Pπ corresponding to

a left-to-right maximum (right-to-left minimum, resp.) of a permutation π will be called a left-to-right

maximum (right-to-left minimum, resp.) as well.

Finally, the following result helps us focus on solutions to the paired-domination problem on permu-

tation graphs which are of a particular form, thus enabling us to obtain an efficient algorithm.

Lemma 2.1 Let G be an embedded permutation graph with no isolated vertices, Pπ = {p1, p2, . . . , pn}

the corresponding point set (determined by the mapping in Eq. (1)), and u1, u2, . . . , uℓ (v1, v2, . . . , vℓ′ ,

resp.) be the left-to-right maxima (right-to-left minima, resp.) of Pπ in order from left to right. Then,

for any set A of edges of G whose endpoints dominate the entire point set Pπ, there exists a matching M

of edges of G such that

• the endpoints of the edges in M dominate the entire Pπ,

• |M | ≤ |A|, and

• M = {vs1ut1 , vs2ut2 , . . . , vs|M|
ut|M|

} where s1 < s2 < . . . < s|M| ≤ ℓ′ and t1 < t2 < . . . < t|M| ≤ ℓ

(i.e., M is a matching which dominates Pπ and consists of at most |A| non-crossing edges each of which

connects a left-to-right maximum to a right-to-left minimum of Pπ).

Proof: First, we replace each edge pipj ∈ A (i < j) that does not connect a left-to-right maximum to a

right-to-left minimum of Pπ by an edge pi′pj′ (i
′ < j′) that does so. Since i < j, pi is below and to the

left of pj : if pi is a right-to-left minimum, then pi′ = pi, otherwise there exists a right-to-left minimum pi′

below and to the left of pi; similarly, if pj is a left-to-right maximum, then pj′ = pj , otherwise there exists

a left-to-right maximum pj′ above and to the right of pj . In any case, pi′pj′ is an edge of G connecting a

left-to-right maximum to a right-to-left minimum of Pπ . The replacement of edges in A yields an equal-

cardinality set A′ of edges which are incident on a left-to-right maximum and a right-to-left minimum,

and whose endpoints dominate G; yet, the edges in A′ do not necessarily form a matching.

Next, let us collect the endpoints of the edges in A′ which are right-to-left minima and let V =

(vs′
1
, vs′

2
, . . . , vs′

|A|
) be the ordering of these endpoints from left to right (i.e., s′1 ≤ s′2 ≤ . . . ≤ s′|A|). We

work similarly with the endpoints which are left-to-right maxima and let their ordering from left to right

be U = (ut′
1
, ut′

2
, . . . , ut′

|A|
). We show that for each i = 1, 2, . . . , |A|, the points vs′

i
and ut′

i
are adjacent.

Let vs′jut′i
be the edge in the set A′ that contributed the endpoint ut′i

; we distinguish the following cases:

• j = i: Trivially true.

1 When such inequalities hold for the coordinates of two points p and q, it is often said that q dominates p; however, we

will avoid using this term so that there is no confusion with the notion of vertex domination which is central to our work.

ut′
h′

ut′i

vs′
j vs′

i vs′
h

ut′
h′

ut′i

vs′
j

vs′
i

vs′
h

(a) (b)

Figure 4: For the proof of Lemma 2.1: (a) the case for j < i; (b) the case for j > i.

5

• j < i: Then, y(vs′i) ≤ y(vs′j) < y(ut′i
). Moreover, since there exist i − 1 edge endpoints to the

left of ut′
i
in the ordering U and i − 2 edge endpoints, other than vs′

j
to the left of vs′

i
in the

ordering V , there exists an edge vs′
h
ut′

h′
in A′ with h′ < i < h (Figure 4(a)). This implies that

x(vs′
i
) ≤ x(vs′

h
) < x(ut′

h′
) ≤ x(ut′

i
). The two inequalities relating the coordinates of the points vs′

i

and ut′i
imply that these two points are adjacent.

• j > i: Then, x(vs′
i
) ≤ x(vs′

j
) < x(ut′

i
). Moreover, since there exist n − i edge endpoints to the

right of ut′i
in the ordering U and n − i − 1 edge endpoints, other than vs′j to the right of vs′i in

the ordering V , there exists an edge vs′
h
ut′

h′
in A′ with h < i < h′ (Figure 4(b)). This implies

that y(vs′i) ≤ y(vs′
h
) < y(ut′

h′
) ≤ y(ut′i

). Again, the two inequalities relating the coordinates of the

points vs′
i
and ut′

i
imply that these two points are adjacent.

Thus, we consider the set of edges {vs′
1
ut′

1
, vs′

2
ut′

2
, . . . , vs′

|A|
ut′

|A|
} whose endpoints dominate all the vertices

of G; next, from this set, we remove any duplicate edges and let the resulting set of edges be A′′ =

{vs′′
1
ut′′

1
, vs′′

2
ut′′

2
, . . . , vs′′

|A′′|
ut′′

|A′′|
} where |A′′| ≤ |A|.

