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Abstract

The longest path problem is the problem of finding a path of maximum length in a graph.

As a generalization of the Hamiltonian path problem, it is NP-complete on general graphs

and, in fact, on every class of graphs that the Hamiltonian path problem is NP-complete.

Polynomial solutions for the longest path problem have recently been proposed for weighted

trees, ptolemaic graphs, bipartite permutation graphs, interval graphs, and some small classes

of graphs. Although the Hamiltonian path problem on cocomparability graphs was proved to

be polynomial almost two decades ago, the complexity status of the longest path problem on

cocomparability graphs has remained open until now; actually, the complexity status of the

problem has remained open even on the smaller class of permutation graphs. In this paper,

we present a polynomial-time algorithm for solving the longest path problem on the class

of cocomparability graphs. Our result resolves the open question for the complexity of the

problem on such graphs, and since cocomparability graphs form a superclass of both interval

and permutation graphs, extends the polynomial solution of the longest path problem on

interval graphs and provides polynomial solution to the class of permutation graphs.

Keywords: Longest path problem, cocomparability graphs, permutation graphs, polynomial

algorithm, complexity.

1 Introduction

The problem of finding a path of maximum length in a graph (Longest Path Problem) generalizes

the Hamiltonian path problem and thus it is NP-complete on general graphs; in fact, it is NP-

complete on every class of graphs that the Hamiltonian path problem is NP-complete. It is thus

interesting to study the longest path problem on classes of graphs C where the Hamiltonian path

problem is polynomial, since if a graph G ∈ C is not Hamiltonian, it makes sense in several

applications to search for a longest path of G. Although the Hamiltonian path problem has been

extensively studied in the past two decades, only recently did the longest path problem start

receiving attention.

Additionally, recently the longest path problem has also received attention in the direction of

approximation results, some of which imply that finding a longest path seems to be more difficult

than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been proved

that even if a graph has a Hamiltonian path, the problem of finding a path of length n − nε for

any ε < 1 is NP-hard, where n is the number of vertices of the graph [21]. Moreover, there is

no polynomial-time constant-factor approximation algorithm for the longest path problem unless

P=NP [21]. For related results see also [12–14,29,30].
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The Hamiltonian path problem is known to be NP-complete in general graphs [15,16], and re-

mains NP-complete even when restricted to some small classes of graphs such as split graphs [17],

chordal bipartite graphs, split strongly chordal graphs [23], directed path graphs [24], circle

graphs [7], planar graphs [16], and grid graphs [20, 26]. On the other hand, it admits polyno-

mial time solutions on some known classes of graphs; such classes include interval graphs [1, 8],

circular-arc graphs [8], biconvex graphs [2], and cocomparability graphs [9]. Note that the problem

of finding a longest path on proper interval graphs is easy, since all connected proper interval

graphs have a Hamiltonian path which can be computed in linear time [3].

Polynomial time solutions for the longest path problem are known only for small classes of

graphs. Specifically, a linear-time algorithm for finding a longest path in a tree was proposed by

Dijkstra early in 1960, a formal proof of which can be found in [5]. Recently, through a gener-

alization of Dijkstra’s algorithm for trees, Uehara and Uno [27] solved the longest path problem

for weighted trees and block graphs in linear time and space, and for cacti in O(n2) time and

space, where n is the number of vertices of the input graph. Polynomial algorithms for the longest

path problem have been also proposed on bipartite permutation and ptolemaic graphs having O(n)

and O(n5) time complexity, respectively [25,28]. Furthermore, Uehara and Uno in [27] solved the

longest path problem on a subclass of interval graphs in O(n3(m+ n log n)) time, and as a corollary

they showed that a longest path on threshold graphs can be found in O(n +m) time and space.

Recently, Ioannidou et al. [19] showed that the longest path problem has a polynomial solution on

interval graphs by proposing an algorithm that runs in O(n4) time, answering thus the question

left open in [27] concerning the complexity of the problem on interval graphs.

Although the Hamiltonian path problem on cocomparability graphs was proved to be polyno-

mial almost two decades ago [9], the complexity status of the longest path problem on cocompa-

rability graphs has remained open until now; actually, the complexity status of the problem has

remained open even on the smaller class of permutation graphs. Note that, the hamiltonian cycle

problem as well has been proved to be polynomial on permutation graphs [10] and cocomparability

graphs [11].

In this paper we present a polynomial-time algorithm for solving the longest path problem

on the class of cocomparability graphs, an important and well-known class of perfect graphs [17].

Thus, our result resolves the open question for the complexity of the problem on cocomparability

graphs, and since cocomparability graphs form a superclass of both interval and permutation

graphs, extends the polynomial solution of the longest path problem on interval graphs [19], and

also provides polynomial solution to the class of permutation graphs.

The rest of this paper is organized as follows. In Section 2, we first review some properties

of partial orders, comparability and cocomparability graphs and, then, introduce the notion of a

normal antipath on a comparability graph, which is needed for our algorithm. In Section 3, we

present our algorithm for solving the longest path problem on a cocomparability graph, and in

Section 4 we prove the correctness and compute the time complexity of our algorithm. Finally,

some concluding remarks follow in Section 5.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote

its vertex and edge set by V (G) and E(G), respectively. An undirected edge is a pair of distinct

vertices u, v ∈ V (G), and is denoted by uv. We say that the vertex u is adjacent to the vertex v

or, equivalently, the vertex u sees the vertex v, if there is an edge uv in G. If uv /∈ E(G) then we

say that vertices u and v are antineighbors in G. Let S be a set of vertices of a graph G; then, the

cardinality of the set S is denoted by |S| and the subgraph of G induced by S is denoted by G[S].

Sometimes we denote by G \ S the graph G[V (G) \ S]. The set N(v) = {u ∈ V (G) : uv ∈ E(G)}
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is called the neighborhood of the vertex v ∈ V (G) in G, sometimes denoted by NG(v) for clarity

reasons. The set N [v] = N(v) ∪ {v} is called the closed neighborhood of the vertex v ∈ V (G). By

NG(v) we denote the set of the antineighbors of the vertex v in the graph G.

For basic definitions in graph theory refer to [4,17,22]. A simple path (resp. antipath) of a graph

G is a sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E(G) (resp. vivi+1 /∈ E(G)),

for each i, 1 ≤ i ≤ k − 1, and is denoted by (v1, v2, . . . , vk); throughout the paper all paths and

antipaths are considered to be simple. We denote by V (P ) the set of vertices in the path (an-

tipath) P , and define the length of the path (antipath) P to be the number of vertices in P ,

i.e., |P | = |V (P )|. We call right endpoint of a path (antipath) P = (v1, v2, . . . , vk) the last vertex

vk of P . Moreover, if P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) is a path (antipath)

of a graph and P0 = (vi, vi+1, . . . , vj) is a subpath (subantipath) of P , we shall denote the path

(antipath) P by P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk).

2.1 Partial Orders and Cocomparability Graphs

A partial order will be denoted by P = (V,<P), where V is the finite ground set of elements or

vertices and <P is an irreflexive, antisymmetric, and transitive binary relation on V . Two elements

a, b ∈ V are comparable in P (denoted by a ∼P b) if a <P b or b <P a; otherwise, they are said

to be incomparable (denoted by a ∥ b). An extension of a partial order P = (V,<P) is a partial

order L = (V,<L) on the same ground set that extends P, i.e., a <P b ⇒ a <L b, for all a, b ∈ V .

The dual partial order Pd of P = (V,<P) is a partial order Pd = (V,<Pd) such that for any two

elements a, b ∈ V , a <Pd b if and only if b <P a.

The graph G, edges of which are exactly the comparable pairs of a partial order P on V (G),

is called the comparability graph of P, and is denoted by G(P). The complement graph G, whose

edges are the incomparable pairs of P, is called the cocomparability graph of P, and is denoted

by G(P). Alternatively, a graph G is a cocomparability graph if its complement graph G has a

transitive orientation, corresponding to the comparability relations of a partial order PG. Note

that a partial order P uniquely determines its comparability graph G(P) and its cocomparability

graph G(P), but the reverse is not true, i.e., a cocomparability graph G has as many partial

orders PG as the number of the transitive orientations of G. Also, the class of cocomparability

graphs is hereditary, that is if G is a cocomparability graph, then every induced subgraph of G is

a cocomparability graph.

Let G be a comparability graph, and let PG be a partial order which corresponds to G. The

graph G can be represented by a directed covering graph with layers H1, H2, . . . , Hh, in which each

vertex is on the highest possible layer. That is, the maximal vertices of the partial order PG are on

the highest layer Hh, and for every vertex v on layer Hi−1 there exists a vertex u on layer Hi such

that v <PG u; such a layered representation of G (respectively PG) is a called the Hasse diagram

of G (respectively PG) [9].

Let σ = (V (G), <σ) be a partial order on the vertices of a comparability graph G, such that

for any two vertices v, u ∈ V (G), v <σ u if and only if v ∈ Hi, u ∈ Hj , and i < j; hereafter,

we equivalently denote v <σ u by u >σ v. For simplicity sometimes we shall write v =σ u, for

vertices v, u ∈ V (G) which belong to the same layer Hi; we write v ̸=σ u to denote that vertices

v, u ∈ V (G) belong to different layers. Also, v ≤σ u implies that either v <σ u or v =σ u; again,

we equivalently denote v ≤σ u by u ≥σ v. Throughout the paper, such an ordering σ is called a

layered ordering of G. Note that, the partial order σ is an extension of the partial order PG; in

particular, it holds v <PG u if and only if v <σ u and vu ∈ E(G), for any two vertices u, v ∈ V (G).

Since a comparability graph G does not uniquely determine a partial order, hereafter we will

represent a comparability graph G by its Hasse diagram and we will denote the partial order

(V (G), <PG
) to which the Hasse diagram of G corresponds by PG. Thus, we will say that PG is
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the partial order which corresponds to the comparability graph G. Note that vertices in the Hasse

diagram satisfy the following property: for any three vertices v, u, w ∈ V (G) such that v ∈ Hi,

u ∈ Hj , w ∈ Hk, and i < j < k (or, equivalently, v <σ u <σ w), if vu ∈ E(G) and uw ∈ E(G),

then vw ∈ E(G).

The following definition and results were given by Damaschke et al. in [9], based on which they

prove the correctness of their algorithm for finding a Hamiltonian path of a cocomparability graph;

note that their algorithm uses the bump number algorithm which is presented in [18].

Definition 2.1 (Damaschke et al. [9]): Let G be a comparability graph, and let PG be the partial

order which corresponds to G. A path P = (v1, v2, . . . , vk) of the cocomparability graph G is

monotone if vi <PG
vj implies i < j.

Lemma 2.1 (Damaschke et al. [9]): Let G be a comparability graph, and let PG be the partial

order which corresponds to G. Let P = (v1, v2, . . . , vk) be a Hamiltonian path of the cocomparability

graph G such that v1 is a minimal element of PG. Then there exists a monotone Hamiltonian path

P ′ of G starting with v1.

Theorem 2.1 (Damaschke et al. [9]): Let G be a cocomparability graph. Then, G has a Hamil-

tonian path if and only if G has a monotone Hamiltonian path.

It appears that the above two results hold not only for Hamiltonian paths of a cocomparability

graph G, but also for any path of G. Indeed, let P be a path of G and let G′ = G[V (P )] be the

subgraph of G induced by the vertices of P (recall that cocomparability graphs have the hereditary

property). Also, let PG′ be the partial order which corresponds to G′ such that PG is an extension

of PG′ , i.e., for any two vertices u, v ∈ V (G), if u <PG v and u, v ∈ V (G′), then u <PG′ v. Then,

since P is a Hamiltonian path of G′, from Theorem 2.1 there exists a monotone path P ′ of G′

(with respect to PG′) such that V (P ′) = V (P ). From Definition 2.1 it is easy to see that P ′ is also

a monotone path of G (with respect to PG), since PG is an extension of PG′ .

Additionally, since a path P of a cocomparability graph G is an antipath of the comparability

graph G, and since our algorithm for computing a longest path of a cocomparability graph G

computes in fact a longest antipath of the comparability graph G, we restate the above definition

and results and whenever P denotes a path of a cocomparability graph G, we refer to P as an

antipath of the comparability graph G.

We first restate Definition 2.1 as follows: an antipath P = (v1, v2, . . . , vk) of a comparability

graph G is monotone if vi <PG
vj implies i < j, where PG is the partial order which corresponds

to G. We next restate Lemma 2.1 and Theorem 2.1 in a form stronger than the one stated in [9].

Lemma 2.2 Let G be a comparability graph, and let PG be the partial order which corresponds to

G. Let P = (v1, v2, . . . , vk) be an antipath of G such that v1 is a minimal element of V (P ) in PG.

Then there exists a monotone antipath P ′ of G starting with vertex v1 such that V (P ′) = V (P ).

Theorem 2.2 Let G be a comparability graph. If P is an antipath of G, then there exists a

monotone antipath P ′ of G such that V (P ′) = V (P ).

