
Theoretical Computer Science 411 (2010) 967–975

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A polynomial solution to the k-fixed-endpoint path cover problem on
proper interval graphs
Katerina Asdre, Stavros D. Nikolopoulos ∗
Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

a r t i c l e i n f o

Article history:
Received 29 January 2008
Received in revised form 24 December 2008
Accepted 7 November 2009
Communicated by P. Spirakis

Keywords:
Perfect graphs
Proper interval graphs
Path cover
Fixed-endpoint path cover
Linear-time algorithms

a b s t r a c t

We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover
problem, or kPC for short. Given a graph G and a subset T of k vertices of V (G), a k-fixed-
endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers
the vertices of G such that the k vertices of T are all endpoints of the paths in P . The kPC
problem is to find a k-fixed-endpoint path cover of G of minimum cardinality; note that, if
T is empty (or, equivalently, k = 0), the stated problem coincides with the classical path
cover problem. The kPC problem generalizes some path cover related problems, such as
the 1HP and 2HP problems, which have been proved to be NP-complete. Note that the
complexity status for both 1HP and 2HP problems on interval graphs remains an open
question (Damaschke (1993) [9]). In this paper,we show that the kPCproblemcanbe solved
in linear time on the class of proper interval graphs, that is, in O(n + m) time on a proper
interval graph on n vertices andm edges. The proposed algorithm is simple, requires linear
space, and also enables us to solve the 1HP and 2HP problems on proper interval graphs
within the same time and space complexity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A well studied problem with numerous practical applications in graph theory is that of finding a minimum number of
vertex-disjoint paths of a graph G that cover the vertices of G. This problem, also known as the path cover problem (PC), finds
application in the fields of database design, networks, and code optimization among many others (see [1,2,30]); it is well
known that the path cover problem and many of its variants are NP-complete in general graphs [11]. A graph that admits
a path cover of size 1 is referred to as Hamiltonian. Thus, the path cover problem is at least as hard as the Hamiltonian
path problem (HP), that is, the problem of deciding whether a graph is Hamiltonian. The path cover problem is known
to be NP-complete even when the input is restricted to several interesting special classes of graphs; for example, it is NP-
complete on planar graphs [12], bipartite graphs [13], chordal graphs [13], chordal bipartite graphs [21] and strongly chordal
graphs [21]. Bertossi and Bonuccelli [6] proved that the Hamiltonian circuit problem is NP-complete on several interesting
classes of intersection graphs.
Several variants of the HP problem are also of great interest, among which is the problem of deciding whether a graph

admits a Hamiltonian path between two points (2HP). The 2HP problem is the same as the HP problem except that in 2HP
two vertices of the input graph G are specified, say, u and v, and we are asked whether G contains a Hamiltonian path
beginning with u and ending with v. Similarly, the 1HP problem is to determine whether a graph G admits a Hamiltonian
path starting from a specific vertex u of G, and to find one if such a path does exist. Both 1HP and 2HP problems are also
NP-complete in general graphs [11].

∗ Corresponding author. Tel.: +30 26510 98801.
E-mail addresses: katerina@cs.uoi.gr (K. Asdre), stavros@cs.uoi.gr (S.D. Nikolopoulos).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.11.003

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:katerina@cs.uoi.gr
mailto:stavros@cs.uoi.gr
http://dx.doi.org/10.1016/j.tcs.2009.11.003


968 K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975

Fig. 1. The complexity status (NP-complete, unknown, polynomial) of the kPC problem for some graph subclasses of comparability and chordal graphs.
A→ B indicates that class A contains class B.

The path cover problem as well as several variants of it have been extensively studied due to their wide applicability
in many fields. Some of these problems, of both theoretical and practical importance, are in the context of communication
and/or transposition networks [31]. In such problems, we are given a graph (network) G and two disjoint subsets T1 and T2
of vertices of G, and the objective is to determine whether G admits λ vertex-disjoint paths with several conditions on their
endpoints with respect to T1 and T2, e.g., paths with both their endpoints in T1 ∪ T2, paths with one endpoint in T1 and the
other in T2, etc [3,31]; note that the endpoints of a path P are the first vertex and the last vertex visited by P .
A similar problem that has received increased attention in recent years is in the context of communication networks. The

only efficient way to transmit high volume communication, such as in multimedia applications, is through disjoint paths
that are dedicated to pairs of processors. To efficiently utilize the network, one needs a simple algorithm that, withminimum
overhead, constructs a large number of edge-disjoint paths between pairs of two given sets T1 and T2 of requests.
Furthermore, in the study of interconnection networks, the reliability of the interconnection network subject to node

failures corresponds to the connectivity of an interconnection graph. It is well known that the connectivity of a graph G is
characterized in terms of vertex-disjoint paths joining a pair of vertices inG. Thus, one-to-many vertex-disjoint paths joining
a vertex s (source) and k distinct vertices t1, t2, . . . , tk (sinks) are required. A related work was presented by Park in [25].
Another related problem is the disjoint paths (DP) problem, which is defined as follows: Given a graph G and pairs