Finally, we construct the desired matching M (which initially is equal to the empty set) by processing

the edges vs′′i ut′′i
of the set A′′ for i = 1, 2, . . . , |A′′| in order as follows: If i = |A′′| or both vs′′i 6= vs′′i+1

and ut′′
i
6= ut′′

i+1
, then we include the edge vs′′

i
ut′′

i
in M and proceed with the next edge, if one exists.

If vs′′i = vs′′i+1
, let ji ≥ i + 1 be such that vs′′i = vs′′i+1

= . . . = vs′′ji
and either ji = |A′′| or vs′′ji+1

6= v′′si
(i.e., vs′′

i
, vs′′

i+1
, . . . , vs′′

ji
is a maximal subsequence of values equal to vs′′

i
in the ordered sequence of the

endpoints of the edges in A′′ that are right-to-left minima); note that because there are no duplicate edges

in A′′, it holds that ut′′
i
< ut′′

i+1
< . . . < ut′′

ji
. Then, we include the edge vs′′

i
ut′′

i
in M , and if ji 6= |A′′| we

replace the edge vs′′ji
ut′′ji

by vs′′ji+1
ut′′ji

and continue by processing this edge, or if ji = |A′′| and vsji < vℓ′

we include in M the edge vℓ′ut′′ji
and stop, whereas if ji = |A

′′| and vsji = vℓ′ we stop without including

any edge in M . It is not difficult to see that the resulting set M indeed meets the requirements in the

statement of the lemma.

Lemma 2.1 readily implies the following corollary.

Corollary 2.1 Let G be an embedded permutation graph with no isolated vertices, and Pπ = {p1, p2, . . . , pn}

the corresponding point set. Then, G has a paired-dominating set of minimum cardinality whose induced

subgraph admits a perfect matching consisting of non-crossing edges of G each of which connects a left-

to-right maximum to a right-to-left minimum.

Such a matching is of the form shown in Figure 1(b). As the edges in such a matching do not cross, they

exhibit an ordering from up-left to bottom-right. The following observation pertaining to two non-crossing

edges will be very useful:

Observation 2.1 Let G be a permutation graph, Pπ = {p1, p2, . . . , pn} the corresponding point set, and

let e and e′ be two edges which are incident on a left-to-right maximum and a right-to-left minimum, and

do not cross in the embedding of G (see Figure 1(b)). If e is to the left of e′, then for every point pi ∈ Pπ

for which pi 6∈ C(e) ∪Q(e), it holds that pi 6∈ C(e′) ∪Q(e′).

This observation readily implies the following properties for the edges {e1, e2, ..., . . .} (in order from

left to right) of a matching as described in Corollary 2.1:

• for the leftmost edge e1, it holds that

Pπ =
(

C(e1) ∪Q(e1)
)

∩ Pπ (2)

i.e., every point in Pπ not dominated by the endpoints of e1 has to lie in its bottom-right non-covered

quadrant Q(e1);

• for each pair of consecutive edges ei, ei+1 (i ≥ 1), it holds that

Q(ei) ∩ Pπ =
(

C(ei+1) ∪Q(ei+1)
)

∩ Pπ (3)

i.e., each point of Pπ in the bottom-right non-covered quadrant Q(ei) of ei that is not dominated

by the endpoints of ei+1, has to lie or in its bottom-right non-covered quadrant Q(ei+1)
(

in other

words, no point is left “between” the covered regions C(ei) and C(ei+1)
)

.

6

3 The Algorithm

Corollary 2.1 implies that for every permutation graph with no isolated vertices there exists a minimum-

cardinality paired-dominating set whose induced embedded subgraph admits a perfect matching of the

form shown in Figure 1(b); for a permutation graph G, our algorithm precisely computes a minimum

matching M of (the embedded) G of this form whose endpoints dominate all the vertices of G. As

the edges in such a matching exhibit an ordering from left to right, our algorithm works by identifying

candidates for each edge in M in order from left to right.

Additionally, in order to obtain a minimum-size set M ,

• we maintain only the “usefull” candidates for each edge of M .

In order to formalize this condition, we give the following definition of redundant edges.

Definition 3.1 Let G be an embedded permutation graph, Q an open quadrant (bounded only from above

and left) which we wish to cover, and

X = { e ∈ E(G) | Q ∩ Pπ =
(

C(e) ∪Q(e)
)

∩ Pπ }

(i.e., all the points of Pπ belonging to Q lie either in C(e) or in Q(e)). Then, we say that an edge d ∈ X

is redundant if there exists another edge d′ ∈ X such that Q(d′) ⊂ Q(d).

For example, in Figure 3, the edges e1 and e2 are redundant in light of e3.

We note that we are interested in minimizing the non-covered part of the plane rather than minimizing

the number of points that are not dominated. In light of Definition 3.1, the fact that we are interested in

edges e that minimize the non-covered part Q(e) of the plane is rephrased into that we are interested in

edges e that are not redundant. The following observation enables us to easily identify redundant edges

among edges incident on a left-to-right maximum and a right-to-left minimum (see Figure 3):

Observation 3.1 Let G be an embedded permutation graph and let u1, u2, . . . , uℓ (v1, v2, . . . , vℓ′ , resp.)

be the left-to-right maxima (right-to-left minima, resp.) of G in order from left to right. Moreover, let

A be a subset of edges of G which cover the plane except for an open quadrant Q (bounded only from

above and left), and X = { e ∈ E(G)−A | Q ∩ Pπ =
(

C(e) ∪Q(e)
)

∩ Pπ }. Then, if X contains an edge

d = viuj, any edge vi′uj′ ∈ X − {d} such that i′ ≤ i and j′ ≤ j is redundant.

