
A Linear-Time Algorithm for the k -Fixed-Endpoint Path
Cover Problem on Cographs

Katerina Asdre and Stavros D. Nikolopoulos
Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece

In this paper, we study a variant of the path cover problem,
namely, the k -fixed-endpoint path cover problem. Given
a graph G and a subset T of k vertices of V (G), a k -
fixed-endpoint path cover of G with respect to T is a set
of vertex-disjoint paths P that covers the vertices of G
such that the k vertices of T are all endpoints of the paths
in P . The k -fixed-endpoint path cover problem is to find a
k -fixed-endpoint path cover of G of minimum cardinality;
note that, if T is empty, that is, k = 0, the stated prob-
lem coincides with the classical path cover problem. We
show that the k -fixed-endpoint path cover problem can
be solved in linear time on the class of cographs. More
precisely, we first establish a lower bound on the size of
a minimum k -fixed-endpoint path cover of a cograph and
prove structural properties for the paths of such a path
cover. Then, based on these properties, we describe an
algorithm which, for a cograph G on n vertices and m
edges, computes a minimum k -fixed-endpoint path cover
of G in linear time, that is, in O(n + m) time. The pro-
posed algorithm is simple, requires linear space, and also
enables us to solve some path cover related problems,
such as the 1HP and 2HP, on cographs within the same
time and space complexity. © 2007 Wiley Periodicals, Inc.
NETWORKS, Vol. 50(4), 231–240 2007

Keywords: perfect graphs; complement reducible graphs;
cographs; cotree; path cover; fixed-endpoint path cover; linear-time
algorithms

1. INTRODUCTION

1.1. Framework–Motivation

A well studied problem with numerous practical appli-
cations in graph theory is to find a minimum number of
vertex-disjoint paths of a graph G that cover the vertices of
G. This problem, also known as the path cover problem (PC),
finds application in the fields of database design, networks,
code optimization among many others (see [1, 2, 18, 22]); it
is well known that the path cover problem and many of its
variants are NP-complete in general graphs [8]. A graph that

Received January 2006; accepted February 2007
Correspondence to: S. D. Nikolopoulos; e-mail: stavros@cs.uoi.gr
DOI 10.1002/net.20200
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2007 Wiley Periodicals, Inc.

admits a path cover of size one is referred to as Hamiltonian.
Thus, the path cover problem is at least as hard as the Hamil-
tonian path problem (HP), that is, the problem of deciding
whether a graph is Hamiltonian.

Several variants of the HP problem are also of great inter-
est, among which is the problem of deciding whether a graph
admits a Hamiltonian path between two points (2HP). The
2HP problem is the same as the HP problem except that in
2HP two vertices of the input graph G are specified, say, u
and v, and we are asked whether G contains a Hamiltonian
path beginning with u and ending with v. Similarly, the 1HP
problem is to determine whether a graph G admits a Hamil-
tonian path starting from a specific vertex u of G, and to find
one if such a path does exist. Both 1HP and 2HP problems
are also NP-complete in general graphs [8].

The path cover problem and several variants of it have
numerous algorithmic applications in many fields. Some that
have received both theoretical and practical attention are in
the content of communication and/or transposition networks
[23]. In such problems, we are given a graph (network) G
and
(Problem A) a set T of k = 2λ vertices of G, and the objective
is to determine whether G admits a path cover of size λ that
contains paths connecting pairs of vertices of T , that is, G
admits λ vertex-disjoint paths with both their endpoints in T
(note that, the endpoints of a path P are the first vertex and
the last vertex visited by P), or
(Problem B) a set T of λ = k/2 pairs of vertices of G (source-
sink pairs), and the objective is to determine whether G admits
for each pair (ai, bi), 1 ≤ i ≤ λ, a path connecting ai to bi

such that the set of λ paths forms a path cover.
In the case where k = 2, both problems A and B coincide

with the 2HP. In [7], Damaschke provided a foundation for
obtaining polynomial-time algorithms for several problems
concerning paths in interval graphs, such as finding Hamilto-
nian paths and circuits, and partitions into paths. In the same
paper, he stated that the complexity status of both 1HP and
2HP problems on interval graphs remains an open question;
until now the complexities of 1HP and 2HP keep their diffi-
culties even in the small subclass of split interval graphs—no
polynomial algorithm is known.

Motivated by the above issues we state a variant of the
path cover problem, namely, the k-fixed-endpoint path cover

NETWORKS—2007—DOI 10.1002/net

problem (kPC), which generalizes both 1HP and 2HP, and
also problem A.
(Problem kPC) Let G be a graph and let T be a set of k vertices
of V(G). A k-fixed-endpoint path cover of the graph G with
respect to T is a path cover of G such that all vertices in
T are endpoints of paths in the path cover; a minimum k-
fixed-endpoint path cover of G with respect to T is a k-fixed-
endpoint path cover of G with minimum cardinality; the k-
fixed-endpoint path cover problem (kPC) is to find a minimum
k-fixed-endpoint path cover of the graph G.

