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Abstract The longest path problem is the problem of finding a path of maximum
length in a graph. Polynomial solutions for this problem are known only for small
classes of graphs, while it is NP-hard on general graphs, as it is a generalization
of the Hamiltonian path problem. Motivated by the work of Uehara and Uno (Proc.
of the 15th Annual International Symp. on Algorithms and Computation (ISAAC),
LNCS, vol. 3341, pp. 871–883, 2004), where they left the longest path problem open
for the class of interval graphs, in this paper we show that the problem can be solved
in polynomial time on interval graphs. The proposed algorithm uses a dynamic pro-
gramming approach and runs in O(n4) time, where n is the number of vertices of the
input graph.

Keywords Longest path problem · Interval graphs · Polynomial algorithm ·
Complexity · Dynamic programming

1 Introduction

A well-known and studied problem in graph theory with numerous applications is the
Hamiltonian path problem, i.e., the problem of determining whether a graph contains
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a simple path in which every vertex of the graph appears exactly once; such a graph
is called Hamiltonian. In the case where a graph does not contain a Hamiltonian path,
it makes sense in several applications to search for a path of maximum length in the
graph; finding such a path is knows as the longest path problem. Although the two
problems are similar, finding a longest path in a graph seems to be more difficult
than deciding whether or not the graph admits a Hamiltonian path. Indeed, it has
been proved that even if a graph has a Hamiltonian path, the problem of finding a
path of length n − nε for any ε < 1 is NP-hard, where n is the number of vertices of
the graph [17]. Moreover, there is no polynomial-time constant-factor approximation
algorithm for the longest path problem unless P = NP [17]. For related results see
also [9–11, 25, 26].

It is clear that the longest path problem is NP-hard on every class of graphs on
which the Hamiltonian path problem is NP-complete; note that, the Hamiltonian
path problem is known to be NP-complete on general graphs [12, 13], and remains
NP-complete even when restricted to some small classes of graphs such as split
graphs [15], chordal bipartite graphs, split strongly chordal graphs [19], directed path
graphs [20], circle graphs [7], planar graphs [13], and grid graphs [16]. On the other
hand, there are several classes of graphs on which the Hamiltonian path problem
admits polynomial time solutions; these classes include proper interval graphs [3],
interval graphs [1, 5, 8], circular-arc graphs [8], biconvex graphs [2], and cocompa-
rability graphs [6]. Thus, if someone is interested in investigating the tractability of
the longest path problem, it makes sense to focus on the classes of graphs for which
the Hamiltonian path problem is polynomial.

In contrast to the Hamiltonian path problem, there are few known polynomial
time solutions for the longest path problem, and these restrict to trees and some small
graph classes. Specifically, a linear time algorithm for finding a longest path in a
tree was proposed by Dijkstra early in 1960, a formal proof of which can be found
in [4]. Later, through a generalization of Dijkstra’s algorithm for trees, Uehara and
Uno [23] solved the longest path problem for weighted trees and block graphs in
linear time and space, and for cacti in O(n2) time and space, where n and m denote
the number of vertices and edges of the input graph, respectively. More recently,
polynomial algorithms have been proposed that solve the longest path problem on
bipartite permutation graphs in O(n) time and space [24], and on Ptolemaic graphs
in O(n5) time and O(n2) space [22].

In 2004, Uehara and Uno [23] introduced a subclass of interval graphs, namely in-
terval biconvex graphs, which is a superclass of proper interval and threshold graphs,
and solved the longest path problem on this class in O(n3(m + n logn)) time. As
a corollary, they showed that a longest path of a threshold graph can be found in
O(n+m) time and space. They left open the complexity of the longest path problem
on the well-known class of interval graphs.

In this paper, we resolve the open problem posed in [23] by showing that the
longest path problem admits a polynomial time solution on the class of interval
graphs. In particular, we propose an algorithm for solving the longest path problem on
interval graphs which runs in O(n4) time using a dynamic programming approach.
Thus, not only we answer the question left open by Uehara and Uno in [23], but
also improve the known time complexity of the problem on interval biconvex graphs,
a subclass of interval graphs [23].
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The rest of this paper is organized as follows. In Sect. 2, we review some proper-
ties of interval graphs and give the notion of a type of paths, which we call normal
paths and is central for our algorithm. In Sect. 3, we present the three phases of our
algorithm for solving the longest path problem on interval graphs, while in Sect. 4
we prove the correctness and analyze the time complexity of our algorithm. Finally,
some concluding remarks are given in Sect. 5.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G,
we denote its vertex and edge set by V (G) and E(G), respectively. An undirected
edge is a pair of distinct vertices u,v ∈ V (G), and is denoted by uv. We say that the
vertex u is adjacent to the vertex v or, equivalently, the vertex u sees the vertex v, if
there is an edge uv in G. Let S be a set of vertices of a graph G. Then, the cardinality
of the set S is denoted by |S| and the subgraph of G induced by S is denoted by
G[S]. Furthermore, the induced subgraph G[S] is a clique if every two vertices in S

are adjacent. The set N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of
the vertex v ∈ V (G) in G, sometimes denoted by NG(v) for clarity reasons. The
set N [v] = N(v) ∪ {v} is called the closed neighborhood of the vertex v ∈ V (G).
A vertex v ∈ V (G) is called simplicial if its neighborhood N(v) induces a clique
in G; in this case its closed neighborhood N [v] induces also a clique in G.

A simple path of a graph G is a sequence of distinct vertices v1, v2, . . . , vk such
that vivi+1 ∈ E(G), for each i, 1 ≤ i ≤ k − 1, and is denoted by (v1, v2, . . . , vk);
throughout the paper all paths considered are simple. We denote by V (P ) the set of
vertices in the path P , and define the length of the path P to be the number of vertices
in P , i.e., |P | = |V (P )|. We call right endpoint of a path P = (v1, v2, . . . , vk) the last
vertex vk of P . Additionally, if P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2,

. . . , vk) is a path of a graph and P0 = (vi, vi+1, . . . , vj ) is a subpath of P , we some-
times equivalently use the notation P = (v1, v2, . . . , vi−1,P0, vj+1, vj+2, . . . , vk).

2.1 Structural Properties of Interval Graphs

Interval graphs form a well-known and extensively studied class of perfect graphs
[15]. They have important properties, and admit polynomial time solutions for sev-
eral problems that are NP-complete on general graphs (see e.g. [1, 5, 15, 18]). More-
over, interval graphs have received a lot of attention due to their applicability to DNA
physical mapping problems [14], and find many applications in several fields and dis-
ciplines such as genetics, molecular biology, scheduling, VLSI circuit design, arche-
ology and psychology [15].

A graph G is called interval graph if its vertices can be put in a one-to-one cor-
respondence with a family F of intervals on the real line such that two vertices are
adjacent in G if and only if the corresponding intervals intersect; F is called an in-
tersection model for G [1]. The class of interval graphs is hereditary, that is, every
induced subgraph of an interval graph G is also an interval graph. Ramalingam and
Rangan [21] proposed a numbering of the vertices of an interval graph; they stated
the following lemma.
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Fig. 1 (a) An interval graph G, (b) an intersection model F of G, and (c) the corresponding right-end
ordering π = (u1, u2, u3, u4, u5) of G

Lemma 2.1 (Ramalingam and Rangan [21]) The vertices of any interval graph G

can be numbered with integers 1,2, . . . , |V (G)| such that if i < j < k and ik ∈ E(G),
then jk ∈ E(G).

This numbering, which also results after sorting the intervals of the intersection
model of an interval graph G on their right ends [1], can be obtained in O(|V (G)| +
|E(G)|) time [21]. An ordering of the vertices according to this numbering is found to
be quite useful in solving some graph-theoretic problems on interval graphs [1, 21].
Throughout the paper, such an ordering is called a right-end ordering of G. Let u and
v be two vertices of G, and let π be a right-end ordering of G; by u <π v we denote
that u appears before v in π . In particular, if π = (u1, u2, . . . , u|V (G)|) is a right-end
ordering of G, then ui <π uj if and only if i < j . In Fig. 1 we illustrate the right-end
ordering π of an interval graph G. In Fig. 1(b) the right endpoints of the intervals in
the intersection model F are drawn bold for better visibility.

2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a specific
type of paths, namely normal paths. We next define the notion of a normal path of an
interval graph G.