(s1, t1), (s2, t2), . . . , (sk, tk) of vertices of G, the objective is to determine whether G admits k vertex-disjoint paths
P1, P2, . . . , Pk in G such that Pi joins si and ti (1 ≤ i ≤ k). The problem was shown to be NP-complete by Karp [17] if k is a
variable part of the input. For fixed k, however, the problem ismore tractable; a polynomial-time algorithmwas described by
Robertson and Seymour [27]. Note that, for k = 2, there are several polynomial-time algorithms in the literature for the DP
problem [28,29]. In contrast, the corresponding question for directed graphs Gwhere we seek directed paths P1, P2, . . . , Pk
is NP-complete even for k = 2 [10].
In [9], Damaschke provided a foundation for obtaining polynomial-time algorithms for several problems concerning

paths in interval graphs, such as finding Hamiltonian paths and circuits, and partitions into paths. In the same paper, he
stated that the complexity status of both 1HP and 2HP problems on interval graphs remains an open question.
Motivated by the above issues we state a variant of the path cover problem, namely, the k-fixed-endpoint path cover

problem (kPC), which generalizes both 1HP and 2HP, and also problem A.
Problem kPC: Given a graph G and a set T of k vertices of V (G), a k-fixed-endpoint path cover of the graph G with respect to
T is a path cover of G such that all vertices in T are endpoints of paths in the path cover; a minimum k-fixed-endpoint path
cover of Gwith respect to T is a k-fixed-endpoint path cover of Gwith minimum cardinality; the k-fixed-endpoint path cover
problem (kPC) is to find a minimum k-fixed-endpoint path cover of the graph G.
In this paper, we study the complexity status of the k-fixed-endpoint path cover problem (kPC) on the class of proper

interval graphs, and show that this problem can be solved in polynomial time when the input is a proper interval graph
[4,7,8]. A proper interval graph is an interval graph that has an interval representationwhere no interval is properly contained
in another. Proper interval graphs arise naturally in applications such as DNA sequencing [14]. The proposed algorithm runs
in time linear in the size of the input graph G on n vertices and m edges, that is, in O(n + m) time, and requires linear
space. The proposed algorithm for the kPC problem can also be used to solve the 1HP and 2HP problems on proper interval
graphs within the same time and space complexity. Fig. 1 shows a diagram of class inclusions for a number of graph classes,
subclasses of comparability and chordal graphs, and the current complexity status of the kPC problem and, thus, of 1HP and
2HP as well on these classes. Note that, if problems 1HP and 2HP are polynomially solvable on interval graphs, then they
are also polynomially solvable on convex graphs [21]. The definitions of the classes appearing in the diagram are given in
Section 2 (see also [7,13]).



K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975 969

The class of proper interval graphs has been extensively studied in the literature [13,26] and several linear-time
algorithms are known for their recognition and realization [8,24]. Both Hamiltonian circuit (HC) and Hamiltonian path
(HP) problems are polynomially solvable for the class of interval and proper interval graphs. Keil introduced a linear-time
algorithm for the HC problem on interval graphs [18] and Arikati and Rangan [2] presented a linear-time algorithm for the
minimum path cover problem on interval graphs. Bertossi [5] proved that a proper interval graph has a Hamiltonian path
if and only if it is connected. He also gave an O(n log n) algorithm for finding a Hamiltonian circuit in a proper interval
graph. Panda and Pas [24] presented a linear-time algorithm for detecting whether a proper interval graph is Hamiltonian.
Recently, Asdre and Nikolopoulos [3] studied the k-fixed-endpoint path cover problem (kPC) on cographs. On the basis of
the tree representation of a cograph (co-tree) and using operations similar to those described in this paper, they proposed an
algorithmwhich solves the kPC problem in linear time. A unified approach to solving the Hamiltonian problems on distance-
hereditary graphs was presented in [16], while Hsieh [15] presented an efficient parallel strategy for the 2HP problem on
the same class of graphs. Nakano et al. [22] proposed an optimal parallel algorithm which finds and reports all the paths
in a minimum path cover of a cograph in O(log n) time using O(n/ log n) processors on a PRAM model. Moreover, recently
Nikolopoulos [23] solved the Hamiltonian problem on quasi-threshold graphs (a subclass of cographs) inO(log n) time using
O(n+m) processors on a PRAMmodel.
The paper is organized as follows. In Section 2 we establish the notation and related terminology, and we present

background results. In Section 3 we describe our linear-time algorithm for addressing the kPC problem, while in Section 4
we prove its correctness and compute its time and space complexity. Finally, in Section 5we conclude the paper and discuss
possible future extensions.

2. Theoretical framework

We consider finite undirected graphs with no loops or multiple edges. Let G be a graph; we denote its vertex set by V (G)
and its edge set by E(G). Let N(v) = {w ∈ V (G)|vw ∈ E(G)} be the set of neighbors of v and N[v] = N(v) ∪ {v}. Let S
be a subset of the vertex set of a graph G. Then, the subgraph of G induced by S is denoted by G[S]. If G[N(v)] is a complete
subgraph, then v is called a simplicial vertex of G.
We study the k-fixed-endpoint path cover problem (kPC) on proper interval graphs. A graph is a proper interval graph

if and only if it is an interval graph with no induced subgraph isomorphic to the claw, which is the graph K1,3 consisting of
one vertex adjacent to three pairwise non-adjacent vertices [26]. A graph G is an interval graph if its vertices can be put in a
one-to-one correspondence with a family F of intervals on the real line such that two vertices are adjacent in G if and only
if their corresponding intervals intersect. The graph classes of proper interval graphs, interval graphs, and chordal graphs
are hereditary: if G is in the class, then every induced subgraph of G is in the same class. Recall that a graph G is chordal if
it contains no induced cycles larger than triangles and a graph G is chordal bipartite if it is a bipartite graph in which every
induced cycle is a C4 (a chordless cycle on four vertices). Furthermore, a bipartite graph G(X, Y ; E) is called X-convex (or
simply convex) if there exists an ordering of its vertices such that for all y ∈ Y the vertices of N(y) are consecutive [21].
Fig. 1 shows a diagram of class inclusions for the above classes of graphs, and the current complexity status of the kPC

problem on these classes. Recall that a graph G is called a cograph if G contains no induced subgraph isomorphic to P4 (a
chordless path on four vertices) [7,13]. A graph G is called quasi-threshold if G contains no induced subgraph isomorphic to
P4 or C4 [7,13]. Finally, a graph G is a threshold graph if and only if G does not contain 2K2, P4 or C4 as induced subgraphs [13].
The above graph classes are intersection graphs; in fact, all graphs are intersection graphs [20]. Let z = {S1, S2, . . . , Sn}

be any family of sets. The intersection graph of z, denoted asΩ(z), is the graph having z as vertex set with Si adjacent to
Sj iff i 6= j and Si ∩ Sj 6= ∅. A graph G is an intersection graph if there exists a family z such that V (G) = {v1, v2, . . . , vn}
with each vi corresponding to Si and vivj ∈ E(G) iff Si ∩ Sj 6= ∅.