We show that the k-fixed-endpoint path cover problem
(kPC) has a polynomial-time solution in the class of com-
plement reducible graphs, or cographs [6, 17]. The class of
cographs is defined recursively as follows: (i) a single vertex
graph is a cograph; (ii) if G is a cograph then its comple-
ment G is also a cograph; (iii) if G1 and G2 are cographs
satisfying V(G1) ∩ V(G2) = ∅, then their union G1 ∪ G2

is also a cograph. Thus, cographs are formed from a sin-
gle vertex under the closure of the operations of union and
complement. Cographs were independently discovered under
various names and were shown to have the following two
remarkable properties: they are P4 restricted graphs and they
have a unique tree representation (see [17]). This tree, called
the co-tree, forms the basis for fast algorithms for problems
such as isomorphism, coloring, clique detection, clusters,
minimum weight dominating sets [4,5], and also for the path
cover problem [18, 20].

1.2. Contribution

In this paper, we study the complexity status of the k-fixed-
endpoint path cover problem (kPC) on the class of cographs,
and show that this problem can be solved in polynomial time
when the input is a cograph. More precisely, we establish a
lower bound on the size of a minimum k-fixed-endpoint path
cover of a cograph G on n vertices and m edges. We then
define path operations, and prove structural properties for the
paths of such a path cover, which enable us to describe a sim-
ple algorithm for the kPC problem. The proposed algorithm
runs in time linear in the size of the input graph G, that is, in
O(n + m) time, and requires linear space. To the best of our
knowledge, this is the first linear-time algorithm for solving
the kPC problem on the class of cographs.

The proposed algorithm for the kPC problem can also
be used to solve the 1HP and 2HP problems on cographs
within the same time and space complexity. Moreover, we
have designed our algorithm so that it produces a minimum
k-fixed-endpoint path cover of a cograph G that contains a
large number of paths with both their endpoints in T (we can
easily find a graph G and a set T of k vertices of V(G) so that
G admits two minimum k-fixed-endpoint path covers with
different numbers of paths having both their endpoints in T ;
for example, consider the graph G with vertex set V(G) =
{a, b, c, d}, edge set E(G) = {ab, bc, ac, cd}, and T = {a, b}).
Thus, we can also use our algorithm to solve problem A on
cographs within the same time and space complexity.

1.3. Related Work

The class of cographs has been extensively studied and
several sequential and/or parallel algorithms for recognition
and for classical combinatorial optimization problems have
been proposed. Corneil et al. [6] proposed a linear-time recog-
nition algorithm for cographs. Jung [16] studied the existence
of a Hamiltonian path or cycle in a cograph, while Lin et al.
[18] proposed an optimal algorithm for the path cover prob-
lem on cographs. Nakano et al. [20] proposed an optimal
parallel algorithm which finds and reports all the paths in a
minimum path cover of a cograph in O(log n) time using
O(n/ log n) processors on a PRAM model. Furthermore,
quite recently Nikolopoulos [21] solved the Hamiltonian
problem on quasi-threshold graphs (a subclass of cographs) in
O(log n) time using O(n+m) processors on a PRAM model.
Sequential algorithms for optimization problems on other
related classes of graphs (superclasses of cographs) have
also been proposed: Giakoumakis et al. [9] solved the recog-
nition problem and also the problems of finding the clique
number, the stability number, and the chromatic number for
P4-sparse graphs [10] (a proper superclass of cographs) in lin-
ear sequential time. Hochstättler and Tinhofer [11] presented
a sequential algorithm for the path cover problem on this class
of graphs, which runs in f (n) + O(n) time, where f (n) is the
time complexity for the construction of a tree representation
of a P4-sparse graph. Also, Giakoumakis et al. [9] studied
hamiltonicity properties for the class of P4-tidy graphs (a
proper superclass of P4-sparse graphs); see also [3]. Recently,
Hsieh et al. [13] presented an O(n+m)-time sequential algo-
rithm for the Hamiltonian problem on a distance-hereditary
graph and also proposed a parallel implementation of their
algorithm, which solves the problem in O(log n) time using
O((n + m)/ log n) processors on a PRAM model. A unified
approach to solving the Hamiltonian problems on distance-
hereditary graphs was presented in [14], while Hsieh [12]
presented an efficient parallel strategy for the 2HP prob-
lem on the same class of graphs. Algorithms for the path
cover problem on other classes of graphs were proposed in
[2, 15, 22].

1.4. Road Map

The paper is organized as follows. In Section 2 we estab-
lish the notation and related terminology, and we present
background results. In Section 3 we describe our linear-time
algorithm for the kPC problem, while in Section 4 we prove
its correctness and compute its time and space complex-
ity. Finally, in Section 5 we conclude the paper and discuss
possible future extensions.