Definition 2.1 Let G be an interval graph, and let π be a right-end ordering of G.
The path P = (v1, v2, . . . , vk) of G is called normal, if v1 is the leftmost vertex of
V (P ) in π , and for every i, 2 ≤ i ≤ k, the vertex vi is the leftmost vertex of N(vi−1)∩
{vi, vi+1, . . . , vk} in π .

For example, in the interval graph G of Fig. 1, the path P = (u1, u4, u2, u5, u3)

is normal. Note that the notion of normal paths in interval graphs is exactly what
is called straight paths in [8]. Damaschke [8] presents an algorithm for finding a
straight Hamiltonian path in an interval graph (Algorithm 3), proving thus that if an
interval graph has a Hamiltonian path, then it also has a straight Hamiltonian path.
Also, in [8] a path is called straight if it is a straight Hamiltonian path in the subgraph
induced by its vertex set.

Now, since straight (resp. normal) paths are defined with respect to a given in-
tersection model (resp. right-end ordering) of the graph, the following observation
suffices to obtain the correctness of Lemma 2.2: let G be an interval graph, let F

be an intersection model of G, let P be a path of G, and let G′ be the subgraph of
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G induced by V (P ). Then we can obtain an intersection model F ′ of G′ by sim-
ply deleting from F the intervals which correspond to the vertices of V (G) \ V (G′).
Since P is a Hamiltonian path of G′, then from [8] there exists a straight Hamiltonian
path P ′ of G′ (with respect to F ′). By the construction of F ′, it follows that P ′ is a
straight path in G (with respect to F ) as well. Therefore, the following result holds.
Note that, hereafter we use the term normal path instead of straight path.

Lemma 2.2 Let P be a path of an interval graph G. Then, there exists a normal path
P ′ of G, such that V (P ′) = V (P ).

3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP_ Interval, for
solving the longest path problem on interval graphs; it consists of three phases and
works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval graph H .
• Phase 2: it computes a longest binormal path ̂P on H using Algorithm LP_on_H.
• Phase 3: it computes a longest path P on G from the path ̂P .

The proposed algorithm computes a longest binormal path ̂P of the graph H using
dynamic programming techniques and then computes a longest path P of G from
the path ̂P ; note that binormal paths are a special type of paths which we define
in Sect. 3.2. We next describe in detail the three phases of our algorithm and prove
properties of the constructed graph H which will be used for proving the correctness
of the algorithm.

3.1 The Interval Graph H

In this section we present Phase 1 of the algorithm: given an interval graph G and a
right-end ordering π of G, we construct the interval graph H and a right-end ordering
σ of H . To this end, we use the following notations.

Notation 3.1 Let F be the intersection model of an interval graph G, and let
π = (v1, v2, . . . , v|V (G)|) be the right-end ordering of G which we obtain from F .
By Ii we denote the interval which corresponds to the vertex vi in F , and by l(Ii)

and r(Ii) we denote the left and the right endpoint of the interval Ii , respectively.

Construction of H and σ Let G be an interval graph and let F be the intersection
model of G, from which we obtain the right-end ordering π = (v1, v2, . . . , v|V (G)|)
of G. To construct the graph H , for every interval Ii of F we add two disjoint “short”
intervals immediately before the right endpoint of Ii .

Formal description Without loss of generality, we may assume that all values
l(Ii) and r(Ii) are distinct. Let ε be the smallest distance between two inter-
val endpoints in F . For every interval Ii of F which corresponds to a vertex
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Fig. 2 The intersection model
F ′ of the stable-connection
graph H , which is obtained from
the interval graph G of Fig. 1

vi ∈ V (G), we add two non-intersecting intervals Ii,1 = [r(Ii) − 4ε
5 , r(Ii) − 3ε

5 ] and
Ii,2 = [r(Ii) − 2ε

5 , r(Ii) − ε
5 ]. Let ai,1 and ai,2 be the vertices which correspond to

the two new intervals Ii,1 and Ii,2, respectively. After processing all intervals Ii ,
1 ≤ i ≤ |V (G)|, of the intersection model F of G, we obtain an intersection model
F ′ of graph H . Now, set C = V (G) and A = V (H) \ V (G).

Thus, H is an interval graph, and the ordering which results from numbering the
intervals of F ′ after sorting them on their right ends is a right-end ordering σ of H .
We call the constructed interval graph H the stable-connection graph of interval
graph G.

In Fig. 2, we illustrate the intersection model of the stable-connection graph H of
the interval graph G of Fig. 1.

Observation 3.1 For every interval Ii of F , the two new intervals Ii,1 and Ii,2 do not
intersect with any interval Ik such that r(Ik) < r(Ii). Additionally, the two new inter-
vals intersect with the interval Ii , and with every interval I� such that r(I�) > r(Ii)

and I� intersects with Ii .

Hereafter, we will denote by n the number |V (H)| of vertices of the stable-
connection graph H and by σ = (u1, u2, . . . , un) the constructed right-end ordering
of H . By construction, the vertex set of H consists of the vertices of C = V (G) and
the vertices of A. We will refer to C as the set of connector vertices of graph H and
to A as the set of stable vertices of H ; we denote these sets by C(H) and A(H),
respectively. Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H , all neighbors of a stable
vertex a ∈ A(H) are connector vertices c ∈ C(H), such that a <σ c. Moreover, it is
easy to see that all neighbors of a stable vertex form a clique in G and, thus, also
in H . Observe that, by the construction of the stable-connection graph H , each stable
vertex a ∈ A(H) is the unique simplicial vertex in the maximal clique induced by the
closed neighborhood N [a] in H .

Definition 3.1 For every connector vertex ui ∈ C(H) in σ = {u1, u2, . . . , un}, we
define by f (ui) (resp. h(ui)) the smallest (resp. largest) index, such that f (ui) < i

and uf (ui)ui ∈ E(G) (resp. h(ui) < i and uh(ui)ui ∈ E(G)).

Note that uf (ui) and uh(ui) are distinct stable vertices, for every connector ver-
tex ui .

Definition 3.2 Let H be the stable-connection graph of an interval graph G, and let
σ = (u1, u2, . . . , un) be the right-end ordering of H . For every pair of indices i, j ,
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Fig. 3 The subgraph H(4,15)

of the stable-connection graph
H of Fig. 2

1 ≤ i ≤ j ≤ n, we define the graph H(i, j) to be the subgraph H [S] induced by the
set S = {ui, ui+1, . . . , uj } \ {uk ∈ C(H) : uf (uk) <σ ui}.

The stable-connection graph H of Fig. 2 is illustrated in Fig. 3, where its vertices
(both stable and connector vertices) are numbered according to the right-end order-
ing σ = (u1, u2, . . . , u15) of H . The subgraph H(4,15) is illustrated in Fig. 3, where
the vertices V (H(4,15)) = {u4, u5, u6, u7, u8, u9, u10, u11, u13, u14, u15} are drawn
darker than the others for better visibility.

The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤ j ≤ n,
and they are used for proving the correctness of Algorithm LP_on_H.

Observation 3.2 Let uk be a connector vertex of H(i, j), i.e., uk ∈ C(H(i, j)).
Then, for every vertex u� ∈ V (H(i, j)) such that uk <σ u� and uku� ∈ E(H(i, j)),
u� is also a connector vertex of H(i, j).

Observation 3.3 No two stable vertices of H(i, j) are adjacent.

Lemma 3.1 Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:

(a) For any two stable vertices vr and v� in P , vr appears before v� in P if and only
if vr <σ v�.

(b) For any two connector vertices vr and v� in P , if v� appears before vr in P and
vr <σ v�, then vr does not see the predecessor v�−1 of v� in P .

Proof (a) Damaschke in [8] proved that for a normal path P = (v1, v2, . . . , vk) of an
interval graph the following three statements cannot be true simultaneously: vertex
vx appears before vy in P , l(Ix) ≥ l(Iy), and r(Ix) > r(Iy). Since for any two stable
vertices vr and v� in H(i, j) we have vr <σ v� if and only if l(Ir ) < r(Ir ) < l(I�) <

r(I�), it follows that vr <σ v� if and only if vr appears before v� in P .
(b) Since vr <σ v�, it follows that v� �= v1 and, thus, there exists a vertex v�−1

which appears before v� in P . Assume that vrv�−1 ∈ E(H(i, j)). Since vr <σ v�,
and since P is a normal path, vr should be the next vertex of v�−1 in P instead of v�,
which is a contradiction. Therefore, vrv�−1 /∈ E(H(i, j)). �

3.2 Finding a Longest Binormal Path on H

In this section we present Phase 2 of Algorithm LP_Interval. Let G be an interval
graph and let H be the stable-connection graph of G constructed in Phase 1. We
next present Algorithm LP_on_H, which computes a longest binormal path of the
graph H ; let us first define binormal paths and give some notations necessary for the
description of the algorithm.
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Definition 3.3 Let H be a stable-connection graph, and let P be a path of H(i, j),
1 ≤ i ≤ j ≤ n. The path P is called binormal if P is a normal path of H(i, j), both
endpoints of P are stable vertices, and no two connector vertices are consecutive
in P .