2.1. Structural properties of proper interval graphs

Let G be an interval graph and let {Iv = [av, bv]} be an interval representation of G; here, av and bv (av ≤ bv) are
referred to as the left and right endpoints of the interval Iv . The graph G is called a unit interval graph if all the intervals
in the representation have unit length [19]. The family {IV }v∈V (G) is the interval representation of a proper interval graph
if no interval is properly contained in another. Clearly, unit interval graphs are proper interval graphs. Roberts [26] has
proved the following fundamental result that shows that unit interval graph, proper interval graph, and indifference graph
are synonyms.

Proposition 2.1 ([26]). For a graph G, the following statements are equivalent:

(i) G is a unit interval graph;
(ii) G is a proper interval graph;
(iii) G is an interval graph with no induced claw;
(iv) G is an indifference graph.

Proper interval graphs are characterized by an ordering of their vertices [19]:



970 K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975

Theorem 2.1 (Looges and Olariu [19]). A graph G is a proper interval graph if and only if there exists a linear order π on V (G)
such that for every choice of vertices u, v, w,

u ≺π v ≺π w, and uw ∈ E(G) implies uv, vw ∈ E(G). (1)

Let G be a proper interval graph on n vertices andm edges; an ordering π of the vertices of G satisfying (1) is referred to as
canonical and it can be constructed in O(n+m) time [19]. Theorem 2.1 implies the following result.

Corollary 2.1. Let G be a proper interval graph and let π be a linear order on the vertex set of G satisfying (1). For every choice of
subscripts i, j with 1 ≤ i < j ≤ n and vivj ∈ E(G), the vertices vi, vi+1, . . . , vj are pairwise adjacent.

2.2. Proper interval graphs and the kPC problem

We next present the definition of the k-fixed-endpoint path cover problem, or kPC, for short.

Definition 2.1. Let G be a graph and let T be a set of k vertices of V (G). A k-fixed-endpoint path cover of the graph G with
respect to T is a path cover of G such that all vertices in T are endpoints of paths in the path cover; a minimum k-fixed-
endpoint path cover of G with respect to T is a k-fixed-endpoint path cover of G with minimum cardinality; the k-fixed-
endpoint path cover problem (kPC) is to find a minimum k-fixed-endpoint path cover of the graph G.

Let G be a graph with vertex set V (G) and edge set E(G), T be a set of k vertices of V (G), and let PT (G) be a minimum
k-fixed-endpoint path cover of G with respect to T of size λT ; note that the size of PT (G) is the number of paths that it
contains. The vertices of the set T are called terminal vertices, and the set T is called the terminal set of G, while those
of V (G) − T are called non-terminal vertices. Thus, the set PT (G) contains paths of three types, which we call terminal,
semi-terminal, and non-terminal paths:

(i) a terminal path Pt consists of at least two vertices and both its endpoints, say, u and v, are terminal vertices, that is,
u, v ∈ T ;

(ii) a semi-terminal path Ps is a path having one endpoint in T and the other in V (G)− T ; if Ps consists of only one vertex
(the trivial path), say, u, then u ∈ T ;

(iii) a non-terminal path Pf is a path having both its endpoints in V (G) − T ; if Pf consists of only one vertex, say, u, then
u ∈ V (G)− T .

Note that all the internal vertices of the paths of PT (G) are non-terminal vertices. Moreover, a semi-terminal path may
consist of only one vertex which is a terminal vertex, while a terminal path contains at least two vertices. The set of the
non-terminal paths in a minimum kPC of the graph G is denoted by N , while S and T denote the sets of the semi-terminal
and terminal paths, respectively. Thus, we have

λT = |N| + |S| + |T |. (2)

From the Definition 2.1 of the k-fixed-endpoint path cover problem (kPC), we can easily conclude that the number of paths
in a minimum kPC cannot be less than the number of terminal vertices divided by 2. Furthermore, since each semi-terminal
path contains one terminal vertex and each terminal path contains two, the number of terminal vertices is equal to |S|+2|T |.
Thus, the following proposition holds:

Proposition 2.2. Let G be a graph and let T be a terminal set of G. Then |T | = |S| + 2|T | and λT ≥ d
|T |
2 e.

Clearly, the size of a kPC of a graph G, and also the size of a minimum kPC of G, is less than or equal to the number of
vertices of G, that is, λT ≤ |V (G)|. Let F(V (G)) be the set of the non-terminal vertices of G. Thus, the following proposition
holds:

Proposition 2.3. Let G be a graph and let T be a terminal set of G. If λT is the size of a minimum kPC of G, then λT ≤ |F(V (G))|
+ |T |.