2. THEORETICAL FRAMEWORK

We consider finite undirected graphs with no loops or mul-
tiple edges. For a graph G, we denote its vertex and edge set
by V(G) and E(G), respectively. Let S be a subset of the ver-
tex set of a graph G. Then, the subgraph of G induced by S
is denoted by G[S].

232 NETWORKS—2007—DOI 10.1002/net

2.1. The Co-tree

The cographs admit a tree representation unique up to iso-
morphism. Specifically, we can associate with every cograph
G a unique rooted tree Tco(G) called the co-tree (or, mod-
ular decomposition tree [19]) of G having the following
properties:

1. Every internal node of Tco(G) has at least two children;
2. The internal nodes of Tco(G) are labeled by either P (P-

node) or S (S-node) in such a way that the labels alternate
along every path in Tco(G) starting at the root;

3. Each leaf of Tco(G) corresponds to a vertex in V such that
(x, y) ∈ E if and only if the lowest common ancestor of
the leaves corresponding to x and y is an S-node.

It is shown that for every cograph G the co-tree Tco(G)

is unique up to isomorphism and it can be constructed
sequentially in linear time [4, 6].

For convenience and ease of presentation, we binarize the
co-tree Tco(G) in such a way that each of its internal nodes
has exactly two children [18,20]. Let t be an internal node of
Tco(G) with children t1, t2, . . . , tk where k ≥ 3. We replace
node t by k −1 nodes t′1, t′2, . . . , t′k−1 such that t′1 has children
t1 and t2 and each t′i (2 ≤ i < k) has children t′i−1 and ti+1. We
shall refer to the binarized version of Tco(G) as the modified
co-tree of G and will denote it by T(G). Thus, the left and
right child of an internal node t of T(G) will be denoted by
t� and tr , respectively.

Let t be an internal node of T(G). Then G[t] is the subgraph
of G induced by the subset Vt of the vertex set V(G), which
contains all the vertices of G that have as common ancestor
in T(G) the node t. For simplicity, we will denote by V� and
Vr the vertex sets V(G[t�]) and V(G[tr]), respectively.

2.2. Cographs and the kPC Problem

Let G be a cograph, T be a set of k vertices of V(G), and
let PT (G) be a minimum k-fixed-endpoint path cover of G
with respect to T of size λT ; note that the size of PT (G)

is the number of paths it contains. The vertices of the set
T are called terminal vertices, and the set T is called the
terminal set of G, while those of V(G) − T are called non-
terminal or free vertices. Thus, the set PT (G) contains three
types of paths, which we call terminal, semi-terminal, and
nonterminal or free paths:

(i) a terminal path Pt consists of at least two vertices and
both its endpoints, say, u and v, are terminal vertices,
that is, u, v ∈ T ;

(ii) a semi-terminal path Ps is a path having one endpoint
in T and the other in V(G) − T ; if Ps consists of only
one vertex (trivial path), say, u, then u ∈ T ;

(iii) a non-terminal or free path Pf is a path having both its
endpoints in V(G)−T ; if Pf consists of only one vertex,
say, u, then u ∈ V(G) − T .

Note that all the internal vertices of the paths of PT (G) are
free vertices. Moreover, a semi-terminal path may consist of

only one vertex which is a terminal vertex, while a terminal
path contains at least two vertices. The set of the non-terminal
paths in a minimum kPC of the graph G is denoted by N , while
S and T denote the sets of the semi-terminal and terminal
paths, respectively. Thus, we have

λT = |N | + |S| + |T | (1)

From the definition of the k-fixed-endpoint path cover prob-
lem (kPC), we can easily conclude that the number of paths
in a minimum kPC cannot be less than the number of
terminal vertices divided by two. Furthermore, since each
semi-terminal path contains one terminal vertex and each
terminal path contains two, the number of terminal vertices
is equal to |S| + 2|T |. Thus, the following proposition holds:

Proposition 2.1. Let G be a cograph and let T be a terminal
set of G. Then |T | = |S| + 2|T | and λT ≥ �|T |

2 	.

Clearly, the size of a kPC of a cograph G, as well as the size
of a minimum kPC of G, is less than or equal to the number
of vertices of G, that is, λT ≤ |V(G)|. Let F(V(G)) be the set
of the free vertices of G; hereafter, F(V) = F(V(G)). Then
we have the following proposition:

Proposition 2.2. Let G be a cograph and let T be a terminal
set of G. If λT is the size of a minimum kPC of G, then
λT ≤ |F(V)| + |T |.