Notation 3.2 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H . For every stable vertex uk ∈ A(H(i, j)), we denote by
P(uk; i, j) a longest binormal path of H(i, j) with uk as its right endpoint, and by
�(uk; i, j) the length of P(uk; i, j).

Since any binormal path is a normal path, Lemma 3.1 also holds for binormal
paths. Moreover, since P(uk; i, j) is a binormal path, from Lemma 3.1(a) we obtain
that its right endpoint uk is also the rightmost stable vertex of P in σ .

Algorithm LP_on_H, which is presented in Fig. 4, computes for every induced
subgraph H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length �(uk; i, j)

and the corresponding path P(uk; i, j). Since H(1, n) = H , it follows that the max-
imum among the values �(uk;1, n), where uk ∈ A(H), is the length of a longest
binormal path P(uk;1, n) of H .

3.3 Finding a Longest Path on G

During Phase 3 of our Algorithm LP_Interval, we compute a path P from the longest
binormal path ̂P of H , computed by Algorithm LP_on_H, by simply deleting all
stable vertices of ̂P . In Sect. 4.2 we prove that the resulting path P is a longest path
of the interval graph G.

In Fig. 5, we present our Algorithm LP_Interval for solving the longest path prob-
lem on an interval graph G; note that Steps 1, 2, and 3 of the algorithm correspond to
the presented Phases 1, 2, and 3, respectively.

4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and analyze its time com-
plexity. More specifically, in Sect. 4.1 we show that Algorithm LP_on_H computes a
longest binormal path ̂P of the graph H , while in Sect. 4.2 we show that the length
of a longest binormal path ̂P of H is equal to 2k + 1, where k is the length of a
longest path of G. Finally, we show that the path P constructed at Step 3 of Algo-
rithm LP_Interval is a longest path of G.

4.1 Correctness of Algorithm LP_on_H

We next prove that Algorithm LP_on_H correctly computes a longest binormal path
of the graph H . The following lemmas appear useful in the proof of the algorithm’s
correctness.



328 Algorithmica (2011) 61:320–341

ALGORITHM LP_ON_H

Input: a stable-connection graph H , a right-end ordering σ = (u1, u2, . . . , un) of H .
Output: a longest binormal path of H .

1. for j = 1 to n

2. for i = j downto 1
3. if i = j and ui ∈ A(H) then
4. �(ui; i, i) ← 1; P(ui; i, i) ← (ui);
5. if i �= j then
6. for every stable vertex ur ∈ A(H), i ≤ r ≤ j − 1
7. �(ur ; i, j) ← �(ur ; i, j − 1); P(ur ; i, j) ← P(ur ; i, j − 1);

{initialization}
8. if uj is a stable vertex of H(i, j), i.e., uj ∈ A(H), then
9. �(uj ; i, j) ← 1; P(uj ; i, j) ← (uj );
10. if uj is a connector vertex of H(i, j), i.e., uj ∈ C(H) and i ≤ f (uj ),

then
11. execute process(H(i, j));
12. computemax{�(uk;1, n) : uk ∈ A(H)} and the corresponding path P(uk;1, n);

where the procedure process() is as follows:

process(H(i, j))

13. for y = f (uj ) + 1 to j − 1
14. for x = f (uj ) to y − 1 {ux and uy are adjacent to uj }
15. if ux,uy ∈ A(H) then
16. w1 ← �(ux; i, j − 1); P1 ← P(ux; i, j − 1);
17. w2 ← �(uy;x + 1, j − 1); P2 ← P(uy;x + 1, j − 1);
18. if w1 + w2 + 1 > �(uy; i, j) then
19. �(uy; i, j) ← w1 + w2 + 1; P(uy; i, j) ← (P1, uj ,P2);
20. return the value �(uk; i, j) and the path P(uk; i, j), ∀ uk ∈ A(H(f (uj ) + 1,

j − 1));

Fig. 4 The algorithm for finding a longest binormal path of H

Lemma 4.1 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be
the right-end ordering of H . Let P be a longest binormal path of H(i, j) with uy as
its right endpoint, let uk be the rightmost connector vertex of H(i, j) in σ , and let
uf (uk)+1 ≤σ uy ≤σ uh(uk). Then, there exists a longest binormal path P ′ of H(i, j)

with uy as its right endpoint, which contains the connector vertex uk .

Proof Let P be a longest binormal path of H(i, j) with uy as its right endpoint,
which does not contain the connector vertex uk . Assume that P = (uy). Since uk is
a connector vertex of H(i, j) and uf (uk) is a stable vertex of H(i, j), we have that
ui ≤σ uf (uk) <σ uy <σ uk . Thus, there exists a binormal path P1 = (uf (uk), uk, uy)
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ALGORITHM LP_INTERVAL

Input: an interval graph G and a right-end ordering π of G.
Output: a longest path P of G.

1. Construct the stable-connection graph H of G and the right-end ordering σ of H ;
let V (H) = C ∪ A, where C = V (G) and A are the sets of connector and stable
vertices of H , respectively;

2. Compute a longest binormal path ̂P of H , using Algorithm LP_on_H;
let ̂P = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤
i ≤ k;

3. Compute a longest path P = (v2, v4, . . . , v2k) of G, by deleting all stable vertices
{v1, v3, . . . , v2k+1} from the longest binormal path ̂P of H ;

Fig. 5 The algorithm for solving the longest path problem on an interval graph G

such that |P1| > |P |. However, this is a contradiction to the assumption that P is a
longest binormal path of H(i, j).

Therefore, assume now that P = (up, . . . , uq, u�, uy). By assumption, P is a
longest binormal path of H(i, j) with uy as its right endpoint that does not con-
tain the connector vertex uk . Since the connector vertex u� sees the stable vertex
uy and, also, since uk is the rightmost connector vertex of H(i, j) in σ , it fol-
lows by Observation 3.2 that uf (uk) <σ uy <σ u� <σ uk . Thus, uk sees the connector
vertex u�. Consider first the case where uk does not see the stable vertex uq , i.e.,
uq <σ uf (uk) <σ uy <σ u� <σ uk . Then, it is easy to see that the connector vertex u�

sees uf (uk), where uf (uk) is always a stable vertex, and also, from Lemma 3.1(a) it
follows that the vertex uf (uk) does not belong to the path P . Therefore, there exists a
binormal path P2 = (up, . . . , uq, u�, uf (uk), uk, uy) in H(i, j), such that |P2| > |P |.
This is a contradiction to our assumption that P is a longest binormal path.

Consider now the case where uk sees the stable vertex uq . Then, there exists a
path P ′ = (up, . . . , uq, uk, uy) of H(i, j) with uy as its right endpoint that contains
the connector vertex uk , such that |P | = |P ′|; since P is a binormal path, it is easy
to see that P ′ is also a binormal path. Thus, the path P ′ is a longest binormal path of
H(i, j) with uy as its right endpoint, which contains the connector vertex uk . �

Lemma 4.2 Let H be a stable-connection graph, and let σ be the right-end ordering
of H . Let P = (P1, v�,P2) be a binormal path of H(i, j), and let v� be a connector
vertex of H(i, j). Then, P1 and P2 are binormal paths of H(i, j).

Proof Let P = (v1, v2, . . . , v�−1, v�, v�+1, . . . , vk) be a binormal path of H(i, j).
Then, from Definition 2.1, v1 is the leftmost vertex of V (P ) in σ , and for every in-
dex r , 2 ≤ r ≤ k, the vertex vr is the leftmost vertex of N(vr−1) ∩ {vr , vr+1, . . . , vk}
in σ . It is easy to see that P1 = (v1, v2, . . . , v�−1) is a normal path of H(i, j). Indeed,
since V (P1) ⊂ V (P ), then v1 is also the leftmost vertex of V (P1) in σ , and addition-
ally, vr is the leftmost vertex of N(vr−1) ∩ {vr , vr+1, . . . , v�−1} in σ , for every index
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r , 2 ≤ r ≤ � − 1. Furthermore, since P is binormal and v� is a connector vertex, it
follows that v�−1 is a stable vertex and, thus, P1 is a binormal path of H(i, j) as well.

