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a b s t r a c t

In this paper we introduce the class of graphs whose complements are asteroidal (star-
like) graphs and derive closed formulas for the number of spanning trees of its members.
The proposed results extend previous results for the classes of the multi-star and multi-
complete/star graphs. Additionally, we prove maximization theorems that enable us to
characterize the graphswhose complements are asteroidal graphs and possess amaximum
number of spanning trees.
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1. Introduction

The number of spanning trees of a graph G is an important, well-studied quantity in graph theory, and appears in
a number of applications. Its most notable application is in the field of network reliability: in a network modeled by a
graph, intercommunication between all nodes of the network implies that the graph must contain a spanning tree; thus,
maximizing the number of spanning trees is a way of maximizing reliability [2,15,12,20]. Other application fields arise from
enumerating certain chemical isomers [3], and counting the number of Eulerian circuits in a graph [10,11].

Thus, both for theoretical and for practical purposes, we are interested in deriving formulas for the number of spanning
trees of a graph G, and also of the Kn-complement of G. For any subgraph H of the complete graph Kn, the Kn-complement of
H , denoted by Kn −H , is defined as the graph obtained from Kn by removing the edges ofH; note that ifH has n vertices then
Kn − H coincides with the complement H of H . Many different types of graphs Kn − H have been examined: for example,
there exist closed formulas for the cases where H is a pairwise-disjoint set of edges [22], a chain of edges [13], a cycle [7],
a star [19], a multi-star [18,23], a multi-complete/star graph [4], a labeled molecular graph [3], and more recently if H is a
circulant graph [8,12,24], a quasi-threshold graph [17], and so on (see Berge [1] for an exposition of the main results).

A common approach for determining the number of spanning trees of a graph G relies on a classic result known as
the complement-spanning-tree matrix theorem [21], which expresses the number of spanning trees of G as a function of the
determinant of amatrix that can be easily constructed from the adjacency relation ofG, i.e., adjacencymatrix, adjacency lists,
etc. Calculating the determinant of the complement-spanning-tree matrix seems to be a promising approach for computing
the number of spanning trees of families of graphs of the form Kn − H , where H is a graph that exhibits symmetry (see [1,4,
7,18,17,16,23,24]).

In this paper, we define two classes of graphs, namely, the complete-planet and the star-planet graphs, which generalize
well-knownclasses of graphs;we call these two classes of graphs asteroidal graphs. It turns out that computing the number of
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spanning trees of these graphs is not difficult. However, computing the number of spanning trees of their Kn-complements is
more interesting; we derive closed formulas for the number of spanning trees of (i) the Kn-complement of a complete-planet
graph, and (ii) the Kn-complement of a star-planet graph. Our proofs are based on the complement-spanning-tree matrix
theorem and use standard techniques from linear algebra and matrix theory. Our formulas generalize previous proposed
formulas of classes of graphs such as complete graphs, star graphs, wheel graphs, gem graphs, multi-star graphs, multi-
complete/star graphs, etc.

Although the problemofmaximizing the number of spanning trees of a graph is difficult in general, it is possible to achieve
an efficient solution for some non-trivial classes of graphs [4,9,18]. In this paper we also prove maximization results for the
Kn-complements of asteroidal graphs. In particular, we characterize the graphs whose complements are asteroidal graphs
and possess a maximum number of spanning trees. Our maximization results generalize and extend previous maximization
results for the class of multi-star graphs [4].

2. Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote by V (G) and E(G) the
vertex set and edge set of G, respectively. Let S be a subset of the vertex set of a graph G. Then, the subgraph of G induced by
S is the graph G[S] = (S, E ′), where (u, v) ∈ E ′ if and only if u, v ∈ S and (u, v) ∈ E(G). Moreover, we denote by G − S the
subgraph G[V (G) − S].

The neighborhood N(x) of a vertex x is the set of all the vertices of G which are adjacent to x. The closed neighborhood of
vertex x is defined asN[x] = {x}∪N(x). The degree of a vertex x in the graph G, denoted d(x), is the number of edges incident
on x; thus, d(x) = |N(x)|. If two vertices x and y are adjacent in G, we say that x sees y; otherwise we say that x misses y. We
extend this notion to vertex sets: Vi ⊆ V (G) sees (misses) Vj ⊆ V (G) if and only if every vertex x ∈ Vi sees (misses) every
vertex y ∈ Vj.

By Kn we denote the complete graph on n vertices. Moreover, for symmetry, we denote by Sn+1 a tree on n + 1 vertices
with one vertex having degree n and call it a star graph (it is commonly denoted by S1,n); we call the vertex of Sn+1 with
degree n its center vertex. The chordless path (resp. cycle) on n vertices v1v2 · · · vn with edges vivi+1 (resp. vivi+1 and v1vn),
1 ≤ i < n, is denoted by Pn (resp. Cn).

Let G1 and G2 be two graphs. Their union G = G1 ∪ G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). Their join is
denoted G1 + G2 and consists of G1 ∪ G2 plus all edges joining V (G1) with V (G2). For any connected graph G, we write mG
for the graph with m components, each isomorphic with G, m ≥ 2. Thus, the graph mKn (resp. mSn, mPn, mCn) consists of m
disjoint copies of Kn (resp. Sn, Pn, Cn). Note that, Sn+1 = K1 + nK1. Throughout the paper, we refer to complete graphs, star
graphs, path graphs, and cycle graphs as cliques, stars, paths, and cycles, respectively.

2.1. Asteroidal graphs

AgraphG onn vertices is called a complete-planet (resp. star-planet) if its vertex setV (G) admits a vertex-disjoint partition
into sets A and B such that:

(S1) A = {v1, v2, . . . , vm} and G[A] = Km (resp. A = {v1, v2, . . . , vm, c} and G[A] = Sm+1),m ≥ 1;
(S2) B = B1 ∪ B2 ∪ · · · ∪ Bm, and for each i = 1, 2, . . . ,m, |Bi| ≥ 0 and Bi induces αij, βij, γij, and δij disjoint copies of cliques,

stars, paths, and cycles, respectively, on j vertices; that is,

Gi ≡ G[Bi] =

⋃
j

αijKj ∪ βijSj ∪ γijPj ∪ δijCj, 1 ≤ i ≤ m;

(S3) The vertex vi ∈ A sees all the vertices of Gi and misses all the vertices in B − V (Gi), 1 ≤ i ≤ m.