Let t be an internal node of the tree T(G). Then λT (t)
denotes the number of paths in a minimum kPC of the graph
G[t], and let t� and tr be the left and the right child of node
t, respectively. We denote by T� and Tr the terminal vertices
in V� and Vr , respectively, where V� = V(G[t�]) and Vr =
V(G[tr]). Let N�, S�, and T� be the sets of the non-terminal,
semi-terminal and terminal paths in a minimum kPC of G[t�],
respectively. Similarly, let Nr , Sr , and Tr be the sets of the
non-terminal, semi-terminal and terminal paths in a minimum
kPC of G[tr], respectively. Obviously, Equation (1) holds for
G[t] as well, with t being either an S-node or a P-node, that
is,

λT (t) = |Nt | + |St | + |Tt | (2)

where Nt , St , and Tt are the sets of the non-terminal, the semi-
terminal and the terminal paths in a minimum kPC of G[t],
respectively. If t is a P-node, then a minimum kPC PT (t) of
G[t] is PT (t) = PT (t�) ∪ PT (tr), where PT (t�) and PT (tr)
are minimum kPCs corresponding to G[t�] and G[tr], respec-
tively, and λT (t) = λT (t�) + λT (tr). Furthermore, for the
case of a P-node we have

Nt	=	N�	+	Nr
St	=	S�	+	Sr
Tt	=	T�	+	Tr

Thus, we focus on computing a minimum kPC of the
graph G[t] for the case where t is an S-node.

NETWORKS—2007—DOI 10.1002/net 233

Before describing our algorithm, we establish a lower
bound on the size λT (t) of a minimum kPC PT (t) of a graph
G[t]. More precisely, we prove the following lemma.

Lemma 2.1. Let t be an internal node of T(G) and
let PT (t�) and PT (tr) be a minimum kPC of G[t�] and
G[tr], respectively. Then λT (t) ≥ max{� |Tt |

2 	, λT (t�) −
|F(Vr)|, λT (tr) − |F(V�)|}.

Proof. Clearly, according to Proposition 2.1 and since
G[t] is a cograph, we have λT (t) ≥ �|Tt |

2 	. We will prove
that λT (t) ≥ λT (t�) − |F(Vr)|. Assume that λT (t) <

λT (t�) − |F(Vr)|. Consider removing from this path cover
all the vertices in Vr . What results is a set of paths which is
clearly a kPC for G[t�]. Since the removal of a free vertex
in F(Vr) will increase the number of paths by at most one,
we obtain a kPC of G[t�] of size at most λT (t) + |F(Vr)|.
The assumption λT (t) < λT (t�) − |F(Vr)| guarantees that
λT (t) + |F(Vr)| < λT (t�), contradicting the minimality of
PT (t�). Using similar arguments we can show that λT (t) ≥
λT (tr) − |F(V�)|. Hence, the lemma follows. ■

We next define four operations on paths of a minimum
kPC of the graphs G[t�] and G[tr], namely break, connect,
bridge and insert operations; these operations are illustrated
in Figure 1.

• Break operation: Let P = [p1, p2, . . . , pk] be a path of PT (tr)
or PT (t�) of length k. We say that we break the path P in
two paths, say, P1 and P2, if we delete an arbitrary edge of P,
say the edge pipi+1 (1 ≤ i < k), in order to obtain two paths
which are P1 = [p1, . . . , pi] and P2 = [pi+1, . . . , pk]. Note
that we can break the path P in at most k trivial paths.

• Connect operation: Let P1 = [p1, . . . , p′
1] be a non-terminal

or a semi-terminal path of PT (t�) (resp. PT (tr)) and let
P2 = [p2, . . . , p′

2] be a non-terminal or a semi-terminal path

of PT (tr) (resp. PT (t�)). We say that we connect the path
P1 with the path P2, if we add an edge which joins two free
endpoints of the two paths.

• Bridge operation: Let P1 = [p1, . . . , p′
1] and P2 = [p2, . . . , p′

2]
be two paths of the set N� ∪ S� (resp. Nr ∪ Sr) and let P3 =
[p3, . . . , p′

3] be a non-terminal path of the set Nr (resp. N�).
We say that we bridge the two paths P1 and P2 using path P3

if we connect the free endpoint of P1 with one endpoint of P3

and the free endpoint of P2 with the other endpoint of P3. The
result is a path having both endpoints in G[t�] (resp. G[tr]).

• Insert operation: Let P1 = [t1, p1, . . . , p′
1, t′1] be a terminal

path of the set T� (resp. Tr) and let P2 = [p2, . . . , p′
2] be a

non-terminal path of the set Nr (resp. N�). We say that we
insert the path P2 into P1, if we replace the first edge of P1,
that is, the edge t1p1, with the path [t1, p2, . . . , p′

2, p1]. Thus,
the resulting path is P1 = [t1, p2, . . . , p′

2, p1, . . . , p′
1, t′1].