The following lemma holds.

Lemma 2.3 Let G be a comparability graph, and let σ be the layered ordering of G. Let P =

(v1, v2, . . . , vk) be an antipath of G, and let vℓ /∈ V (P ) be a vertex of G such that v1 ≤σ vℓ <σ vk
and vℓvk ∈ E(G). Then there exist two consecutive vertices vi−1 and vi in P , 2 ≤ i ≤ k, such that

vi−1vℓ /∈ E(G) and vℓ <σ vi.
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Proof. Let P = (v1, v2, . . . , vk) be an antipath of G, and let vℓ /∈ V (P ) be a vertex of G such that

v1 ≤σ vℓ <σ vk and vℓvk ∈ E(G). We first show that at least one vertex of P does not see vℓ. In

the case where v1 =σ vℓ, then v1 is such a vertex, i.e., v1vℓ /∈ E(G). Consider now that case where

v1 <σ vℓ <σ vk, and assume that vℓvi ∈ E(G) for every vertex vi ∈ V (P ), 1 ≤ i ≤ k. Then for

every vertex vi ∈ V (P ), 1 ≤ i ≤ k, it follows that vℓ ̸=σ vi, since vertices belonging to the same

layer of the Hasse diagram of G form an independent set. If v2 <σ v1, then obviously v2 <σ vℓ.

Assume now that v1 <σ v2; recall that v1 <σ vℓ. If v1 <σ vℓ <σ v2, from the transitivity property

it follows that v2v1 ∈ E(G), since v2vℓ ∈ E(G) and vℓv1 ∈ E(G); this is a contradiction to our

assumption that v1 and v2 are consecutive in the antipath P . Thus, v2 <σ vℓ. Similarly, we can

easily show by induction that for every pair vx−1, vx of consecutive vertices in P , 2 ≤ x ≤ k− 1, if

vx−1 <σ vℓ then vx <σ vℓ, otherwise vx−1vx ∈ E(G) due to the transitivity property. In particular,

the same holds for the pair vk−2 and vk−1, i.e., from vk−2 <σ vℓ, we obtain vk−1 <σ vℓ. Recall that

vℓ <σ vk; thus, vk−1 <σ vℓ <σ vk, and since vkvℓ ∈ E(G) and vℓvk−1 ∈ E(G), from the transitivity

property we obtain that vkvk−1 ∈ E(G). This comes to a contradiction to our assumption that P

is an antipath of G. Thus, there exists at least one vertex of P which does not see vℓ.

Let vi−1 be the last vertex from left to right in P (i.e., i − 1 is the greatest index) such that

vi−1vℓ /∈ E(G), 2 ≤ i ≤ k. Therefore, for every index j, i ≤ j ≤ k, we have vjvℓ ∈ E(G) and, thus,

vj ̸=σ vℓ. If i = k, then vk−1, vk is a pair of consecutive vertices in P such that vk−1vℓ /∈ E(G) and

vℓ <σ vk, and the lemma holds. Assume that 2 ≤ i ≤ k − 1. We will show that vℓ <σ vj for every

j, i ≤ j ≤ k. For j = k, vℓ <σ vk holds by assumption. Consider now the case where i ≤ j ≤ k−1.

Assume that there exists a vertex vp, i ≤ p ≤ k − 1, such that vp <σ vℓ; let vp be the last such

vertex from left to right in P . Thus, vℓ <σ vp+1, by the choice of vp. Then, vp <σ vℓ <σ vp+1, and

since vp+1vℓ ∈ E(G) and vℓvp ∈ E(G), we obtain that vp+1vp ∈ E(G). This is a contradiction to

our assumption that vp and vp+1 are consecutive in the antipath P of G. Therefore, there exists

no vertex vp, i ≤ p ≤ k − 1, such that vp <σ vℓ. Thus, we have shown that vℓ <σ vj for every j,

i ≤ j ≤ k. In particular, vℓ <σ vi. Therefore, the vertices vi−1 and vi are a pair of consecutive

vertices in P such that vi−1vℓ /∈ E(G) and vℓ <σ vi.

2.2 Normal Antipaths on Comparability Graphs

Our algorithm computes a longest path P of a cocomparability graph G by computing a specific

type of antipaths of the comparability graph G, which we call normal antipaths.

Definition 2.2 Let G be a comparability graph, and let σ be a layered ordering of G. The antipath

P = (v1, v2, . . . , vk) of G is called normal, if v1 is a leftmost (i.e., minimal) vertex of V (P ) in σ,

and for every i, 2 ≤ i ≤ k, the vertex vi is a leftmost vertex of NG(vi−1) ∩ {vi, vi+1, . . . , vk} in σ.

Note that in Definition 2.2, vertex v1 is a leftmost (minimal) vertex of V (P ) in σ, and not necessarily

a leftmost (minimal) vertex of V (G) in σ. Based on Lemma 2.3 and Definition 2.2, we prove the

following result.

Lemma 2.4 Let G be a comparability graph, and let σ be the layered ordering of G. Let P =

(v1, v2, . . . , vk) be a normal antipath of G, and let vℓ, and vj be two vertices of P such that vℓ <σ vj
and vℓvj ∈ E(G). Then ℓ < j, i.e., vℓ appears before vj in P .

Proof. Let P = (v1, v2, . . . , vk) be a normal antipath of a comparability graph G, and let vℓ
and vj be two vertices of P such that vℓ <σ vj and vℓvj ∈ E(G). Assume that j < ℓ, i.e.,

P = (v1, . . . , vj , . . . , vℓ, . . . , vk). Since P is a normal antipath, then v1 is a leftmost vertex of V (P )

in σ; thus, v1 ≤σ vℓ <σ vj . Since P ′ = (v1, v2, . . . , vj) is an antipath, vℓ /∈ V (P ′), v1 ≤σ vℓ <σ vj ,

and vℓvj ∈ E(G), then from Lemma 2.3, we obtain that there exist two consecutive vertices vi−1

and vi in P ′, 2 ≤ i ≤ j, such that vi−1vℓ /∈ E(G) and vℓ <σ vi. However, this comes to a
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contradiction to our assumption that P is a normal antipath, since from Definition 2.2 we obtain

that vℓ should be the next vertex of vi−1 in P , instead of vi. Therefore, we obtain ℓ < j.

Recall that, if PG is the partial order corresponding to a comparability graph G, and σ is the

layered ordering of G, then vℓ <PG
vj if and only if vℓ <σ vj and vℓvj ∈ E(G), for any two vertices

vℓ, vj ∈ V (G). Therefore, the definition of a monotone antipath can be paraphrased as follows: an

antipath P = (v1, v2, . . . , vk) of a comparability graph G is monotone if vℓ <σ vj and vℓvj ∈ E(G)

implies that vℓ appears before vj in P . Then, from Lemma 2.4 we obtain the following result.

Corollary 2.1 Let G be a comparability graph. If P is a normal antipath of G, then P is a

monotone antipath of G.

Note that the inverse of Corollary 2.1 is not always true; for example, see the antipath P in

Figure 1. In [9], for proving that for any Hamiltonian path P of a cocomparability graph G there

exists a monotone Hamiltonian path of G, Damaschke et al. first show that there exists a path

P ′ = (v1, v2, . . . , v|V (G)|) of G such that v1 is a minimal vertex of either PG or Pd
G; recall that, Pd

G

is the dual partial order of PG. Using the same arguments, we obtain the following lemma.

Lemma 2.5 Let G be a comparability graph, and let PG be the partial order which corresponds to

G. If P is an antipath of G, then there exists an antipath P ′ of G such that V (P ′) = V (P ) which

starts with a minimal vertex of V (P ) in PG.

Proof. Let P = (v1, v2, . . . , vk−1, vk, vk+1, . . . , vx) be an antipath of a comparability graph G. Let

k be the smallest index such that vk is either a minimal or a maximal vertex of V (P ) in Pd
G.

Case (I): Consider first the case where vk is a minimal vertex of V (P ) in Pd
G. We ap-

ply Lemma 2.2 to antipath P1 = (vk, vk+1, . . . , vx) and obtain a monotone antipath P ′
1 =

(v′k, . . . , v
′
x) with respect to Pd

G such that V (P ′
1) = V (P1) and v′k = vk. Therefore, P2 =

(v1, v2, . . . , vk−1, v
′
k, . . . , v

′
x) is an antipath of G such that V (P2) = V (P ). Since (v1, v2, . . . , vk−1)

contains no maximal vertex of V (P ) in Pd
G and (v′k, . . . , v

′
x) is a monotone antipath with re-

spect to Pd
G, it follows that v′x is a maximal vertex of V (P ) = {v1, v2, . . . , vk−1, v

′
k, . . . , v

′
x}

in Pd
G, or, equivalently, v′x is a minimal vertex of V (P ) in PG. Thus, the reversed antipath

P ′ = (v′x, v
′
x−1, . . . , v

′
k, vk−1, . . . , v1) of P2 is an antipath of G such that V (P ′) = V (P ) which

starts with a minimal vertex of V (P ) in PG.

Case (II): Consider now the case there vk is a maximal vertex of V (P ) in Pd
G. Thus, vk

is a minimal vertex of V (P ) in PG. Following the Case (I), we can obtain an antipath P ′
1 =

(v′1, v
′
2, . . . , v

′
x) of G such that V (P ′

1) = V (P ) which starts with a minimal vertex v′1 = vk of V (P )

in Pd
G. Based on Lemma 2.2, we can obtain a monotone antipath P ′

2 = (u′
1, u

′
2, . . . , u

′
x) of G such

that V (P ′
2) = V (P ′

1) = V (P ) which starts with a minimal vertex u′
1 = v′1 of V (P ) in Pd

G. Since

P ′
2 is a monotone antipath, u′

x is a maximal vertex of V (P ′
2) = V (P ) in Pd

G, or, equivalently, u
′
x is

a minimal vertex of V (P ) in PG. Thus, the reversed antipath P ′ = (u′
x, u

′
x−1, . . . , u1) of P

′
2 is an

antipath of G such that V (P ′) = V (P ) which starts with a minimal vertex of V (P ) in PG.

The following result is central for the correctness of our algorithm.

Lemma 2.6 Let P be a longest antipath of a comparability graph G. Then, there exists a normal

antipath P ′ of G such that V (P ′) = V (P ).

Proof. Let G be a comparability graph, PG be the partial order that corresponds to G, σ be

the layered ordering of G, and let P = (v1, v2, . . . , vk) be a longest antipath of G. If k = 1, the

lemma holds. Suppose that k ≥ 2. We will prove that for every index i, 2 ≤ i ≤ k, there exists an

antipath Pi = (v′1, v
′
2, . . . , v

′
k), such that V (Pi) = V (P ), v′1 is a leftmost vertex of V (Pi) in σ, and
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for every index j, 2 ≤ j ≤ i, the vertex v′j is a leftmost vertex of NG(v
′
j−1) ∩ {v′j , v′j+1, . . . , v

′
k} in

σ. The proof will be done by induction on i.

From Lemma 2.5, we may assume that v1 is a minimal vertex of V (P ) in PG, and then from

Lemma 2.2 we may assume that P is a monotone antipath of G. Thus, for every vertex vi,

2 ≤ i ≤ k, such that vi <σ v1, we have viv1 /∈ E(G). If v1 is a leftmost vertex of V (P ) in σ,

then P1 = P . Consider now the case where v1 is not a leftmost vertex of V (P ) in σ. Let j,

2 ≤ j ≤ k, be the greatest index such that vj is a leftmost vertex of V (P ) in σ. If v1vj+1 /∈ E(G)

then P1 = (vj , vj−1, . . . , v1, vj+1, . . . , vk) is an antipath of G such that V (P1) = V (P ) and v1 is a

leftmost vertex of V (P1) in σ.

Consider now the case where v1vj+1 ∈ E(G). Since P is monotone and v1 appears in P before

vj+1, we obtain that v1 <σ vj+1. Since vj <σ v1 <σ vj+1, vjvj+1 /∈ E(G), and v1vj+1 ∈ E(G),

from the transitivity property it follows that v1vj /∈ E(G). Therefore, by the construction of

the Hasse diagram of G (and, thus, of σ), there exists a vertex vx in G, such that vx =σ v1
and vjvx ∈ E(G); thus, vj+1vx /∈ E(G) due to the transitivity property. If vx /∈ V (P ), then

P ′ = (vj , vj−1, . . . , v1, vx, vj+1, . . . , vk) is an antipath of G longer than P . This is a contradiction

to our assumption that P is a longest antipath of G, thus, vx ∈ V (P ). Since P is monotone,

vjvx ∈ E(G), and vj <σ vx =σ v1, it follows that vj appears in P before vx, i.e., j + 1 ≤ x ≤ k.

In fact, j + 2 ≤ x ≤ k, since vx =σ v1 <σ vj+1. Then P ′ = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1)

is an antipath of G such that V (P ′) = V (P ) \ {vx+1, vx+2, . . . , vk}. If vj+1vx+1 /∈ E(G) then

P1 = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1, vx+1, . . . , vk) is an antipath of G such that V (P1) = V (P )

and vj is a leftmost vertex of V (P1) in σ.