We collectively call the above defined graphs asteroidal graphs; Fig. 1 shows the general form of a complete-planet graph
and a star-planet graph. Let G be an asteroidal graph and let A and B be the partition sets of V (G) according to the above
definition: we call the graph G[A] the sun-graph of G, the graph G[B] the planet-graph, and the graphs G1,G2, . . . ,Gm the
planet-subgraphs; by definition, G[B] =

⋃m
i=1 Gi. A maximal connected subgraph of a planet-subgraph Gi is called planet-

component of Gi. Let us denote by `i the cardinality of Bi. Then, the number of vertices of Gi is `i. Moreover, the definition of
Gi implies that for each i = 1, 2, . . . ,m, it holds that∑

j

(
αij + βij + γij + δij

)
· j = `i. (1)

Clearly, |B| =
∑m

i=1 `i; we denote this sum by `. Therefore, a complete-planet graph has exactly m + ` vertices, whereas
a star-planet graph has m + ` + 1 vertices. Hereafter, we call the vertices of the graphs G[A] and G[B], sun-vertices and
planet-vertices respectively.

Throughout the paper, we use the following convention: any isolated vertex of a planet-subgraph is considered to be a
K1 (and not an S1, P1, or C1); hence, for all i, βi1 = γi1 = δi1 = 0. Similarly, βi2 = γi2 = δi2 = 0, since K2 = S2 = P2 = C2.
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(a) A complete-planet graph. (b) A star-planet graph.

Fig. 1. Asteroidal graphs.

Table 1
Subclasses of complete-planet graphs

Parametersm, `, α, β, γ , δ Complete-planet graph Gc Reference

m = k + 1, ` = 0 or Kk+1 [1,19]
m = 1, α(k) = 1, α(i) = 0 ∀i 6= k, β = γ = δ = 0
m = 1, β(k) = 1, β(i) = 0 ∀i 6= k, α = γ = δ = 0 K2 + kK1 [1]
m = 1, γ (k) = 1, γ (i) = 0 ∀i 6= k, α = β = δ = 0 K1 + Pk (gem, for k = 4) [1]
m = 1, δ(k) = 1, δ(i) = 0 ∀i 6= k, α = β = γ = 0 Wheel graph Wk+1 [1]
m ≥ 1, α(1) 6= 0, α(i) = 0 ∀i 6= 1, β = γ = δ = 0 Multi-star graph [18,23]
m ≥ 1, appropriate α 6= 0, β = γ = δ = 0 Multi-complete/star graph [4]

Table 2
Subclasses of star-planet graphs

Parametersm, `, α, β, γ , δ Star-planet graph Gs Reference

m ≥ 1, ` = 0 S1,m [1,19]
m ≥ 1, α(1) 6= 0, α(i) = 0 ∀i 6= 1, β = γ = δ = 0 Trees with diameter d ≤ 4 [17]

Finally, γi3 = δi3 = 0, since K3 = C3 and S3 = P3. Therefore, for a planet-component which is a star Sn, then n ≥ 3, whereas
if it is a path Pn or a cycle Cn then n ≥ 4.

Let G be an asteroidal graph on m sun-vertices and ` planet-vertices. We denote by α(j) the number of the maximal
cliques Kj of the planet-graph G[B]. Similarly, we denote by β(j), γ (j), and δ(j) the number of the maximal stars Sj, paths Pj,
and cycles Cj, respectively, of G[B]. Thus, we have:

α(j) =

m∑
i=1

αij, β(j) =

m∑
i=1

βij, γ (j) =

m∑
i=1

γij, and δ(j) =

m∑
i=1

δij.

We define the vector α = [α(1), α(2), . . . , α(`)] on the planet-graph G[B], and we call it the clique vector of the asteroidal
graph G; in a similar manner, we define the vectors β , γ , and δ and we call them star vector, path vector, and cycle vector,
respectively. Clearly, the vectors α, β , γ , and δ of an asteroidal graph G determine the number of the maximal cliques, stars,
paths, and cycles in G[B]. Hereafter, we write α 6= 0 to denote that there exists at least one j, 1 ≤ j ≤ `, such that α(j) 6= 0,
i.e., α = 0 is equivalent to α(1) = α(2) = · · · = α(`) = 0. We use a similar notation for the star vector, path vector, and
cycle vector. For example, if α = 0, β 6= 0, γ 6= 0 and δ 6= 0, then the planet-graph G[B] contains only stars, paths, and
cycles.

Many graphs can be derived as special cases from the asteroidal graphs, depending on the sun-graph and the values of
the clique, star, path, and cycle vectors. For example, given a complete-planet graph with Km and vectors α, β , γ , δ, and
setting m = 1, γ (5) = 1, γ (j) = 0 for all j 6= 5, and α = β = δ = 0, we get the graph K1 + P5, and when setting m = 1,
δ(k) = 1, δ(j) = 0 for all j 6= k, and α = β = γ = 0, we get the wheel graph Wk+1, i.e., the graph obtained from a chordless
cycle on k vertices by adding a vertex that sees every vertex of the cycle (see Fig. 2). A listing of such results is presented in
Tables 1 and 2.

