
Theoretical Computer Science 381 (2007) 248–259
www.elsevier.com/locate/tcs

NP-completeness results for some problems on subclasses of
bipartite and chordal graphs

Katerina Asdre, Stavros D. Nikolopoulos∗

Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

Received 29 August 2006; received in revised form 26 April 2007; accepted 9 May 2007

Communicated by O. Watanabe

Abstract

Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete coloring problem on
trees, bipartite graphs and cographs, we prove that these problems are also NP-complete on connected bipartite permutation graphs.
We also study the k-path partition problem and, motivated by a recent work of Steiner [G. Steiner, On the k-path partition of graphs,
Theoret. Comput. Sci. 290 (2003) 2147–2155], where he left the problem open for the class of convex graphs, we prove that the k-
path partition problem is NP-complete on convex graphs. Moreover, we study the complexity of these problems on two well-known
subclasses of chordal graphs namely quasi-threshold and threshold graphs. Based on the work of Bodlaender [H.L. Bodlaender,
Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31 (1989) 135–138], we show NP-
completeness results for the pair-complete coloring and harmonious coloring problems on quasi-threshold graphs. Concerning the
k-path partition problem, we prove that it is also NP-complete on this class of graphs. It is known that both the harmonious coloring
problem and the k-path partition problem are polynomially solvable on threshold graphs. We show that the pair-complete coloring
problem is also polynomially solvable on threshold graphs by describing a linear-time algorithm.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears
together on at most one edge, while a pair-complete coloring of G is a proper vertex coloring such that each pair
of colors appears together on at least one edge; the harmonious chromatic number h(G) of the graph G is the least
integer k for which G admits a harmonious coloring with k colors and its achromatic number ψ(G) is the largest
integer k for which G admits a pair-complete coloring with k colors.

Harmonious coloring developed from the closely related concept of line-distinguishing coloring which was
introduced independently by Frank et al. [10] and by Hopcroft and Krishnamoorthy [15] who showed that the
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Fig. 1. The complexity status of three problems for some graph subclasses of comparability and chordal graphs. A → B indicates that class A
contains class B. The box to the left (resp. right) of each class contains the status of the harmonious coloring (top), pair-complete coloring (middle)
and k-path partition (bottom) problems on connected (resp. disconnected) graphs. (∗): NP-complete, previously known; (∗∗): NP-complete, new
result; (P): polynomial, previously known; (P): polynomial, new result.

harmonious coloring problem is NP-complete on general graphs. The achromatic number was introduced by Harary
et al. [13,14], while the pair-complete coloring problem was proved to be NP-hard on arbitrary graphs by Yannakakis
and Gavril [26]. The complexity of both problems has been extensively studied on various classes of perfect graphs
such as cographs, interval graphs, bipartite graphs and trees [2,12]; see Fig. 1 for their complexity status.1 Bodlaender
[3] provides a proof for the NP-completeness of the pair-complete coloring problem for disconnected cographs and
disconnected interval graphs, and extends his results for the connected cases. His proof also establishes the NP-
hardness of the harmonious coloring problem for disconnected interval graphs and disconnected cographs. It is worth
noting that the problem of determining the harmonious chromatic number of a connected cograph is trivial, since
in such a graph each vertex must receive a distinct color as it is at distance at most 2 from all other vertices [4].
Bodlaender’s results establish the NP-hardness of the pair-complete coloring problem for the class of permutation
graphs and, also, the NP-hardness of the harmonious coloring problem when restricted to disconnected permutation
graphs. Extending the above results, Asdre et al. [1] show that the harmonious coloring problem remains NP-complete
on connected interval and permutation graphs.

Concerning the class of bipartite graphs and subclasses of this class (see Fig. 1), Farber et al. [9] show that the
harmonious coloring problem and the pair-compete coloring problem are NP-complete for the class of bipartite graphs.
In addition, Edwards et al. [7,8] show that these problems are NP-complete for trees. Their results also establish the
NP-completeness of these problems for the classes of convex graphs and disconnected bipartite permutation graphs.
However, the complexity of these problems for connected bipartite permutation graphs and biconvex graphs is not
straightforward.

Motivated by this issue we prove that the harmonious coloring problem and the pair-complete coloring problem is
NP-complete for connected bipartite permutation graphs, and thus, the same holds for the class of biconvex graphs.

1 Fig. 1 shows a diagram of class inclusions for a number of graph classes, subclasses of comparability and chordal graphs, and the current
complexity status for the harmonious coloring problem, the pair-complete coloring problem, and the k-path partition problem on these classes; for
definitions of the classes shown, see [2,12].
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Moreover, based on Bodlaender’s results [3], we show that the pair-complete coloring problem is NP-complete for
quasi-threshold graphs and that the harmonious coloring problem is NP-complete for disconnected quasi-threshold
graphs. It has been shown that the harmonious coloring problem is polynomially solvable on threshold graphs. In this
paper we show that the pair-complete coloring problem is also polynomially solvable on this class by proposing a
simple linear-time algorithm.