Consider now the case where vj+1vx+1 ∈ E(G). Since P is monotone, vj+1vx+1 ∈ E(G) and

vj+1 appears in P before vx+1, we have that vj+1 <σ vx+1; thus, vx <σ vj+1 <σ vx+1. Since

vxvj+1 /∈ E(G), it follows by the construction of the Hasse diagram, that there exists a vertex vy
in G such that vy =σ vj+1 and vxvy ∈ E(G); thus, vx+1vy /∈ E(G) due to the transitivity property.

Similarly to the above, vy ∈ V (P ), since P is a longest antipath of G. Since P is monotone,

vxvy ∈ E(G) and vx <σ vy =σ vj+1, it follows that vx appears in P before vy, i.e., x + 1 ≤ y ≤ k

and, in fact, x+2 ≤ y ≤ k. Therefore, P ′ = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1, vy, vy−1, . . . , vx+1)

is an antipath of G such that V (P ′) = V (P ) \ {vy+1, vy+2, . . . , vk}. Again, if vx+1vy+1 /∈ E(G),

then using the above transformation we obtain an antipath P1. If vx+1vy+1 ∈ E(G), then we can

repeat the above procedure until we find a pair of vertices vx+1 and vy+1 in P such that vy <σ vx+1,

x+ 2 ≤ y ≤ k, and vx+1vy+1 /∈ E(G).

Assume that such a pair of vertices vx+1 and vy+1 does not exists in P , i.e., vy+1 is the

last vertex vk of P , vy <σ vx+1, x + 2 ≤ y = k − 1, and vx+1vy+1 ∈ E(G). There-

fore, P ′ = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1, vy, vy−1, . . . , vx+1) is an antipath of G such that

V (P ′) = V (P ) \ {vy+1} and y + 1 = k. Since P is monotone, vx+1vy+1 ∈ E(G), and vx+1 appears

in P before vy+1, it follows that vx+1 <σ vy+1; thus, vy <σ vx+1 <σ vy+1. Then, similarly to the

above, it follows that vyvx+1 /∈ E(G), and thus there exists a vertex vℓ in G such that vx+1 =σ vℓ
and vyvℓ ∈ E(G); thus vℓvy+1 /∈ E(G). Since P is monotone, vy <σ vℓ and vyvℓ ∈ E(G), it follows

that if vℓ ∈ V (P ), then vℓ appears in P after vy and, in fact, after vy+1, i.e., y + 1 < ℓ ≤ k. This

comes to a contradiction to our assumption that y+1 = k, i.e., vy+1 is the last vertex vk of P . Thus,

vℓ /∈ V (P ) and, therefore, P ′ = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1, vy, vy−1, . . . , vx+1, vℓ, vy+1) is

an antipath of G longer that P , since y + 1 = k and, thus, V (P ′) = V (P ) ∪ {vℓ}. This comes to a

contradiction to our assumption that P is a longest antipath of G. Therefore, there exists a pair

of vertices vx+1 and vy+1 in P such that vy <σ vx+1, x+2 ≤ y ≤ k, and vx+1vy+1 /∈ E(G). Then,

P1 = (vj , vj−1, . . . , v1, vx, vx−1, . . . , vj+1, vy, vy−1, . . . , vx+1, vy+1, vy+2, . . . , vk) is an antipath such

that V (P1) = V (P ) and vj is a leftmost vertex of V (P1) in σ. This completes the proof for the

induction basis.
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Figure 1: Illustrating a Hasse diagram of a comparability graph G, an antipath P of G which is

neither normal nor longest, an antipath P ′ of G such that |P ′| > |P | which is not normal, and a

normal antipath P ′′ of G such that V (P ′′) = V (P ′).

Consider now an arbitrary index i, 2 ≤ i ≤ k − 1, and let Pi = (v′1, v
′
2, . . . , v

′
i, v

′
i+1, . . . , v

′
k)

be an antipath of G, such that V (Pi) = V (P ), v′1 is a leftmost vertex of V (Pi) in σ, and for

every index j, 2 ≤ j ≤ i, the vertex v′j is a leftmost vertex of NG(v
′
j−1) ∩ {v′j , v′j+1, . . . , v

′
k} in

σ. Therefore, the antipath (v′1, v
′
2, . . . , v

′
i) is normal. We now show that v′i is a minimal vertex

of {v′i, v′i+1, . . . , v
′
k} in PG. Assume otherwise that there exists a vertex v′x ∈ {v′i+1, v

′
i+2, . . . , v

′
k},

such that v′x <PG
v′i or, equivalently, v′x <σ v′i and v′xv

′
i ∈ E(G). By the induction hypothesis,

v′1 is a leftmost vertex of V (P ) in σ and, thus, v′1 ≤σ v′x <σ v′i. Since P ′ = (v′1, v
′
2, . . . , v

′
i) is an

antipath of G, v′x /∈ V (P ′), v′xv
′
i ∈ E(G), and v′1 ≤σ v′x <σ v′i, from Lemma 2.3 we obtain that

there exist two consecutive vertices v′y−1 and v′y in P ′, 2 ≤ y ≤ i, such that v′y−1v
′
x /∈ E(G) and

v′x <σ v′y. This comes to a contradiction to our assumptions, since by the induction hypothesis

v′y is a leftmost vertex of NG(v
′
y−1) ∩ {v′y, v′y+1, . . . , v

′
i, . . . , v

′
x, . . . , v

′
k}, while v′x ∈ NG(v

′
y−1) ∩

{v′y, v′y+1, . . . , v
′
i, . . . , v

′
x, . . . , v

′
k} and v′x <σ v′y. Therefore, we conclude that v′i is a minimal vertex

of {v′i, v′i+1, . . . , v
′
k} in PG. From Lemma 2.2, for any antipath P of a comparability graph G which

starts with a minimal element v of V (P ) in PG, there exists a monotone antipath P ′′ of G starting

with the same vertex v such that V (P ′′) = V (P ). Therefore, without loss of generality we may

assume that {v′i, v′i+1, . . . , v
′
k} is a monotone antipath of G. Therefore, by the induction hypothesis

it is easy to obtain that the path Pi is a monotone path.

If v′i+1 is a leftmost vertex of NG(v
′
i) ∩ {v′i+1, v

′
i+2, . . . , v

′
k} in σ, then Pi+1 = Pi. Consider

now the case where vi+1 is not a leftmost vertex of NG(v
′
i) ∩ {v′i+1, v

′
i+2, . . . , v

′
k} in σ. Let j,

i+2 ≤ j ≤ k, be the greatest index for which v′j is a leftmost vertex of NG(v
′
i)∩{v′i+1, v

′
i+2, . . . , v

′
k}

in σ. Then, P ′ = (v′1, v
′
2, . . . , v

′
i, v

′
j , v

′
j−1, . . . , v

′
i+1) is an antipath of G such that V (P ′) =

V (P ) \ {v′j+1, v
′
j+2, . . . , v

′
k}. If v′i+1v

′
j+1 /∈ E(G), then Pi+1 = (v′′1 , v

′′
2 , . . . , v

′′
i , v

′′
i+1, . . . , v

′′
k ) =

(v′1, v
′
2, . . . , v

′
i, v

′
j , v

′
j−1, . . . , v

′
i+1, v

′
j+1, v

′
j+2, . . . , v

′
k) is an antipath of G such that V (Pi+1) = V (P ),

v′′1 is a leftmost vertex of V (Pi+1) in σ, and for every index ℓ, 2 ≤ ℓ ≤ i + 1, the vertex v′′ℓ
is a leftmost vertex of NG(v

′′
ℓ−1) ∩ {v′′ℓ , v′′ℓ+1, . . . , v

′′
k} in σ. In the case where v′i+1v

′
j+1 ∈ E(G),

then we repeat exactly the same procedure described in the induction basis until we find a pair

of vertices v′x+1 and v′y+1 in P such that v′y <σ v′x+1, x + 2 ≤ y ≤ k, and v′x+1v
′
y+1 /∈ E(G);

such a pair of vertices exists, as we have proven in the induction basis. Then, Pi+1 =

(v′′1 , v
′′
2 , . . . , v

′′
i , v

′′
i+1, . . . , v

′′
k ) = (v′1, v

′
2, . . . , v

′
i, v

′
j , v

′
j−1, . . . , v

′
i+1, . . . , v

′
x+1, v

′
y+1, v

′
y+2, . . . , v

′
k) is an

antipath of G such that V (Pi+1) = V (P ), v′′1 is a leftmost vertex of V (Pi+1) in σ, and for every

index ℓ, 2 ≤ ℓ ≤ i + 1, the vertex v′′ℓ is a leftmost vertex of NG(v
′′
ℓ−1) ∩ {v′′ℓ , v′′ℓ+1, . . . , v

′′
k} in σ.

This completes the proof for the induction step.

Thus, the antipath P ′ = Pk is a normal antipath of G such that V (P ′) = V (P ).
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Figure 1 illustrates a Hasse diagram of a comparability graph G. The antipath P =

(v3, v1, v5, v7) of G is not normal, and there exists no normal antipath P̂ of G such that

V (P̂ ) = V (P ); however, note that P is monotone. Also, P is not a longest antipath of G, since

there exists an antipath P ′ = (v2, v3, v1, v5, v7, v6) of G such that |P ′| > |P |. Also, P ′ is not a

normal antipath of G and there exists a normal antipath P ′′ = (v1, v3, v2, v5, v7, v6) of G such that

V (P ′′) = V (P ′); note that it is easy to see that P ′′ is a longest antipath of G.

3 The Algorithm

Our algorithm, which we call Algorithm LP Cocomparability, computes a longest path P of a

cocomparability graph G by computing a longest antipath P of the comparability graph G.

Let G be a comparability graph and let H1,H2, . . . , Hk be the layers of its Hasse diagram. For

simplifying our description, we add a dummy vertex u0 to G such that u0 belongs to a layer H0 and

u0ui ∈ E(G) for every i, 1 ≤ i ≤ n; let G′ be the resulting graph. Note that, G′ is a comparability

graph having a Hasse diagram with layers H0,H1,H2, . . . ,Hk, and let σ be a layered ordering of

G′, where V (G′) = {u0, u1, u2, . . . , un}. It is easy to see that u0 does not participate in any longest

antipath P of G′ such that |P | ≥ 2. In general, a longest antipath P of G′ which does not contain

the vertex u0 is also a longest antipath of G. Algorithm LP Cocomparability computes a longest

antipath of G′ which is a longest antipath of the original graph G as well. Hereafter, we consider

comparability graphs G having assumed that we have already added the dummy vertex u0. Thus,

the antipaths we compute in G are also antipaths of the graph G \ {u0}.
We next give some definitions and notations necessary for the description of the algorithm. Let

Lj = (v1, v2, . . . , vk) be an arbitrary ordering of the vertices v1, v2, . . . , vk. We denote by V (Lj)

the set {v1, v2, . . . , vk} and by |Lj | the cardinality of the set V (Lj). For every vertex vz ∈ Lj ,

we denote by Lj(vz) the ordering (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , v|Lj |, vz), and for every index r,

0 ≤ r ≤ |Lj |, we denote by Lr
j(vz) the ordering containing the first r vertices of Lj(vz); thus:

• Lj = (v1, v2, . . . , vk),

• Lj(vz) = (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , v|Lj |, vz),

• Lr
j(vz) = (v1, v2, . . . , vr) if 1 ≤ r ≤ z − 1,

• Lr
j(vz) = (v1, v2, . . . , vz−1, vz+1, vz+2, . . . , vr+1) if z ≤ r ≤ |Lj | − 1,

• L0
j (vz) = ∅, and L

|Lj |
j (vz) = Lj(vz).

Definition 3.1 Let G be a comparability graph, let H0,H1,H2, . . . , Hk be the layers of its Hasse

diagram, let V (G) = {u0, u1, u2, . . . , un}, and let σ be the layered ordering of G. For every triple

p, i, and j, where 1 ≤ i ≤ j ≤ k and up ∈ Hi−1, we define the graph G(up, i, j) to be the subgraph

G[S], where S = {ux : ux ∈ Hℓ, i ≤ ℓ ≤ j, and upux ∈ E(G)}.
In other words, graph G(up, i, j) is the subgraph of G induced by those vertices which belong to

the layers Hℓ, i ≤ ℓ ≤ j, and which are neighboring vertices of up ∈ Hi−1.

Definition 3.2 Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)). We define the graph

Gr
uz
(up, i, j), where uz ∈ Lj and 0 ≤ r ≤ |Lj |, to be the subgraph G[S], where

S = V (G(up, i, j − 1)) ∪ Lr
j(uz) if i < j, and S = Lr

j(uz) if i = j.