Computing the number of spanning trees of asteroidal graphs is not very interesting because it is fairly easy. Consider a
complete-planet or a star-planet graph G; since the vertices Vij of each clique, star, path, or cycle of a planet-subgraph Gi see
vertex vi and miss all vertices in V (G) − (Vij ∪ {vi}), any spanning tree of G consists of a spanning tree of the sun-graph and
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Fig. 2. Some simple asteroidal graphs.

a spanning tree of G[Vij ∪ {vi}] for each clique, star, path, or cycle of each Gi. Let k1,j, s1,j, p1,j, and c1,j denote the numbers of
spanning trees of K1 + Kj = Kj+1, K1 + Sj, K1 + Pj, and K1 + Cj = Wj+1 (i.e, the wheel graph on j + 1 vertices), respectively;
from Kj+1 and Wj+1 we have that k1,j = (j + 1)j−1 and c1,j = Luc(2j) − 2 [14], where Luc(2j) denotes the (2j)th Lucas

number,1 while from combinatorial arguments we obtain s1,j = (j+2) 2j−1 and p1,j = Fib(2j) ≈
1

√
5

(
1+

√
5

2

)2j
where Fib(2j)

denotes the (2j)th Fibonacci number.2 Then, the numbers τ(Gc) and τ(Gs) of spanning trees of a complete-planet graph Gc
and a star-planet graph Gs onm sun-vertices are equal to

τ(Gc) = mm−2 τ(Gs) and τ(Gs) =

∏
j

kα(j)
1,j · sβ(j)

1,j · pγ (j)
1,j · cδ(j)

1,j ;

note that a complete graph onm vertices hasmm−2 spanning trees whereas a star graph has a single spanning tree.
In contrast, computing the number of spanning trees of Kn-complements of asteroidal graphs is not so easy. In order to

facilitate the derivation of closed formulas for this number, we define the following ordering of the vertices of the graph G:
for each planet-subgraph Gi of G in order, we place first the vertices that belong to the maximal cliques of Gi starting from
the vertices of the smallest clique; the vertices that belong to each maximal star of Gi are placed next with the star’s central
vertex last; the vertices of the paths follow in the order they aremet along the path, and after them, the vertices of the cycles
in the order they are met around the cycle; in the end, we have the vertices that belong to the sun-graph of G in arbitrary
order.

2.2. Complement-spanning-tree matrix

Let G be a graph on n vertices v1, v2, . . . , vn. The complement-spanning-tree matrix of the graph G is an n × n matrix A
defined as follows:

Ai,j =


1 −

d(vi)

n
if i = j,

1
n

if i 6= j and vivj is an edge of G,

0 otherwise,

where d(vi) is the degree of the vertex vi in G. It has been shown [21] (also known as the complement-spanning-tree matrix
theorem) that the number of spanning trees τ(G) of G is given by

τ(G) = nn−2
· det(A). (2)

For G = Kn, we have that A = In H⇒ det(A) = 1, and Eq. (2) implies Cayley’s tree formula [10] which states that
τ(Kn) = nn−2. Let us apply Eq. (2) on G = Kn − H where |V (H)| = p < n; then, the complement-spanning-tree matrix A of
G has the following form (empty entries in the matrix represent 0s):

A =

[
In−p

M ′

]
,

where the submatrixM ′ is a p × pmatrix which corresponds to the vertices in H . Note that the submatrix In−p corresponds
to the n−p remaining vertices which have degree n−1 in G, and, thus, they have degree 0 in G. From the form of thematrix
A, we see that det(A) = det(M ′). Thus, we focus on the computation of the determinant of matrixM ′.

The degree matrix of a graph H on p vertices is a p × p matrix D defined as follows: Di,i = d(vi) and Di,j = 0 for i 6= j,
1 ≤ i, j ≤ p. Given the adjacency matrix B of H and the degree matrix D of H , we have M ′

= Ip +
1
nB −

1
nD. If we multiply

each column (or row) of matrixM ′ by n, we get the p × pmatrixM such that:
M = nIp + B − D;

clearly, det(M ′) = n−p det(M). Concluding, we have the following result:

1 The Lucas numbers satisfy the recurrence Luc(n) = Luc(n − 1) + Luc(n − 2) with Luc(1) = 1 and Luc(2) = 3.
2 The Fibonacci numbers satisfy the recurrence Fib(n) = Fib(n − 1) + Fib(n − 2) with Fib(1) = 1 and Fib(2) = 1.
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Corollary 2.1. Let G = Kn − H be a graph where |V (H)| = p, and let M be the p × p matrix of H as defined above. Then,

τ(G) = nn−p−2
· det(M).

Throughout the paper, empty entries in matrices represent 0s. Moreover we denote by 1p the vector of size p whose
entries are all equal to 1.

3. The number of spanning trees

Before proving closed formulas for the number of spanning trees of graph Kn − G, where G is an asteroidal graph, let us
consider the j × j matrices MK

j , M
P
j , M

C
j , and MS

j , which correspond to a complete graph Kj, a star Sj, a path Pj, and a cycle Cj
on j vertices, respectively; that is,

MK
j =


n − j 1 · · · 1 1
1 n − j · · · 1 1
...

...
. . .

...
...

1 1 · · · n − j 1
1 1 · · · 1 n − j

 , MS
j =


n − 2 1

n − 2 1
. . .

...
n − 2 1

1 1 · · · 1 1 n − j

 ,

MP
j =


n − 2 1
1 n − 3 1

. . .
. . .

. . .

1 n − 3 1
1 n − 2

 , and MC
j =


n − 3 1 1
1 n − 3 1

. . .
. . .

. . .

1 n − 3 1
1 1 n − 3

 .

Notice here that by the definition of the complement-spanning-tree matrix, the sum of the entries in each row and each
column, in each of the three matrices, is n − 1. It is easy to derive a formula for the determinants of matricesMK

j andMS
j by

subtracting the first row from all the other rows and by adding all the columns to the first column. We obtain:

λ(Kj) ≡ det(MK
j ) = (n − 1) · (n − j − 1)j−1

and λ(Sj) ≡ det(MS
j ) = (n − 2)j−1

·

(
n − j −

j − 1
n − 2

)
.