Section 3 describes our algorithm which takes as input a proper interval graph G and a subset T of its vertices and finds
the paths of a minimum kPC of G. It is based on a greedy principle, visiting the intervals according to the canonical ordering.
From now on, by vi, 1 ≤ i ≤ n, we mean the vertex of G that is numbered with integers i. We say that vi ≺π vj if i < j,
1 ≤ i, j ≤ n. LetG[S] be the induced subgraph of G consisting of vertices S = {v1, v2, . . . , vs}, 1 ≤ s < n, and letPT (G[S]) be
a minimum kPC of G[S]. Before describing our algorithm, we define two operations on paths of a minimum kPCPT (G[S]) of
a proper interval graph G[S] and a vertex vs+1 ∈ V (G), namely connect and insert operations; these operations are illustrated
in Fig. 2.

◦ Connect operation: Let P be a non-terminal or a semi-terminal path of PT (G[S]), where G[S] is the induced subgraph of
G consisting of vertices S = {v1, v2, . . . , vs}, 1 ≤ s < n, and let vs+1 be a non-terminal or a terminal vertex. We say that
we connect vertex vs+1 to the path P if we add an edge which joins vertex vs+1 with a non-terminal endpoint of P .



K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975 971

a b

Fig. 2. Illustrating (a) connect and (b) insert operations; P ∈ PT (G[{v1, v2, . . . , vs}]).

◦ Insert operation: Let P = [t, p, . . . , p′, t ′] be a terminal or a semi-terminal path of PT (G[S]), where G[S] is the induced
subgraph of G consisting of vertices S = {v1, v2, . . . , vs}, 1 ≤ s < n, and let vs+1 be a non-terminal vertex. We say that
we insert vertex vs+1 into P if we replace an edge of P , say, the edge tp, with the path [t, vs+1, p]. Thus, the resulting path
is P = [t, vs+1, p, . . . , p′, t ′].

Let P be a path ofPT (G) and let vi and vj be its endpoints. We next define the left and the right endpoint of the path P as
well as the available endpoint of a path. Moreover, we define an ordering on the paths in PT (G).

Definition 2.2. Let P be a path of PT (G) and let vi and vj be its endpoints. If vi ≺π vj then vertex vi is the left endpoint and
vj is the right endpoint of the path P . Furthermore, vertex vi is an available endpoint of P if (i) vi ∈ V (G) − T , that is, vi is a
non-terminal endpoint, or (ii) vi ∈ T and P = [vi].

Definition 2.3. Let PT (G) be a minimum kPC of the graph G and let Pi ∈ PT (G) and Pj ∈ PT (G) be such that va and vb are
the left and right endpoints of Pi, respectively, and vc and vd are the left and right endpoints of Pj, respectively. We define
an ordering of the paths in PT (G) as follows: Pi < Pj if vb ≺π vc .

As shown in Section 3, if vc ≺π vb then the ordering of the endpoints of Pi and Pj is as follows: vc ≺π vd ≺π va ≺π vb.

3. The algorithm

In this section we present an algorithm for the kPC problem on proper interval graphs. Our algorithm takes as input a
proper interval graph G and a subset T of its vertices and finds the paths of aminimum kPC of G in linear time. The algorithm
is based on a greedy principle for extending a path of a minimum kPC using operations on its paths and properties of the
graphG[{v1, v2, . . . , vi}], 1 ≤ i ≤ n; if a vertex sees the two endpoints of only one non-terminal path P , it is connected to the
left endpoint of the path P . Note that, according to Theorem 2.1, if NG[{v1,v2,...,vi−1}](vi) = ∅, then the graph G is disconnected.
Specifically, the algorithm works as follows:

Algorithm Minimum_kPC

Input: a proper interval graph G on n vertices andm edges and a set T ⊆ V (G).
Output: a minimum kPC PT (G) of the proper interval G.

1. Construct the canonical ordering π of the vertices of G.
2. Execute the subroutine process(π); the minimum kPC PT (G) is the set of paths returned by the subroutine.

The description of the subroutine process(π) is presented in Fig. 3.
Let P be a path in the kPCPT (G) constructed by AlgorithmMinimum_kPC and let vi and vj be its left and right endpoints,

respectively (see Definition 2.2). Then, there is no path P ′ ∈ PT (G) having an endpoint between vertices vi and vj. Hence,
we prove the following lemma:

Lemma 3.1. Let Ps, 1 ≤ s ≤ λT , be a path of the kPC PT (G) of G constructed by Algorithm Minimum_kPC and let vi and vj be
its left and right endpoints, respectively. Then, there is no path Pt ∈ PT (G), 1 ≤ t ≤ λT , t 6= s, such that vi ≺π vk ≺π vj or
vi ≺π v` ≺π vj, where vk and v` are the left and right endpoints of Pt , respectively.

Proof. Let Ps, 1 ≤ s ≤ λT , be a path of the kPC PT (G) constructed by Algorithm Minimum_kPC and let vi and vj be its left
and right endpoints, respectively. Let Pt ∈ PT (G), 1 ≤ t ≤ λT , t 6= s, and let vk and v` be its left and right endpoints,
respectively. Suppose that vi ≺π vk ≺π vj. Since vi and vj are the endpoints of Ps and vi ≺π vk ≺π vj, the path Ps contains at
least one edge, say, vavb, such that va ≺π vk ≺π vb. Clearly, vertices va and vb are non-terminal vertices. Since vavb ∈ E(G),
we also have vavk ∈ E(G) and vkvb ∈ E(G). Then, according to Algorithm Minimum_kPC, when vertex vb is processed, it is
either connected to the subpath of Ps which is already constructed having va as an endpoint or it is included into Ps through
an edge va′va. If va is an endpoint when vb is processed, it was also an endpoint when vk was processed, and thus the edge
vavk would appear connected to the path Ps, a contradiction. On the other hand, if vb is included into Ps through the edge
va′va, we have va′ ≺π vb, and, thus, va′vk ∈ E(G); then vk would appear connected to the path Ps, a contradiction. Similarly,
we can prove that v` ≺π vi or vj ≺π v`. �

Similarly, we can prove that, if P is a path of the kPCPT (G) constructed by AlgorithmMinimum_kPC with vi and vj being
its leftmost and rightmost vertices, respectively, there is no vertex between vertices vi and vj belonging to another path
P ′ ∈ PT (G). Hence, we have the following lemma:



972 K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975

Fig. 3. The subroutine process(π) of Algorithm Minimum_kPC.