We also study the k-path partition problem, a generalization of the path partition problem [11]; the path partition
problem is to determine the minimum number of paths in a path partition of a simple graph G, while a path partition of
G is a collection of vertex disjoint paths P1, P2, . . . , Pr in G whose union is V (G). A path partition is called a k-path
partition if none of the paths has length more than k, for a given positive integer k. The k-path partition problem
is to determine the minimum number of paths in a k-path partition of a graph G. It is a natural graph problem with
applications in broadcasting in computer and communications networks [23,25] and it is NP-complete for general
graphs [11]. Yan et al. [25] gave a polynomial time algorithm for finding the minimum number of paths in a k-path
partition of a tree, while Steiner [24] showed that the problem is NP-complete even for cographs if k is considered to
be part of the input, but it is polynomially solvable if k is fixed; he also presented a linear-time solution for the problem,
with any k, for threshold graphs. Quite recently, Steiner [23] showed that the k-path partition problem remains NP-
complete on the class of chordal bipartite graphs if k is part of the input and on the class of comparability graphs even
for k = 3. Furthermore, he presented a polynomial time solution for the problem, with any k, on bipartite permutation
graphs and left the problem open for the class of convex graphs.

Motivated by Steiner’s work [23], we prove that the k-path partition problem is NP-complete on convex graphs.
Furthermore, we show that this problem is NP-complete for quasi-threshold graphs, and thus, it is also NP-complete
for interval and chordal graphs. For some graph classes, the complexity status of the k-path partition problem is
illustrated in Fig. 1.

Our work is organized as follows. In Section 2 we show that the harmonious coloring problem and the pair-
complete coloring problem are NP-complete on bipartite permutation graphs, and in Section 3 we show that the
k-path partition problem is NP-complete on convex graphs, a superclass of bipartite permutation graphs. In Section 4
we present structural properties of the class of quasi-threshold graphs and NP-completeness results on this class, while
in Section 5 we describe a simple linear-time algorithm for the pair-complete coloring problem on threshold graphs.
Finally, Section 6 concludes the paper and discusses open problems.

2. Bipartite permutation graphs

The formulations of the harmonious coloring problem and the pair-complete coloring problem in [4] are equivalent
to the following formulations.

Harmonious Coloring Problem
Instance: Graph G = (V, E), positive integer K ≤ |V |.
Question: Is there a positive integer k ≤ K and a proper coloring using k colors such that each pair of colors appears
together on at most one edge?

Pair-complete Coloring Problem
Instance: Graph G = (V, E), positive integer K ≤ |V |.
Question: Is there a positive integer k ≥ K and a proper coloring using k colors such that each pair of colors appears
together on at least one edge?

We next prove our main result, that is, the harmonious coloring problem is NP-complete for connected bipartite
permutation graphs. A bipartite graph G = (X, Y ; E) is a bipartite permutation graph if and only if it has a strong
ordering of its vertices [22]; a strong ordering of the vertices of G = (X, Y ; E) is an ordering {x1, x2, . . . , xr } of the
vertices in X and an ordering {y1, y2, . . . , ys} of the vertices in Y such that whenever xi y`, x j ym ∈ E with i < j and
` > m then we also have xi ym, x j y` ∈ E [22].

Theorem 2.1. The harmonious coloring problem is NP-complete when restricted to connected bipartite permutation
graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation from 3-
PARTITION. The formulation of the 3-PARTITION problem ([SP15] in [11]) is presented below.
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Fig. 2. Illustrating the constructed connected bipartite permutation graph G.

3-PARTITION
Instance: Set A of 3m elements, a bound b ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A, such that 1

4 b < s(a) < 1
2 b,

and such that
∑

a∈A s(a) = mb.
Question: Can A be partitioned into m disjoined sets A1, A2, . . . , Am such that, for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = b (note
that each Ai must therefore contain exactly three elements from A)?

Let a set A = {a1, . . . , a3m} of 3m elements, a positive integer b and let positive integer sizes s(ai ) for each ai ∈ A
be given, such that 1

4 b < s(ai ) <
1
2 b,

∑
ai ∈A s(ai ) = mb, and 1 ≤ i ≤ 3m. We may suppose that, for each ai ∈ A,

s(ai ) > m (if not, then we can multiply all s(ai ) and b with m + 1).

We construct the following connected graph which is a bipartite permutation graph: Consider a set M =

{m1,m2, . . . ,mm} of m vertices, a set B = b1, b2, . . . , bb of b vertices, and add a vertex v that is connected to every
vertex in the two sets. We add a set M ′

= {m′

1,m′

2, . . . ,m′

m−1} of m−1 vertices and a set B ′
= {b′

2, b′

3, . . . , b′

b} of b−1
vertices. We connect M ′ and B ′ to the vertices of M and B as follows: we connect each vertex m′

i , 1 ≤ i ≤ m−1, to the
vertices mi+1,mi+2, . . . ,mm , and each vertex bi , 1 ≤ i ≤ b −1, to the vertices b′

i+1, b′

i+2, . . . , b′

b. Next we construct
for every ai ∈ A a tree Ti of depth one with s(ai ) leaves, namely yi

1, yi
2, . . . , yi

s(ai )
, and root xi , that is, every leaf is

adjacent to the root; note that there are 3m such trees T1, T2, . . . , T3m . Then we add a set P = {p1, p2, . . . , p3m} of 3m
vertices, and we connect each vertex pi to the root xi of the tree Ti , 1 ≤ i ≤ 3m. We also connect pi , 2 ≤ i ≤ 3m, to
the s(ai−1) leaves of the tree Ti−1. The vertex p1 is also connected to the vertices of M ′ and the vertex v. Additionally,
for each vertex pi ∈ P , 2 ≤ i ≤ 3m, we add vertices vi

j , 1 ≤ j ≤ m −1+b − s(ai−1)+1+3m − i and connect them
to vertex pi . We also add vertices v1

j , 1 ≤ j ≤ b + 3m − 1 and connect them to the vertex p1; let G be the resulting
graph. The graph G is a connected graph and it is illustrated in Fig. 2.