For thematricesMP
j andMC

j , we define a recurrence which is solved using standard techniques (similar results can be found
in [7]); for n ≥ 5, we have:

λ(Pj) ≡ det(MP
j ) =

n − 1
r · 2j

·
(
(n − 3 + r)j − (n − 3 − r)j

)
=

n − 1
2j−1

·

j−1∑
t=0

(
r t · (n − 3)j−t−1)

and λ(Cj) ≡ det(MC
j ) =

1
2j

·
(
(n − 3 + r)j + (n − 3 − r)j + (−2)j+1)

where

r =

√
(n − 1) · (n − 5).

It is not difficult to see that the quantities λ(Kj), λ(Sj), λ(Pj), and λ(Cj) are all non-negative.

3.1. Complete-planet graphs

Let Kn be the complete graph on n vertices and Gc be a complete-planet graph on m sun-vertices {v1, v2, . . . , vm} and `
planet-vertices such thatV (Gc) ⊆ V (Kn).We use Corollary 2.1 in order to derive a closed formula for the number of spanning
trees of the graph G = Kn − Gc .

For each graph Gi + vi, 1 ≤ i ≤ m, where Gi is the ith planet-subgraph of Gc , we construct a matrix Ui which, based on
our ordering scheme (see end of Section 2.1) has the following form:

Ui =


MK 1αi

MS 1βi

MP 1γi

MC 1δi

1T
αi

1T
βi

1T
γi

1T
δi

n − d(vi)

 ,
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where the submatrices MK ,MS,MP , and MC correspond to the cliques, stars, paths, and cycles of Gi respectively, and
αi =

∑
j jαij, βi =

∑
j jβij, γi =

∑
j jγij, δi =

∑
j jδij. ThematrixMK contains αi1 copies of matrixMK

1 , αi2 copies of matrixMK
2 ,

and so on; these copies are placed on the diagonals ofMK and thusMK is a block diagonal matrix. More precisely, matrixMK

has exactly αi rows and columns, each corresponding to a vertex of one of the αij complete graphs Kj of the graph Gi. The
case is similar for the matricesMS,MP , andMC . From its form shown above and Eq. (1), we conclude that the matrix Ui is of
size (`i + 1) × (`i + 1).

In order to compute the determinant of matrix Ui, we add one more row and one more column at the top and left of the
matrix Ui; the resulting (`i + 2) × (`i + 2) matrix U ′

i has its (1, 1)-entry and (1, `i + 2)-entry equal to 1 whereas all other
positions of the first row and column are equal to 0. More precisely, matrix U ′

i has the following form:

By expandingwith respect to the entries of the first column ofmatrixU ′

i , we have det(U ′

i ) = det(Ui). We subtract the first
row of U ′

i from all the rows of U ′

i , except the last row. Next, we multiply all the columns of U ′

i , except for the last column, by
1/(n−1) and add them to the first column. Recall that the sumof the elements of every column except the last one is equal to
n−1. Finally, we subtract the first column from the last column of matrix U ′

i . Thus, substituting the value d(vi) = m+`i −1
and since det(U ′

i ) = det(Ui), we obtain:

det(Ui) =

∣∣∣∣∣∣∣∣∣∣
MK

MS

MP

MC

1T
αi

1T
βi

1T
γi

1T
δi

qi

∣∣∣∣∣∣∣∣∣∣
= qi ·

∏
j

(
λ(Kj)

αij · λ(Sj)βij · λ(Pj)γij · λ(Cj)
δij
)
,

where qi = n − (m + `i − 1) −
`i

n−1 .
Now we are ready to compute the number τ(G) of spanning trees for the graph G = Kn − Gc using the complement-

spanning-treematrix theoremandCorollary 2.1. Thuswe construct an (m+`)×(m+`)matrixU(= M) for a complete-planet
graph Gc , based on our vertex ordering scheme (end of Section 2.1). Then, we have:

τ(G) = nn−m−`−2
· det(U) (3)

where

U =



U1,1 1`1
U2,2 1`2

. . .
. . .

Um,m 1`m

1T
`1

n − d(v1) 1 · · · 1
1T

`2
1 n − d(v2) · · · 1

. . .
...

...
. . .

...

1T
`m

1 1 · · · n − d(vm)


is an (m + `) × (m + `) matrix and the submatrices Ui,i, 1 ≤ i ≤ m, are obtained from Ui by deleting its last row and its
last column (which correspond to vertex vi). Note that U consists of two blocks: the first block corresponds to the vertices
of the planet-subgraphs of Gwhile the second block corresponds to the vertices of the sun-graph of G (it is easy to check the
adjacencies). It now suffices to compute the determinant of matrix U . Following a procedure similar to the one we applied
for the matrix Ui, we obtain:

det(U) =

∏̀
j=1

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j))
· det(Dc) (4)

where

Dc =


q1 1 · · · 1
1 q2 · · · 1
...

...
. . .

...
1 1 · · · qm

 .
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In order to compute the value det(Dc), we multiply the first row of matrix Dc by −1 and add it to the m − 1 remaining
rows. Then, wemultiply column i by q1−1

qi−1 , 2 ≤ i ≤ m, and add it to the first column. ThematrixDc becomes upper triangular

with its (1, 1)-entry equal to q1 +
∑m

i=2
q1−1
qi−1 and each (i, i)-entry, 2 ≤ i ≤ m, equal to qi − 1. Thus,

det(Dc) =

(
q1 +

m∑
i=2

q1 − 1
qi − 1

)
·

m∏
i=2

(qi − 1) =

(
1 +

m∑
i=1

1
qi − 1

)
·

m∏
i=1

(qi − 1) .

By using pi to denote pi = qi − 1 and by substituting the value of det(Dc) into Eq. (4), we obtain the following theorem.

Theorem 3.1. Let Gc be a complete-planet graph on m sun-vertices and ` planet-vertices. Then, the number of spanning trees of
the graph Kn − Gc , where n ≥ m + `, is equal to

τ(Kn − Gc) = nn−m−`−2
·

∏
j

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j))
·

(
1 +

m∑
i=1

1
pi

)
·

m∏
i=1

pi

where

pi = n − m −
n

n − 1
· `i (5)

and α(j) (β(j), γ (j), δ(j), resp.) is the number of maximal cliques (stars, paths,cycles, resp.) on j vertices in the planet-graph of
Gc .