Lemma 3.2. Let Ps, 1 ≤ s ≤ λT , be a path of the kPC PT (G) of G constructed by Algorithm Minimum_kPC and let vi and vj be
its leftmost and rightmost vertices, respectively. Then, there is no vertex vk belonging to another path Pt ∈ PT (G), 1 ≤ t ≤ λT ,
t 6= s, such that vi ≺π vk ≺π vj.

If S = {v1, v2, . . . , vi−1}, then PT (G[S]) is the kPC of G[S] constructed by the algorithm after processing i − 1 vertices;
let s be the size of PT (G[S]), where 1 ≤ s ≤ λT . Let Ps be the path such that Pi < Ps, ∀i ∈ [1, s) (see Definition 2.3), and
vk and v` are its endpoints, where k < `. Let Ps−1 be the path such that Pi < Ps−1, ∀i ∈ [1, s − 1), and, vr and vt are its
endpoints, where r < t . Then, according to Lemma 3.1, vr ≺π vt ≺π vk ≺π v` and vertex vi sees at least one of vk and v`.
Suppose that vi can also be connected to the path Ps−1. If vivt ∈ E(G) and vt /∈ T , then vkvt ∈ E(G) and vk is connected to
the path Ps−1, a contradiction. If vt ∈ T and vivr ∈ E(G) and vr /∈ T , then vkvr ∈ E(G) and vk is connected to the path Ps−1,
a contradiction. Consequently, if vertex vi can be connected to the path Ps then it is the only path that it can be connected
to, and the following holds:

Corollary 3.1. Let PT (G[S]) be the kPC of G[S] constructed by Algorithm Minimum_kPC, where S = {v1, v2, . . . , vi−1}, and let
s be the size of PT (G[S]), where 1 ≤ s ≤ λT . If vertex vi can be connected to the path Ps, where Ps > Pj, ∀j ∈ [1, s), then Ps is
the only path that vi can be connected to.

Next, we prove the following lemma.

Lemma 3.3. LetPT (G[S]) be the kPC of G[S] constructed by AlgorithmMinimum_kPC, where S = {v1, v2, . . . , vi−1}. Unless we
have that vertices vi−2, vi−1 ∈ T , at least one of the following holds:

(i) vi−2, vi−1 are successive in a path in PT (G[S]);
(ii) at least one of vi−2, vi−1 is an available endpoint.

Proof. We use induction on i, i ≥ 3. The basis i = 3 is trivial. Suppose that the hypothesis holds for i− 1: let PT (G[S ′]) be
the kPC of G[S ′] constructed by Algorithm Minimum_kPC, where S ′ = {v1, v2, . . . , vi−2}, and let s′ be the size of PT (G[S ′]),
where 1 ≤ s′ ≤ λT ; then, unless we have that vertices vi−3, vi−2 ∈ T , at least one of the following holds: (i) vi−3, vi−2 are
successive in a path in PT (G[S]); (ii) at least one of vi−3, vi−2 is an available endpoint.
We show that, if PT (G[S]) is the kPC of G[S] constructed by Algorithm Minimum_kPC, where S = {v1, v2, . . . , vi−1},

and s is the size of PT (G[S]), where 1 ≤ s ≤ λT , then, unless we have that vertices vi−2, vi−1 ∈ T , at least one of the
following holds: (i) vi−2, vi−1 are successive in a path in PT (G[S]); (ii) at least one of vi−2, vi−1 is an available endpoint.
Clearly, vi−2vi−1 ∈ E(G); otherwise G[S] is disconnected. We distinguish the following cases:
Case 1: When vertex vi−2 was processed, it was connected to a path or it constructed a new one; let P be the path

containing vi−2. Then, vertex vi−1 is either connected to the path P or it is inserted into P , or a new path is constructed



K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975 973

containing only vertex vi−1. If vi−1 is connected to the path P or a new path is constructed containing only vi−1, then at least
one of the following holds: (i) vi−2, vi−1 are successive in P; (ii) vi−1 is an available endpoint.
Consider the case where vi−1 is inserted into P , that is, vi−2 is not an available endpoint; then, unless we have that

vi−3, vi−2 ∈ T , by the induction hypothesis, at least one of the following holds: (i) vi−3, vi−2 are successive in P; (ii) vi−3 is
an available endpoint.
If vi−3, vi−2 ∈ T , they are either successive in P , or, according to Lemma 3.2, vi−2, vi−4 are successive in P . Thus, if

vi−1 is inserted into P , then vi−2 and vi−1 are successive. Consequently, at least one of the following holds: (i) vi−2, vi−1 are
successive in P; (ii) at least one of vi−2, vi−1 is an available endpoint.
Case 2: When vertex vi−2 was processed, it was inserted into a path, say, P . Consequently, vi−2 ∈ V (G)− T and it has at

least two neighbors. Vertex vi−1 does not see any endpoint since, if it did, vi−2 would also see it. Thus, vi−1 either constructs a
new path or it is inserted into the path P . By the induction hypothesis, vi−3 and vi−2 are successive in P or vi−3 is an available
endpoint. Thus, at least one of the following holds: (i) vi−2, vi−1 are successive in P; (ii) at least one of vi−2, vi−1 is an available
endpoint.
Thus, the lemma follows. �

Generalizing the above lemma, we obtain the following:

Lemma 3.4. Let PT (G[S]) be the kPC of G[S] constructed by Algorithm Minimum_kPC, where S = {v1, v2, . . . , vi−1}, and let
|NG[S](vi)| > 2. At least one of the following holds:

(i) there exists a neighbor of vi that is an available endpoint of a path in PT (G[S]);
(ii) there exist two vertices va, vb ∈ NG[S](vi) that are successive in a path in PT (G[S]).