Note that we can replace every edge of the terminal path so that
we can insert at most |F({P1})|+1 non-terminal paths, where
F({P1}) is the set of the free vertices belonging to the path
P1. If the terminal path P1 = [t1, p1, . . . , p�

1, pr
1, . . . , p′

1, t′1] is
constructed by connecting a semi-terminal path of S�, say,
P� = [t1, p1, . . . , p�

1] with a semi-terminal path of Sr , say,
Pr = [pr

1, . . . , p′
1, t′1], then it obviously has one endpoint in

G[t�] and the other in G[tr]. In this case, if P2 ∈ N� (resp.
Nr) we can only replace the edges of P1 that belong to G[tr]
(resp. G[t�]). On the other hand, if P2 has one endpoint, say,
p2, in N� and the other, say, p′

2, in Nr , we insert P2 into P1 as
follows: P1 = [t1, p1, . . . , p�

1, p′
2, . . . , p2, pr

1, . . . , p′
1, t′1].

We can combine the Connect and Bridge operations to
perform a new operation on paths, which we call a connect-
bridge operation; such an operation is depicted in Figure 1e
and is defined below.

• Connect-Bridge operation: Let P1 = [t1, p1, . . . , pk , t′1] be a
terminal path of the set T� (resp. Tr) and let P2, P3, . . . , Ps be
semi-terminal paths of the set Sr (resp. S�), where s is odd
and 3 ≤ s ≤ 2k + 3. We say that we connect-bridge the

FIG. 1. Illustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge operations.

234 NETWORKS—2007—DOI 10.1002/net

paths P2, P3, . . . , Ps using vertices of P1, if we perform the
following operations:

(i) connect the path P2 with the path [t1];
(ii) bridge r = s−3

2 pairs of semi-terminal paths using
vertices p1, p2, . . . , pr ;

(iii) connect the path [pr+1, . . . , pk , t′1] with the last
semi-terminal path Ps.

We point out that the Connect-Bridge operation produces two
paths having one endpoint in G[t�] (resp. G[tr]) and the other
endpoint in G[tr] (resp. G[t�]) and s−3

2 paths having both
endpoints in G[tr] (resp. G[t�]).

3. THE ALGORITHM

We next present an optimal algorithm for the kPC problem
on cographs. Our algorithm takes as input a cograph G and
a subset T of its vertices, and finds the paths of a minimum
kPC of G in linear time; it works as follows:

Algorithm Minimum_kPC
Input: a cograph G and a set of vertices T ;
Output: a minimum kPC PT (G) of the cograph G;

1. Construct the co-tree Tco(G) of G and make it binary; let
T(G) be the resulting tree;

2. Execute the subroutine process(root), where root is
the root node of the tree T(G); the minimum kPC
PT (root) = PT (G) is the set of paths returned by the
subroutine;

where the description of the subroutine process() is as
follows:

process (node t)
Input: node t of the modified co-tree T(G) of the input
graph G.
Output: a minimum kPC PT (t) of the cograph G[t].

1. if t is a leaf
then return({u}), where u is the vertex associated with
the leaf t;
else {t is an internal node that has a left and a right
child denoted by t� and tr , resp.}

PT (t�) ← process(t�);
PT (tr) ← process(tr);

2. if t is a P-node
then return(PT (t�) ∪ PT (tr));

3. if t is an S-node
then if |N�| ≤ |Nr | then swap(PT (t�), PT (tr));

case 1: |S�| ≥ |Sr |
call kPC_1;

case 2: |S�| < |Sr |
if |Nr | + � |Sr |−|S�|

2 � ≤ |F(S� ∪ N�)|
then call kPC_2_a;
else call kPC_2_b;

We next describe the subroutine process() in the case
where t is an S-node of T(G). Note that, if |N�| ≤ |Nr |,

we swap PT (t�) and PT (tr) and thus we have |N�| ≥ |Nr |.
Consequently, we distinguish the following two cases: (1)
|S�| ≥ |Sr |, and (2) |S�| < |Sr |.

Case 1. |S�| ≥ |Sr |

Let SNr be the set of non-terminal paths obtained by breaking
the set Sr ∪ Nr into |N�| − 1 + �|S�|−|Sr |

2 � non-terminal paths;

in the case where |N�| − 1 + �|S�|−|Sr |
2 � ≥ F(Sr ∪ Nr), the

paths of SNr are trivial (recall that F(Sr ∪ Nr) is the set of
free vertices belonging to the set Sr ∪ Nr). The paths of SNr

are used to bridge at most 2� |S�|−|Sr |
2 � semi-terminal paths of

S� and, if |SNr | − � |S�|−|Sr |
2 � > 0, at most |N�| non-terminal

paths of N�. Note that |SNr | ≤ |F(Sr ∪Nr)|. We can construct
the paths of a kPC using the following procedure:

Procedure kPC_1

1. connect the |Sr | paths of Sr with |Sr | paths of S�;
2. bridge 2� |S�|−|Sr |

2 � semi-terminal paths of S� using

� |S�|−|Sr |
2 � paths of SNr ;