Consider now the path P2 = (v�+1, v�+2, . . . , vk) of H(i, j). Since P is a binormal
path and v� is a connector vertex, it follows that v�+1 is a stable vertex and, thus,
v�+1 <σ v� due to Observation 3.2. We first prove that v�+1 is the leftmost vertex of
V (P2) in σ . Since P is a binormal path, we obtain from Lemma 3.1(a) that v�+1 is
the leftmost stable vertex of V (P2) in σ . Moreover, consider a connector vertex vt

of P2. Then, its predecessor vt−1 in P2 is a stable vertex and, thus, vt−1 <σ vt due to
Observation 3.2. Since v�+1 is the leftmost stable vertex of V (P2) in σ , we have that
v�+1 ≤σ vt−1 and, thus, v�+1 <σ vt . Therefore, v�+1 is the leftmost vertex of V (P2)

in σ . Additionally, since P is a binormal path, it is straightforward that for every index
r , � + 2 ≤ r ≤ k, the vertex vr is the leftmost vertex of N(vr−1) ∩ {vr , vr+1, . . . , vk}
in σ . Thus, P2 is a normal path. Finally, since P is binormal and v�+1 is a stable
vertex, P2 is a binormal path as well. �

Lemma 4.3 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the
right-end ordering of H . Let P1 be a binormal path of H(i, j − 1) with ux as its
right endpoint, and let P2 be a binormal path of H(x + 1, j − 1) with uy as its right
endpoint, such that V (P1) ∩ V (P2) = ∅. Suppose that uj is a connector vertex of H

and that ui ≤σ uf (uj ) ≤σ ux . Then, P = (P1, uj ,P2) is a binormal path of H(i, j)

with uy as its right endpoint.

Proof Let uz be the first vertex of P2. Note that uj is the rightmost vertex of
H(i, j) in σ . Since uj is a connector vertex of H such that ui ≤σ uf (uj ) ≤σ

ux <σ uj , and since uf (uj )uj ∈ E(G), from Lemma 2.1 it follows that uj sees
the right endpoint ux of P1. Additionally, since uz ∈ V (H(x + 1, j − 1)), we have
uf (uj ) ≤σ ux <σ ux+1 ≤σ uz <σ uj and, thus, uj sees uz. Therefore, since V (P1) ∩
V (P2) = ∅, it follows that P = (P1, uj ,P2) is a path of H . Additionally, since
H(i, j − 1) and H(x + 1, j − 1) are induced subgraphs of H(i, j), it follows that
P is a path of H(i, j). Hereafter, in the rest of this proof P1 = (v1, v2, . . . , vp−1),
P2 = (vp+1, vp+2, . . . , v�), ux = vp−1, uy = v�, and uj = vp .

We first show that P = (v1, v2, . . . , vp, . . . , v�) is a normal path. Since v1 is the
leftmost vertex of V (P1) in σ , it follows that v1 ≤σ ux . Furthermore, since uj = vp

is the rightmost vertex of H(i, j) in σ , and since for every vertex vk ∈ V (P2) it holds
ux <σ ux+1 ≤σ vk <σ vp , it follows that v1 is the leftmost vertex of V (P ) in σ .
We next show that for every k, 2 ≤ k ≤ �, the vertex vk is the leftmost vertex of
N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ .

Consider first the case where 2 ≤ k ≤ p − 1, i.e., vk ∈ V (P1). Since P1 is a normal
path, vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ . Assume that
vk−1 is a stable vertex. Then, Lemma 3.1(a) implies that vk−1 <σ ux and, due to
Observation 3.3, it follows that N(vk−1) ∩ {vk, vk+1, . . . , v�} is a set of connector
vertices. Since every connector vertex vr ∈ V (P2) is a vertex of H(x + 1, j − 1), it
follows that vk−1 <σ ux+1 ≤σ uf (vr ) and, thus, vr /∈ N(vk−1). Additionally, since vp

is the rightmost vertex of H(i, j) in σ , it follows that vk <σ vp . Therefore, since vk

is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ , it follows that vk is
the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ . Assume now that vk−1 is a
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connector vertex. Since P1 is a binormal path, vk is a stable vertex such that vk ≤σ

ux and vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ . Since for
every r , p + 1 ≤ r ≤ �, the vertex vr is in V (H(x + 1, j − 1)), it follows that vk ≤σ

ux <σ vr . Additionally, vk <σ ux+1 <σ vp . Therefore, vk is the leftmost vertex of
N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ .

Consider now the case where k = p. Since P1 is a normal path and vp−1
is a stable vertex, N(vp−1) ∩ {vp, vp+1, . . . , v�} is a set of connector vertices,
due to Observation 3.3. Additionally, since every connector vertex vr ∈ V (P2) is
a vertex of H(x + 1, j − 1), it follows that vp−1 <σ ux+1 ≤σ uf (vr ) and, thus,
vr /∈ N(vp−1). Therefore, N(vp−1) ∩ {vp, vp+1, . . . , v�} = {vp} and, thus, vp is the
leftmost vertex of N(vp−1) ∩ {vp, vp+1, . . . , v�} in σ . Now, in the case where
p + 1 ≤ k ≤ �, since P2 is a normal path we have that vp+1 is the leftmost ver-
tex of V (P2) = {vp+1, vp+2, . . . , v�} in σ and, thus, vp+1 is the leftmost vertex
of N(vp) ∩ {vp+1, vp+2, . . . , v�} in σ ; also, it directly follows that for every k,
p + 2 ≤ k ≤ �, vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ .

Concluding, we have shown that P is a normal path of H(i, j). Additionally, since
P1 and P2 are binormal paths of H(i, j), the path P has stable vertices as endpoints
and no two connector vertices are consecutive in P . Therefore, P is a binormal path
of H(i, j) with uy as its right endpoint. �

Next, we prove the correctness of Algorithm LP_on_H. For the purposes of
the proof we distinguish the notation we use for the values computed by Algo-
rithm LP_on_H, from the notation we use for the optimum values. In particular, by
�(uy; i, j) we denote the value computed by Algorithm LP_on_H for the length of a
longest binormal path of H(i, j) which has uy as its right endpoint and by P(uy; i, j)

the corresponding computed path. On the other hand, by L(uy; i, j) we denote the
optimum value of the length of a longest binormal path of H(i, j) which has uy as
its right endpoint and by P (uy; i, j) the corresponding path.

Lemma 4.4 Let H be a stable-connection graph, and let σ be the right-end ordering
of H . For every induced subgraph H(i, j) of H , 1 ≤ i ≤ j ≤ n, and for every stable
vertex uy ∈ A(H(i, j)), the value �(uy; i, j) computed by Algorithm LP_on_ H is
equal to the length L(uy; i, j) of a longest binormal path of H(i, j) which has uy as
its right endpoint and, also, the corresponding computed path P(uy; i, j) is a longest
binormal path of H(i, j) which has uy as its right endpoint.

Proof Let P be a longest binormal path of the stable-connection graph H(i, j),
which has vertex uy ∈ A(H(i, j)) as its right endpoint. We distinguish two cases
(I and II) concerning the set of connector vertices of H(i, j).

Case I. Consider first the case where C(H(i, j)) = ∅; the graph H(i, j) consists
of a set of stable vertices A(H(i, j)), which is an independent set, due to Observa-
tion 3.3. Therefore, in this case Algorithm LP_on_H sets �(uy; i, j) = 1 for every
vertex uy ∈ A(H(i, j)), which is equal indeed to the length of the longest binormal
path P (uy; i, j) = (uy) of H(i, j) which has uy as its right endpoint. Therefore, the
lemma holds for every induced subgraph H(i, j), for which C(H(i, j)) = ∅.

Case II. Consider now the case where C(H(i, j)) �= ∅. Let C(H) = {c1, c2, . . . ,

ck, . . . , ct } be the set of connector vertices of H , where c1 <σ c2 <σ · · · <σ ck <σ
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· · · <σ ct . Let σ = (u1, u2, . . . , un) be the vertex ordering of H constructed in
Phase 1. Recall that, by the construction of H , n = 3t , and A(H) = V (H) \ C(H) is
the set of stable vertices of H .