Note that, since the dummy vertex u0 is adjacent to every other vertex of G, the graph

G(u0, 1, j), 1 ≤ j ≤ k, is the subgraph G[S] of G induced by the set S = {ux : ux ∈ Hℓ, 1 ≤ ℓ ≤ j}.
Additionally, G

|Lj |
uz (up, i, j) = G(up, i, j), and if i < j, then G0

uz
(up, i, j) = G(up, i, j − 1).
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Figure 2: Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs

G(v1, 2, 4) and G2
v9(v1, 2, 4) of G.

Figure 2 illustrates examples of the graphs defined in Definitions 3.1 and 3.2. In particu-

lar, the figure to the left illustrates a Hasse diagram of a comparability graph G with layers

H0,H1, . . . ,H5. The figure in the middle illustrates the subgraph G(v1, 2, 4) of G induced by the

vertices {v3, v6, v7, v8, v9, v10}. The figure to the right illustrates the subgraph G2
v9(v1, 2, 4) of G,

if we consider the ordering L4 = (v8, v9, v10) for the vertices of H4 ∩ V (G(v1, 2, 4)). The sub-

graph G2
v9(v1, 2, 4) of G is induced by the vertices {v3, v6, v7, v8, v10}, and it is actually an induced

subgraph of G(v1, 2, 4).

Notation 3.1 For every vertex ut ∈ V (Gr
uz
(up, i, j)), if ut ∈ Hj, then we denote by f(ut) the

smallest index such that f(ut) < j, for which there exists a vertex ux of Gr
uz
(up, i, j) such that

ux ∈ Hf(ut) and uxut /∈ E(G); in the case where no such index f(ut) exists, we set f(ut) = j.

Notation 3.2 For every vertex uy ∈ V (Gr
uz
(up, i, j)) we denote by P (uy;G

r
uz
(up, i, j)) a longest

normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy, and by ℓ(uy;G

r
uz
(up, i, j)) the

length of P (uy;G
r
uz
(up, i, j)).

Before describing Algorithm LP Cocomparability in detail, we first give a high level description

of our algorithm. A detailed description of Algorithm LP Cocomparability is presented in Figures 3

and 4.

Algorithm LP Cocomparability. Given a comparability graph G and its Hasse diagram with

H0,H1, . . . ,Hk, our algorithm computes for every induced subgraph G(up, i, j) and for every ver-

tex uy of G(up, i, j), the length ℓ(uy;G(up, i, j)) and the corresponding antipath P (uy;G(up, i, j)),

and outputs the maximum among the values {ℓ(uy;G(u0, 1, k)) : uy ∈ V (G(u0, 1, k))} and the cor-

responding normal antipath P (uy;G(u0, 1, k)). In particular, our algorithm LP Cocomparability

works as follows:

(A) For every vertex uy ∈ V (G(u0, 1, k))

compute a longest normal antipath of G(u0, 1, k) with right endpoint the vertex uy,

where G(u0, 1, k) = G \ {u0}.

(B) Compute the longest antipath among the n antipaths computed in (A).

(A.1) A longest normal antipath of G(u0, 1, k) with right endpoint the vertex uy can be computed

as follows:

10



I compute a longest normal antipath of G(up, i, j) with right endpoint uy, for every subgraph

G(up, i, j) and for every vertex uy ∈ V (G(up, i, j)), 1 ≤ i ≤ j ≤ k and up ∈ Hi−1, as follows:

let Lj be an ordering of Hj ∩ V (G(up, i, j));

for every subgraph Gr
uz
(up, i, j), 1 ≤ r ≤ |Lj | and uz ∈ Lj , and for every vertex

uy ∈ V (Gr
uz
(up, i, j)) such that uy /∈ Lj \ {ut} (where ut is the last vertex of Lr

j(uz)),

compute a longest normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex

uy, where G
|Lj |
uz (up, i, j) = G(up, i, j), ∀uz ∈ Lj ;

(A.1.1) A longest normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy can be

computed from the normal antipaths of the graph Gr−1
uz

(up, i, j) as follows:

• compute w1 = ℓ(ux;G
r−1
uz

(up, i, j)) of path P ′
1 = P (ux;G

r−1
uz

(up, i, j));

• compute w2 = ℓ(uy;G
r−1
uz

(ux, ℓ+ 1, j)) of path P ′
2 = P (uy;G

r−1
uz

(ux, ℓ+ 1, j));

• if w1 + w2 + 1 > ℓ(uy;G
r
uz
(up, i, j)) then

ℓ(uy;G
r
uz
(up, i, j))← w1 + w2 + 1 and P (uy;G

r
uz
(up, i, j))← (P ′

1, ut, P
′
2);

where ℓ ≥ f(ut), ux ∈ Hℓ ∩ V (Gr−1
uz

(up, i, j)) and uxut /∈ E(G);

Step (B) is trivial.

In Section 4.1, we prove that P (uy;G(u0, 1, k)) is a longest antipath of G. Note that, if P is a

longest normal antipath of G(up, i, j) with right endpoint the vertex uy, i.e., P = P (uy;G(up, i, j)),

then P is not necessarily a longest antipath of G(up, i, j). However, if P is a longest antipath

of G(up, i, j), then from Lemma 2.6 there exists in G(up, i, j) a normal antipath P ′ such that

V (P ′) = V (P ); let uy be the right endpoint of the normal antipath P ′. Thus, there exists a

longest normal antipath P ′ = P (uy;G(up, i, j)) which is also a longest antipath in G(up, i, j) for

some vertex uy ∈ V (G(up, i, j)).

4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. In

particular, in Section 4.1 we show that Algorithm LP Cocomparability correctly computes a longest

normal antipath P of the comparability graph G, while in Section 4.2 we analyze and compute the

time complexity of our algorithm.

4.1 Correctness of Algorithm LP Cocomparability

Let G be a comparability graph, let H0,H1,H2, . . . , Hk be the layers of its Hasse diagram, and let

σ be the layered ordering of G. We prove the following results.

Lemma 4.1 Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)), let P = (P1, vℓ, P2) be a normal

antipath of Gr
uz
(up, i, j), and let vℓ be the last vertex of Lr

j(uz). Then, P1 and P2 are normal

antipaths of Gr
uz
(up, i, j).

Proof. Let P = (v1, v2, . . . , vℓ−1, vℓ, vℓ+1, . . . , vy) be a normal antipath of Gr
uz
(up, i, j). Then, from

Definition 2.2, v1 is a leftmost vertex of V (P ) in σ, and for every index x, 2 ≤ x ≤ y, the vertex vx is

a leftmost vertex of NG(vx−1)∩{vx, vx+1, . . . , vy} in σ. It is easy to see that P1 = (v1, v2, . . . , vℓ−1)

is a normal antipath of Gr
uz
(up, i, j). Indeed, since V (P1) ⊂ V (P ), then v1 is also a leftmost vertex

of V (P1) in σ and, additionally, vx is a leftmost vertex of NG(vx−1)∩{vx, vx+1, . . . , vℓ−1} in σ, for

every index x, 2 ≤ x ≤ ℓ− 1.
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Algorithm LP Cocomparability

Input: a comparability graph G where V (G) = {u0, u1, u2, . . . , un}, the layers H0,H1,H2, . . . , Hk

of its Hasse diagram, and a layered ordering σ of G.

Output: a longest normal antipath of G.

1. for j = 1 to k

2. for i = j downto 1

3. for every vertex up ∈ Hi−1

4. let Lj be an ordering of Hj ∩ V (G(up, i, j))

5. for every vertex uz ∈ Lj

6. for r = 1 to |Lj |
7. let ut be the last vertex of Lr

j(uz)

8. for every vertex uy ∈ V (Gr
uz
(up, i, j)) and y ̸= t {initialization}

9. if r = 1 then

10. ℓ(uy;G
0
uz
(up, i, j))← ℓ(uy;G(up, i, j − 1));

11. P (uy;G
0
uz
(up, i, j))← P (uy;G(up, i, j − 1));

12. ℓ(uy;G
r
uz
(up, i, j))← ℓ(uy;G

r−1
uz

(up, i, j));

13. P (uy;G
r
uz
(up, i, j))← P (uy;G

r−1
uz

(up, i, j));

14. end for

15. if i = j then {case i = j}
16. ℓ(ut;G

r
uz
(up, j, j))← |Lr

j(uz)|;
17. P (ut;G

r
uz
(up, j, j))← Lr

j(uz);

18. if i ̸= j then

19. ℓ(ut;G
r
uz
(up, i, j))← 1; {initialization for uy = ut}

20. P (ut;G
r
uz
(up, i, j))← (ut);

21. execute process(Gr
uz
(up, i, j));

22. end for

23. ℓ(uz;G(up, i, j))← ℓ(uz;G
|Lj |
uz (up, i, j)); {for the vertex uz ∈ Lj}

24. P (uz;G(up, i, j))← P (uz;G
|Lj |
uz (up, i, j));

25. end for

26. for every vertex uy ∈ V (G(up, i, j)) and uy /∈ Lj {for uy /∈ Lj}
27. ℓ(uy;G(up, i, j))← ℓ(uy;G

|Lj |
uz (up, i, j));

28. P (uy;G(up, i, j))← P (uy;G
|Lj |
uz (up, i, j));

29. end for

30. end for

31. end for

32. end for

33. compute the max{ℓ(uy;G(u0, 1, k)) : uy ∈ G(u0, 1, k)} and the corresponding

antipath P (uy;G(u0, 1, k));

Figure 3: The algorithm for finding a longest antipath of G.
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process(Gr
uz
(up, i, j))

procedure bridge(Gr
uz
(up, i, j))

if f(ut) < j then {ut is the last vertex of Lr
j(uz)}

for h = f(ut) + 1 to j

for ℓ = f(ut) to h− 1

for every vertex ux ∈ Hℓ ∩ V (Gr−1
uz

(up, i, j)) and uxut /∈ E(G)

for every vertex uy ∈ Hh ∩ V (Gr−1
uz

(ux, ℓ+ 1, j))

w1 ← ℓ(ux;G
r−1
uz

(up, i, j)); P ′
1 ← P (ux;G

r−1
uz

(up, i, j));

w2 ← ℓ(uy;G
r−1
uz

(ux, ℓ+ 1, j)); P ′
2 ← P (uy;G

r−1
uz

(ux, ℓ+ 1, j));

if w1 + w2 + 1 > ℓ(uy;G
r
uz
(up, i, j)) then

ℓ(uy;G
r
uz
(up, i, j))← w1 + w2 + 1;

P (uy;G
r
uz
(up, i, j))← (P ′

1, ut, P
′
2);

procedure append(Gr
uz
(up, i, j))

for ℓ = f(ut) to j {ut is the last vertex of Lr
j(uz)}

for every vertex ux ∈ Hℓ ∩ (V (Gr−1
uz

(up, i, j)) and uxut /∈ E(G)

w1 ← ℓ(ux;G
r−1
uz

(up, i, j)); P ′
1 ← P (ux;G

r−1
uz

(up, i, j));

if w1 + 1 > ℓ(ut;G
r
uz
(up, i, j)) then

ℓ(ut;G
r
uz
(up, i, j))← w1 + 1;

P (ut;G
r
uz
(up, i, j))← (P ′

1, ut);

return (the value ℓ(uy;G
r
uz
(up, i, j)) and the antipath P (uy;G

r
uz
(up, i, j)), for every

vertex uy ∈ V (Gr
uz
(up, f(ut) + 1, j)) if f(ut) < j, and for uy = ut if f(ut) = j);

Figure 4: The procedure process().

Consider now the antipath P2 = (vℓ+1, vℓ+2, . . . , vy) of Gr
uz
(up, i, j). We first prove that vℓ+1

is a leftmost vertex of V (P2) in σ. By assumption vℓ ∈ Lj , thus, vx ≤σ vℓ for every index x,

ℓ+1 ≤ x ≤ y. We will show that vxvℓ /∈ E(G), for every index x, ℓ+1 ≤ x ≤ y. Let vx be a vertex

of V (P2). Consider first the case where vx =σ vℓ; then it is straightforward that vxvℓ /∈ E(G).

Consider now the case where vx <σ vℓ. Since P is a normal antipath, vx <σ vℓ, and vℓ appears

before vx in P , from Lemma 2.4 we obtain that vxvℓ /∈ E(G). Thus, we have proved that vxvℓ /∈
E(G) for every vertex vx ∈ V (P2). Since vℓ+1 is a leftmost vertex of NG(vℓ) ∩ {vℓ+1, vℓ+2, . . . , vy}
in σ, and since NG(vℓ) ∩ {vℓ+1, vℓ+2, . . . , vy} = V (P2), it follows that vℓ+1 is a leftmost vertex of

V (P2) in σ. Additionally, since P is a normal antipath, it is straightforward that vx is a leftmost

vertex of NG(vx−1) ∩ {vx, vx+1, . . . , vy} in σ, for every index x, ℓ + 2 ≤ x ≤ y. Therefore, from

Definition 2.2 it follows that P2 is a normal antipath of Gr
uz
(up, i, j).