3. bridge the non-terminal paths of N� using |N�| − 1 non-
terminal paths of SNr ; this produces non-terminal paths
with both endpoints in G[t�], unless N� ≤ |F(Sr ∪ Nr)| −
� |S�|−|Sr |

2 � where we obtain one non-terminal path with
one endpoint in G[t�] and the other in G[tr];

4. if |N�| ≤ |F(Sr ∪Nr)|−� |S�|−|Sr |
2 � insert the non-terminal

path obtained in Step 3 into one terminal path which is
obtained in Step 1;

5. if |Tr | = |S�| = 0 and |F(Sr ∪ Nr)| ≥ |N�| construct a
non-terminal path having both of its endpoints in G[tr]
and insert it into a terminal path of T�;

6. if |Tr | = |Sr | = 0 and |F(Nr)| ≥ |N�| + � |S�|
2 � construct

a non-terminal path having both of its endpoints in G[tr]
and use it to connect two semi-terminal paths of S�;

7. if |S�| − |Sr | is odd and there is at least one free vertex
in Sr ∪ Nr which is not used in Steps 1–4, or there is a
non-terminal path having one endpoint in G[t�] and the
other in G[tr], connect one non-terminal path with one
semi-terminal path of S�;

8. connect-bridge the rest of the semi-terminal paths of S�

(at most 2(|F(Tr)| + |Tr |)) using vertices of Tr ;
9. insert non-terminal paths obtained in Step 3 into the

terminal paths of Tr ;

On the basis of the procedure kPC_1, we can compute the
cardinality of the sets Nt , St , and Tt , and thus, since λ′

T (t) =
|Nt |+ |St |+ |Tt |, the number of paths in the kPC constructed
by the procedure at node t ∈ T(G). In this case, the values of
|Nt |, |St | and |Tt | are the following:

|Nt | = max{µ − α, 0}
|St | = min{σ�, max{σ� − 2(|F(Tr)| + |Tr |), δ(σ�)}}

|Tt | = |Sr | + min

{⌊ |S�| − |Sr |
2

⌋
, |F(Sr ∪ Nr)|

}

+ |T�| + |Tr | + σ� − |St |
2

(3)

NETWORKS—2007—DOI 10.1002/net 235

where

σ� = |S�| − |Sr | − 2 min

{⌊ |S�| − |Sr |
2

⌋
, |F(Sr ∪ Nr)|

}

µ = max{|N�| − πr , max{1 − |S�|, 0}}
− min

{
max{min{|N�| − πr , δ(|S�| − |Sr |)}, 0},

max

{
min

{
F(Sr ∪ Nr) −

⌊ |S�| − |Sr |
2

⌋
, 1

}
, 0

}}

− 1

2
max{2(|F(Tr)| + |Tr |) − σ�, 0}

α = min{max{min{πr − |N�|, 1}, 0}, max{|T�|, 0}}
and

πr = max

{
|F(Sr ∪ Nr)| −

⌈ |S�| − |Sr |
2

⌉
, 0

}
.

In Eq. (3), σ� is the number of semi-terminal paths of S� that
are not connected or bridged at Steps 1 and 2. Furthermore, πr

is the number of free vertices in the set Sr∪Nr that are not used
to bridge semi-terminal paths of S� at Step 2 and δ is a function
which is defined as follows: δ(x) = 1, if x is odd, and δ(x) =
0 otherwise. Note that at most |F(Tr)| + |Tr | non-terminal
paths can be inserted into the terminal paths of Tr or the
terminal paths can connect-bridge at most 2(|F(Tr)| + |Tr |)
semi-terminal paths.

Case 2. |S�| < |Sr |

In this case, we need |Nr | + � |Sr |−|S�|
2 � paths of G[t�] in order

to bridge |Nr | non-terminal paths of Nr and 2� |Sr |−|S�|
2 � semi-

terminal paths of Sr . If |N�| < |Nr |+ � |Sr |−|S�|
2 � we break the

non-terminal paths of N� into at most |F(N�)| paths; in the
case where |F(N�)| < |Nr | + � |Sr |−|S�|

2 � we also use (at most

|F(S�)|) vertices of S�. Let p = min{|Nr |+� |Sr |−|S�|
2 �, |F(S�∪

N�)|}. We distinguish two cases:

2.a |Nr | + � |Sr |−|S�|
2 � ≤ |F(S� ∪ N�)|.

In this case, p = |Nr | + � |Sr |−|S�|
2 � and the number of non-

terminal paths (or free vertices) of G[t�] is sufficient to bridge
non-terminal paths of Nr and semi-terminal paths of Sr .