Let H(i, j) be an induced subgraph of H , and let ck be the rightmost connector
vertex of H(i, j) in σ . The proof of the lemma is done by induction on the index
k of the rightmost connector vertex ck of H(i, j). To this end, in both the induction
basis and the induction step, we distinguish three cases concerning the position of
the stable vertex uy in the ordering σ : ui ≤σ uy ≤σ uf (ck), uh(ck) <σ uy ≤σ uj , and
uf (ck)+1 ≤σ uy ≤σ uh(ck). In each of these three cases, we examine first the length
L(uy; i, j) of a longest binormal path of H(i, j) with uy as its right endpoint and
then we compare this value to the length �(uy; i, j) of the path computed by Algo-
rithm LP_on_H. Moreover, we prove that the path P(uy; i, j) with length �(uy; i, j)

computed by Algorithm LP_on_H is indeed a binormal path with uy as its right end-
point.

Induction basis. We first show that the lemma holds for k = 1; i.e., c1 is the only
connector vertex of H(i, j). We distinguish two cases (A1 and A2) concerning the
position of the stable vertex uy in σ .

Case A1: ui ≤σ uy ≤σ uf (c1) or uh(c1) <σ uy ≤σ uj . In this case, it is easy to see
that the length L(uy; i, j) of a longest binormal path P of H(i, j) with uy as its
right endpoint is equal to 1. Indeed, if uy �= uf (c1), then uy does not see the unique
connector vertex c1 of H(i, j) and, thus, the longest binormal path with uy as its
right endpoint consists of vertex uy . Now, in the case where uy = uf (c1), the unique
connector vertex c1 sees uy , however, uy is the leftmost neighbor of c1 in σ ; thus,
from Lemma 3.1(a) and the definition of binormal paths, it follows that c1 does not
belong to any binormal path with uy as its right endpoint. Therefore, in Case A1,
we have proved that L(uy; i, j) = 1 and P (uy; i, j) = (uy). It is easy to see that, in
this case, Algorithm LP_on_H (see lines 6–7 for i ≤ y ≤ j − 1, and 8–9 for y = j )
correctly computes �(uy; i, j) = 1 and P(uy; i, j) = (uy).

Case A2: uf (c1)+1 ≤σ uy ≤σ uh(c1). In this case, we have L(uy; i, j) = 3; recall
that, in the induction basis, c1 is the only connector vertex of H(i, j). Algorithm
LP_on_H computes (in the subroutine process(), with uj = c1) for every sta-
ble vertex ux of H(i, j) such that uf (c1) ≤σ ux ≤σ uy−1, the value �(ux; i, j − 1) +
�(uy;x + 1, j − 1) + 1 = 1 + 1 + 1 = 3 and sets �(uy; i, j) = 3. Additionally, it is
easy to see that the path P(uy; i, j) = (ux, c1, uy), computed by Algorithm LP_on_H
in this case, is indeed a longest binormal path of H(i, j) with uy as its right endpoint.

Induction hypothesis. Let now ck be a connector vertex of H , such that k ≤ t .
Assume that the lemma holds for every induced subgraph H(i, j) of H , which has c�

as its rightmost connector vertex in σ , where 1 ≤ � ≤ k − 1. That is, we assume that
for every such graph H(i, j), the value �(uy; i, j) computed by Algorithm LP_on_H
is equal to the length L(uy; i, j) of a longest binormal path of H(i, j) with uy as
its right endpoint and, also, that the corresponding computed path P(uy; i, j) is a
longest binormal path of H(i, j) which has uy as its right endpoint.

Induction step. We will show that for every induced subgraph H(i, j) of H , which
has ck as its rightmost connector vertex in σ , the value �(uy; i, j) computed by
Algorithm LP_on_H is equal to the length L(uy; i, j) of a longest binormal path
P (uy; i, j) of H(i, j) with uy as its right endpoint. We distinguish three cases (B1,
B2, and B3) concerning the position of the stable vertex uy in σ .
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Case B1: ui ≤σ uy ≤σ uf (ck). We first show that L(uy; i, j) = L(uy; i, h(ck))

(note that uh(ck) is the predecessor of ck in σ ). In particular, we show that no ver-
tex to the right of uh(ck) in σ belongs to a longest binormal path of H(i, j) with uy

as its right endpoint and, thus, such a longest binormal path P (uy; i, j) of H(i, j) is
actually a path of H(i,h(ck)). On the one hand, we prove that the connector vertex
ck does not belong to any binormal path of H(i, j) with uy as its right endpoint. In
fact, vertex ck does not see any stable vertex to the left of uy in σ ; therefore, from
Lemma 3.1(a) and the definition of binormal paths, it follows that ck does not belong
to any binormal path of H(i, j) with uy as its right endpoint. On the other hand, we
prove that every vertex u� of H(i, j), where ck <σ u� ≤σ uj , does not belong to any
binormal path of H(i, j) with uy as its right endpoint. Indeed, since ck is the right-
most connector vertex of H(i, j), it follows that every vertex u� of H(i, j), where
ck <σ u� ≤σ uj , is a stable vertex and, thus, again from Lemma 3.1(a) and the de-
finition of binormal paths, it follows that u� does not belong to any binormal path
of H(i, j) with uy as its right endpoint. Therefore, we have proved that a longest
binormal path P (uy; i, j) of H(i, j) with uy as its right endpoint is actually a path
of H(i,h(ck)). Furthermore, since H(i,h(ck)) is an induced subgraph of H(i, j), it
follows that the path P (uy; i, j) is also a longest binormal path of H(i,h(ck)) with
uy as its right endpoint. Thus, it follows that L(uy; i, j) = L(uy; i, h(ck)).

We next show that, in this case, Algorithm LP_on_H computes �(uy; i, j) =
L(uy; i, h(ck)). In fact, we show that �(uy; i, h(ck)) = L(uy; i, h(ck)) holds and, also,
that Algorithm LP_on_H computes �(uy; i, j) = �(uy; i, h(ck)). Note first that, since
h(ck) < j , Algorithm LP_on_H has already computed the value �(uy; i, h(ck)) at a
previous iteration, where j was equal to h(ck).

We first show that �(uy; i, h(ck)) = L(uy; i, h(ck)), i.e., the computed value
�(uy; i, h(ck)) is equal to the length L(uy; i, h(ck)) of a longest binormal path of
H(i,h(ck)) with uy as its right endpoint. Indeed, consider first the case where
H(i,h(ck)) is a graph for which C(H(i,h(ck))) = ∅, i.e., H(i,h(ck)) has only sta-
ble vertices. Then, as we have shown in the beginning of this proof (cf. Case I), the
computed value �(uy; i, h(ck)) = 1 is equal to the length L(uy; i, h(ck)) of a longest
binormal path of H(i,h(ck)) with uy as its right endpoint. Consider now the case
where H(i,h(ck)) is a graph for which C(H(i,h(ck))) �= ∅, i.e., H(i,h(ck)) has
at least one connector vertex (cf. Case II); let c� be its rightmost connector vertex
in σ . Then, c� <σ ck , since uh(ck) <σ ck . Therefore, by the induction hypothesis, the
value �(uy; i, h(ck)) computed by Algorithm LP_on_H is equal indeed to the length
L(uy; i, h(ck)) of a longest binormal path of H(i,h(ck)) with uy as its right endpoint.

We now show that, in Case B1, Algorithm LP_on_H computes �(uy; i, j) =
�(uy; i, h(ck)). Consider first the case where uj is a connector vertex of H(i, j),
i.e., uj = ck . Then, Algorithm LP_on_H computes (in lines 6–7) �(uy; i, j) =
�(uy; i, j − 1), which is equal to �(uy; i, h(ck)), since in this case j − 1 = h(ck);
also, note that in Case B1, y ≤ f (ck) (i.e., y ≤ f (uj )) and, thus, the value �(uy; i, j)

does not change during the execution of the subroutine process().
Consider finally the case where uj is a stable vertex; then j − 1 > h(ck). If

j − 1 = h(ck) + 1, then Algorithm LP_on_H computes (in lines 6–7) �(uy; i, j) =
�(uy; i, j − 1), which is equal to �(uy; i, h(ck) + 1). Moreover, the connector ver-
tex uh(ck)+1 = ck does not see in Case B1 any stable vertex to the left of uy in σ ;
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therefore, from Lemma 3.1(a) and the definition of binormal paths, it follows that
uh(ck)+1 does not belong to any binormal path of H(i, j) with uy as its right end-
point. Therefore, the computed value �(uy; i, j) = �(uy; i, h(ck) + 1) is equal to the
value �(uy; i, h(ck)), which has been computed at a previous iteration, where j =
h(ck). That is, Algorithm LP_on_H computes �(uy; i, j) = �(uy; i, h(ck)). Simi-
larly (to the case where j − 1 = h(ck) + 1), if j − 1 > h(ck) + 1, then Algorithm
LP_on_H computes (in lines 6–7) �(uy; i, j) = �(uy; i, j − 1), which is again equal
to �(uy; i, h(ck)). Therefore, in Case B1, Algorithm LP_on_H computes �(uy; i, j) =
�(uy; i, h(ck)) and, also, computes P(uy; i, j) = P(uy; i, h(ck)). Then, by the induc-
tion hypothesis, this path is also a longest binormal path of H(i,h(ck)) with uy as its
right endpoint. Thus, in Case B1 the lemma holds.