Observation 3.1 implies that for two edges viuj and vi′uj′ to be non-redundant, it has to be the case that

(i′ − i) · (j′ − j) < 0, that is, the edges form a crossing pattern like the one shown in Figure 5.

Next, we give an outline of our algorithm for computing a minimum matching M such that the

edges in M are of the form shown in Figure 1(b) and their endpoints dominate all the vertices of the

given permutation graph G. The algorithm identifies the non-redundant candidates for the leftmost

edge of M and constructs a set E1 = {e1,1, e1,2, . . . , e1,h1
} of all these candidates. In the general step,

we have a set Ei = {ei,1, ei,2, . . . , ei,hi
} of candidates for the i-th edge of the matching M . Then, the

algorithm constructs the set Ei+1 of candidates for the (i + 1)-st edge by selecting among the edges in

{ e ∈
(

E(G)−
⋃i

r=1
Er

)

| ∃ j such that Q(ei,j)∩Pπ =
(

C(e)∪Q(e)
)

∩Pπ } those that are non-redundant.

To simplify our description, we use the following notation:

Notation 3.1 For a point p ∈ Pπ, we denote by

lrmax above[p] the lowest left-to-right maximum above p and

rlmin left[p] the rightmost right-to-left minimum to the left of p.

In fact, in the algorithm we use two arrays bearing these names and storing this information; the arrays

can be easily filled in O(n) time, the former by processing the points in Pπ by decreasing y-coordinate,

the latter by processing them by increasing x-coordinate.

Additionally, each collected candidate edge e ∈ Ei+1 (i > 1) has a pointer back pointing to an

edge e′ ∈ Ei so that the edges e and e′ satisfy the property in Eq. (3) for ei+1 = e and ei = e′; these

back-pointers help us collect the matching M that we seek.

7

Algorithm Permut Paired-Domination

Input : a permutation π over the set Nn = {1, 2, . . . , n} defining a permutation graph G

Output : a solution to the paired-domination problem on G

1. Compute the set Pπ of points corresponding to the vertices of the graph G based on the mapping

in Eq. (1);

compute the left-to-right maxima of the permutation π and from these, the left-to-right maxima

(u1, u2, . . . , uℓ) of Pπ as well as the contents of the array lrmax above[]; similarly, compute the

right-to-left minima (v1, v2, . . . , vℓ′) of Pπ and the contents of the array rlmin left[];

if there exists a point in Pπ that is both a left-to-right maximum and a right-to-left minimum

then print(“There exist isolated vertices; the graph has no paired-dominating set”);

exit;

2. Compute the set E1 = {e1,1, e1,2, . . . , e1,h1
} of non-redundant candidates for the leftmost edge in

a minimum matching with endpoints that dominate all the vertices of the graph G;

3. i← 1;

while each of the (non-covered) quadrantsQ(ei,1), Q(ei,2), . . . , Q(ei,hi
) of the edges ei,1, ei,2, . . . , ei,hi

contains at least one point of Pπ do

3.1. compute the set Ei+1 = {ei+1,1, ei+1,2, . . . , ei+1,hi+1
} of non-redundant candidates for the

(i + 1)-st edge in a minimum matching (with endpoints dominating all the vertices of G),

where each edge ei+1,j (1 ≤ j ≤ hi+1) points to one edge in Ei (by means of a pointer back);

3.2. i← i+ 1;

4. {collect a solution}

let ei,ji be the element of Ei such that the quadrant Q(ei,ji) is empty;

M ← {ei,ji};

for t = i, i− 1, . . . , 2 do

et−1,jt−1
← the edge in Et−1 pointed to by the back pointer of et,jt ;

include et−1,jt−1
in the set M ;

5. Report the x-coordinates of the endpoints of the edges in M as a solution to the paired-domination

problem on the graph G.

The correctness of Algorithm Permut Paired-Domination follows from the correctness of Procedures

Compute E1 and Compute Ei+1 (to be presented below) while the minimality follows from the selection

of non-redundant candidate edges.

3.1 Computing the set E1

The goal in the construction of the set E1 of candidates for the leftmost edge of a solution is that each

edge in E1 is incident on a right-to-left minimum and a left-to-right maximum, is not redundant, and

satisfies Eq. (2).

Let e be an edge in E1 and let it be incident on the right-to-left minimum vi and the left-to-right

maximum uj (note that vi is to the left of the leftmost left-to-right maximum u1; otherwise, u1 would

not be dominated by vi or by uj (then, j > 1), nor would it belong to Q(e), in contradiction to Eq. (2)).

The endpoint uj of e, in addition to being adjacent to vi, has to be adjacent to all the points in Pπ to the

left of vi (which are not dominated by vi); therefore, it needs to be above and to the right of the highest

point, say, p, among the points with x-coordinate less than or equal to the x-coordinate of vi. If uqi is

the lowest left-to-right maximum above p, then uj could be any of the left-to-right maxima u1, . . . , uqi ,

and none other. Yet, among the edges viu1, . . . , viuqi , all but the last one are redundant.