In detail, let SN� be the set of non-terminal paths obtained
by breaking the set S� ∪ N� into p non-terminal paths. If
p < |N�| then SN� = N�. The paths of SN� are used to bridge
2� |Sr |−|S�|

2 � semi-terminal paths of Sr and all the non-terminal
paths of Nr . Obviously, |SN�| ≤ |F(S� ∪ N�)|. Note that, if
p < |N�| then the non-terminal paths of Nr are used to bridge
the paths of N�. More precisely, we use paths of the set SNr (it
is the set of non-terminal paths that we get by breaking the set
Sr∪Nr) in order to obtain |N�|−� |Sr |−|S�|

2 � non-terminal paths.
If p ≥ |N�| we set SNr = Nr and we use at most |F(S� ∪ N�)|
paths obtained by S� ∪ N� in order to bridge non-terminal
paths of Nr and semi-terminal paths of Sr , that is, we use the
set SN�. As a result, we construct � |Sr |−|S�|

2 � terminal paths
having both of their endpoints in G[tr] and we have at least

one non-terminal path, if p < |N�|, and exactly one non-
terminal path, otherwise. Note that, in the second case, we
can construct the non-terminal path in such a way that one
endpoint is in SN� and the other is in Nr . Consequently, we
can connect the path to a semi-terminal path of Sr , in the case
where |Sr | − |S�| is an odd number, or we can insert it into a
terminal path which is obtained by connecting |S�| paths of
S� with |S�| paths of Sr . We construct the paths of a kPC at
node t ∈ T(G) using the following procedure:

Procedure kPC_2_a

1. connect the |S�| paths of S� with |S�| paths of Sr ;
2. if |T�| = |Tr | = 0 and p ≥ |N�|, use Nr to bridge

p − � |Sr |−|S�|
2 � + 1 paths of SN� and use the constructed

non-terminal path having both of its endpoints in G[t�] to
bridge two semi-terminal paths of Sr ;

3. bridge semi-terminal paths of Sr using paths of SN�;
4. if |Tr | = 0, |T�|
= 0, p ≥ |N�| and |F(Sr ∪ Nr)| ≥

|SN�| − � |Sr |−|S�|
2 � construct a non-terminal path having

both of its endpoints in G[tr] and insert into a terminal
path of T�;

5. bridge the remaining paths of SN� using the paths of SNr .
This produces non-terminal paths one of which has one
endpoint in G[t�] and the other in G[tr];

6. if |Sr | − |S�| is odd, we connect one non-terminal path
with one semi-terminal path of Sr ;

7. insert at most |F(Tr)| + |Tr | non-terminal paths obtained
in Step 5 into the terminal paths of Tr ;

Based on the path operations performed by procedure
kPC_2_a, we can show that the sets Nt , St and Tt , have the
following cardinalities:

|Nt | = max{µ − α, 0}
|St | = δ(|Sr | − |S�|)
|Tt | = |S�| +

⌊ |Sr | − |S�|
2

⌋
+ |T�| + |Tr | (4)

where

µ = max{|N�| − F(Sr ∪ Nr), 0} −
⌊ |Sr | − |S�|

2

⌋

− δ(|Sr | − |S�|) − |F(Tr)| − |Tr |
α = min{max{min{F(Sr ∪ Nr) − |N�|, 1}, 0}, max{|T�|, 0}}

Recall that δ(x) = 1, if x is odd, and δ(x) = 0 otherwise.

2.b |Nr | + � |Sr |−|S�|
2 � > |F(S� ∪ N�)|.

In this case, p = |F(S�∪N�)| and the number of non-terminal
paths (or free vertices) of G[t�] (either in N� or in S�) is
not sufficient to bridge non-terminal paths of Nr and semi-
terminal paths of Sr .

In detail, let SN� be the set of the trivial, non-terminal
paths, obtained by breaking the set S� ∪ N� into |F(S� ∪ N�)|
non-terminal paths. Note that SN� = F(S� ∪ N�). Similar to
Case 1, we can construct the paths of a kPC at node t ∈ T(G)

using the following procedure:

236 NETWORKS—2007—DOI 10.1002/net

Procedure kPC_2_b

1. connect the |S�| paths of S� with |S�| paths of Sr ;
2. bridge 2� |Sr |−|S�|

2 � semi-terminal paths of Sr using

� |Sr |−|S�|
2 � paths of SN�;

3. bridge the non-terminal paths of Nr using the rest of the
non-terminal paths of SN�. This produces non-terminal
paths such that both endpoints belong to G[tr];

4. connect-bridge the rest of the semi-terminal paths of Sr

(at most 2(|F(T�)| + |T�|)) using vertices of T�;
5. insert non-terminal paths obtained in Step 3 into the

terminal paths of T�;

After computing the number of non-terminal, semi-terminal
and terminal paths produced by procedure kPC_2_b, we
conclude that:

|Nt | = max{µ, 0}
|St | = min{σr , max{σr − 2(|F(T�)| + |T�|), δ(σr)}}

|Tt | = |S�| + min

{⌊ |Sr | − |S�|
2

⌋
, |F(S� ∪ N�)|

}

+ |T�| + |Tr | + σr − |St |
2

(5)

where

σr = |Sr | − |S�| − 2 min

{⌊ |Sr | − |S�|
2

⌋
, |F(S� ∪ N�)|

}

µ = |Nr | − π� − min
{

max
{

min
{
|F(S� ∪ N�)|

−
⌊ |Sr | − |S�|

2

⌋
, 1

}
, 0

}
,

max{min{|Nr | − π�, δ(|Sr | − |S�|)}, 0}
}

− 1

2
max{2(|F(T�)| + |T�|) − σr , 0}

and

π� = max

{
|F(S� ∪ N�)| −

⌈ |Sr | − |S�|
2

⌉
, 0

}
.