One can easily verify that the graph G is a bipartite graph; let X and Y be its two stable sets. It is easy to show that
the graph G = (X, Y ; E) admits a strong ordering of its vertices, and, thus, it is a bipartite permutation graph. Let X
and Y be the orderings of the vertices of X and Y , respectively. We define X and Y as follows:

X = {b′

2, b′

3, . . . , b′

b, v,m′

1,m′

2, . . . ,m′

m−1, v
1
1, v

1
2, . . . , v

1
b+3m−1,X1,X3,X5, . . . ,X3m−2, x3m}

Y = {b1, b2, . . . , bb,m1,m2, . . . ,mm,Y1,Y3,Y5, . . . ,Y3m−2, y3m
1 , y3m

2 , . . . , y3m
s(a3m )

}

where Xi = {xi , pi+1, yi+1
1 , yi+1

2 , . . . , yi+1
s(ai+1)

, vi+2
1 , vi+2

2 , . . . , vi+2
4m+b−s(ai+1)−i−2}, i = 1, 3, 5, . . . , 3m − 2, and

Yi = {xi , yi
1, yi

2, . . . , yi
s(ai )

, vi+1
1 , vi+1

2 , . . . , vi+1
4m+b−s(ai )−i−1, xi+1}, i = 1, 3, 5, . . . , 3m − 2.

It is easy to see that the total number of edges in G is
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m
2

)
+

(
b
2

)
+ m + b + 3m2

+ 3mb + 3m + mb +

3m−1∑
i=1

i =

(
4m + b + 1

2

)
.

For every harmonious coloring of G and every pair of distinct colors i, j , i 6= j , there must be at most one edge
with its endpoints colored with i and j . Thus, it follows that the harmonious chromatic number cannot be less than
4m + b + 1, and if it is equal to 4m + b + 1 then we have, for every pair of distinct colors i, j , 1 ≤ i, j ≤ 4m + b + 1,
a unique edge with its end-points colored with i and j . Thus, we have an exact coloring of G; an exact coloring of G
with k colors is a harmonious coloring of G with k colors in which, for each pair of colors i , j , there is exactly one
edge ab such that a has color i and b has color j .

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + b + 1 if and only if A can be
partitioned in m sets A1, . . . , Am such that

∑
a∈A j

s(a) = b, for all j , 1 ≤ j ≤ m.

(⇐=) Suppose now a 3-partition of A in A1, . . . , Am such that ∀ j :
∑

a∈A j
s(a) = b exists. We show how to

find a harmonious coloring of G using 4m + b + 1 colors. We color the vertices of the sets M and M ′ with colors
1, 2, . . . ,m, the vertices of the sets B and B ′ with colors m + 1,m + 2, . . . ,m + b, and vertex v with m + b + 1.
For convenience and ease of presentation, let M be the set containing colors 1, 2, . . . ,m, let B be the set containing
colors m + 1,m + 2, . . . ,m + b, and let K be the set containing colors m + b + 2,m + b + 3, . . . , 4m + b + 1. If
ai ∈ A j then we color the vertex corresponding to ai with color j . Each color j ∈ M is assigned to the three vertices
xi corresponding to three ai that have together exactly b neighbors of degree 2. We assign to each one of these b
neighbors a different color from B, and next we assign to each vertex pi of the set P a distinct color from K. Recall
that each vertex pi , 1 ≤ i ≤ 3m, is connected to m + b + 1 + 3m − i vertices (see Fig. 2).

Next, we color the rest m − 1 + b − s(ai−1) + 1 + 3m − i neighbors of each pi , 1 < i ≤ 3m. We assign a
distinct color from the set M\{ci } to m − 1 neighbors of pi , where ci is the color previously assigned to the vertex
xi corresponding to ai . We next assign a distinct color from the set B\Ci to b − s(ai−1) neighbors of pi , where Ci
is the set of the colors previously assigned to s(ai−1) neighbors of the vertex xi−1 corresponding to ai−1. Finally, we
assign a different color to the rest 1 + 3m − i neighbors of pi , using color m + b + 1 and the colors assigned to the
vertices p j , i + 1 ≤ j ≤ 3m. Note that, we have assigned a color to m neighbors of p1, and, thus, in order to color the
rest b + 3m − 1 neighbors of p1, we use colors from K and B. A harmonious coloring of G using 4m + b + 1 colors
results, and thus, the harmonious chromatic number of G is 4m + b + 1.
(=⇒) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m + b + 1. Consider a