The following lemma is important and shows how our algorithm LP Cocomparability constructs

normal antipaths in Gr
uz
(up, i, j) using normal antipaths of the smaller graph Gr−1

uz
(up, i, j).

Lemma 4.2 Let Lj be an ordering of the set Hj ∩ V (G(up, i, j)), and let ut be the last vertex of

Lr
j(uz). Let P1 be a normal antipath of Gr−1

uz
(up, i, j) with right endpoint a vertex ux such that

ux ∈ Hℓ, f(ut) ≤ ℓ ≤ j − 1, and utux /∈ E(G). Let P2 be a normal antipath of Gr−1
uz

(ux, ℓ + 1, j)

with right endpoint a vertex uy such that uy ∈ Hh, ℓ+ 1 ≤ h ≤ j, and V (P1) ∩ V (P2) = ∅. Then,

P = (P1, ut, P2) is a normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy.
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Proof. Let P1 be a normal antipath of Gr−1
uz

(up, i, j) with right endpoint a vertex ux such that

ux ∈ Hℓ, f(ut) ≤ ℓ ≤ j−1, and utux /∈ E(G), and let P2 be a normal antipath of Gr−1
uz

(ux, ℓ+1, j)

with right endpoint a vertex uy such that uy ∈ Hh, ℓ+ 1 ≤ h ≤ j, and V (P1) ∩ V (P2) = ∅. Since
utux /∈ E(G), ux <σ us ≤σ ut and usux ∈ E(G) for every vertex us ∈ V (P2), it follows that utus /∈
E(G) for every vertex us ∈ V (P2). Thus, the first vertex of P2 is an antineighbor of ut. Therefore,

since V (P1) ∩ V (P2) = ∅, it follows that P = (P1, ut, P2) is an antipath of G. Additionally, since

up <σ ux <σ us, upux ∈ E(G), and uxus ∈ E(G) for every vertex us ∈ V (Gr−1
uz

(ux, ℓ + 1, j)),

from the transitivity property we obtain that upus ∈ E(G), for every vertex us ∈ V (P2); thus,

for every vertex us ∈ V (P2), we obtain us ∈ V (Gr−1
uz

(up, i, j)). Therefore, since Gr−1
uz

(up, i, j)

and Gr−1
uz

(ux, ℓ + 1, j) are induced subgraphs of Gr
uz
(up, i, j), it follows that P is a antipath of

Gr
uz
(up, i, j). Hereafter, in the rest of this proof P1 = (v1, v2, . . . , vq−1), P2 = (vq+1, vq+2, . . . , vs),

ux = vq−1, uy = vs, and ut = vq.

We first show that P = (v1, v2, . . . , vq, . . . , vs) is a normal antipath. Since v1 is a leftmost

vertex of V (P1) in σ, it follows that v1 ≤σ ux. Furthermore, since for every vertex vk ∈ V (P2) it

holds ux <σ vk, it follows that v1 is a leftmost vertex of V (P ) in σ. We next show that for every

k, 2 ≤ k ≤ s, the vertex vk is a leftmost vertex of NG(vk−1) ∩ {vk, vk+1, . . . , vs} in σ.

Consider first the case where 2 ≤ k ≤ q − 1, i.e., vk ∈ V (P1). Since P1 is a normal antipath,

it follows that vk is a leftmost vertex of NG(vk−1) ∩ {vk, vk+1, . . . , vq−1} in σ. Consider first

the case where vk ≤σ ux. Since ux <σ vk′ for every vertex vk′ , q ≤ k′ ≤ s, it follows that

vk <σ vk′ . Therefore, in the case where vk ≤σ ux, we obtain that vk is also a leftmost vertex of

NG(vk−1)∩{vk, vk+1, . . . , vs} in σ. Consider now the case where ux <σ vk. Since vq is a rightmost

vertex of V (P ) is σ, it follows that vk is a leftmost vertex of NG(vk−1)∩{vk, vk+1, . . . , vq−1, vq} in σ.

Now, since ux <σ vk, and vk is the next vertex of vk−1 in P1, it follows that vk−1ux ∈ E(G). Also,

since P1 is normal, vk−1ux ∈ E(G), and vk−1 appears before ux in P1, from Lemma 2.4 it follows

that vk−1 <σ ux. Now, since vk−1 <σ ux <σ vk′ for every vertex vk′ ∈ V (P2), vk−1ux ∈ E(G),

and uxvk′ ∈ E(G), from the transitivity property it follows that vk−1vk′ ∈ E(G). Thus, for every

vertex vk′ of P2, it follows that vk−1vk′ ∈ E(G). Therefore, in the case where ux <σ vk, we obtain

again that vk is a leftmost vertex of NG(vk−1) ∩ {vk, vk+1, . . . , vs} in σ. Therefore, in the case

where 2 ≤ k ≤ q − 1, we have proved that vk is a leftmost vertex of NG(vk−1) ∩ {vk, vk+1, . . . , vs}
in σ.

Consider now the case where k = q. Since P1 is a normal antipath, and for every vertex

vk′ ∈ V (P2) we have that vk′ ∈ V (Gr−1
uz

(ux, ℓ + 1, j)), it follows that vk′ux ∈ E(G). There-

fore, vq is the only antineighbor of vq−1 in {vq, vq+1, . . . , vs} and, thus, vq is a leftmost vertex

of NG(vq−1) ∩ {vq, vq+1, . . . , vs} in σ. Now, in the case where k = q + 1, we have that vq+1 is a

leftmost vertex of V (P2) = {vq+1, vq+2, . . . , vs} in σ, since P2 is a normal antipath. Therefore, it

easily follows that vq+1 is a leftmost vertex of NG(vq) ∩ {vq+1, vq+2, . . . , vs} in σ. Finally, in the

case where q + 2 ≤ k ≤ s, since P2 is a normal antipath it directly follows that vk is a leftmost

vertex of NG(vk−1) ∩ {vk, vk+1, . . . , vs} in σ.

We next prove the correctness of Algorithm LP Cocomparability. Let G be a comparability

graph, let H0,H1, . . . ,Hk be the layers of its Hasse diagram, and let σ be the layered ordering of

G.

Hereafter, we distinguish the notation we use for the values computed by Algorithm

LP Cocomparability, from the notation we use for the optimum values. In particular, by

ℓ(uy;G
r
uz
(up, i, j)) we denote the value computed by Algorithm LP Cocomparability for the

length of a longest normal antipath of Gr
uz
(up, i, j) which has uy as its right endpoint,

and by P (uy;G
r
uz
(up, i, j)) the corresponding computed antipath. On the other hand, by

L(uy;G
r
uz
(up, i, j)) we denote the optimum value of the length of a longest normal antipath of

Gr
uz
(up, i, j) which has uy as its right endpoint, and by P(uy;G

r
uz
(up, i, j)) the corresponding
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antipath.

Lemma 4.3 For every induced subgraph G(up, i, j) of G, and for every vertex uy ∈ V (G(up, i, j)),

the value ℓ(uy;G(up, i, j)) computed by Algorithm LP Cocomparability is equal to the length of a

longest normal antipath of G(up, i, j) with right endpoint the vertex uy and, also, the corresponding

computed antipath P (uy;G(up, i, j)) is a longest normal antipath of G(up, i, j) with right endpoint

the vertex uy.

Proof. The proof of the lemma for every subgraph G(up, i, j), 1 ≤ i ≤ j ≤ k, will be done by

induction on the index j, 1 ≤ j ≤ k.

Induction basis. We first prove the lemma for j = 1, i.e., for the subgraph G(up, 1, 1), where

up = u0 in this case. Let L1 be an ordering of the set H1 ∩ V (G(up, 1, 1)). It is easy to see that

the length of a longest normal antipath of G(up, 1, 1) with right endpoint a vertex uz ∈ L1 is equal

to |L1|, i.e., L(uz;G(up, 1, 1)) = |L1|.
Let us now compare this value to the value ℓ(uz;G(up, 1, 1)) computed by Algorithm

LP Cocomparability in this case. Since i = j, it easy to see that for every graph Gr
uz
(up, 1, 1),

1 ≤ r ≤ |L1|, Algorithm LP Cocomparability correctly computes and sets (in lines 15-17)

ℓ(ut;G
r
uz
(up, 1, 1)) = |Lr

1(uz)| and P (ut;G
r
uz
(up, 1, 1)) = Lr

1(uz), where ut is the last ver-

tex of Lr
1(uz). In particular, for r = |L1|, we have ℓ(ut;G

|L1|
uz (up, 1, 1)) = |L1(uz)| and

P (ut;G
|L1|
uz (up, 1, 1)) = L1(uz). Moreover, Algorithm LP Cocomparability sets (in lines 23-24)

ℓ(uz;G(up, 1, 1)) = ℓ(uz;G
|L1|
uz (up, 1, 1)) and P (uz;G(up, 1, 1)) = P (uz;G

|L1|
uz (up, 1, 1)), for every

vertex uz of L1. Thus, Algorithm LP Cocomparability correctly computes ℓ(uz;G(up, 1, 1)) =

|L1(uz)| = |L1| and P (uz;G(up, 1, 1)) = L1(uz), for every vertex uz of L1. Therefore,

ℓ(uz;G(up, 1, 1)) = L(uz;G(up, 1, 1)) and P (uz;G(up, 1, 1)) = P(uz;G(up, 1, 1)), for every ver-

tex uz of L1; thus, the lemma holds for every subgraph Gr
uz
(up, 1, 1), 1 ≤ r ≤ |L1|. This proves

the induction basis.

Induction hypothesis. Assume now that the lemma holds for every index j′, 1 ≤ j′ ≤ j −
1 ≤ k − 1. That is, assume that for every induced subgraph G(up, i

′, j′) of G, 1 ≤ i′ ≤ j′ ≤
j − 1 ≤ k − 1, and for every vertex uy ∈ V (G(up, i

′, j′)), the value ℓ(uy;G(up, i
′, j′)) computed

by Algorithm LP Cocomparability is equal to the length L(uy;G(up, i
′, j′)) of a longest normal

antipath of G(up, i
′, j′) with right endpoint the vertex uy and, also, the corresponding computed

antipath P (uy;G(up, i
′, j′)) is a longest normal antipath of G(up, i

′, j′) with right endpoint the

vertex uy.

Induction step. We will next show that the lemma holds for j′ = j, 1 ≤ i ≤ j ≤ k, i.e., for every

induced subgraph G(up, i, j) of G.

Case A. Consider first the case where 1 ≤ i = j ≤ k. Let Lj be an ordering of the set Hj ∩
V (G(up, j, j)). It is easy to see that the length of a longest normal antipath of G(up, j, j) with

right endpoint a vertex uz ∈ Lj is equal to |Lj |, i.e., L(uz;G(up, j, j)) = |Lj |.
Let us now compare this value to the value ℓ(uz;G(up, j, j)) computed by Algorithm

LP Cocomparability. Let ut be the last vertex of Lr
j(uz). We first show that for every graph

Gr
uz
(up, j, j), 1 ≤ r ≤ |Lj |, Algorithm LP Cocomparability correctly computes the values

ℓ(ut;G
r
uz
(up, j, j)) and P (ut;G

r
uz
(up, j, j)). It is easy to see that L(ut;G

r
uz
(up, j, j)) = |Lr

j(uz)|.
In the case where i = j, Algorithm LP Cocomparability correctly computes and sets (in lines

15-17) ℓ(ut;G
r
uz
(up, j, j)) = |Lr

j(uz)| and P (ut;G
r
uz
(up, j, j)) = Lr

j(uz); note that for r = |Lj |,
we have |Lr

j(uz)| = |Lj |. Since Algorithm LP Cocomparability computes these values for every

vertex uz ∈ Lj , i.e., for every subgraph Gr
uz
(up, j, j)), and since G(up, j, j) = G

|Lj |
uz (up, j, j) for

any vertex uz ∈ Lj , it follows that Algorithm LP Cocomparability correctly computes and sets (in

lines 23-24) ℓ(uz, G(up, j, j)) = ℓ(uz, G
|Lj |
uz (up, j, j)) and P (uz, G(up, j, j)) = P (uz, G

|Lj |
uz (up, j, j)),
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for every vertex uz ∈ Lj . Thus, the lemma holds for every subgraph G(up, i, j) of G such that

1 ≤ i = j ≤ k.

Case B. Consider now the case where 1 ≤ i < j ≤ k. To prove that the lemma holds in this case,

we use the following claim.

Claim 1 For every induced subgraph Gr
uz
(up, i, j) of G, 1 ≤ i < j ≤ k and 0 ≤ r ≤ |Lj |, and for

every vertex uy ∈ V (Gr
uz
(up, i, j)) such that uy /∈ Lj \ {ut}, where ut is the last vertex of Lr

j(uz),

Algorithm LP Cocomparability correctly computes ℓ(uy;G
r
uz
(up, i, j)) and P (uy;G

r
uz
(up, i, j)).