More formally, the above discussion is summarized in the following lemma:

8

Lemma 3.1 Let G be an embedded permutation graph with no isolated vertices, Pπ = {p1, p2, . . . , pn}

the corresponding point set (determined by the mapping in Eq. (1)), and let u1, u2, . . . , uℓ (v1, v2, . . . , vℓ′ ,

resp.) be the left-to-right maxima (right-to-left minima, resp.) in Pπ in order from left to right. If

vr = rlmin left[u1], we have:

(i) For each vi, i = 1, 2, . . . , r, let highest pi be the highest among the points in Pπ with x-coordinate

less than or equal to the x-coordinate of vi, and let uqi = lrmax above[highest pi]. Then, Eq. (2)

holds for the edge e1 = viuq for each q such that 1 ≤ q ≤ qi; Eq. (2) does not hold for any edge viuq

with q > qi.

(ii) Among the edges referred to in the statement (i) of the lemma, the edges viuq (where 1 ≤ q < qi)

are all redundant in light of the existence of the edge viuqi .

(iii) No edge e incident on a right-to-left minimum to the right of vr satisfies Eq. (2).

In Figure 1(a), v1 = (1, 9), v2 = (3, 7), and vr = v2; so, the edges considered are v1u1, v1u2, v2u1 (where

u1 = (4, 12) and u2 = (6, 10)), among which v1u1 is redundant.

We give below the outline of this procedure: in Step 1, we use Lemma 3.1 to construct a list L of edges

satisfying Eq. (2) where L contains exactly the single non-redundant edge incident on each right-to-left

minimum to the left of u1 (see statement (ii) of Lemma 3.1); in Step 2, we obtain the final set E1 by

removing any redundant edges from L. For the correctness of Step 2, it is important to note that because

the y-coordinate of point highest p never decreases during the execution of Step 1, the edges vsiuti and

vsjutj located in the i-th and j-th positions in the list L (for any i < j) have si < sj and ti ≥ tj .

Procedure Compute E1

1. highest p← p1; {the highest point seen so far is the leftmost point}

L← a list containing only the edge connecting p1 to lrmax above[p1];

i← 2; {process the points p2, p3, . . . in order, i.e., by increasing x-coordinate}

while pi does not coincide with the leftmost left-to-right maximum u1 do

if y(pi) > y(highest p)

then highest p← pi; {update highest point seen so far}

if pi is a right-to-left minimum

then insert at the end of L the edge connecting pi to lrmax above[highest p];

i← i+ 1;

2. E1 ← ∅; {initially empty set}

e← first edge in the list L;

while e is not the last edge in L do

{ignore all edges incident on the same left-to-right maximum as e except for the last one}

d← e;

while d is not the last edge in L and

the edge after d in L is adjacent to the same left-to-right maximum as e do

d← the edge after d in L;

add the edge d in E1 with its back-pointer pointing to NIL;

e← the edge after d in L;

if e is the last edge in L

then add the edge e in E1 with its back-pointer pointing to NIL;

The correctness of Step 1 follows from Lemma 3.1; in accordance with statement (ii), for each right-to-left

minimum vi to the left of u1, we consider only the edge viuqi where uqi = lrmax above[highest p] and

highest p is the highest point among the points with x-coordinate less than or equal to the x-coordinate

of vi. The correctness of Step 2 follows from Observation 3.1; the edges in the resulting set E1 form a

crossing pattern like the one shown in Figure 5.

9

3.2 Computing the set Ei+1 from Ei

Let Ei = {ei,1, ei,2, . . . , ei,h} be the set of non-redundant candidate edges for the i-th edge in a minimum

matching M such that the edges in M are of the form shown in Figure 1(b) and their endpoints dominate

all the vertices of the given permutation graph G; we are interested in constructing a set of non-redundant

candidate edges Ei+1 for the (i + 1)-st edge of M . This case is a generalization of the case for E1; this

time, however, we are dealing with a number of quadrants Q(ei,j) which are as shown in Figure 5 due

to the crossing pattern of the edges in Ei. Due to the many quadrants, for an edge e ∈ Ei+1, Eq. (3)

becomes

there exists ei,j ∈ Ei such that Q(ei,j) ∩ Pπ =
(

C(e) ∪Q(e)
)

∩ Pπ. (4)

Therefore, for the construction of Ei+1, we are interested in non-redundant edges e incident on a right-

to-left minimum and on a left-to-right maximum that satisfy Eq. (4).

The non-redundancy of the elements of Ei+1 and Eq. (4) imply the following lemma:

Lemma 3.2 Let G be an embedded permutation graph with no isolated vertices, Pπ = {p1, p2, . . . , pn} the

corresponding point set, and let u1, u2, . . . , uℓ (v1, v2, . . . , vℓ′ , resp.) be the left-to-right maxima (right-

to-left minima, resp.) in Pπ in order from left to right. Suppose further that the set Ei contains the

edges ei,1, ei,2, . . . , ei,h where ei,j = vsjutj . If va = rlmin left[ut1], ua′ = lrmax above[vsh], vb =

rlmin left[ua′], and vc = rlmin left[ua′+1] (see Figure 5), we have:

(i) The edge connecting va to lrmax above[va] is a candidate for Ei+1 (note that this edge may prove

to be redundant).