harmonious coloring of G using 4m + b + 1 colors. Without loss of generality we may suppose that the m vertices of
the set M have distinct colors from M, while the b vertices of the set B have distinct colors from B. Also, without
loss of generality, we color vertex v with color m + b + 1, since v is adjacent to all the vertices of the two sets,
and vertex p1 with color cp1 = m + b + 2. Note that p1 is the vertex having the maximum degree, that is, 4m + b,
and, thus, color m + b + 2 is adjacent to all colors, because we color all uncolored neighbors of p1 with distinct
colors from M ∪ B ∪ K\{cp1}. We claim that every vertex pi , 1 < i ≤ 3m, takes a color from K. Indeed, let
cm ∈ M be a color assigned to p2. The degree of vertex p2 is equal to 4m + b − 1. However, color cm can be adjacent
to (m−1+b+3m+1)−(1+1) < 4m+b−1 other colors, and, thus, we need one more color in order to color one more
neighbor of p2. Using similar arguments, we show that vertex p2 cannot take a color from B∪{m +b +1,m +b +2},
and thus it takes a color from K\{cp1}. Recursively, as can easily be proved by induction on i , the same holds for all
pi ∈ P , 2 < i ≤ 3m, that is, pi takes a color from K\L, where L is the set containing colors cp1 , cp2 , . . . , cpi−1 ,
which are the colors already assigned to vertices p j , 1 ≤ j < i . Note that, if cK is a color from K∪ {m + b + 1}, then
it cannot be assigned to any other vertex of G since any pair of colors (cK, j), 1 ≤ j ≤ 4m + b + 1, already appears
in the harmonious coloring. Recall that, for every pair of distinct colors i, j , 1 ≤ i, j ≤ 4m + b + 1, there is a unique
edge with its end-points colored with i and j .

We now show that all the vertices of the set B ′ receive colors from B. Since each vertex ui ∈ B ′, 2 ≤ i ≤ b, is
adjacent to at least one vertex in B, none of them can take color m + b + 1. Let u ∈ B ′ be one vertex taking a color
from M, and let du be its degree, while all the other vertices take colors from B. The number of edges of G having
one endpoint colored with a color from M that have not appeared yet is mb − du . Also, the number of edges of G
having one endpoint colored with a color from B that have not appeared yet is mb. Thus, the number of pairs that
have not appeared yet in G, is mb − du + mb − mb = mb − du , while the number of uncolored edges is mb, that is,
the edges of the form xi yi

j , 1 ≤ i ≤ 3m, 1 ≤ j ≤ s(ai ). This implies that we need more colors, and consequently, all
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the vertices of the set B ′ receive colors from B. Using similar arguments we can show that the vertices of the set M ′

receive colors fromM.
Note that pairs (µ, ν), µ ∈ M, ν ∈ B, have not appeared yet. Since every pair of colors must appear, we assign

these pairs to the m B edges that have both endpoints uncolored. Note that these edges are the edges xi yi
j , 1 ≤ i ≤ 3m,

1 ≤ j ≤ s(ai ), where xi corresponds to ai and yi
j corresponds to the j-th neighbor of xi having degree 2. The vertices

xi cannot take a color from B, otherwise the s(ai ) > m uncolored neighbors yi
j cannot be colored with m colors

from M. Thus, vertices xi are assigned a color from M and vertices yi
j are assigned a color from B (recall that

b
4 < s(ai ) <

b
2 ). Note that it is easy to assign a distinct color to the 4m + b − s(ai−1) − i neighbors of each pi ,

1 < i ≤ 3m that have degree equal to one; recall that m − 1 neighbors of p1 belonging to the set M ′ are already
assigned a color from M. If cpi is the color of vertex pi , we use distinct colors from M ∪ B ∪ K\{cxi ,F,L, cpi },
where F is the set containing all colors already assigned to the s(ai−1)+ 1 neighbors of pi and cxi ∈ M is the color
already assigned to vertex xi .

Finally, let ai ∈ A j if and only if the vertex xi (with neighbors yi
j ) is colored with color j ∈ M. We claim that

for all j ,
∑

a∈A j
s(a) = b. Indeed, each color j must be adjacent to some colors from B, and each color from B is

assigned to exactly one vertex which is adjacent to all xi colored with j . Hence, a correct 3-partition exists.
The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation can be done

easily in polynomial time. �

We have shown that the connected bipartite permutation graph G presented in this paper has
(

4m + b + 1
2

)
edges

and h(G) = 4m + b + 1. In [7] it was shown that if G is a graph with exactly
(

k
2

)
edges, then a proper vertex coloring

of G with k colors is pair-complete if and only if it is a harmonious coloring. Thus, if G is a graph with
(

k
2

)
edges,

then ψ(G) = k if and only if h(G) = k [4]. Consequently, for the graph G, which is a bipartite permutation graph,
we have that ψ(G) = 4m + b + 1 and, thus, our results also prove that the achromatic number is NP-complete for
connected bipartite permutation graphs. Consequently, we can state the following theorem.

Theorem 2.2. The pair-complete coloring problem is NP-complete when restricted to connected bipartite
permutation graphs.

We have shown that harmonious coloring and pair-complete coloring are NP-complete problems for the class of
bipartite permutation graphs. Consequently, the two problems are NP-complete for the class of biconvex graphs, which
properly contains bipartite permutation graphs. A bipartite graph G = (X, Y ; E) is convex on the vertex set X if X
can be ordered so that for each element y in the vertex set Y the elements of X connected to y form an interval of X ;
G is biconvex if it is convex on both X and Y . Consequently, we can state the following result.

Corollary 2.1. The harmonious coloring problem and the pair-complete coloring problem are NP-complete for
biconvex graphs.

3. Convex graphs

We next prove that the k-path partition problem is NP-complete for convex graphs; recall that a bipartite graph
G = (X, Y ; E) is convex on the vertex set X if X can be ordered so that for each element y in the vertex set Y the
elements of X connected to y form an interval of X [17].

Theorem 3.1. The k-path partition problem is NP-complete for convex graphs.