For the quantities pi, we obtain the following result. The proof is a straightforward derivation of the restrictions on the
corresponding parameters of a complete-planet graph and, thus, it is omitted.

Lemma 3.1. Let Gc be a complete-planet graph on m sun-vertices and ` planet-vertices. Then, for the quantities pi, i =

1, 2, . . . ,m, we have:
1. if m = 1, then p1 ≥ −1 with equality holding iff n = m + ` = ` + 1;
2. if m ≥ 2 and ` = 0, then for all i = 1, 2, . . . ,m, pi = n − m ≥ 0, where equality holds iff n = m + ` = m;
3. if m ≥ 2, ` > 0, and ∃`t = `, then pt ≥ −

n−m
n−1 > −1 and for all i 6= t, pi = n − m > 0;

4. if m ≥ 2, ` > 0, and ∀i = 1, 2, . . . ,m, `i 6= `, then pi > 0.

It is important to note that although a pi may be negative (see Cases (1) and (3) of Lemma 3.1), the number of spanning
trees is never negative.

3.2. Star-planet graphs

Let Gs be a star-planet graph on m + 1 sun-vertices and ` planet-vertices such that V (Gs) ⊆ V (Kn). We use the
complement-spanning-tree matrix theorem in order to derive a closed formula for the number of spanning trees of the
graph G = Kn − Gs.

In the previous section, for the graphG = Kn−Gc wehave formed the (`i+1) × (`i+1)matrixUi, andwe have computed
its determinant. It is easy to see that the matrix Ui matches the corresponding matrix for the graph Kn − Gs provided that
we use d(vi) = `i + 1, 1 ≤ i ≤ m. We compute the determinant of Ui using the same technique as the one we applied for
the case Kn − Gc , and we obtain:

det(Ui) = pi ·
∏
j

(
λ(Kj)

αij · λ(Sj)βij · λ(Pj)γij · λ(Cj)
δij
)
,

where pi = n − (`i + 1) −
`i

n−1 = n − 1 −
n

n−1 · `i.
Thus, by Corollary 2.1 we construct the (m+ `+1)× (m+ `+1) matrix U(= M), according to our vertex ordering scheme
for a star-planet graph Gs. For the number τ(G) of spanning trees of the graph G = Kn − Gs, we have the following formula:

τ(G) = nn−m−`−3
· det(U) (6)

where

U =



U1,1 1`1
U2,2 1`2

. . .
. . .

Um,m 1`m

1T
`1

n − d(v1) 1
1T

`2
n − d(v2) 1

. . .
. . .

...

1T
`m

n − d(vm) 1
1 1 · · · 1 n − d(c)


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is an (m+ ` + 1) × (m+ ` + 1) matrix. As in the case of the graph Kn −Gc , each submatrix Ui,i, 1 ≤ i ≤ m, is obtained from
Ui by deleting its last row and its last column. Note that

det(Ui,i) =

`i∏
j=1

λ(Kj)
αij · λ(Sj)βij · λ(Pj)γij · λ(Cj)

δij .

Thus, for the determinant of matrix U , we have

det(U) =

∏̀
j=1

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j))
·

∣∣∣∣∣∣∣∣∣∣

p1 1
p2 1

. . .
...

pm 1
1 1 · · · 1 n − m

∣∣∣∣∣∣∣∣∣∣
=

∏̀
j=1

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j))
· det(Ds),

where Ds is an (m+1)× (m+1)matrix. In order to compute the determinant of thematrix Ds, we work as in the case of the
complete-planet graph: We multiply the first row of matrix Ds by −1 and add it to each of the next m − 1 rows. Then, we
multiply column i by p1

pi
, 2 ≤ i ≤ m, and add it to the first column. Finally, in order to make the matrix Ds upper triangular,

we multiply the first column by −
1
p1

and add it to columnm + 1. Thus,

det(Ds) =

(
n − m −

1
p1

−

m∑
i=2

1
pi

)
·

m∏
i=1

pi =

(
n − m −

m∑
i=1

1
pi

)
·

m∏
i=1

pi.

We have the following theorem:

Theorem 3.2. Let Gs be a star-planet graph on m + 1 sun-vertices and ` planet-vertices. Then, the number of spanning trees of
the graph Kn − Gs, where n ≥ m + ` + 1, is equal to

τ(Kn − Gs) = nn−m−`−3
·

∏
j

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j))
·

(
n − m −

m∑
i=1

1
pi

)
·

m∏
i=1

pi

where

pi = n − 1 −
n

n − 1
· `i (7)

and α(j) (β(j), γ (j), δ(j), resp.) is the number of maximal cliques (stars, paths, cycles, resp.) on j vertices in the planet-graph of
Gs.

In this case, for the quantities pi, i = 1, 2, . . . ,m, we have:

Lemma 3.2. Let Gs be a complete-planet graph on m + 1 sun-vertices and ` planet-vertices. Then,
1. if ` = 0, then for all i = 1, 2, . . . ,m, pi = n − 1 > 0;
2. if ` > 0 and m = 1, then p1 > 0;
3. if ` > 0, m ≥ 2, and ∃`t = `, then pt ≥

1
n−1 > 0 and for all i 6= t, pi = n − 1 > 0;

4. if ` > 0, m ≥ 2, and ∀i = 1, 2, . . . ,m, `i < `, then pi > m ≥ 2.

Lemma 3.2 implies that the pis are in all cases positive. Moreover, for case (3), Eq. (7) implies that pt =
(n−1)2−n`

n−1 =

n(n−2−`)+1
n−1 ≥

1
n−1 .