(ii) Each edge incident on a right-to-left minimum to the left of va is redundant.

(iii) (a) For no edge e incident on a right-to-left minimum to the right of vc, there exists ei,j ∈ Ei that

satisfies Eq. (4) with e.

(b) In particular, if every quadrant Q(ei,j), 1 ≤ j ≤ h, contains points p ∈ Pπ such that y(p) >

y(ua′+1), then for no edge e incident on a right-to-left minimum to the right of vb, there exists

ei,j ∈ Ei that satisfies Eq. (4) with e.

Proof: (i) Immediate, since this edge is incident on a right-to-left minimum and on a left-to-right

maximum and satisfies Eq. (4) for ei,j = ei,1.

(ii) Let us consider an edge e incident on a right-to-left minimum vt, where t < a. At best, e would be

incident to the left-to-right maximum lrmax above[vt] which is above and to the left of or coincides with

lrmax above[va]. Therefore, in accordance with Observation 3.1, e is redundant in light of the edge in

statement (i).

(iii) (a) Easy to see, since the endpoints of any edge incident on a right-to-left minimum vt, where t > c,

cannot dominate the left-to-right maximum ua′+1.

(b) Let us consider an edge e incident on a right-to-left minimum to the right of vb. This edge cannot

satisfy Eq. (4) for any ei,j , as every Q(ei,j) contains points above the horizontal line y = y(ua′+1), and

these points cannot be dominated by the endpoints of e.

As an example for statement (i) of the lemma, in Figure 5, the right-to-left minimum va contributes the

edge vaua′+4. In the same figure, we note that the quadrant Q(ei,h) contains no points above the line

y = y(ua′+1) and therefore the right-to-left minima vb+1 and vc contribute candidate edges for Ei+1.

Therefore, in order to collect candidates (not necessarily non-redundant) for the edges in Ei+1, we

need to take into account the edge in statement (i) of the above lemma, as well as one appropiate

edge incident on each of the right-to-left minima va+1 to vb, or to vc if there exists a quadrant Q(ei,j)

containing no points with y-coordinate larger than y(ua′+1). The obvious way to compute the appropriate

edge incident on a right-to-left minimum vk, is to take each element ei,j of Ei in turn and find the edge

incident on vk and a left-to-right maximum that satisfies Eq. (4) for that ei,j in a way similar to that we

used to compute the set E1 in the previous paragraph (note that each vk to the right of va belongs to

the quadrants of all the elements of Ei); then, the sought edge is the non-redundant edge among these

10

ei,1
ei,2

ei,h

Q(ei,1)

Q(ei,2)

Q(ei,h)

va

vb

vc

va+1va+2

vb+1

ua′

ua′+1

ua′+2

ua′+3

ua′+4

ua′+5

p
q

vs1

vsh

ut1

uth

Figure 5: Ei+1 = {va+1ua′+4, va+2ua′+2, vcua′+1}; redundant candidates: vaua′+4, vbua′+1, vb+1ua′+1.

edges. It turns out, however, that for each vk, we need process only one of the quadrants, as the following

lemma establishes.

Lemma 3.3 Let Ei = {ei,1, ei,2, . . . , ei,h} where ei,j = vsjutj and for 1 ≤ j < j′ ≤ h, utj is below

and to the right of utj′
(see Figure 5). Consider a right-to-left minimum vk to the right of va. For the

computation of the candidate edge incident on vk to be considered for Ei+1:

(i) there is no need to consider quadrants Q(ei,j) that contain points which are above the line y = y(vsh)

and to the left of vk;

(ii) among the quadrants2 that do not contain points which are above the line y = y(vsh) and to the left

of vk, consider only the rightmost one (i.e., its left side is to the right of the left sides of the other

quadrants).

Proof: (i) Let p be the highest point above the line y = y(vsh) and to the left of vk in the quadrant Q(ei,t)

of some edge ei,t ∈ Ei. If u is the leftmost left-to-right maximum incident on vk, then the edges connecting

vk to each of the left-to-right maxima u, . . . , lrmax above[p] satisfy Eq. (4) for ei,t. The non-redundant

edge among them is the last one and lrmax above[p] coincides with or is to the left of ua′ . The statement

follows by considering the quadrant Q(ei,h), which trivially does not contain any points above the line

y = y(vsh); an edge incident on vk that satisfies Eq. (4) for ei,h is the edge connecting vk to ua′ and hence

the non-redundant edge for Q(ei,h) is certainly no worse than the non-redundant edge for Q(ei,t).

(ii) Since these quadrants do not contain points above the line y = y(vsh) and to the left of vk, each point

to the left of vk that belongs to the rightmost of these quadrans also belongs to the other quadrants,

and thus the y-coordinate of the highest point of the rightmost quadrant will not be larger than the

y-coordinate of the highest point of any of the remaining quadrants.