Case B2: uh(ck) <σ uy ≤σ uj . Since ck is the rightmost connector vertex of
H(i, j), and since uy is a stable vertex, it follows that uy does not see any vertex
of H(i, j); furthermore, uj is a stable vertex. Thus, the longest binormal path of
H(i, j) with uy as its right endpoint consists of vertex uy , i.e., L(uy; i, j) = 1. In
the case where uy = uj , one can easily see that Algorithm LP_on_ H computes (in
lines 8–9) the length �(uy; i, j) = 1, and the path P(uy; i, j) = (uy), which is clearly
a binormal path. Additionally, in the case where uh(ck) <σ uy <σ uj , on the one hand
Algorithm LP_on_H computes (in lines 6–7) �(uy; i, j) = �(uy; i, j − 1) and, on the
other hand, the subroutine process() is not executed, since uj is a stable vertex.
Thus, in Case B2 the lemma holds.

Case B3: uf (ck)+1 ≤σ uy ≤σ uh(ck). In this case, the connector vertex ck sees uy .
Let P = (ux′ , . . . , ux, ck, uy′ , . . . , uy) be a longest binormal path of H(i, j) with uy

as its right endpoint, which contains the connector vertex ck ; due to Lemma 4.1,
such a path always exists. Let ux be the predecessor of ck in the path P ; then,
uf (ck) ≤σ ux <σ uy . Since P is a binormal path, the vertices ux′ , ux , uy′ , and uy

are all stable vertices. Also, since ck sees uy , which is the rightmost stable vertex
of P in σ , all stable vertices of P belong to the graph H(i,h(ck)). Additionally,
since ck is the rightmost connector vertex of H(i, j) in σ , all connector vertices of P
belong to the graph H(i,h(ck) + 1). Therefore, all vertices of P belong to the graph
H(i,h(ck) + 1). Thus, the path P is a longest binormal path of H(i,h(ck) + 1) with
uy as its right endpoint, which contains the connector vertex ck . Therefore, for every
graph H(i, j), for which ck is its rightmost connector vertex in σ and h(ck) + 1 ≤ j ,
we have that L(uy; i, j) = L(uy; i, h(ck) + 1). Thus, we will examine only the case
where h(ck)+1 = j , that is, ck is the rightmost vertex uj of H(i, j) in σ . An example
of this case is illustrated in Fig. 6, where H(i, j) = H(4,15) is the stable-connection
graph of Fig. 3; in this example uy = u8, ck = uh(ck)+1 = u15, and uf (ck) = u4.

Next, we examine the length L(uy; i, j) of a longest binormal path of H(i, j)

with uy as its right endpoint, in the case where h(ck)+ 1 = j . Consider removing the
connector vertex ck from the path P . Then, we obtain the paths P1 = (ux′ , . . . , ux)

and P2 = (uy′ , . . . , uy).

Claim 4.1 Let P , P1, and P2 be the paths of Case B3. Then, P1 is a binormal path
of H(i, j − 1) which has ux as its right endpoint, and P2 is a binormal path of
H(x + 1, j − 1) which has uy as its right endpoint.
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Fig. 6 The path P = (P1, u15, P2), where P1 = (u4, u6, u5) and P2 = (u7, u9, u8), is a longest binor-
mal path of the graph H(i, j) = H(4,15) of Fig. 3 with u8 as its right endpoint

Proof of Claim 4.1 Since P is a binormal path of H(i, j), from Lemma 4.2 we ob-
tain that P1 and P2 are binormal paths of H(i, j). Since, as we have shown, all
vertices of P belong to H(i,h(ck) + 1), and since ck = uj is the rightmost ver-
tex of H(i, j) in σ , it follows that all vertices of P1 and P2 belong to the graph
H(i,h(ck)) = H(i, j − 1). Therefore, it is straightforward that P1 is a binormal path
of H(i, j − 1) which has ux as its right endpoint.

Next, we show that P2 is a binormal path of H(x + 1, j − 1) which has uy as
its right endpoint. Since P is a binormal path, from Lemma 3.1(a) it follows that
for every stable vertex u�2 ∈ V (P2), we have ux <σ u�2 ≤σ uy ≤σ uj−1, where
uj−1 = uh(ck) is the rightmost vertex of H(i, j − 1) in σ , since uj = ck . Therefore,
for every stable vertex u�2 ∈ V (P2) it holds u�2 ∈ A(H(x + 1, j − 1)). Addition-
ally, from Lemma 3.1(b) we have that every connector vertex c�2 ∈ V (P 2) does not
see vertex ux , i.e., ux <σ uf (c�2 ) <σ c�2 ≤σ uj−1; thus, c�2 ∈ C(H(x + 1, j − 1)).
Summarizing, let H2 be the induced subgraph of H(i, j − 1), with vertex set
V (H2) = A(H(x + 1, j − 1)) ∪ C(H(x + 1, j − 1)); note that the graph H2 is de-
fined with respect to a stable vertex ux , where uf (ck) ≤σ ux <σ uj−1, and also
that H2 = H(x + 1, j − 1) (for example, in Fig. 6, ux = u5 and uj = u15; thus
H2 = H(6,14), where V (H(6,14)) = {u7, u8, u9, u10, u11, u13, u14}). Therefore, P2
is a binormal path of H(x + 1, j − 1) which has uy as its right endpoint. �

Claim 4.2 If P1 is a binormal path of H(i, j − 1) which has ux as its right endpoint,
and P2 is a binormal path of H(x +1, j −1) which has uy as its right endpoint, then
V (P1) ∩ V (P2) = ∅.

Proof of Claim 4.2 From the proof of Claim 4.1, recall that H2 is the induced sub-
graph of H(i, j − 1), with vertex set V (H2) = A(H(x + 1, j − 1)) ∪ C(H(x + 1,

j − 1)); note that the graph H2 is defined with respect to a stable vertex ux , where
uf (ck) ≤σ ux <σ uj−1, and also that H2 = H(x + 1, j − 1). Therefore, P2 is a binor-
mal path of H2 which has uy as its right endpoint.

Since P is a binormal path, from Lemma 3.1(a) it follows that for every stable ver-
tex u�1 ∈ V (P1), we have ui ≤σ ux′ ≤σ u�1 ≤σ ux . Therefore, for every stable vertex
u�1 ∈ V (P1) it holds u�1 ∈ A(H(i, x)). Similarly, since P1 is a binormal path, ux is
the rightmost stable vertex of V (P1) in σ , due to Lemma 3.1(a). Moreover, since
P1 is binormal, every connector vertex c�1 ∈ V (P1) sees at least two stable vertices
of P1 and, thus, uf (c�1 ) <σ ux . Actually, since c�1 is a vertex of P1, and P1 is a path
of H(i, j), it follows that ui ≤σ uf (c�1 ) <σ ux . Therefore, for every connector ver-
tex c�1 ∈ V (P 1), we have that c�1 ∈ C(H(i, j − 1)) \ {c� ∈ C(H(i, j − 1)):ux ≤σ



336 Algorithmica (2011) 61:320–341

uf (c�)} ⊆ C(H(i, j − 1)) \ C(H(x + 1, j − 1)). Summarizing, let H1 be the induced
subgraph of H(i, j − 1), with vertex set V (H1) = A(H(i, x)) ∪ C(H(i, j − 1)) \
C(H(x + 1, j − 1)); note that the graph H1 is defined with respect to a stable ver-
tex ux , where uf (ck) ≤σ ux <σ uj−1 (for example, in Fig. 6, H(i, x) = H(4,5),
H(i, j − 1) = H(4,14), and H(x + 1, j − 1) = H(6,14); then A(H(4,5)) =
{u4, u5}, C(H(4,14)) = {u6, u9}, and C(H(6,14)) = {u9}, and thus V (H1) =
A(H(4,5)) ∪ C(H(4,14)) \ C(H(6,14)) = {u4, u5, u6}).