Recall that G(up, i, j) = G
|Lj |
uz (up, i, j) for any vertex uz ∈ Lj . Then, on the one hand, for the

length of a longest normal antipath of G(up, i, j) with right endpoint a vertex uy ∈ V (G(up, i, j))

such that uy /∈ Lj , we have that L(uy;G(up, i, j)) = L(uy;G
|Lj |
uz (up, i, j)), where uz is any vertex

of Lj . Thus, from Claim 1 we obtain that ℓ(uy;G
|Lj |
uz (up, i, j)) = L(uy;G(up, i, j)), where uz is

any vertex of Lj . It is easy to see that, for every vertex uy of G(up, i, j) such that uy /∈ Lj ,

Algorithm LP Cocomparability sets (in lines 26-28) ℓ(uy;G(up, i, j)) = ℓ(uy;G
|Lj |
uz (up, i, j)) and

P (uy;G(up, i, j)) = P (uy;G
|Lj |
uz (up, i, j)), where uz is any vertex of Lj .

On the other hand, for the length of a longest normal antipath of G(up, i, j) with right end-

point a vertex uz ∈ Lj , from Claim 1 we obtain that ℓ(uz;G
|Lj |
uz (up, i, j)) = L(uz;G(up, i, j)).

Since the procedure process() is executed for every vertex uz ∈ Lj , i.e., for every subgraph

Gr
uz
(up, i, j)), it follows that Algorithm LP Cocomparability correctly computes and sets (in lines

23-24) ℓ(uz;G(up, i, j)) = ℓ(uz;G
|Lj |
uz (up, i, j)) and P (uz;G(up, i, j)) = P (uz;G

|Lj |
uz (up, i, j)) for

every vertex uz ∈ Lj .

It is now clear that Algorithm LP Cocomparability correctly computes the length of a longest

normal antipath of G(up, i, j) with right endpoint a vertex uy, for every vertex uy ∈ V (G(up, i, j)).

This proves the lemma.

We next prove by induction that the process() of algorithm LP Cocomparability, i.e., proce-

dures bridge() and append(), correctly computes the length ℓ(uy;G
r
uz
(up, i, j)) of a longest nor-

mal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy, and the corresponding antipath

P (uy;G
r
uz
(up, i, j)).

Proof of Claim 1.

For proving the claim we use the induction hypothesis of Lemma 4.3. That is, we assume that

for every induced subgraph G(up, i
′, j′) of G, 1 ≤ i′ ≤ j′ ≤ j − 1 ≤ k − 1, and for every vertex

uy ∈ V (G(up, i
′, j′)), the value ℓ(uy;G(up, i

′, j′)) computed by Algorithm LP Cocomparability

is equal to the length L(uy;G(up, i
′, j′)) of a longest normal antipath of G(up, i

′, j′) with right

endpoint the vertex uy and, also, the corresponding computed antipath P (uy;G(up, i
′, j′)) is a

longest normal antipath of G(up, i
′, j′) with right endpoint the vertex uy.

Let Gr
uz
(up, i, j) be an induced subgraph of G such that 1 ≤ i < j ≤ k and 0 ≤ r ≤ |Lj |.

We prove the claim by induction on the index r, 0 ≤ r ≤ |Lj |, i.e., we prove that for every

induced subgraph Gr
uz
(up, i, j) of G, 1 ≤ i < j ≤ k and 0 ≤ r ≤ |Lj |, and for every vertex

uy ∈ V (Gr
uz
(up, i, j)) such that uy /∈ Lj \ {ut}, where ut is the last vertex of Lr

j(uz), Algorithm

LP Cocomparability correctly computes ℓ(uy;G
r
uz
(up, i, j)) and P (uy;G

r
uz
(up, i, j)).

To this end, we distinguish three cases concerning the position of the vertex uy in the ordering

σ. In each case, we examine first the optimum value of the length L(uy;G
r
uz
(up, i, j)) of a longest

normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy, and then we compare this value

to the value ℓ(uy;G
r
uz
(up, i, j)) computed by Algorithm LP Cocomparability; we also compare the

corresponding antipaths.

Induction basis. Consider first the case where r = 0, i.e., L0
j = ∅. Since in this claim we examine

the case where i ̸= j, from Definition 3.2 we obtain that G0
uz
(up, i, j) = G(up, i, j − 1). Therefore,
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it is easy to see that for every subgraph G0
uz
(up, i, j), and for every vertex uy ∈ V (G0

uz
(up, i, j)),

the length L(uy;G
0
uz
(up, i, j)) is equal to L(uy;G(up, i, j − 1)).

Algorithm LP Cocomparability sets (in lines 8-11) ℓ(uy;G
0
uz
(up, i, j)) = ℓ(uy;G(up, i, j − 1))

and P (uy;G
0
uz
(up, i, j)) = P (uy;G(up, i, j − 1)), for every vertex uy ∈ V (G0

uz
(up, i, j)). Since by

the induction hypothesis of Lemma 4.3, Algorithm LP Cocomparability correctly computes the

values of ℓ(uy;G(up, i, j− 1)) and P (uy;G(up, i, j− 1)), it follows that the algorithm also correctly

computes the values of ℓ(uy;G
0
uz
(up, i, j)) and P (uy;G

0
uz
(up, i, j)). Therefore, the claim holds for

r = 0.

Induction hypothesis. Suppose now that the claim holds for every index ℓ, 0 ≤ ℓ ≤ r − 1 ≤
|Lj | − 1.

Induction step. We will now prove that the claim holds for the subgraph Gr
uz
(up, i, j) of G,

1 ≤ r ≤ |Lj |. To this end, we distinguish three cases concerning the position of the vertex uy in

the ordering σ:

Case 1: uy ∈ Hℓ, i ≤ ℓ ≤ f(ut),

Case 2: uy ∈ Hℓ, f(ut) + 1 ≤ ℓ ≤ j − 1, and

Case 3: uy = ut.

Note that Cases 1 and 2 correspond to the procedure bridge() of algorithm LP Cocomparability,

while Case 3 corresponds to procedure append().

Case 1. We consider first the case where uy ∈ Hℓ and i ≤ ℓ ≤ f(ut). In this case we have

L(uy;G
r
uz
(up, i, j)) = L(uy;G

r−1
uz

(up, i, j)), since from Definition 2.2 and Notation 3.1 we obtain

that ut does not belong to any normal antipath with right endpoint a vertex uy ∈ Hℓ, i ≤ ℓ ≤ f(ut).

In this case, Algorithm LP Cocomparability computes and sets (in lines 8-14)

ℓ(uy;G
r
uz
(up, i, j)) = ℓ(uy;G

r−1
uz

(up, i, j)) for the length of a longest normal antipath of Gr
uz
(up, i, j)

with right endpoint a vertex uy ∈ Hℓ, i ≤ ℓ ≤ f(ut); the algorithm also computes the correspond-

ing antipath. Note that, this computation is done during the initialization (in lines 8-14), and these

values do not change during the process() of the algorithm, since uy ∈ Hℓ and ℓ < f(ut) + 1.

Since by the induction hypothesis Algorithm LP Cocomparability correctly computes and sets

ℓ(uy;G
r−1
uz

(up, i, j) = L(uy;G
r−1
uz

(up, i, j), for every vertex uy ∈ Gr−1
uz

(up, i, j) such that uy /∈ Lj ,

it follows that Algorithm LP Cocomparability correctly computes the values of ℓ(uy;G
r
uz
(up, i, j))

and P (uy;G
r
uz
(up, i, j)).

Case 2. We consider next the case where uy ∈ Hh and f(ut)+1 ≤ h ≤ j−1. Let P = (ux′ , . . . , uy)

be a longest normal antipath of Gr
uz
(up, i, j) which has uy as its right endpoint. We now distinguish

two cases: (I) the case where P contains the vertex ut, and (II) the case where P does not contain

the vertex ut.

2(I) Consider first the case where P contains the vertex ut. Assume first that P = (ut, uy) is

a longest normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex uy. From Definition 2.2

we obtain that P is not normal; this is a contradiction to our assumption on P .

Assume now that P = (ux′ , . . . , ux, ut, uy′ , . . . , uy) = (P1, ut, P2) is a longest normal antipath of

Gr
uz
(up, i, j) with right endpoint the vertex uy. From Lemma 4.1, we obtain that P1 = (ux′ , . . . , ux)

and P2 = (uy′ , . . . , uy) are normal antipaths of Gr
uz
(up, i, j) and, in fact, of Gr−1

uz
(up, i, j). We next

prove the following results (Claims 2, 3, and 4) for the antipaths P , P1, and P2.

Claim 2 Let P , P1, and P2 be the antipaths of Case 2(I). Then, for every vertex us ∈ V (P2) we

have ux <σ us and uxus ∈ E(G), where ux is the right endpoint of P1.

Proof of Claim 2. Let P = (P1, ut, P2) and let ux be the right endpoint of P1. Since ut ∈ Lj and

P is an antipath of Gr
uz
(up, i, j), it follows that us ≤σ ut for every vertex us ∈ V (P2).
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(i) Consider first the case where us is a vertex of P2 such that us <σ ut. Since P is normal and

ut is the next vertex of ux in P , it follows that uxus ∈ E(G) for every vertex us ∈ V (P2) such that

us <σ ut. Since P is normal, uxus ∈ E(G), and ux appears before us in P , from Lemma 2.4 we

obtain that ux <σ us, for every vertex us ∈ V (P2) such that us <σ ut. Therefore, we have proved

that for every vertex us ∈ V (P2) such that us <σ ut, we have ux <σ us and uxus ∈ E(G).

(ii) Consider now the case where us is a vertex of P2 such that us =σ ut. Since uy is a

vertex of P2 such that uy <σ ut, from case (i) of Claim 2 we obtain that ux <σ uy. Since

ux <σ uy <σ ut =σ us, it follows that ux <σ us, for every vertex us ∈ V (P2) such that us =σ ut.

It is left to show that the property uxus ∈ E(G) holds for every vertex us ∈ V (P2) such that

us =σ ut. Assume that P is an antipath for which this property does not hold. We next show that

there exists a longest normal antipath P ′ of Gr
uz
(up, i, j) with right endpoint the vertex uy, such

that P ′ = (P1, P
′
2) and V (P ′) = V (P ), for which the property uxus ∈ E(G) holds for every vertex

us ∈ V (P2) such that us =σ ut.

Let us be a vertex of P2 such that us =σ ut and uxus /∈ E(G). Let

P = (P1, ut, P2) = (P1, ut, uy′ . . . , us′ , us, us′′ , . . . , uy), and let us be the last such vertex in P . Then

P ′ = (P1, P
′
2) = (P1, us, uy′ . . . , us′ , ut, us′′ , . . . , uy) is an antipath, since we next prove that both

ut and us are connected with an antiedge to every vertex of P2. To this end, let uq be a vertex

of P2 such that q ̸= s. If uq =σ ut, then indeed uqut /∈ E(G) and uqus /∈ E(G). If uq <σ ut,

then from case (i) of Claim 2 we obtain that ux <σ uq and uxuq ∈ E(G). Since ux <σ uq <σ ut,

uxuq ∈ E(G), and uxut /∈ E(G), from the transitivity property we obtain uqut /∈ E(G); using the

same arguments we obtain that uqus /∈ E(G). Therefore, since uy′ , us′ , and us′′ are vertices of P2,

we obtain that P ′ = (P1, us, uy′ . . . , us′ , ut, us′′ , . . . , uy) is a longest antipath of Gr
uz
(up, i, j) with

right endpoint the vertex uy. It is easy to see that P ′ is normal, since P is normal and ut =σ us.

Additionally, since P ′ is normal, it is easy to obtain that the property of case (i) of Claim 2 holds

for P ′ as well, where P ′ = (P1, us, P̃2). By repeating the above procedure we can obtain a longest

normal antipath P ′ = (P ′
1, ut, P

′
2) with right endpoint the vertex uy such that uxus ∈ E(G) for

every vertex us ∈ V (P ′
2) such that us =σ ut, where ux is the last vertex of P ′

1.

Therefore, we may assume without loss of generality that

P = (ux′ , . . . , ux, ut, uy′ , . . . , uy) = (P1, ut, P2) is a longest normal antipath of Gr
uz
(up, i, j)

with right endpoint the vertex uy, with the property that uxus ∈ E(G) for every vertex

us ∈ V (P2) such that us =σ ut. Thus, we have proved that ux <σ us and uxus ∈ E(G), for every

vertex us ∈ V (P2); QED of Claim 2.

Claim 3 Let P , P1, and P2 be the antipaths of Case 2(I). Then, P1 is a normal antipath of

Gr−1
uz

(up, i, j) which has ux as its right endpoint, and P2 is a normal antipath of Gr−1
uz

(ux, ℓ+1, j)

which has uy as its right endpoint.

Proof of Claim 3. By assumption, for every vertex uq ∈ V (P1) we have uq ∈ V (Gr−1
uz

(up, i, j)), and

ux is the right endpoint of P1.