Proof. We use induction on i, i ≥ 4. The basis i = 4 is trivial. Suppose that the hypothesis holds for i− 1: let PT (G[S ′]) be
the kPC of G[S ′] constructed by Algorithm Minimum_kPC, where S ′ = {v1, v2, . . . , vi−2}, and let s′ be the size of PT (G[S ′]),
where 1 ≤ s′ ≤ λT , and |NG[S′](vi−1)| > 2; then, at least one of the following holds: (i) there exists a neighbor of vi−1 being
an available endpoint of a path in PT (G[S ′]); (ii) there exist two vertices va′ , vb′ ∈ NG[S′](vi−1) that are successive in a path
in PT (G[S ′]).
We show that, if PT (G[S]) is the kPC of G[S] constructed by Algorithm Minimum_kPC, where S = {v1, v2, . . . , vi−1}, s

is the size of PT (G[S]), where 1 ≤ s ≤ λT , and |NG[S](vi)| > 2, then at least one of the following holds: (i) there exists
a neighbor of vi that is an available endpoint of a path in PT (G[S]); (ii) there exist two vertices va, vb ∈ NG[S](vi) that are
successive in a path in PT (G[S]). If vi−1 and vi−2 are not both terminal vertices, according to Lemma 3.3, the lemma holds.
In the case where vi−1, vi−2 ∈ T , we distinguish the following cases:
Case 1: Vertices vi−1 and vi−2 belong to different paths. According to Lemma 3.1, vertex vi−1 belongs to a path consisting

of only one vertex; thus, the lemma holds.
Case 2: Vertices vi−1 and vi−2 belong to a path consisting of only two vertices. Then, the lemma holds.
Case 3: Vertices vi−1 and vi−2 belong to a path P consisting of more than two vertices. Then, vertex vi−3 belongs to P (see

Lemma 3.2), that is, vi−3 ∈ V (G)− T , and, according to Lemma 3.3, when vi−1 is processed, vi−3 is an available endpoint or
vi−3, vi−2 are successive in P .
Consequently, the lemma follows. �

The above lemma also shows that, when vertex vi is inserted into a path P , it is inserted through the edge vi−2vi−1 or
vi−3vi−1.

4. Correctness and time complexity

Let G be a proper interval graph on n vertices andm edges and let T be a subset of V (G). In order to prove the correctness
of AlgorithmMinimum_kPC, we use induction on n. We also prove a property of the minimum kPC PT (G) of G constructed
by our algorithm: if vi ∈ N[vn], 1 < i ≤ n, is the rightmost available endpoint of a path in PT (G), then there is no other
minimum kPC P ′T (G) having a rightmost available endpoint vj ∈ N[vn], 1 < j ≤ n, such that vi ≺π vj. Hence, we prove the
following theorem.

Theorem 4.1. Let G be a proper interval graph on n vertices and m edges and let T be a subset of V (G). AlgorithmMinimum_kPC
computes a minimum k-fixed-endpoint path cover PT (G) of G such that if vi ∈ N[vn], 1 < i ≤ n, is the rightmost available
endpoint of the paths in PT (G), then there is no minimum k-fixed-endpoint path cover P ′T (G) having a rightmost available
endpoint vj ∈ N[vn], 1 < j ≤ n such that vi ≺π vj.

Proof. We use induction on n. The basis n = 1 is trivial. Assume that Algorithm Minimum_kPC computes a minimum kPC
PT (G[S]) of every proper interval graph G[S], S = {v1, v2, . . . , vn−1}, with at most n − 1 vertices having vi ∈ N[vn−1],
1 < i ≤ n− 1, as the rightmost available endpoint of its paths, such that there is no other minimum kPCP ′T (G[S]) having a
rightmost available endpoint vj ∈ N[vn−1], 1 < j ≤ n−1, such that vi ≺π vj; let λT (G[S]) be the size ofPT (G[S]). We show
that the algorithm computes a minimum kPC PT (G) of every proper interval graph G with n vertices having vk ∈ N[vn],
i ≤ k ≤ n, as the rightmost available endpoint of its paths, such that there is no other minimum kPC P ′T (G) having a
rightmost available endpoint v` ∈ N[vn], i ≤ ` ≤ n, such that vk ≺π v`; let λT (G) be the size of PT (G).