Now, it is easy to see that for any stable vertex ux , where uf (ck) ≤σ ux <σ uj−1,
we have V (H1) ∩ V (H2) = ∅. Moreover, P1 and P2 belong to the graphs H1 and H2,
respectively; thus, V (P1) ∩ V (P2) = ∅. �

Since P = (P1, ck, P2) is a longest binormal path of H(i, j) with uy as its right
endpoint, and since the paths P1 and P2 belong by Claim 4.2 to two disjoint induced
subgraphs (H1 and H2, respectively) of H(i, j), it follows that P1 is a longest binor-
mal path of H1 with ux as its right endpoint, and that P2 is a longest binormal path
of H2 with uy as its right endpoint (note that ck = uj sees every vertex uz of H2 and,
thus, also of P2; indeed, since ux <σ uz <σ ck and uxck ∈ E(G) for every vertex
uz of P2, from Lemma 2.1 we obtain that uzck ∈ E(G) for every vertex uz of P2).
Thus, since H2 = H(x + 1, j − 1), we obtain that |P2| = L(uy;x + 1, j − 1). We
will now show that |P1| = L(ux; i, j − 1). To this end, consider a longest binormal
path P0 of H(i, j − 1) with ux as its right endpoint. Due to Lemma 3.1(a), ux is
the rightmost stable vertex of P0 in σ and, thus, all stable vertices of P0 belong to
A(H1) = A(H(i, x)). Furthermore, since P0 is binormal, every connector vertex c� of
P0 sees at least two stable vertices of P0 and, thus, uf (c�) <σ ux , i.e., c� ∈ C(H1) =
C(H(i, j −1))\C(H(x+1, j −1)). It follows that V (P0) ⊆ V (H1) and, thus, |P0| ≤
|P1|. On the other hand, |P1| ≤ |P0|, since H1 is an induced subgraph of H(i, j − 1).
Thus, |P1| = |P0| = L(ux; i, j − 1). Therefore, for the length |P | = L(uy; i, j) of
a longest binormal path P of H(i, j) with uy as its right endpoint, it follows that
L(uy; i, j) = L(ux; i, j − 1) + L(uy;x + 1, j − 1) + 1. Also, for the corresponding
path P (uy; i, j) we have P (uy; i, j) = (P (ux; i, j − 1), ck, P (uy;x + 1, j − 1)).

Hereafter, we examine the results computed by Algorithm LP_on_H in Case B3.
Let P be the path of the graph H(i, j) with uy as its right endpoint, which is com-
puted by Algorithm LP_ on_H in Case B3.

Consider first the case where uj is a connector vertex of H(i, j), i.e., uj = ck .
It is easy to see that the path P constructed by Algorithm LP_on_H (in the subrou-
tine process(), line 19) contains the connector vertex ck . Algorithm LP_on_H
computes the length of the path P = (P1, ck,P2), for two paths P1 and P2 as fol-
lows. The path P1 = P(ux; i, j − 1) is a path of H(i, j − 1) which has ux as its
right endpoint, where ux is a neighbor of ck such that uf (ck) ≤σ ux <σ uy . The path
P2 = P(uy;x + 1, j − 1) is a path of H(x + 1, j − 1) which has uy as its right end-
point, where uf (ck)+1 ≤σ uy ≤σ uh(ck). Actually, in this case, Algorithm LP_on_H
computes (in the subroutine process()) the value w1 + w2 + 1 = |P1| + |P2| + 1,
for every stable vertex ux , where uf (ck) ≤σ ux <σ uy , and sets |P | to be equal to
the maximum among these values. Additionally, Algorithm LP_on_H computes the
corresponding path P = (P1, ck,P2). Summarizing, Algorithm LP_on_H computes
�(uy; i, j) = �(ux; i, j − 1) + �(uy;x + 1, j − 1) + 1 and P(uy; i, j) = (P (ux;
i, j − 1), ck,P (uy;x + 1, j − 1)).
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Note that the path P1 = P(ux; i, j − 1) (resp. P2 = P(uy;x + 1, j − 1)) has al-
ready been computed by Algorithm LP_on_H at a previous iteration. We now show
that the computed path P1 = P(ux; i, j − 1) (resp. P2 = P(uy;x + 1, j − 1)) is a
longest binormal path P (ux; i, j − 1) (resp. P (uy;x + 1, j − 1)) of H(i, j − 1)

(resp. of H(x + 1, j − 1)) with ux (resp. with uy ) as its right endpoint. In-
deed, consider first the case where H(i, j − 1) (resp. H(x + 1, j − 1)) is a graph
for which C(H(i, j − 1)) = ∅ (resp. C(H(x + 1, j − 1)) = ∅), i.e., H(i, j − 1)

(resp. H(x + 1, j − 1)) has only stable vertices. Then, as we have shown in the begin-
ning of this proof (cf. Case I), the computed path P(ux; i, j − 1) (resp. P(uy;x + 1,

j − 1)) is a longest binormal path of H(i, j − 1) (resp. of H(x + 1, j − 1)) with
ux (resp. with uy ) as its right endpoint. Consider now the case where H(i, j − 1)

(resp. H(x + 1, j − 1)) is a graph for which C(H(i, j − 1)) �= ∅ (resp. C(H(x + 1,

j − 1)) �= ∅), i.e., H(i, j − 1) (resp. H(x + 1, j − 1)) has at least one connector ver-
tex (cf. Case II); let c� be its rightmost connector vertex in σ . Then, c� <σ ck , since
uj−1 <σ uj = ck . Therefore, by the induction hypothesis, the path P(ux; i, j − 1)

(resp. P(uy;x + 1, j − 1)) computed by Algorithm LP_on_H is indeed a longest
binormal path of H(i, j − 1) (resp. of H(x + 1, j − 1)) with ux (resp. with uy )
as its right endpoint. Summarizing, we have proved that P1 = P(ux; i, j − 1) =
P (ux; i, j − 1) and P2 = P(uy;x + 1, j − 1) = P (uy;x + 1, j − 1) and, thus,
|P1| = �(ux; i, j − 1) = L(ux; i, j − 1) and |P2| = �(uy;x + 1, j − 1) = L(uy;
x + 1, j − 1).

We now show that the computed path P = (P1, uj ,P2) is a longest binormal
path P (uy; i, j) of H(i, j) with uy as its right endpoint. Since, as we have proved,
P1 is a binormal path of H(i, j − 1) with ux as its right endpoint, and P2 is a
binormal path of H(x + 1, j − 1) with uy as its right endpoint, it follows from
Claim 4.2 that V (P1) ∩ V (P2) = ∅. Therefore, from Lemma 4.3 we obtain that
the computed path P = (P1, uj ,P2) is a binormal path as well. Moreover, Algo-
rithm LP_on_H computes (in the subroutine process()) for every stable vertex
ux , where uf (ck) ≤σ ux <σ uy , the value �(ux; i, j − 1) + �(uy;x + 1, j − 1) + 1,
and sets |P | to be equal to the maximum among these values. Thus, the computed
path P is a longest binormal path of H(i, j) with uy as its right endpoint. Summariz-
ing, we have proved that �(uy; i, j) = L(uy; i, j) and that P(uy; i, j) = P (uy; i, j),
where uj = ck .