Since ux <σ uy and by assumption uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1, we obtain that ux ∈ Hℓ,

where f(ut) ≤ ℓ ≤ j−2. Then, from Claim 2 we obtain that us ∈ Hh, ℓ+1 ≤ h ≤ j, for every vertex

us ∈ V (P2). Additionally, since from Claim 2 we have uxus ∈ E(G) for every vertex us ∈ V (P2), it

follows from Definition 3.2 that us ∈ V (Gr−1
uz

(ux, ℓ+1, j)) for every vertex us ∈ V (P2). Note that,

every vertex us of G
r−1
uz

(ux, ℓ+1, j) is also a vertex of Gr−1
uz

(up, i, j). Indeed, since i < ℓ+1 ≤ j, and

since up <σ ux <σ us, upux ∈ E(G), and uxus ∈ E(G), from the transitivity property we obtain

that upus ∈ E(G). Therefore, we have shown that every vertex of P2 belongs to Gr−1
uz

(ux, ℓ+1, j);

QED of Claim 3.

Claim 4 If P1 is a normal antipath of Gr−1
uz

(up, i, j) which has ux as its right endpoint, and P2 is

a normal antipath of Gr−1
uz

(ux, ℓ+1, j) which has uy as its right endpoint, then V (P1)∩V (P2) = ∅.
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Proof of Claim 4. Let H2 be the subgraph of Gr
uz
(up, i, j) induced by

V (H2) = V (Gr−1
uz

(ux, ℓ+ 1, j)); recall from Claim 3 that every vertex of P2 belongs to H2.

Let uq be a vertex of P1. If uq ≤σ ux, then uq ∈ Hd and d ≤ ℓ; thus, from Definition 3.2 we

obtain that uq /∈ V (H2) = V (Gr−1
uz

(ux, ℓ+1, j)). Consider now the case where uq is a vertex of P1

such that ux <σ uq. Since P1 is a normal antipath, ux <σ uq, and uq appears before ux in P1, from

Lemma 2.4 we obtain that uxuq /∈ E(G). Therefore, from Definition 3.2 we obtain again that uq /∈
V (H2) = V (Gr−1

uz
(ux, ℓ+1, j)). Therefore, we have proved that no vertex of P1 belongs to H2. Let

H1 be the subgraph of Gr
uz
(up, i, j) induced by V (H1) = V (Gr−1

uz
(up, i, j)) \ V (Gr−1

uz
(ux, ℓ+ 1, j)).

Thus, we have shown that every vertex of P1 belongs to H1.

Therefore, we have shown that V (P1) ⊆ V (H1), V (P2) ⊆ V (H2), and V (H1) ∩ V (H2) = ∅. It

is easy to see that V (P1) ∩ V (P2) = ∅; QED of Claim 4.

Since P = (P1, ut, P2) is a longest normal antipath ofGr
uz
(up, i, j) with right endpoint the vertex

uy, and since the antipaths P1 and P2 belong to two disjoint induced subgraphs of Gr
uz
(up, i, j), it

follows that P1 is a longest normal antipath of H1 with right endpoint the vertex ux, and that P2 is

a longest normal antipath of H2 with right endpoint the vertex uy. Note that, ut is connected with

an antiedge to every vertex us of H2 and, thus, also of P2. Indeed, in the case where us =σ ut this

is straightforward. In the case where us <σ ut, then from Claim 2 we have and ux <σ us <σ ut

and uxus ∈ E(G) for every vertex us of P2; since uxut /∈ E(G), from the transitivity property we

obtain that usut /∈ E(G) for every vertex us of P2.

Therefore, since H2 = Gr−1
uz

(ux, ℓ + 1, j), we obtain that |P2| = L(uy;G
r−1
uz

(ux, ℓ+ 1, j)). We

will now show that |P1| = L(ux;G
r−1
uz

(up, i, j)). To this end, let P0 be a longest normal antipath of

Gr−1
uz

(up, i, j) with right endpoint the vertex ux. Assume that there exists a vertex us ∈ V (P0) such

that us ∈ V (H2) = V (Gr−1
uz

(ux, ℓ+1, j)). Since ux ∈ Hℓ, it follows that ux <σ us and uxus ∈ E(G).

Since P0 is normal, from Lemma 2.4 we obtain that ux appears before us in P0. This comes to

a contradiction to our assumption that ux is the right endpoint of P0. Thus, no vertex of P0

belongs to H2. Thus, V (P0) ⊆ V (H1), and since P1 is a longest normal antipath of H1 with right

endpoint the vertex ux, we obtain that |P0| ⊆ |P1|. Additionally, since H1 is an induced subgraph

of Gr−1
uz

(up, i, j), we obtain that |P1| ⊆ |P0|. Thus, |P0| = |P1| and, therefore, P1 is a longest normal

antipath of Gr−1
uz

(up, i, j) with right endpoint the vertex ux. Thus, |P1| = L(ux;G
r−1
uz

(up, i, j)).

Therefore, if P = (P1, ut, P2) is a longest normal antipath of Gr
uz
(up, i, j) with

right endpoint a vertex uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1, we have shown that

|P | = L(uy;G
r
uz
(up, i, j)) = L(ux;G

r−1
uz

(up, i, j)) + L(uy;G
r−1
uz

(ux, ℓ + 1, j)) + 1 and P =

P(uy;G
r
uz
(up, i, j)) = (P(ux;G

r−1
uz

(up, i, j)), ut,P(uy;G
r−1
uz

(ux, ℓ+ 1, j))).

We next examine the results computed by Algorithm LP Cocomparability in Case 2(I). Let

P (uy;G
r
uz
(up, i, j)) be the antipath of Gr

uz
(up, i, j) with right endpoint a vertex uy computed

by Algorithm LP Cocomparability, in the case where uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1. Note

that the antipath P (uy;G
r
uz
(up, i, j)), which is computed by the algorithm with the procedure

bridge(), contains the vertex ut. In fact, Algorithm LP Cocomparability computes and sets

P (uy;G
r
uz
(up, i, j)) = (P ′

1, ut, P
′
2), where ut is the last vertex of Lr

j(uz), and for the two an-

tipaths P ′
1 and P ′

2 we have: P ′
1 = P (ux;G

r−1
uz

(up, i, j)), where ux ∈ Hℓ, f(ut) ≤ ℓ ≤ j − 2,

and uxut /∈ E(G), and P ′
2 = P (uy;G

r−1
uz

(ux, ℓ+ 1, j)), where uy ∈ Hh, ℓ + 1 ≤ h ≤ j − 1. Ac-

tually, in this case, Algorithm LP Cocomparability computes with the procedure bridge() the

value w1 + w2 + 1 = |P ′
1|+ |P ′

2|+ 1, for every vertex ux such that ux ∈ Hℓ, f(ut) ≤ ℓ ≤ j− 2, and

uxut /∈ E(G), and sets ℓ(uy;G
r
uz
(up, i, j)) to be equal to the maximum among these values. Also,

Algorithm LP on H computes the corresponding antipath P (uy;G
r
uz
(up, i, j)) = (P ′

1, ut, P
′
2).

By the induction hypothesis, we obtain that Algorithm LP Cocomparability has correctly

computed the values P ′
1 = P (ux;G

r−1
uz

(up, i, j)) and P ′
2 = P (uy;G

r−1
uz

(ux, ℓ+ 1, j)), i.e., P ′
1 =

P(ux;G
r−1
uz

(up, i, j)) and P ′
2 = P(uy;G

r−1
uz

(ux, ℓ+ 1, j)). Therefore, from Claim 3 we obtain that

V (P ′
1) ∩ V (P ′

2) = ∅. Then, from Lemma 4.2 we obtain that the antipath P (uy;G
r
uz
(up, i, j)) =
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(P ′
1, ut, P

′
2) computed by Algorithm LP Cocomparability is a normal antipath of Gr

uz
(up, i, j) with

right endpoint the vertex uy. Moreover, since Algorithm LP Cocomparability computes with the

procedure bridge() the value ℓ(ux;G
r−1
uz

(up, i, j)) + ℓ(uy;G
r−1
uz

(ux, ℓ+ 1, j)) + 1, for every vertex

ux such that ux ∈ Hℓ, f(ut) ≤ ℓ ≤ j − 2, and uxut /∈ E(G), and sets ℓ(uy;G
r
uz
(up, i, j)) to be

equal to the maximum among these values, it follows that ℓ(uy;G
r
uz
(up, i, j)) = L(uy;G

r
uz
(up, i, j)).

Also, the corresponding antipath P (uy;G
r
uz
(up, i, j) = (P (ux;G

r−1
uz

(up, i, j)), ut, P (uy;G
r−1
uz

(ux, ℓ+

1, j))) computed by Algorithm LP Cocomparability is a longest normal antipath of Gr
uz
(up, i, j)

with right endpoint the vertex uy.

2(II) Consider now the case where there exists a longest normal antipath P of Gr
uz
(up, i, j) with

right endpoint the vertex uy which does not contain the vertex ut. Then V (P ) ⊆ V (Gr−1
uz

(up, i, j))

and, thus, P is a longest normal antipath of Gr−1
uz

(up, i, j) with right endpoint the vertex uy, i.e.,

P = P(uy;G
r−1
uz

(up, i, j)).

We next examine the results computed by Algorithm LP Cocomparability in Case 2(II).

By the induction hypothesis, we obtain that Algorithm LP Cocomparability correctly com-

putes ℓ(uy;G
r−1
uz

(up, i, j)) = L(uy;G
r−1
uz

(up, i, j)) for every vertex uy ∈ Gr−1
uz

(up, i, j) such that

uy /∈ Lj \ {ut}. Observe first that during the initialization (in lines 8-14) the algorithm sets

ℓ(uy;G
r
uz
(up, i, j)) = ℓ(uy;G

r−1
uz

(up, i, j)) for every vertex uy ∈ Hh, f(ut) + 1 ≤ h ≤ j − 1. Next,

it suffices to show that these values do not change during the execution of the process().

From Lemma 4.2 (since from Claim 4 we have V (P ′
1)∩V (P ′

2) = ∅), we obtain that the antipaths

(P ′
1, ut, P

′
2) constructed by Algorithm LP Cocomparability, during the execution of the procedure

bridge(), are normal antipaths of Gr
uz
(up, i, j) with right endpoint a vertex uy. Therefore, since

we have assumed that the longest normal antipath P of Gr
uz
(up, i, j) with right endpoint the vertex

uy does not contain the vertex ut, it directly follows that no (normal) antipath (P ′
1, ut, P

′
2) with

right endpoint the vertex uy which is constructed with the procedure bridge() is longer than P .

Thus, since |P | is the initial value given to ℓ(uy;G
r
uz
(up, i, j)) (during the initialization in lines

8-14), it follows that the statement w1 +w2 +1 > ℓ(uy;G
r
uz
(up, i, j)) (in the procedure bridge())

is false for every vertex ux ∈ Hℓ such that f(ut) ≤ ℓ ≤ h − 1 and utux /∈ E(G). Therefore, the

initial value of ℓ(uy;G
r
uz
(up, i, j)) does not change during the execution of the process().

Thus, Algorithm LP Cocomparability correctly computes ℓ(uy;G
r
uz
(up, i, j)) =

ℓ(uy;G
r−1
uz

(up, i, j)) and P (uy;G
r
uz
(up, i, j)) = P (uy;G

r−1
uz

(up, i, j)); recall that, by the in-

duction hypothesis, ℓ(uy;G
r−1
uz

(up, i, j)) = L(uy;G
r−1
uz

(up, i, j)) and P (uy;G
r−1
uz

(up, i, j)) =

P(uy;G
r−1
uz

(up, i, j)).

Concluding, in both Cases 2(I) and 2(II), we have proved that the antipath P (uy;G
r
uz
(up, i, j))

computed by Algorithm LP Cocomparability is a longest normal antipath P(uy;G
r
uz
(up, i, j)) of

Gr
uz
(up, i, j) with uy as its right endpoint, and ℓ(uy;G

r
uz
(up, i, j)) = L(uy;G

r
uz
(up, i, j)). Thus, the

claim holds in Case 2.

Case 3. Consider now the case where uy = ut.

3(I) Assume first that ut has no antineighbors in Gr
uz
(up, i, j). Then P(ut;G

r
uz
(up, i, j)) = (ut)

is a longest normal antipath of Gr
uz
(up, i, j) with right endpoint the vertex ut.

Since we examine the case where i ̸= j, it is easy to see that Algorithm LP Cocomparability sets

(in lines 19-20) ℓ(ut;G
r
uz
(up, i, j)) = 1 and P (ut;G

r
uz
(up, i, j)) = (ut). Since ut has no antineighbors

in Gr
uz
(up, i, j), it follows that r = 1 and f(ut) = j. Thus, the initial value of ℓ(ut;G

r
uz
(up, i, j))

does not change during the execution of the process(). Therefore, Algorithm LP Cocomparability

correctly computes the values of ℓ(ut;G
r
uz
(up, i, j)) and P (ut;G

r
uz
(up, i, j)) in the case where ut

has no antineighbors in Gr
uz
(up, i, j).