974 K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975

Clearly, the size λ′T (G) of a minimum kPC of G is λT (G[S]) or λT (G[S])+ 1. We distinguish the following cases:
Case 1: when the algorithm processes vertex vn, it connects it to an existing path. Thus, λT (G) = λT (G[S]) and,

consequently, PT (G) is a minimum kPC of G, that is, λ′T (G) = λT (G). Furthermore, if vn /∈ T then PT (G) contains a path
having vertex vn as an available endpoint, which is clearly the rightmost of the available endpoints in N[vn] that any other
minimum kPC P ′T (G) can contain. Consider the case where vn ∈ T . Suppose that the rightmost available endpoint in N[vn]
of PT (G) is the same as the rightmost available endpoint in N[vn] of PT (G[S]), that is, vertex vi. Let P ′T (G) be a kPC of G
having a rightmost available endpoint v` ∈ N[vn], i ≤ ` ≤ n, such that vi ≺π v`. Clearly, v` 6= vn. Removing vn from P ′T (G)
results in a minimum kPC of G[S] having v` ∈ N[vn] as an available endpoint; this is a contradiction since vi is the rightmost
endpoint of anyminimumkPCofG[S]. Now suppose that vertex vn is connected to vertex vi. Then, according to the algorithm,
there exists no available endpoint in N[vn] in PT (G). We show that there is no other minimum kPC P ′T (G) containing an
available endpoint in N[vn]. Indeed, let P ′T (G) be a minimum kPC containing a path P

′ with an available endpoint in N[vn],
say ve. Note that ve ≺π vi. Clearly, vn belongs to path P ∈ P ′T (G) containing more than one vertex and vi is not an available
endpoint of a path P ′′ ∈ P ′T (G); let P = [vn, vk, . . .] and vi′ be a vertex that vi is connected to in P

′′. If P 6= P ′ then removing
vn from P ′T (G), since vkve ∈ E, results in a kPC of size λT (G[S]) − 1, a contradiction. Suppose now that P = P ′. Clearly,
vi′ve ∈ E(G) and vi′vk ∈ E(G). Then, if we remove vn from P ′T (G), we obtain a kPC of size λT (G[S])− 1, a contradiction.
Case 2: when the algorithm processes vertex vn, it inserts it into an existing path. Thus, λT (G) = λT (G[S]) and conse-

quently, PT (G) is a minimum kPC of G, that is, λ′T (G) = λT (G). Furthermore, there exists no available endpoint in N[vn] in
PT (G). Let P ′T (G) be a minimum kPC of G having an available endpoint v` ∈ N[vn], i ≤ ` ≤ n. Clearly, vn belongs to path
P of P ′T (G) containing more than one vertex. If v` = vn, then removing vn from P ′T (G) results in a minimum kPC of G[S]
having a neighbor of vn, say vt , as an available endpoint, a contradiction. If vn is an internal node of P , let va and vb be the
vertices that it is connected to. Clearly, vavb ∈ E(G) and, thus, removing vn from P ′T (G) results in a minimum kPC of G[S]
having v` as an available endpoint, a contradiction.
Case 3: when the algorithm processes vertex vn, it creates a new path, that is, PλT (G) = [vn]. Thus, λT (G) = λT (G[S])+1.

Since the algorithm creates a new path, there is no path inPT (G[S]) having an available endpoint va ∈ N(vn) or containing
an edge vavb such that va, vb ∈ N(vn). Let P ′T (G) be a minimum kPC of size λ

′
T (G) = λT (G[S]). If vn is the only vertex

of a path in P ′T (G), then removing vn from P ′T (G) results in a kPC of G[S] of size λT (G[S]) − 1, a contradiction. If vn is an
endpoint of a path inP ′T (G), then removing vn fromP ′T (G) results in a minimum kPC of G[S] having a neighbor of vn, say vt ,
as an available endpoint; a contradiction. On the other hand, if vn is an internal node of a path in P ′T (G), then it has at least
two neighbors, that is vn−1, vn−2 ∈ N(vn) and vn−1vn−2 ∈ E(G). According to Lemma 3.3, unless vertices vn−1 and vn−2 are
terminal vertices, at least one of the following holds:
(i) vn−2, vn−1 are successive in a path in PT (G[S]),
(ii) at least one of vn−2, vn−1 is an available endpoint.
Since the algorithm constructs a new path, we have that vn−1, vn−2 ∈ T and they are endpoints of the same path (see
Corollary 3.1) which contains at least one more vertex, that is, vn−2 is the left endpoint of PλT (G[S]) and vn−1 is its right
endpoint. Consequently, if we apply the algorithm to G[S] − {vn−1, vn−2} = G − {vn−1, vn, vn−2}, we obtain a kPC of size
λT (G[S]), which, by the induction hypothesis, is minimum. Suppose that N(vn) = {vn−1, vn−2}. Then, the minimum kPC
P ′T (G) contains the path P

′
= [vn−1, vn, vn−2]. Consequently, removing the vertices vn−1, vn, vn−2 from P ′T (G) results in a

kPC of G− {vn−1, vn, vn−2} of size λT (G[S])− 1, a contradiction. Now let |N(vn)| > 2. In this case, according to Lemma 3.4,
the algorithm either connects vn to a path or inserts it into a path and thus, λT (G) = λT (G[S]), a contradiction.
Consequently, PT (G) is a minimum kPC of G, that is, λ′T (G) = λT (G) = λT (G[S]) + 1. Finally, the rightmost available

endpoint in N[vn] of the kPC constructed by the algorithm is vertex vn and, clearly, it is the rightmost available endpoint in
N[vn] that any other minimum kPC P ′T (G) can contain.
Thus, the theorem follows. �

Let G be a proper interval graph on n vertices and m edges and let T be a terminal set. Then, Algorithm Minimum_kPC
computes a minimum kPC PT (G) of G. The time complexity is O(n + m) since vertices p` and pr of the algorithm can be
obtained in constant time and the operations of the algorithm can be performed in O(1) time for each vi, 1 ≤ i ≤ n. Note
that no additional space is required and, thus, the space complexity is also linear to the size of the input graph. Furthermore,
the canonical ordering is constructed in O(n+m) time [19]. Hence, we can state the following result.

Theorem 4.2. Let G be a proper interval graph on n vertices and m edges and let T be a subset of V (G). A minimum k-fixed-
endpoint path cover PT (G) of G can be computed in O(n+m) time and space.