Proof. The k-path partition problem is obviously in NP. In order to prove NP-hardness, we use a transformation from
Bin-Packing. The formulation of the Bin-Packing problem ([SR1] in [11]) is presented below.

Bin-Packing
Instance: Finite set U of items, a size s(u) ∈ Z+ for each u ∈ U , a positive integer bin capacity B, and a positive
integer K .
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Fig. 3. Illustrating the constructed convex graph G.

Question: Is there a partition of U into disjoint sets U1,U2, . . . ,UK such that the sum of the sizes of the items in each
Ui is B or less?

Let a set A = {a1, . . . , an} of n elements, with size s(ai ) ∈ Z+ for each ai ∈ A, a positive integer bin capacity B,
and a positive integer K .

We construct the following graph which is a convex graph: Consider an independent set Si
= {si

1, si
2, . . . , si

s(ai )
}

of s(ai ) vertices and an independent set T i
= t i

1, t i
2, . . . , t i

s(ai )−1 of s(ai ) − 1 vertices for every ai ∈ A, 1 ≤ i ≤ n.
We connect every t i

j ∈ T i to vertices si
j ∈ Si and si

j+1 ∈ Si , 1 ≤ j ≤ s(ai ) − 1; let Pi , 1 ≤ i ≤ n be the resulting
disconnected graphs, each containing 2s(ai ) − 1 vertices. Thus, we can associate each Pi with each ai ∈ A. We add
an independent set C = {c1, c2, . . . , cn−K } of n − K vertices and we connect each c j , 1 ≤ j ≤ n − K to every vertex
of all sets Si , 1 ≤ i ≤ n; let G be the resulting graph. The graph G is a connected graph and it is illustrated in Fig. 3.

One can easily verify that the graph G is a convex graph; we define the sets X and Y as follows:

X = {s1
1 , s1

2 , . . . , s1
s(a1)

, s2
1 , s2

2 , . . . , s2
s(a2)

, . . . , sn
1 , sn

2 , . . . , sn
s(an)

}

Y = {t1
1 , t1

2 , . . . , t1
s(a1)−1, c1, c2, . . . cn−K , t2

1 , t2
2 , . . . , t2

s(a2)−1, . . . , tn
1 , tn

2 , . . . , tn
s(an)−1}.

Since X is ordered so that for each element y in the vertex set Y the elements of X connected to y form an interval of
X , the constructed bipartite graph G = (X, Y ; E) of Fig. 3 is convex on the vertex set X .

We now claim that the graph G has a k-path partition into K paths of length at most k = 2B − 2 if and only if A
can be partitioned into K disjoint sets A1, A2, . . . , AK such that the sum of the sizes of the items in each Ai is B or
less.
(⇐=) Suppose now there exists a partition of A in A1, . . . , AK such that the sum of the sizes of the items in each

Ai is B or less. We show how to find a k-path partition of G into K paths of length at most k = 2B − 2. Let αi be the
number of items contained in each Ai , 1 ≤ i ≤ K . We construct n paths of length 2s(a j )− 2, 1 ≤ j ≤ n, that is, the
paths p j = [s j

1 , t j
1 , s j

2 , t j
2 , s j

3 , . . . , s j
s(a j )−1, t j

s(a j )−1, s j
s(a j )

], 1 ≤ j ≤ n. Note that each path p j corresponds to each
subgraph Pj of G. Then, we use αi − 1 vertices of the set C to connect the αi paths corresponding to the elements of
the set Ai into one path of length αi − 2 − αi + 2

∑
a∈Ai

s(a) ≤ 2B − 2.
(=⇒) We next suppose that G has a (2B − 2)-path partition into K paths. Since the set X contains

∑n
i=1 s(ai )

vertices and the set Y contains
∑n

i=1 s(ai ) − K vertices, then a minimum path partition cannot contain less than K
paths. Moreover, since each vertex t i

j ∈ T (1 ≤ i ≤ n, 1 ≤ j ≤ s(ai )−1) sees only the vertices si
j and si

j+1 of X , a path
containing vertices of the subgraph Pi can be connected to a path containing vertices of the subgraph Pi ′ only through
a vertex of the set C , which contains n − K vertices. We claim that, in order to obtain a path partition of no more than
K paths, we first have to construct n paths pi = [si

1, t i
1, si

2, t i
2, si

3, . . . , si
s(ai )−1, t i

s(ai )−1, si
s(ai )

], 1 ≤ i ≤ n, and then we
have to connect them using vertices of C in such a way that no path contains more than 2B −1 vertices; note that both
endpoints of each path pi are in X and each pi corresponds to a subgraph Pi . Indeed, let qi be a subpath of pi and let p j

be the n−1 paths corresponding to the n−1 subgraphs Pj , where p j = [s j
1 , t j

1 , s j
2 , t j

2 , s j
3 , . . . , s j

s(a j )−1, t j
s(a j )−1, s j

s(a j )
],

1 ≤ j ≤ n and i 6= j . Then, there exist vertices of the subgraph Pi that are not included in the path qi , which form
a path q ′

i . Thus, we have to connect n + 1 paths using n − K vertices of the set C , which results to K + 1 paths, a
contradiction. Consequently, in order to obtain a path partition of no more than K paths, we first have to construct
n paths pi , 1 ≤ i ≤ n, corresponding to the subgraphs Pi , and then we have to connect them using vertices of C
in such a way that no path contains more than 2B − 1 vertices. Let P ′

= {p′

1, p′

2, . . . , p′

K } be the set of the paths
of the (2B − 2)-path partition of G. Each one of these K paths contains at most B vertices of X and if a vertex si

`,
` ∈ [1, s(ai )] belongs to a certain path then all vertices si

j , 1 ≤ j ≤ s(ai ), belong to the same path. Consequently, the
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set A can be partitioned into K disjoint sets A1, A2, . . . , AK such that the sum of the sizes of the items in each Ai is
B or less.