3(II) Assume now that ut has at least one antineighbor in Gr
uz
(up, i, j). Let P =

(ux′ , . . . , ux, ut) = (P ′, ut) be a longest normal antipath P(ut;G
r
uz
(up, i, j)) of Gr

uz
(up, i, j) with

right endpoint the vertex ut. Then, it is easy to see that P ′ is a longest normal antipath of

Gr−1
uz

(up, i, j) with right endpoint the vertex ux, i.e., P
′ = P(ux;G

r−1
uz

(up, i, j)).
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In Case 3(II), Algorithm LP Cocomparability computes (with the procedure append()) the

value w1 + 1 = ℓ(ux;G
r−1
uz

(up, i, j)) + 1, for every vertex ux ∈ Hℓ ∩ V (Gr−1
uz

(up, i, j)) such that

f(ut) ≤ ℓ ≤ j, x ̸= t, and uxut /∈ E(G), and sets ℓ(ut;G
r
uz
(up, i, j)) to be equal to the maximum

among these values. We next show that the algorithm correctly computes ℓ(ut;G
r
uz
(up, i, j)) =

L(ut;G
r
uz
(up, i, j)) and P (ut;G

r
uz
(up, i, j)) = P(ut;G

r
uz
(up, i, j)).

3(II.a) Assume first that ux /∈ Lj , where ux is the right endpoint of P ′. Since by the induction

hypothesis the algorithm correctly computes the values ℓ(us;G
r−1
uz

(up, i, j) for every vertex us ∈
Gr−1

uz
(up, i, j) such that us /∈ Lj , it follows that Algorithm LP Cocomparability computes, among

other, the value ℓ(ux;G
r−1
uz

(up, i, j)) + 1 = |P ′| + 1, and sets ℓ(ut;G
r
uz
(up, i, j)) to be equal to

|P ′| + 1 = |P | which is equal to the length L(ut;G
r
uz
(up, i, j)) of a longest normal antipath P

of Gr
uz
(up, i, j) with right endpoint the vertex ut. Also, the corresponding computed antipath

P (ut;G
r
uz
(up, i, j)) = (P (ux;G

r−1
uz

(up, i, j)), ut) is a longest normal antipath P(ut;G
r
uz
(up, i, j)) of

Gr
uz
(up, i, j) with right endpoint the vertex ut.

3(II.b) Consider now the case where for any longest normal antipath

P = (ux′ , . . . , ux, ut) = (P ′, ut) of Gr
uz
(up, i, j) with right endpoint the vertex ut we have

ux ∈ Lj . Then P ′ is a longest normal antipath of Gr−1
uz

(up, i, j) with right endpoint any

vertex of Lj , i.e., |P ′| ≥ |P ′′| for any normal antipath P ′′ of Gr−1
uz

(up, i, j) with right endpoint

a vertex of Lj . Let ux be the rightmost vertex of Lr−1
j (uz) for which such an antipath P ′

exists. Since Algorithm LP Cocomparability computes (with the procedure append()) the value

w1 +1 = ℓ(ux;G
r−1
uz

(up, i, j))+ 1 for every vertex ux ∈ Lr−1
j (uz), and sets ℓ(ut;G

r
uz
(up, i, j)) to be

equal to the maximum among these values, it follows that it suffices to show that there exists at

least one vertex ux ∈ Lr−1
j (uz) for which Algorithm LP Cocomparability correctly computes the

value ℓ(ux;G
r−1
uz

(up, i, j)) and sets it to be equal to |P ′| = L(ux;G
r−1
uz

(up, i, j)).

3(II.b.1) Consider first the case where ux is the last vertex of Lr−1
j (uz), i.e., there exists

such a longest normal antipath P ′ of Gr−1
uz

(up, i, j) with right endpoint a vertex of Lj , for which

the right endpoint ux of P ′ is the last vertex of Lr−1
j (uz). Then by the induction hypothesis,

Algorithm LP Cocomparability correctly computes the length ℓ(ux;G
r−1
uz

(up, i, j)) of a longest

normal antipath of Gr−1
uz

(up, i, j) with right endpoint the vertex ux. Therefore, in this case the last

vertex ux of Lr−1
j (uz) is such a vertex for which ℓ(ux;G

r−1
uz

(up, i, j)) = L(ux;G
r−1
uz

(up, i, j)) = |P ′|;
thus, Claim 1 holds.

3(II.b.2) Consider now the case where ux is not the last vertex of Lr−1
j (uz), i.e., ux ∈ Lr−2

j (uz).

Let uq be the last vertex of Lr−1
j (uz). Since P ′ is a longest normal antipath of Gr−1

uz
(up, i, j) with

right endpoint any vertex of Lj , it follows that uq ∈ V (P ′), since otherwise P̃ = (P ′, uq) is such

a normal antipath longer than P ′. Let P ′ = (ux′ , . . . , uq′ , uq, uq′′ , . . . , ux) = (P1, uq, P2). We

now prove that uq′ <σ uq. Since uq ∈ Lj , it follows that uq′ ≤σ uq. Assume that uq′ =σ uq.

Then using Lemma 2.4 and Definition 2.2, we can easily prove that us =σ uq for every vertex

us ∈ V (P2). Thus, P
′′ = (P1, uq′′ , . . . , ux, uq) is a normal antipath such that V (P ′′) = V (P ′) with

right endpoint the vertex uq which appears after ux in Lr−1
j (uz); this is a contradiction to our

choice of ux. Therefore, we have proved that uq′ <σ uq. Therefore, using the same arguments as

in Claim 2 and the property that uq′ <σ uq, we can prove that uq′ <σ us and uq′us ∈ E(G), for

every vertex us ∈ V (P2).

Since uq′uq /∈ E(G) and uq′ <σ uq, we assume that uq′ ∈ Hℓ, f(uq) ≤ ℓ ≤ j − 1. Let H2

be the subgraph of Gr−1
uz

(up, i, j) induced by V (H2) = V (Gr−2
uz

(uq′ , ℓ + 1, j)) and let H1 be the

subgraph of Gr−1
uz

(up, i, j) induced by V (H1) = V (Gr−2
uz

(up, i, j)) \ V (Gr−2
uz

(uq′ , ℓ + 1, j)). Using

the same arguments as in Claim 3 and the property that uq′ <σ uq, we can show that every

vertex of P2 belongs to H2, and also that every vertex of P1 belongs to H1. Therefore, we have

that V (P1) ⊆ V (H1), V (P2) ⊆ V (H2), and V (H1) ∩ V (H2) = ∅; thus, V (P1) ∩ V (P2) = ∅.
Finally, using the same arguments as in Case 2(I) we can obtain that P1 is a longest normal

antipath of Gr−2
uz

(up, i, j) with right endpoint the vertex uq′ , i.e., |P1| = L(uq′ ;G
r−2
uz

(up, i, j)),
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and P2 is a longest normal antipath of Gr−2
uz

(uq′ , ℓ+ 1, j) with right endpoint the vertex ux, i.e.,

|P2| = L(ux;G
r−2
uz

(uq′ , ℓ+ 1, j)).

Since uq′ <σ uq, it follows that uq′ /∈ Lj . Therefore, from the induction hypothesis Algorithm

LP Cocomparability correctly computes the length ℓ(uq′ ;G
r−2
uz

(up, i, j)) = |P1|. Now it is left

to show that the value ℓ(ux;G
r−2
uz

(uq′ , ℓ + 1, j)) = |P2| computed by the algorithm is equal to

L(ux;G
r−2
uz

(uq′ , ℓ+ 1, j)). Observe that now P2 is a longest normal antipath of Gr−2
uz

(uq′ , ℓ+ 1, j)

with right endpoint any vertex of Lr−2
j (uz) and, actually, ux is the rightmost vertex of Lr−2

j (uz)

for which such an antipath P2 exists, otherwise we come to a contradiction to the choice of P ′ (note

that uq is connected with an antiedge to every vertex of P2). If ux is the last vertex of Lr−2
j (uz)

then, similarly to the above, by the induction hypothesis the algorithm correctly computes the

value ℓ(ux;G
r−2
uz

(uq′ , ℓ+ 1, j)). If ux is not the last vertex of Lr−2
j (uz), then we repeat the above

same procedure of Case 3(II.b.2), where now by uq we denote the last vertex of Lr−2
j (uz).

We repeat the above procedure until ux is the last vertex of the ordering Lr′

j (uz), 1 ≤ r′ ≤ r−2,
i.e., we repeat the above procedure (r−2−r′) times in total. Let P ′ = (P1, P2, . . . , Pr−2−r′+1) be the

longest normal antipath P ′ of Gr−1
uz

(up, i, j) with right endpoint the vertex ux, such that at the sth

iteration of the above procedure we prove that Algorithm LP Cocomparability correctly computes

the antipath Ps, 1 ≤ s ≤ r − 2 − r′. Finally, at the (r − 2 − r′)th iteration we also obtain by the

induction hypothesis that the algorithm correctly computes the antipath Pr−2−r′+1 which has ux as

its right endpoint, since at that iteration ux is the last vertex of the ordering Lr′

j (uz). Concluding,

Algorithm LP Cocomparability correctly computes the length ℓ(ux;G
r−1
uz

(up, i, j)) = |P ′| and,
thus, the length ℓ(ut;G

r
uz
(up, i, j)) = |P ′| + 1 = |P |; the algorithm also correctly computes the

corresponding antipaths.

Concluding, we have proved that Claim 1 holds for the subgraph Gr
uz
(up, i, j) of G, where

1 ≤ r ≤ |Lj |; QED of Claim 1.

Let P be a longest antipath of G such that |P | ≥ 2. From Lemma 2.6 we may assume that

P is a longest normal antipath of G and let uy be its right endpoint. Also, P belongs to the

graph G \ {u0}. Since G(u0, 1, k) = G \ {u0} and since Algorithm LP Cocomparability computes

the maximum among the lengths {ℓ(uy;G(u0, 1, k)) : uy ∈ V (G(u0, 1, k))} and the corresponding

antipath P ′, from Lemma 4.3 we obtain that |P ′| = |P |. Therefore, we obtain the following.

Theorem 4.1 Algorithm LP Cocomparability computes a longest path of a cocomparability graph

in polynomial time.

4.2 Time Complexity

Let G be a comparability graph on |V (G)| = n vertices and |E(G)| = m edges. Given a Hasse

diagram of G, the time complexity of our algorithm is as follows.

Algorithm LP Cocomparability executes the subroutine process() for every induced sub-

graph Gr
uz
(up, i, j) of G. In particular, the procedure process() contains two procedures namely

bridge() and append(). The execution of the procedure bridge() for the subgraph Gr
uz
(up, i, j)

takes O(n2) time, due to the O(n2) pairs of antineighbors ux and uy of the vertex ut in the graph

Gr
uz
(up, i, j). The execution of the procedure append() for the subgraph Gr

uz
(up, i, j) takes O(n)

time, due to the O(n) antineighbors ux of the vertex ut in the graph Gr
uz
(up, i, j). Therefore, the

execution of the procedure process() for the subgraph Gr
uz
(up, i, j) takes O(n2) time.

Additionally, process() is executed at most once for each subgraph Gr
uz
(up, i, j) of G. Since

1 ≤ i ≤ j ≤ k, up ∈ Hi−1, uz ∈ Lj , and 1 ≤ r ≤ |Lj |, it follows that there exist O(n5) such

subgraphs Gr
uz
(up, i, j) of G. Thus, Algorithm LP Cocomparability takes O(n7) time.

In order to compute the length of a longest antipath, we need to store one value for every

vertex uy of Gr
uz
(up, i, j), for every induced subgraph Gr

uz
(up, i, j) of G. Thus, since there are in
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total O(n5) such subgraphs Gr
uz
(up, i, j), and since each one has at most O(n) vertices, we can

compute the length of a longest antipath in O(n6) space. Furthermore, in order to compute and

report a longest antipath, instead of its length only, we have to store an antipath of at most n

vertices for each one of the O(n6) computed values. Therefore, the space complexity of Algorithm

LP Cocomparability is O(n7).

5 Concluding Remarks

In this work we presented a polynomial-time algorithm for solving the longest path problem on

cocomparability graphs, resolving thus the open question on the complexity status of the problem

on cocomparability and, thus, on permutation graphs. We also help to shed some light on the

borderline between P and NP, since the longest path problem is known to be NP-complete on com-

parability graphs and quasi-parity graphs, while it polynomial on permutation and cocomparability

graphs.

It would be interesting to study the complexity of the longest path problem on distance-

hereditary and bipartite distance-hereditary graphs, since they admit polynomial solutions for

the Hamiltonian path problem, and also since the longest path problem has been proved to be NP-

complete on chordal bipartite graphs, HHD-free graphs, and parity graphs, while it is polynomial

on ptolemaic graphs and trees. Additionally, the same holds for the classes of convex and biconvex

graphs, since the longest path problem has been proved to be NP-complete on chordal bipartite

graphs and polynomial on bipartite permutation graphs.
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