4. Maximization results

As mentioned in the introduction, a uniformly-most reliable network [5,15] is defined to maximize the number of
spanning trees. Thus, it is interesting to determine the types of graphs which have the maximum number of spanning trees
for fixed numbers of vertices and edges. In this section, we provide maximization results for the number of spanning trees
of Kn − G, where G is a complete-planet or a star-planet graph. In order to keep the number of vertices and edges fixed, we
assume that:
• the clique Kn is fixed (i.e., n is fixed),
• the numberm of vertices of the sun-graph is fixed, and
• the clique vector α, the star vector β , the path vector γ , and the cycle vector δ are fixed;

thus, our results are over the family of complete-planet graphs (resp., star-planet graphs) obtained by all possible
combinations of connecting each clique, star, path, and cycle of each planet-subgraph to a sun-vertex.

Please cite this article in press as: S.D. Nikolopoulos, et al., Maximizing the number of spanning trees in Kn-complements of asteroidal graphs, Discrete
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4.1. Complete-planet graphs

LetGc be a complete-planet graph onm sun-vertices and ` planet-vertices, where ` = `1+`2+· · ·+`m and `i, 1 ≤ i ≤ m,
is the number of vertices of its planet-subgraphsG1,G2, . . . ,Gm. For notational convenience,wewrite the number τ(Kn−Gc)
of spanning trees of the graph Kn − Gc given by Theorem 3.1 as the product τ(Kn − Gc) = X(Gc) · Y (Gc), where

X(Gc) = nn−m−`−2
·

∏
j=1

(
λ(Kj)

α(j)
· λ(Pj)β(j)

· λ(Cj)
γ (j)

· λ(Sj)δ(j)
)
,

Y (Gc) =

(
1 +

m∑
i=1

1
pi

)
·

m∏
i=1

pi;

recall that pi = n − m −
n

n−1 · `i (Eq. (5)). Since we are interested in maximizing the number of spanning trees when the
parameters n andm, as well as the clique star, path, and cycle vectors are fixed, it suffices to maximize the factor Y (Gc).

We will concentrate in the case where m ≥ 2 and ` > 0; if m = 1 or ` = 0, we have no flexibility in changing the
graph Gc . We note that

Y (Gc) =

(
1 +

m∑
i=1

1
pi

)
·

m∏
i=1

pi =

m∏
i=1

pi +
m∑
i=1

m∏
j=1
j6=i

pj = pm
m−1∏
i=1

pi + pm
m−1∑
i=1

m−1∏
j=1
j6=i

pj +
m−1∏
i=1

pi

and if we substitute pm by S −
∑m−1

i=1 pi in Y (Gc), where S =
∑m

i=1 pi = (n − m)m −
n

n−1` (which has a fixed value since
n,m, ` are fixed), we get

Y (Gc) =

(
1 + S −

m−1∑
i=1

pi

)
·

m−1∏
i=1

pi +

(
S −

m−1∑
i=1

pi

)
·

m−1∑
i=1

m−1∏
j=1
j6=i

pj.

We compute the maximum by computing the partial derivative of Y (Gc) with respect to any pt , 1 ≤ t ≤ m − 1, and setting
it equal to 0:

∂Y (Gc)

∂pt
= −

m−1∏
i=1

pi +

(
1 + S −

m−1∑
i=1

pi

)
·

m−1∏
i=1
i6=t

pi −
m−1∑
i=1

m−1∏
j=1
j6=i

pj +

(
S −

m−1∑
i=1

pi

)
·

m−1∑
i=1
i6=t

m−1∏
j=1
j6=i,t

pj

which through standard algebraic manipulations is simplified to

∂Y (Gc)

∂pt
=

m−1∏
i=1
i6=t

pi ·

1 +

m−1∑
i=1
i6=t

1
pi

 ·

(
S −

m−1∑
i=1

pi − pt

)
.

Then, we can show the following:

Lemma 4.1. If m ≥ 2 and ` > 0, then for any t ∈ {1, 2, . . . ,m}

m−1∏
i=1
i 6=t

pi ·

1 +

m−1∑
i=1
i 6=t

1
pi

 > 0.

Proof. If for all i = 1, 2, . . . ,m, it holds that `i < `, then pi > 0 (Case (4) of Lemma 3.1) and the lemma clearly follows.
Suppose now that `j = ` for some j in {1, 2, . . . ,m}; then Case (3) of Lemma 3.1 applies and pj ≥ −

n−m
n−1 and pi = n−m > 0

for all i 6= j. Since pi > 0 for all i 6= j, the lemma again readily follows if t = j, whereas if t 6= j we need only show that

pj ·
(
1 +

∑m−1
i=1
i 6=t

1
pi

)
> 0:

pj ·

1 +

m−1∑
i=1
i 6=t

1
pi

 = pj ·
(
1 +

m − 2
n − m

+
1
pj

)
= pj ·

(
1 +

m − 2
n − m

)
+ 1 ≥ −

n − 2
n − 1

+ 1 =
1

n − 1
> 0

since pj ≥ −
n−m
n−1 and n ≥ m + ` > m ≥ 2. �

Please cite this article in press as: S.D. Nikolopoulos, et al., Maximizing the number of spanning trees in Kn-complements of asteroidal graphs, Discrete
Mathematics (2008), doi:10.1016/j.disc.2008.08.008



ARTICLE  IN  PRESS
10 S.D. Nikolopoulos et al. / Discrete Mathematics ( ) –

In light of Lemma 4.1, the partial derivative ∂Y (Gc)/∂pt equals 0 if and only if pt = S −
∑m−1

i=1 pi = pm. This equality
holds for each t = 1, 2, . . . ,m − 1; thus, the quantity Y (Gc) reaches an extremum if and only if p1 = p2 = · · · = pm or
equivalently if `1 = `2 = · · · = `m. Moreover, since

∂2Y (Gc)

∂2pt
=

m−1∏
i=1
i 6=t

pi ·

1 +

m−1∑
i=1
i6=t

1
pi

 · (−1 − 1) < 0,

we verify that the above extremum of Y (Gc) is a maximum. Our result is stated in the following theorem.