Consider now the case where uj is a stable vertex of H(i, j). Let ck be the
rightmost connector vertex of H(i, j) in σ ; then h(ck) + 1 ≤ j − 1. Since uj is
a stable vertex and also the rightmost vertex of H(i, j), we obtain that uj does
not see any vertex of H(i,h(ck) + 1). In this case, Algorithm LP_on_H correctly
computes in lines 6–7 the path P = P(uy; i, j) = P(uy; i, j − 1). This path is in
fact equal to P(uy; i, h(ck) + 1), since every vertex uz, h(ck) + 1 < z ≤ j , to the
right of ck in σ is a stable vertex and, thus, the subroutine process() is not ex-
ecuted for any of the graphs H(i, z) (see lines 10-11). Therefore, we have proved
that Algorithm LP_on_H computes the path P = P(uy; i, j) = P(uy; i, h(ck) + 1),
with length |P | = �(uy; i, j) = �(uy; i, h(ck) + 1). Algorithm LP_on_H has already
computed the value �(uy; i, h(ck) + 1) at a previous iteration where j was equal
to h(ck) + 1 (i.e., uj = ck); moreover, as we have proved in the previous para-
graph, in the iteration where j = h(ck) + 1 (i.e., in the case where uj = ck),
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the computed path P(uy; i, h(ck) + 1) is optimal, i.e., P(uy; i, h(ck) + 1) =
P (uy; i, h(ck)+1). Therefore, in this case P = P(uy; i, j) = P (uy; i, h(ck) + 1) and
|P | = �(uy; i, j) = L(uy; i, h(ck) + 1).

Concluding, in both cases where uj is a connector or a stable vertex of H(i, j),
the path P = P(uy; i, j) of H(i, j) which has uy as its right endpoint computed by
Algorithm LP_on_H is a longest binormal path P (uy; i, j) of H(i, j) which has uy

as its right endpoint, and |P | = �(uy; i, j) = L(uy; i, j). Thus, the lemma holds in
Case B3 as well. �

Due to Lemma 4.4, and since the output of Algorithm LP_on_H is the maximum
among the lengths �(uy;1, n), uy ∈ A(H(1, n)), along with the corresponding path,
it follows that Algorithm LP_on_H computes a longest binormal path of H(1, n)

with right endpoint a vertex uy ∈ A(H(1, n)). Thus, since H(1, n) = H , we obtain
the following result.

Lemma 4.5 Let G be an interval graph. Algorithm LP_on_H computes a longest
binormal path of the stable-connection graph H of the graph G.

4.2 Correctness of Algorithm LP_Interval

We next show that Algorithm LP_Interval correctly computes a longest path of an
interval graph G. We first prove the following result.

Lemma 4.6 Let H be the stable-connection graph of an interval graph G. Then,
for any longest path P of G there exists a longest binormal path P ′ of H , such that
|P ′| = 2|P | + 1 and vice versa.

Proof Let σ be the right-end ordering of H , constructed in Phase 1.
(=⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e., |P | = k. We will show

that there exists a binormal path P ′ of H such that |P ′| = 2k + 1. Since G is an
induced subgraph of H , the path P of G is a path of H as well. We construct a
path ̂P of H from P , by adding to P the appropriate stable vertices, using the fol-
lowing procedure. Initially, set ̂P = P and for every subpath (vi, vi+1) of the path
̂P , 1 ≤ i ≤ k − 1, do the following: consider first the case where vi <σ vi+1; then,
by the construction of H , vi+1 is adjacent to both stable vertices ai,1 and ai,2 as-
sociated with the connector vertex vi . If ai,1 has not already been added to ̂P , then
replace the subpath (vi, vi+1) by the path (vi, ai,1, vi+1); otherwise, replace the sub-
path (vi, vi+1) by the path (vi, ai,2, vi+1). Similarly, in the case where vi+1 <σ vi ,
replace the subpath (vi, vi+1) by the path (vi, ai+1,1, vi+1) or (vi, ai+1,2, vi+1), re-
spectively. Finally, consider the endpoint v1 (resp. vk) of ̂P . If a1,1 (resp. ak,1) has
not already been added to ̂P , then add a1,1 (resp. ak,1) as the first (resp. last) vertex
of ̂P ; otherwise, add a1,2 (resp. ak,2) as the first (resp. last) vertex of ̂P .

By the construction of ̂P it is easy to see that for every connector vertex v of P we
add two stable vertices as neighbors of v in ̂P , and since in H there are exactly two
stable vertices associated with every connector vertex v, it follows that every stable
vertex of H appears at most once in ̂P . Furthermore, since we add in total k+1 stable
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vertices to P , where |P | = k, it follows that |̂P | = 2k+1. Denote now by P ′ a normal
path of H such that V (P ′) = V (̂P). Such a path exists, due to Lemma 2.2. Due to
the above construction, the path ̂P consists of k + 1 stable vertices and k connector
vertices. Thus, since no two stable vertices are adjacent in H due to Observation 3.3,
and since P ′ is a normal path of H , it follows that P ′ is a binormal path of H .
Thus, for any longest path P of G there exists a binormal path P ′ of H , such that
|P ′| = 2|P | + 1.

(⇐=) Consider now a longest binormal path P ′ = (v1, v2, . . . , v�) of H . Since P ′
is binormal, it follows that � = 2k + 1, and that P ′ has k connector vertices and k + 1
stable vertices, for some k ≥ 1. We construct a path P by deleting all stable vertices
from the path P ′ of H . By the construction of H , all neighbors of a stable vertex a

are connector vertices and form a clique in G; thus, for every subpath (v, a, v′) of P ′,
v is adjacent to v′ in G. It follows that P is a path of G. Since we removed all the
k + 1 stable vertices of P ′, it follows that |P | = k, i.e., |P ′| = 2|P | + 1. �

Let ̂P be the longest binormal path of H computed in Step 2 of Algorithm
LP_Interval, using Algorithm LP_on_H. Then, in Step 3 Algorithm LP_Interval com-
putes the path P by deleting all stable vertices from ̂P . By the construction of H , all
neighbors of a stable vertex a are connector vertices and form a clique in G; thus, for
every subpath (v, a, v′) of ̂P , v is adjacent to v′ in G. It follows that P is a path of G.
Moreover, since ̂P is binormal, it has k connector vertices and k + 1 stable vertices,
i.e., |̂P | = 2k + 1, where k ≥ 1. Thus, since we have removed all k + 1 stable vertices
of ̂P , it follows that |P | = k and, thus, P is a longest path of G due to Lemma 4.6.
Therefore, we have proved the following result.

Theorem 4.1 Algorithm LP_Interval computes a longest path of an interval
graph G.

4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It has
been shown that we can obtain the right-end ordering π of G, which results from
numbering the intervals after sorting them on their right ends, in O(n + m) time
[1, 21].

First, we show that Step 1 of Algorithm LP_Interval, which constructs the stable-
connection graph H of the graph G, takes O(n2) time. Indeed, for every connector
vertex ui , 1 ≤ i ≤ n, we can add two stable vertices in V (H) in O(1) time and we
can compute the specific neighborhood of ui in O(n) time.

Step 2 of Algorithm LP_Interval includes the execution of Algorithm LP_on_H.
The subroutine process() takes O(n2) time, due to the O(n2) pairs of the neigh-
bors ux and uy of the connector vertex uj in the graph H(i, j). Additionally, the
subroutine process() is executed at most once for each subgraph H(i, j) of H ,
1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times. Thus, Algorithm LP_on_H takes
O(n4) time.

Step 3 of Algorithm LP_Interval can be executed in O(n) time since we simply
traverse the vertices of the path ̂P , constructed by Algorithm LP_on_H, and delete
every stable vertex.
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Therefore, we obtain the following result concerning the time complexity of the
algorithm.

Theorem 4.2 A longest path of an interval graph can be computed in O(n4) time.

In order to compute the length of a longest path, we need to store one value
�(uy; i, j) for every induced subgraph H(i, j) and for every stable vertex uy of
H(i, j). Thus, since there are in total O(n2) such subgraphs H(i, j), 1 ≤ i ≤ j ≤ n,
and since each one has at most O(n) stable vertices, we can compute the length
of a longest path in O(n3) space. Furthermore, in order to compute and report a
longest path, instead of its length only, for every one of the O(n3) computed values
�(uy; i, j) we have to store a triple of values for the corresponding path P(uy; i, j),
i.e., (P (ux; i, j − 1), uj ,P (uy;x + 1, j − 1)) (see line 19 of Algorithm LP_on_H);
thus, we can compute a longest path in O(n3) space. Therefore, the space complexity
of Algorithm LP_Interval is O(n3).

5 Concluding Remarks

In this paper we presented a polynomial-time algorithm for solving the longest path
problem on interval graphs, which runs in O(n4) time and, thus, provided a solution
to the open problem stated by Uehara and Uno in [23] asking for the complexity status
of the longest path problem on interval graphs. It would be interesting to see whether
the ideas presented in this paper can be applied to find a polynomial solution to the
longest path problem on convex and biconvex graphs, the complexities of which still
remain open [23].
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