For example, in Figure 5, the quadrant that matters for va+1 and va+2 is Q(ei,1) and the contributed

edges are va+1ua′+4 and va+2ua′+2, respectively; in the former case, the highest point is va+1, in the

latter, it is q. For vb, the quadrants Q(ei,1) and Q(ei,2) are not important as they contain a point above

the line y = y(vsh) and to the left of vb; the contributed edge is vbua′+1 because the highest point is p.

Lemma 3.3 implies that for each right-to-left minimum vk, it suffices that we consider only the

rightmost quadrant that contains no points above the line y = y(vsh) and to the left of vk; if highest p

is the highest point in the quadrant to the left of vk, then the candidate edge incident on vk is the edge

connecting vk to lrmax above[highest p].

Our procedure Compute Ei+1 for computing Ei+1 takes advantage of Lemmas 3.2 and 3.3. Here is

an outline of the procedure in general terms. We sweep the points in Pπ from left to right starting from

uth (inclusive) up to vb (not inclusive) and if there exist quadrants containing no points p ∈ Pπ with

y(p) > y(ua′+1) we continue to vc (not inclusive). If we encounter the left edge of a new quadrant Q(ei,j),

2There is at least one such quadrant since the quadrant Q(ei,h) trivially contains no points above the line y = y(vsh).

11

then we save space for some useful information for that quadrant (.e.g., the highest point seen so far)

and push the information at the top of a stack S (the use of the stack will be justified while discussing

the next case); the stack stores information on only the quadrants that currently do not contain points

above the line y = y(vsh) with the righmost among them at the top of the stack. If we encounter a

point p′ above the line y = y(vsh), we pop from the stack the records of all the quadrants containing it;

these quadrants occupy consecutive positions at the top of the stack. At the same time, we keep track

of the highest among the points (other than p′) seen so far in the popped quadrants and we update the

highest point of the quadrant at the top of the stack after the pop operations; note that these points

of the popped quadrants also belong to that quadrant as well. If we encounter a point below the line

y = y(vsh), we update, if needed, the highest point of the quadrant at the top of the stack, and if the

point is a right-to-left minimum to the right of va, we add in a list L one edge incident to it and the

lowest possible left-to-right maximum. After all the points have been processed, we select among the

collected candidate edges those that are non-redundant.

Below, we give pseudocode for the procedure Compute Ei+1. The initialization of the list L imple-

ments statement (i) of Lemma 3.2. Furthermore, for each quadrant Q(ei,j), the stack S stores ei,j (field

edge), the y-coordinate of the line bounding Q(ei,j) from above (field max y), and the highest point in

Q(ei,j)−R (field highest p) where R either is the quadrant stored in the stack record immediately above

the record storing Q(ei,j) or is the halfplane to the right of the point that is currently being processed if

Q(ei,j) is at the top of S. (By top(S) we denote the record at the top of the stack S and by top(S).edge,

top(S).highest p, and top(S).max y the values of its fields edge, highest p, and max y.)

Procedure Compute Ei+1

0. let the set Ei contain the edges ei,1, ei,2, . . . , ei,h where ei,j = vsjutj with vsj (utj , resp.) being

right-to-left minima (left-to-right maxima, resp.) (note that ∀ j < j′, sj < sj′ and tj > tj′);

let va be the right-to-left minimum rlmin left[ut1] (i.e., va = rlmin left[ut1]);

L← a list containing only the edge connecting va to lrmax above[va] with its back-pointer pointing

to the edge ei,1;

S ← empty stack;

1. for each point p ∈ Pπ from uth to lrmax above[vsh] in order of increasing x-coordinate do

if p = utj for an edge ei,j = vsjutj ∈ Ei {left edge of a new quadrant}

1.1 then create a stack record storing edge← ei,j , highest p← NIL, and max y ← y(vsj);

push the record in the stack S;

else if y(p) > y(vsh) {point p above the line y = y(vsh)}

1.2 then q ← top(S).highest p;

while y(p) < top(S).max y do {while p belongs to quadrant at top of stack}

if q = NIL or
(

top(S).highest p 6= NIL and y(top(S).highest p) > y(q)
)

then {q: highest point of popped quadrants in Q(ei,h)}

q ← top(S).highest p;

pop the record at the top of S;

if top(S).highest p = NIL or y(q) > y(top(S).highest p)

then top(S).highest p← q; {new highest point; update}

else {point p below the line y = y(vsh), i.e., p ∈ Q(ei,h)}

1.3 if top(S).highest p = NIL or y(p) > y(top(S).highest p)

then top(S).highest p← p; {new highest point; update}

if p is a right-to-left minimum to the right of va
1.4 then add the edge connecting p to lrmax above[top(S).highest p] at the end of

the list L with its back-pointer pointing to the edge top(S).edge ∈ Ei;

2. {conditionally, process points from ua′ = lrmax above[vsh] to ua′+1 (not inclusive)}

if top(S).highest p = NIL or y(top(S).highest p) < y(ua′+1)

then repeat Step 1 for each point in Pπ from ua′ (inclusive) to ua′+1 (not inclusive);

12

3. perform Step 2 of procedure Compute E1 to remove redundant edges from the list L;

We note that after a record has been pushed in the stack S (which happens in the first iteration of the

for-loop), the stack is never empty because the record corresponding to the edge ei,h is never popped

during Step 1.2. We also note that the edge in the list L incident on va needs to be handled separately

in Step 3. The remaining edges have the property that for any two edges vsiuti and vsjutj located in the

i-th and j-th positions in the list L (for any i < j) it holds that si < sj and ti ≥ tj ; this need not be true

for the edge incident on va.