Theorem 4.1. Let Gc be a complete-planet graph with fixed clique, star, path, and cycle vectors, and m + ` vertices, where
` =

∑m
i=1 `i and `i is the number of vertices of its ith planet-subgraph Gi. Then, the number of spanning trees of the graph Kn−Gc

is maximized when the `i s are all equal, if this is possible.

It is worth noting that maximizing the number of spanning trees of Kn − Gc is NP-complete; it follows from the well-
known Partition problem [6]. In [4], a maximization theorem was provided for the graph Kn − G, where G is a multi-star
graph, which follows as a consequence of Theorem 4.1; since the authors in [4] consider that the planet-components can
only be single vertices, then if it is not possible to have `1 = `2 = · · · = `m, it is certainly feasible to ensure that any two of
the `is differ by at most 1.

Since for given clique, star, path, and cycle vectors, achieving that `1 = `2 = · · · = `m, if possible, requires us to make
a large number of combinations in general, below we give another result which when applied repeatedly helps us attain a
maximum in this number of spanning trees, although this may not necessarily be the global maximum.

Let vi and vj be two arbitrary vertices of the sun-graph Gc[A] and let Gi and Gj (on `i and `j vertices, respectively) be
their corresponding planet-subgraphs. From Gc , we construct the complete-planet graph G′

c by moving planet-components
between the planet-subgraphs Gi and Gj to obtain planet-subgraphs G′

i and G′

j on `′

i and `′

j vertices, respectively; then, the
graphs Gc and G′

c have the same clique, star, path, and cycle vectors, and `′

i + `′

j = `i + `j.
Let us find the number of spanning trees of the graphs G′

c and Gc . First, the quantity Y (Gc) can be written in terms of pi
and pj as

Y (Gc) = pipj
m∏
k=1
k6=i,j

pk + pipj
m∑

k′=1
k′ 6=i,j

m∏
k=1

k6=k′,i,j

pk + (pi + pj)
m∏
k=1
k6=i,j

pk = pipj · Φ1 + (pi + pj) · Φ2

where Φ1 =
∏m

k=1
k6=i,j

pk ·

(
1 +

∑m
k′=1
k′ 6=i,j

1
pk′

)
and Φ2 =

∏m
k=1
k 6=i,j

pk; note that Φ1 and Φ2 are independent of pi and pj. Similarly,

for the graph G′
c we obtain Y (G′

c) = p′

ip
′

j · Φ1 + (p′

i + p′

j) · Φ2. Since the graphs Gc and G′
c have the same clique, star, path,

and cycle vectors, we have that X(G′
c) = X(Gc). In order to compare the numbers of spanning trees of Kn − G′

c and Kn − Gc ,
we examine their difference:

τ(Kn − G′

c) − τ(Kn − Gc) =
(
Y (G′

c) − Y (Gc)
)
· X(Gc)

=
(
(p′

ip
′

j − pipj) · Φ1 + (p′

i + p′

j − pi − pj) · Φ2
)
· X(Gc). (8)

From Eq. (5) and the fact that `′

i + `′

j = `i + `j, it is easy to see that p′

i + p′

j = pi + pj and p′

ip
′

j − pipj =
( n
n−1

)2 (
`′

i`
′

j − `i`j
)
.

Thus, Eq. (8) becomes

τ(Kn − G′

c) − τ(Kn − Gc) =

(
n

n − 1

)2 (
`′

i`
′

j − `i`j
)
· Φ1 · X(Gc). (9)

In a fashion similar to the one used in the proof of Lemma 4.1, we can show that Φ1 > 0. Additionally, X(Gc) ≥ 0. Thus,
in Eq. (9) we have to consider the value of `′

i`
′

j − `i`j. We prove the following lemma.

Lemma 4.2. If |`′

i − `′

j| < |`i − `j|, then `′

i`
′

j − `i`j > 0.

Proof. Without loss of generality, let `i ≥ `j and `′

i ≥ `′

j; then, |`
′

i − `′

j| < |`i − `j| ⇐⇒ `′

i − `′

j < `i − `j. This inequality
and the fact that `′

i + `′

j = `i + `j imply that `i > `′

i and `i − `′

i = `′

j − `j. Let `i − `′

i = `′

j − `j = r > 0, that is, `′

i = `i − r
and `′

j = `j + r . Since `′

i ≥ `′

j , it has to be that `i − r ≥ `j + r H⇒ `i − `j ≥ 2r . Additionally, `′

i`
′

j = `i`j + r(`i − `j) − r2,
and, thus, `′

i`
′

j − `i`j = r(`i − `j) − r2 ≥ r2 > 0. �
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Therefore, we have the following theorem.

Theorem 4.2. Let Gc be a complete-planet graph, vi, vj two vertices of its sun-graph and `i, `j the numbers of vertices of the
planet-subgraphs Gi and Gj associatedwith vi and vj, respectively. If the cliques, stars, paths, and cycles of Gi and Gj are rearranged
so that in the resulting graph G′

c the numbers of vertices of the planet-subgraphs associated with vi and vj are `′

i and `′

j with
|`′

i − `′

j| < |`i − `j|, then the number of spanning trees of Kn − G′
c is larger than that of Kn − Gc .

Theorem 4.2 implies that we can pick a pair of vertices of the sun-graph of a complete-planet graph Gc and rearrange the
planet-components of their planet-subgraphs so as tominimize the absolute value of the difference of their vertex numbers.
We repeat the process for another pair of vertices of the sun-graph and so on so forth until no pair of vertices yields a larger
number of spanning trees.