5. Concluding remarks

This paper presents a simple linear-time algorithm for the k-fixed-endpoint path cover problem on proper interval
graphs. Our algorithm can be used to solve the 1HP and 2HP problems on proper interval graphs; recall that the Hamiltonian
path problem is NP-complete on chordal graphs. An interesting open question is that of whether the k-fixed-endpoint path
cover problem can be polynomially solved on other classes of graphs, such as interval graphs. Note that the complexity
status of simpler problems, such as 1HP and 2HP, is unknown for interval graphs. Furthermore, our work could probably
be used in solving other related problems, such as that of finding a longest path between two specified vertices of a proper
interval graph or computing the longest path on an interval graph.



K. Asdre, S.D. Nikolopoulos / Theoretical Computer Science 411 (2010) 967–975 975

References

[1] G.S. Adhar, S. Peng, Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle in cographs, in: Int’l Conference on Parallel
Processing, vol. III: Algorithms and Architecture, Pennsylvania State University Press, 1990, pp. 364–365.

[2] S.R. Arikati, C.P. Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform. Process. Lett. 35 (1990) 149–153.
[3] K. Asdre, S.D. Nikolopoulos, A linear-time algorithm for the k-fixed-endpoint path cover problem on cographs, Networks 50 (2007) 231–240.
[4] J. Bang-Jensen, J. Huang, L. Ibarra, Recognizing and representing proper interval graphs in parallel usingmerging and sorting, Discrete Appl. Math. 155
(2007) 442–456.

[5] A.A. Bertossi, Finding Hamiltonian circuits in proper interval graphs, Inform. Process. Lett. 17 (1983) 97–101.
[6] A.A. Bertossi, M.A. Bonuccelli, Finding Hamiltonian circuits in interval graph generalizations, Inform. Process. Lett. 23 (1986) 195–200.
[7] A. Brandstädt, V.B. Le, J. Spinrad, Graph Classes — A Survey, in: SIAMMonographs in DiscreteMathematics and Applications, SIAM, Philadelphia, 1999.
[8] D.G. Corneil, H. Kim, S. Nataranjan, S. Olariu, A.P. Sprague, Simple linear time recognition of unit interval graphs, Inform. Process. Lett. 55 (1995)
99–104.

[9] P. Damaschke, Paths in interval graphs and circular arc graphs, Discrete Math. 112 (1993) 49–64.
[10] S. Fortune, J.E. Hopcroft, J. Wyllie, The directed subgraph homeomorphism problem, J. Theoret. Comput. Sci. 10 (1980) 111–121.
[11] M.R. Garey, D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W.H. Freeman, San Francisco, CA, 1979.
[12] M.R. Garey, D.S. Johnson, R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976) 704–714.
[13] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, second edition, Academic Press, New York, 1980, Annals of Discrete Math., vol. 57,

Elsevier, 2004.
[14] P. Hell, R. Shamir, R. Sharan, A fully dynamic algorithm for recognizing and representing proper interval graphs, SIAM J. Comput. 31 (2001) 289–305.
[15] S.Y. Hsieh, An efficient parallel strategy for the two-fixed-endpoint Hamiltonian path problem on distance-hereditary graphs, J. Parallel Distrib.

Comput. 64 (2004) 662–685.
[16] R.W. Hung, M.S. Chang, Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs, Theoret. Comput. Sci. 341 (2005)

411–440.
[17] R.M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45–68.
[18] J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett. 20 (1985) 201–206.
[19] P.J. Looges, S. Olariu, Optimal greedy algorithms for indifference graphs, Comput. Math. Appl. 25 (1993) 15–25.
[20] T.A. McKee, F.R. McMorris, Topics in Intersection Graph Theory, in: SIAMMonographs on Discrete Mathematics and Applications, SIAM, Philadelphia,

1999.
[21] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discrete Math. 156 (1996) 291–298.
[22] K. Nakano, S. Olariu, A.Y. Zomaya, A time-optimal solution for the path cover problem on cographs, Theoret. Comput. Sci. 290 (2003) 1541–1556.
[23] S.D. Nikolopoulos, Parallel algorithms for Hamiltonian problems on quasi-threshold graphs, J. Parallel Distrib. Comput. 64 (2004) 48–67.
[24] B.S. Panda, S.K. Das, A linear time recognition algorithm for proper interval graphs, Inform. Process. Lett. 87 (2003) 153–161.
[25] J.H. Park, One-to-many disjoint path covers in a graph with faulty elements, in: Proc. 10th Internat. Computing and Combinatorics Conference,

COCOON’04, in: LNCS, vol. 3106, 2004, pp. 392–401.
[26] F.S. Roberts, Graph Theory and Its Applications to Problems of Society, SIAM Press, Philadelphia, PA, 1978.
[27] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory, Ser. B 63 (1995) 65–110.
[28] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293–309.
[29] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comput. Mach. 27 (1980) 445–456.
[30] R. Srikant, R. Sundaram, K.S. Singh, C.P. Rangan, Optimal path cover problem on block graphs and bipartite permutation graphs, Theoret. Comput. Sci.

115 (1993) 351–357.
[31] Y. Suzuki, K. Kaneko, M. Nakamori, Node-disjoint paths algorithm in a transposition graph, IEICE Trans. Inf. Syst. E89-D (2006) 2600–2605.


	A polynomial solution to the  k -fixed-endpoint path cover problem on proper interval graphs
	Introduction
	Theoretical framework
	Structural properties of proper interval graphs
	Proper interval graphs and the kPC problem

	The algorithm
	Correctness and time complexity
	Concluding remarks
	References