The theorem follows from the strong NP-completeness of Bin-Packing, since the transformation can be done easily
in polynomial time. �

4. Quasi-threshold graphs

A graph G is called quasi-threshold, or QT -graph for short, if G contains no induced subgraph isomorphic to P4 or
C4 (cordless path or cycle on 4 vertices); for definition and optimization problems on this class see [12,16,18,20,21].
The class of quasi-threshold graphs is a subclass of the class of cographs and contains the class of threshold graphs
[6,12]; see Fig. 1.

4.1. Structural properties

Let G be a QT -graph with vertex set V (G) and edge set E(G). The neighborhood N (x) of a vertex x ∈ V (G) is
the set of all the vertices of G which are adjacent to x . The closed neighborhood of x is defined as N [x] := {x}∪N (x).
The subgraph of a graph G induced by a subset S of the vertex set V (G) is denoted by G[S]. For a vertex subset S of
G, we define G − S := G[V (G)− S].

The following lemma follows immediately from the fact that for every subset S ⊂ V (G) and for a vertex x ∈ S,
we have NG[S][x] = N [x] ∩ S and that G − S is an induced subgraph.

Lemma 4.1 ([16,21]:). If G is a QT -graph, then for every subset S ⊂ V (G), both G[S] and G[V (G)− S] are also
QT -graphs.

The following theorem provides important properties for the class of QT -graphs. For convenience, we define

cent (G) = {x ∈ V (G) | N [x] = V (G)}.

Theorem 4.1 ([16,21]). The following three statements hold.

(i) A graph G is a QT -graph if and only if every connected induced subgraph G[S], S ⊆ V (G), satisfies
cent (G[S]) 6= ∅.

(ii) A graph G is a QT -graph if and only if G[V (G)− cent (G)] is a QT -graph.
(iii) Let G be a connected QT -graph. If V (G) − cent (G[S]) 6= ∅, then G[V (G) − cent (G)] contains at least two

connected components.

Let G be a connected QT -graph. Then V1 := cent (G) is not an empty set by Theorem 4.1. Put G1 := G, and
G[V (G)− V1] = G2 ∪ G3 ∪ · · · ∪ Gr , where each Gi is a connected component of G[V (G)− V1] and r ≥ 3. Then
since each Gi is an induced subgraph of G, Gi is also a QT -graph, and so let Vi := cent (Gi ) 6= ∅ for 2 ≤ i ≤ r .
Since each connected component of Gi [V (Gi )− cent (Gi )] is also a QT -graph, we can continue this procedure until
we get an empty graph. Then we finally obtain the following partition of V (G):

V (G) = V1 + V2 + · · · + Vk, where Vi = cent (Gi ).

Moreover we can define a partial order � on the set {V1, V2, . . . , Vk} as follows:

Vi � V j if Vi = cent (Gi ) and V j ⊆ V (Gi ).

It is easy to see that the above partition of the vertex set V (G) of the QT -graph G possesses the following properties.

Theorem 4.2 ([16,21]). Let G be a connected QT -graph, and let V (G) = V1 +V2 +· · ·+Vk be the partition defined
above; in particular, V1 := cent (G). Then this partition and the partially ordered set ({Vi },�) have the following
properties:

(P1) If Vi � V j , then every vertex of Vi and every vertex of V j are joined by an edge of G.
(P2) For every Vi , cent (G[{

⋃
V j | Vi � V j }]) = Vi .

(P3) For every two Vs and Vt such that Vs � Vt ,G[{
⋃

Vi | Vs � Vi � Vt }] is a complete graph. Moreover, for every
maximal element Vt of ({Vi },�), G[{

⋃
Vi | V1 � Vi � Vt }] is a maximal complete subgraph of G.
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Fig. 4. The typical structure of the cent-tree Tc(G) of a QT -graph.

The results of Theorem 4.2 provide structural properties for the class of QT -graphs. We shall refer to the structure
that meets the properties of Theorem 4.2 as the cent-tree of the graph G and denote it by Tc(G). The cent-tree Tc(G)
(see Fig. 4) of a QT -graph is a rooted tree; it has nodes V1, V2, . . . , Vk , root V1 := cent (G), and every node Vi is
either a leaf or has at least two children. Moreover, Vs � Vt if and only if Vs is an ancestor of Vt in Tc(G). Thus, we
can state the following result.

Corollary 4.1. A graph G is a QT -graph if and only if G has a cent-tree Tc(G).