4.2. Star-planet graphs

We prove similar results for the number τ(Kn − Gs) of spanning trees of the graph Kn − Gs for a star-planet graph Gs on
m + 1 sun-vertices and ` planet-vertices where ` = `1 + `2 + · · · + `m and `i, 1 ≤ i ≤ m, is the number of vertices of its
planet-subgraph Gi. Then, from Theorem 3.2 we have that τ(Kn − Gs) = X(Gs) · Y (Gs), where

X(Gs) = nn−m−`−3
·

∏
j=1

(
λ(Kj)

α(j)
· λ(Sj)β(j)

· λ(Pj)γ (j)
· λ(Cj)

δ(j)) ,
Y (Gs) =

(
n − m −

m∑
i=1

1
pi

)
·

m∏
i=1

pi,

and pi = n − 1 −
n

n−1 · `i (Eq. (7)). In order to maximize the number τ(Kn − Gs) of spanning trees under the assumption
that the parameters n andm, and the clique, star, path, and cycle vectors are fixed, it suffices to maximize the factor Y (Gs).

It is well known that the product of k positive numbers a1, a2, . . . , ak whose sum A is constant is maximized when
they are all equal; this is shown by replacing ak by A −

∑k−1
i=1 ai in the product of the ais and by working with the partial

derivative of the resulting expression with respect to any of the ais. In the same way, we can show that the sum
∑k

i=1
1
ai

of
k positive numbers a1, a2, . . . , ak whose sum is constant is minimized when they are all equal. Thus, since the sum of the
pis is (n − m)m −

n`
n−1 which is fixed, because n,m, ` are assumed to be fixed, both factors of Y (Gs) are maximized when

all the pis are equal. Thus, if we take into account that any two pi, pj are equal if and only if `i = `j (see Eq. (7)) we have a
result similar to Theorem 4.1. Again observe that achieving a maximum number of spanning trees by making all `is equal is
NP-complete [6].

Theorem 4.3. Let Gs be a star-planet graph with fixed clique, star, path, and cycle vectors, and m + ` + 1 vertices, where
` =

∑m
i=1 `i and `i is the number of vertices of its ith planet-subgraph Gi. Then, the number of spanning trees of the graph Kn−Gs

is maximized when the `i s are all equal, if this is possible.

Next, we consider a star-planet graph Gs and two arbitrary vertices vi and vj of its sun-graph Gs[A] whose corresponding
planet-subgraphs contain `i and `j vertices, respectively. We construct from Gs the star-planet graph G′

s by moving
components between these subgraphs so that the resulting planet-subgraphs of vi and vj have `′

i and `′

j vertices, respectively.
Then, `′

i + `′

j = `i + `j and X(Gs) = X(G′
s). The quantity Y (Gs) can be written in terms of pi and pj as

Y (Gs) = (n − m)pipj
m∏
k=1
k6=i,j

pk − pipj
m∑

k′=1
k′ 6=i,j

m∏
k=1

k6=k′,i,j

pk − (pi + pj)
m∏
k=1
k6=i,j

pk = pipj · Ψ1 − (pi + pj) · Ψ2,

where Ψ1 =

(
n − m −

∑m
k′=1
k′ 6=i,j

1
pk′

)
·
∏m

k=1
k6=i,j

pk and Ψ2 =
∏m

k=1
k 6=i,j

pk; again, Ψ1, Ψ2 are independent of pi and pj. A similar

expression holds for Y (G′
s) in terms of p′

i and p′

j . Since `′

i + `′

j = `i + `j, Eq. (7) implies that pi + pj = p′

j + p′

j and

p′

ip
′

j − pipj =
( n
n−1

)2
(`′

i`
′

j − `i`j). Thus,

τ(Kn − G′

s) − τ(Kn − Gs) =

(
n

n − 1

)2 (
`′

i`
′

j − `i`j
)
· Ψ1 · X(Gs).

Lemma 4.3 establishes that for any i, j, Ψ1 > 0.

Lemma 4.3. If m ≥ 2 and ` > 0, then Ψ1 =

(
n − m −

∑m
k′=1
k′ 6=i,j

1
pk′

)
·
∏m

k=1
k6=i,j

pk > 0.

Please cite this article in press as: S.D. Nikolopoulos, et al., Maximizing the number of spanning trees in Kn-complements of asteroidal graphs, Discrete
Mathematics (2008), doi:10.1016/j.disc.2008.08.008



ARTICLE  IN  PRESS
12 S.D. Nikolopoulos et al. / Discrete Mathematics ( ) –

Proof. If for all k = 1, 2, . . . ,m, `k 6= ` then pk > m (see Case (4) of Lemma 3.2), and thus

Ψ1 >

(
n − m −

m − 2
m

)
· mm−2 > (n − m − 1) · mm−2 > 0

since n ≥ m + 1 + ` > m + 1. Suppose now that there exists t such that `t = `. Then, pt ≥
1

n−1 > 0 and for all k 6= t ,
pk = n − 1 (Case (3) of Lemma 3.2). If t is either i or j then

Ψ1 =

(
n − m −

m − 2
n − 1

)
· (n − 1)m−2 > (n − m − 1) · (n − 1)m−2 > 0

since n − 1 > m − 2 ≥ 0. If t differs from both i and j then

Ψ1 =

(
n − m −

(
m − 3
n − 1

+
1
pt

))
· (n − 1)m−3

· pt = (n − 1)m−3
·

((
n − m −

m − 3
n − 1

)
· pt − 1

)
> 0

because n > m H⇒ −
m−3
n−1 > −1 H⇒ n − m −

m−3
n−1 > n − m − 1 ≥ n − 1 and pt ≥

1
n−1 . �

Additionally, X(Gs) ≥ 0. Thus, from Lemmas 4.2 and 4.3, we have that:

Theorem 4.4. Let Gs be a star-planet graph, vi, vj two vertices of its sun-graph and `i, `j the numbers of vertices of the planet-
subgraphs Gi and Gj associated with vi and vj, respectively. If the cliques, stars, paths, and cycles of Gi and Gj are rearranged
so that in the resulting graph G′

s the numbers of vertices of the planet-subgraphs associated with vi and vj are `′

i and `′

j with
|`′

i − `′

j| < |`i − `j|, then the number of spanning trees of Kn − G′
s is larger than that of Kn − Gs.

Due to Theorem 4.4, a local minimum in the number of spanning trees can be obtained as in the case of complete-planet
graphs.
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