If Procedure Compute Ei+1 is executed on the edges and points shown in Figure 5, at the end of

Step 2, the list L contains the edges vaua′+4, va+1ua′+4, va+2ua′+2, vbua′+1, vb+1ua′+1, and vcua′+1.

3.3 Complexity of Algorithm Permut Paired-Domination

Let us now compute the time and space complexity of the Algorithm Permut Paired-Domination.

We assume that we are given a permutation π defining the permutation graph.

It is well known that the left-to-right maxima of a permutation can be computed by a single sweep in

O(n) time, and from these, the left-to-right maxima of the set Pπ can be computed in additional O(n)

time by means of the mapping in Eq. (1). A single O(n)-time sweep is also needed for filling the array

lrmax above[]; we note that processing the points by decreasing y-coordinate corresponds to processing

the points (πj , n+ 1− j) for j = n, n− 1, . . . , 1.

Similarly, computing the right-to-left minima and filling the array rlmin left[] can be done within the

same time complexity; processing the points in Pπ by increasing x-coordinate corresponds to processing

the points (j, n+1−π−1

j) for j = 1, 2, . . . , n. Then, Step 1 of Algorithm Permut Paired-Domination

takes O(n) time and space.

From its description, it follows that Procedure Compute E1 also takes O(n) time and space: Step 1

processes the points from the leftmost up to the point preceding u1 and spends constant time for each

one of them, collecting (in a list L) one edge for each right-to-left minimum among these points (thus,

the time spent is O(n) and |L| = O(n)); Step 2 spends constant time for each of the edges collected in the

list L (note that the assignment “e← the edge after d in L” implies that the two nested while-loops help

traverse the list L exactly once). Thus, the entire Procedure Compute E1 and hence Step 2 of Algorithm

Permut Paired-Domination takes O(n) time and space.

In Step 3, we need to be able to determine whether a quadrant contains at least one point of the

set Pπ . We can efficiently do this check by using an auxiliary array lowest at right[1..n− 1] where

lowest at right[i] = the lowest point in Pπ to the right of point pi, 1 ≤ i < n.

(Clearly, no point is to the right of pn.) By processing the points in Pπ by decreasing value of their

x-coordinate, we can fill the array lowest at right[] in O(n) time. Then, for a quadrant Q bounded from

left by the line x = xQ and from above by the line y = yQ, we have that

Q contains a point in Pπ iff xQ < n and yQ > y(lowest at right[xQ]);

this can be checked in O(1) time.

Now let us compute the time and space complexity of Procedure Compute Ei+1. Step 0 involves

a constant number of constant-time operations and consequently it takes O(1) time. Let ki+1 be the

number of points p ∈ Pπ processed in the for-loops in Step 1 and Step 2 of the procedure. It is not

difficult to see that, if we ignore the time taken by stack operations, each execution of the body of the

for-loop takes O(1) time. Additionally, because the number of stack pops does not exceed the number

of stack pushes, and at most one stack push is performed per point processed in the first for-loop, we

conclude that the total time for all stack operations is O(ki+1) as well. Hence, Steps 1 and 2 of Procedure

Compute Ei+1 take O(ki+1) time. Similarly to Step 2 of Procedure Compute E1, Step 3 of Procedure

Compute Ei+1 takes O(|L|) = O(ki+1) time; thus, the entire procedure takes a total of O(ki+1) time. In

order to bound the total time taken by all the executions of Procedure Compute Ei+1, we observe that

(i) uth is the highest endpoint of an edge in Ei;

13

(ii) if the condition at the beginning of Step 2 is false, then we process all the points from uth (inclusive)

to ua′ (not inclusive), and the highest endpoint of the edges in Ei+1 is the left-to-right maximum ua′ ;

(iii) if the condition at the beginning of Step 2 is true, then we process all the points from uth (inclusive)

to ua′+1 (not inclusive), and the highest endpoint of the edges in Ei+1 is a left-to-right maximum ut

with t ≥ a′ + 1.

These observations imply that
∑n

i=2
ki ≤ n, from which we conclude that the total time taken by all the

executions of Procedure Compute Ei+1 is O(n). The space required for the stack S is O(|Ei|) = O(n).

Therefore, Step 3 of Algorithm Permut Paired-Domination takes O(n) time and space.

Finally, Steps 4 and 5 take O(|M |) = O(n) time and space; note that the set M contains at most one

edge per right-to-left minimum.

Summarizing, we have the following theorem:

Theorem 3.1 Let G be a permutation graph with no isolated vertices determined by a permutation π over

the set Nn. Then, given π, Algorithm Permut Paired-Domination computes a minimum-cardinality

paired-dominating set of G in O(n) time using O(n) space.