Observation 4.1. Let G be a QT -graph and let V = V1+V2+· · ·+Vk be the above partition of V (G); V1 := cent (G).
Let S = {vs, vs+1, . . . , vt , . . . , vq} be a stable set such that vt ∈ Vt and Vt is a maximal element of (Vi , �) or,
equivalently, Vt is a leaf node of Tc(G), s ≤ t ≤ q . It is easy to see that S has the maximum cardinality α(G) among
all the stable sets of G. On the other hand, the sets {

⋃
Vi |V1 � Vi � Vt }, for every maximal element Vt of (Vi , �),

provide a clique cover of size κ(G) which is the smallest possible clique cover of G; that is α(G) = κ(G). Based
on the Theorem 4.2 or, equivalently, on the properties of the cent-tree of G, it is easy to show that the clique number
ω(G) equals the chromatic number χ(G) of the graph G; that is, χ(G) = ω(G). �

4.2. NP-completeness results

In order to prove the NP-completeness of the pair-complete coloring problem for cographs and interval graphs,
Bodlaender [3] constructs an instance of a disconnected graph which is simultaneously a cograph and an interval
graph and modifies it in order to obtain a connected instance of a graph which remains a cograph and an interval graph.
One can easily verify that the constructed graphs are also quasi-threshold graphs. Thus, his proof also establishes the
NP-hardness of the pair-complete coloring problem for the class of quasi-threshold graphs, as well as the NP-hardness
of the harmonious coloring problem for disconnected quasi-threshold graphs. Consequently, we state the following
result.

Corollary 4.2. The pair-complete coloring problem is NP-complete for quasi-threshold graphs; the harmonious
coloring problem is NP-complete for disconnected quasi-threshold graphs.

We next prove that the k-path partition problem is NP-complete for quasi-threshold graphs.

Theorem 4.3. The k-path partition problem is NP-complete for quasi-threshold graphs.

Proof. The k-path partition problem is obviously in NP. In order to prove NP-hardness, we use a transformation from
3-PARTITION.

Let a set A = {a1, . . . , a3m} of 3m elements, a positive integer B and let positive integer sizes s(ai ) for each ai ∈ A
be given, such that 1

4 B < s(ai ) <
1
2 B, and such that

∑
ai ∈A s(ai ) = m B, 1 ≤ i ≤ 3m. We may suppose that, for each

ai ∈ A, s(ai ) > m (if not, then we can multiply all s(ai ) and b with m + 1).
We construct the following graph which is a quasi-threshold graph: Consider a graph G(V ∪ C, E) having a clique

Kai (Vai , Eai ) on s(ai ) vertices for each ai ∈ A such that Vai ∩ Va j = ∅, i 6= j , and V =
⋃

ai ∈A Vai . There are no
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edges in G between vertices in different cliques. In addition, G has 2m “connector” vertices C = {v1, v2, . . . , v2m}

which form a clique in G. Every vi ∈ C is connected to every u ∈ V . It is clear that G is a quasi-threshold graph.
We now claim that A has a 3-PARTITION, that is, A can be partitioned into m disjoint sets A1, A2, . . . , Am such

that
∑

a∈Ai
s(a) = B for 1 ≤ i ≤ m, if and only if G has a partition into m paths of length k = B + 2. Notice that the

constraints on the item sizes ensure that each Si must have exactly three elements from A.
(=⇒) If A has a 3-PARTITION Ai = {xi , yi , zi }, 1 ≤ i ≤ m, then we can use the two elements v2i−1, v2i ∈ C to

connect the corresponding subgraphs Kxi , K yi and Kzi into a path Vxi , v2i−1, Vyi , v2i , Vzi of length B + 2.
(⇐=) We next suppose that G has a (B + 2)-path partition into m paths, P1, P2, . . . , Pm . Since G has m(B + 2)

vertices, each Pi must contain exactly B + 2 vertices. Because of the size constraints, each Pi must contain at least
two connector vertices from C .

We claim that, in order to obtain a path partition of no more than m paths, we first have to construct 3m paths
p1, p2, . . . , p3m corresponding to the 3m cliques, and then we have to connect them using vertices of C in such a way
that each path Pi , 1 ≤ i ≤ m, contains exactly B + 2 vertices. Indeed, let qk be a subpath of path pk corresponding
to clique Kak and let p j be the 3m − 1 paths corresponding to the rest 3m − 1 cliques. Then, there exist vertices of
clique Kak that are not included in the path qk , which form a path q ′

k . Thus, we have to connect 3m +1 paths using 2m
vertices of the set C , which results to m + 1 paths, a contradiction. Consequently, in order to obtain a path partition of
m paths, we first have to construct 3m paths pi , 1 ≤ i ≤ 3m, corresponding to the cliques Kai , and then we have to
connect them using vertices of C in such a way that each path contains exactly B + 2 vertices.

Since we have 3m paths, corresponding to 3m cliques, and 2m connectors, each Pi must contain exactly two
connector vertices. We claim that none of the paths Pi contains an edge between two vertices of clique C . Indeed, let
Pk be a path containing an edge from clique C , that is, it contains two vertices of C . Since s(ai ) <

B
2 , 1 ≤ i ≤ 3m, if

Pk contains paths from two cliques, then its length is less than B + 2. Thus, at least one more connector vertex from
C is needed in order to connect at least one more path p j to the path Pk . Consequently, we have a path, that is, Pk ,
using at least three connector vertices of C , a contradiction. Therefore, none of the paths Pi contains an edge between
two vertices of clique C .

Since each Pi must contain exactly two connector vertices, no path Pi can have vertices from more than three
cliques Kai . Since the length of each Pi is B + 2, each Pi must cover the vertices of exactly three cliques Kai and the
sizes of the corresponding three elements of A must add up to B. Consequently, the set A can be partitioned into m
disjoint sets A1, A2, . . . , Am such that the sum of the sizes of the items in each Ai is equal to B.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation can be done
easily in polynomial time. �

Since the class of quasi-threshold graphs is a subclass of interval graphs, which is a subclass of chordal graphs, the
proof of the NP-hardness of the k-path partition problem for quasi-threshold graphs also establishes the NP-hardness
of this problem for the class of interval and chordal graphs. Thus, we can state the following result.

Corollary 4.3. The k-path partition problem is NP-complete for interval and chordal graphs.

5. Threshold graphs

In this section we study the pair-complete coloring problem on threshold graphs and describe a linear-time
algorithm based on structural properties of the class of threshold graphs.

The concept of threshold graph was introduced by Chvátal and Hammer in 1977 [5]. A graph G is a threshold
graph [5,6,12] if and only if G does not contain 2K2, P4 or C4 as induced subgraphs. There exists an alternative
equivalent definition [19]: A graph is threshold if there exists a partition of V (G) into disjoint sets K , I and an
ordering {ul , u2, . . . , un} of the nodes in I such that K induces a clique in G, I is a stable set of vertices and
NG(u1) ⊆ NG(u2) ⊆ · · · ⊆ NG(un). A partition of V (G) satisfying the above definition will be called a (K , I )
partition of G.

5.1. A tree structure

The class of threshold graphs is a subclass of quasi-threshold graphs; see Fig. 1. Consequently, for a threshold
graph G there is a tree structure which meets the properties of G, that is, the cent-tree Tc(G) which is similar to the
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Fig. 5. The typical structure of the cent-tree Tc(G) of a threshold graph.

cent-tree of a QT -graph; see Fig. 4. Since a threshold graph G does not contain an induced subgraph isomorphic
to 2K2, each non-leaf vertex Vi has ki ≥ 2 children, where at most one of them is a non-leaf child while the rest
ki − 1 children are leaves containing only one vertex; see Fig. 5. Note that the cent-tree Tc(G) of a threshold graph G
represents a (K , I ) partition of G; equivalently, given a (K , I ) partition of G, we can construct the cent-tree Tc(G).

5.2. Pair-complete coloring problem: A polynomial solution

The pair-complete coloring problem on a threshold graph G can be solved in linear time using its cent-tree Tc(G);
see Fig. 5. The vertices Vi of the leftmost path of the tree form a clique and thus each vertex vi ∈ V (G) belonging
to this path must receive a distinct color. If n′ is the number of the vertices of G that belong to the leftmost path of
Tc(G), then we claim that the vertices of G take colors from the set C = {1, 2, . . . , n′

} and the achromatic number
ψ(G) is ψ(G) = n′. Indeed, let C ′

⊂ C be the set of the colors assigned to the leftmost leaf of Tc(G) and let c′

i ∈ C ′.
If we assign a new color, say, n′

+ 1, to an uncolored vertex of Tc(G) then the pair (n′
+ 1, c′

i ) cannot appear, which
is a contradiction. Consequently, we use the set C to assign colors to the uncolored leaves of Tc(G) in such a way that
no vertex vi ∈ V (G) takes a color already assigned to an ancestor that belongs to the leftmost path.

Note that, if n′ is the number of the vertices of G that belong to the leftmost path of Tc(G), then n′ equals the
clique number ω(G), and, thus, ψ(G) = ω(G). Furthermore, based on the properties of the cent-tree Tc(G), it is easy
to show that the clique number equals the chromatic number χ(G) of the graph G; that is, χ(G) = ω(G). Thus, we
propose the following linear-time algorithm which holds for connected and disconnected threshold graphs:

Algorithm Pair Complete Coloring
Input: a threshold graph G;
Output: a pair-complete coloring of G having ψ(G) = ω(G);

1. Construct the cent-tree Tc(G) of G;
2. Color the vertices of the leftmost path (clique) of Tc(G) with distinct colors from the set C = {1, 2, . . . , ψ(G)}.
3. Color each leaf vertex of Tc(G) using a color already assigned to the sibling vertex that belongs to the leftmost

path of Tc(G) and contains a clique.
4. If there are any isolated vertices, color them using a color from the set C .

It is worth noting that a disconnected threshold graph includes only one connected component having more than one
vertex; each one of the rest of the connected components consists of only one vertex; otherwise there would exist
a subgraph isomorphic to 2K2. Consequently, we can color the isolated vertices using one color we have already
used. Thus, the fourth step of the algorithm is performed when the graph is disconnected. In conclusion, we state the
following theorem:

Theorem 5.1. Let G be a threshold graph. The pair-complete coloring problem is solved in linear time on G and the
achromatic number is ψ(G) = ω(G).
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6. Concluding remarks

We have studied the complexity of the harmonious coloring problem and the pair-complete coloring problem on
subclasses of bipartite graphs. Specifically, we have proved that both problems are NP-complete for the class of
connected bipartite permutation graphs and, thus, they are NP-complete for the class of biconvex graphs. Apart from
the NP-completeness results, we have proposed a linear-time algorithm for the pair-complete coloring problem on a
subclass of chordal graphs namely threshold graphs.

We have also studied the complexity of the k-path partition problem and proved that it is NP-complete for the
class of convex graphs. Given that this problem is polynomially solvable for bipartite permutation graphs, we have
sharpened the demarcation line between polynomially solvable and NP-hard cases of the k-path partition problem. The
status of the problem remains open for the class of biconvex graphs; this class properly contains bipartite permutation
graphs and is a proper subclass of convex graphs.
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