Since a permutation π corresponding to a permutation graph can be computed from the graph in

time linear in its size [19], we conclude that, given a permutation graph G, we can compute a minimum-

cardinality paired-dominating set of the graph G in O(n + m) time, where n is the number of vertices

and m is the number of edges of the graph.

4 Concluding Remarks

Summarizing, we studied the paired-domination problem on permutation graphs following an approach

different from that of Cheng et al. [6], and we presented an optimal algorithm which, given a permutation

over the set Nn, computes a minimum-cardinality paired-dominating set of the graph G determined by

the permutation π in O(n) time using O(n) space.

An interesting open question would be to see whether the ideas and techniques presented in this paper

can be efficiently used for optimally solving other related domination problems on permutation graphs

such as the edge domination problem, the independent domination problem, the connected domination

problem, the locating domination problem.

Additionally, it would be also interesting to see if similar ideas and techniques can be applied to find

optimal solutions to paired-domination problem on other classes of graphs.

References

[1] M.J. Atallah, G.K. Manacher, and J. Urrutia, Finding a minimum independent dominating set in a permu-

tation graph, Discrete Appl. Math. 21 (1988) 177–183.

[2] A. Brandstadt and D. Kratsch, On domination problems for permutation and other graphs, Theoret. Comput.

Sci. 54 (1987) 181–198.

[3] B. Brešar, M.A. Henning, and D.F. Rall, Paired-domination of Cartesian products of graphs and rainbow

domination, Electr. Notes in Discrete Math. 22 (2005) 233–237.

[4] H.S. Chao, F.R. Hsu, and R.C.T. Lee, An optimal algorithm for finding the minimum cardinality dominating

set on permutation graphs, Discrete Appl. Math. 102 (2000) 159–173.

[5] T.C.E. Cheng, L.Y. Kang, and C.T. Ng, Paired domination on interval and circular-arc graphs, Discrete

Appl. Math. 155 (2007) 2077–2086.

[6] T.C.E. Cheng, L. Kang, and E. Shan, A polynomial-time algorithm for the paired-domination problem on

permutation graphs, Discrete Appl. Math. 157 (2009) 262–271.

14

[7] P. Dorbec, S. Gravier, and M.A. Henning, Paired-domination in generalized claw-free graphs, J. Comb.

Optim. 14 (2007) 1–7.

[8] M. Farber and J.M. Keil, Domination in permutation graphs, J. Algorithms 6 (1985) 309–321.

[9] O. Favaron and M.A. Henning, Paired-domination in claw-free cubic graphs, Graphs and Combinatorics 20

(2004) 447–456.

[10] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980.

[11] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker,

New York (1998).

[12] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker,

New York (1998).

[13] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199–206.

[14] S.T. Hedetniemi and R. Laskar (eds.), Topics on Domination, Ann. Discrete Math. 48, North-Holland,

Amsterdam (1991).

[15] D. Helmbold and E.W. Mayr, Applications of parallel algorithms to families of perfect graphs, Computing 7

(1990) 93–107.

[16] M.A. Henning and M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a

tree, J. Comb. Optim. 10 (2005) 283–294.

[17] L. Kang, M.Y. Sohn, and T.C.E. Cheng, Paired-domination in inflated graphs, Theor. Comput. Sci. 320

(2004) 485–494.

[18] C.L. Lu, M-T. Ko, and C.Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete

Appl. Math. 119 (2002) 227–250.

[19] R. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics 201

(1999) 189–241.

[20] S.D. Nikolopoulos, Coloring permutation graphs in parallel, Discrete Appl. Math. 120 (2002) 165–195.

[21] S.D. Nikolopoulos and Ch. Papadopoulos, On the performance of the First-Fit coloring algorithm on per-

mutation graphs, Inform. Process. Lett. 75 (2000) 265–273.

[22] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and identification of permutation graphs,

Canadian J. Math. 23 (1971) 160–175.

[23] H. Qiao, L. Kang, M. Gardei, and D.-Z. Du, Paired-domination of trees, J. Global Optimization 25 (2003)

43–54.

[24] J. Reif (Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[25] C. Rhee, Y.D. Liang, S.K. Dhall, and S. Lakshmivarahan, AnO(n+m)-time algorithm for finding a minimum-

weight dominating set in a permutation graph, SIAM J. Comput. 25 (1996) 404–419.

[26] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658–670.

[27] J. Spinrad, A. Brandstadt, and L. Stewart, Bipartite permutation graphs, Discrete Appl. Math. 18 (1987)

279–292.

[28] A. Srinivasan, K. Madhukar, P. Nagavamsi, C.P. Rangan, and M.-S. Chang, Edge domination on bipartite

permutation graphs and cotriangulated graphs, Inform. Process. Lett. 56 (1995) 165–171.

[29] K.J. Supowit, Decomposing a set of points into chains, with applications to permutation and circle graphs,

Inform. Process. Lett. 21 (1985) 249–252.

[30] K.H. Tsai and W.L. Hsu, Fast algorithms for the dominating set problem on permutation graphs, Algorith-

mica 9 (1993) 601–614.

[31] M. Yannakakis and F. Gavril, Edge domination sets in graphs, SIAM J. Appl. Math. 38 (1980) 364–372.

15