In Equation (5), σr is the number of semi-terminal paths of Sr

that are not connected or bridged at Steps 1 and 2. Moreover,
π� is the number of free vertices that belong to the set S� ∪
N� and are not used to bridge semi-terminal paths of Sr (at
Step 2). Again, δ(x) = 1, if x is odd, and δ(x) = 0 otherwise.
Note that at most |F(T�)| + |T�| non-terminal paths can be
inserted into the terminal paths of T� or the terminal paths
can connect-bridge at most 2(|F(T�)| + |T�|) semi-terminal
paths.

4. CORRECTNESS AND TIME COMPLEXITY

Let G be a cograph, T(G) be the modified co-tree of G,
and let T be a terminal set of G. Since our algorithm com-
putes a kPC P ′

T (t) of G[t] of size λ′
T (t) for each internal node

t ∈ T(G), and thus for the root t = troot of the tree T(G), we

need to prove that the constructed kPC P ′
T (t) is minimum.

Obviously, the size λT (t) of a minimum kPC of the graph G[t]
is less than or equal to the size λ′

T (t) of the kPC constructed
by our algorithm. According to Proposition 2.1, if the size
of the kPC constructed by our algorithm is λ′

T (t) = �|Tt |
2 	,

then it is a minimum kPC. After performing simple computa-
tions on Eqs. (3)–(5), we get four specific values for the size
λ′

T (t) of the path cover constructed by our algorithm, that
is, by the kPC procedures 1, 2_a, and 2_b. More precisely,
our algorithm returns a kPC of size λ′

T (t) equal to either
|Tt |
2 + 1, � |Tt |

2 	, λT (t�) − |F(Vr)|, or λT (tr) − |F(V�)|; see
Table 1. Recall that Tt denotes the set of terminal vertices in
Vt = V(G[t]), while F(V�) (resp. F(Vr)) denotes the set of
free vertices in V� = V(G[t�]) (resp. Vr = V(G[tr])); t� and
tr are the left child and right child, respectively, of node t.

Let t be an internal node of T(G) and let N�, S� and T� (resp.
Nr , Sr and Tr) be the sets of non-terminal, semi-terminal and
terminal paths, respectively, in G[t�] (resp. G[tr]). For the case
where |S�| = |Tr | = |Sr | = 0 and |N�| = |Vr | our algorithm
(procedure kPC_1) returns a kPC of the graph G[t] of size
λ′

T (t) = |Tt |
2 + 1. We prove the following lemma:

Lemma 4.1. Let t be an S-node of T(G) and let PT (t�)
and PT (tr) be a minimum kPC of G[t�] and G[tr], respec-
tively. If |S�| = |Tr | = |Sr | = 0 and |N�| = |Vr |, then
the procedure kPC_1 returns a minimum kPC of G[t] of size
λT (t) = |Tt |

2 + 1.

Proof. Since we can construct a kPC of size λ′
T (t) =

|Tt |
2 + 1, then the size λT (t) of a minimum kPC is at most

|Tt |
2 + 1. We will show that we can not construct a minimum

kPC of size less than |Tt |
2 + 1, that is, we will show that

λT (t) ≥ |Tt |
2 + 1 ⇔ λT (t) >

|Tt |
2 . Thus, we only need to

prove that λT (t)
= |Tt |
2 . Note that by the assumption we have

|Tt |
2 = |T�|. We assume that λT (t) = |Tt |

2 , and, thus, λT (t) =
|T�|. There exists at least one non-terminal path in G[t�]; for
otherwise |N�| = 0, and thus Vr = ∅, a contradiction. We
ignore the terminal paths from the minimum kPC of G[t�] and
apply the algorithm described in [18] to G[t]. The resulting
minimum kPC contains only one (non-terminal) path which
either has both endpoints in G[t�] or it has one endpoint in
G[t�] and the other in G[tr]. This non-terminal path can not
be inserted into a terminal path of G[t�] because it does not
have both endpoints in G[tr]. Thus, λT (t) = |T�| + 1, a
contradiction. ■

TABLE 1. The size of the kPC that our algorithm returns in each case.

Procedures Size of k-fixed-endpoint PC

Procedure kPC_1 |Tt |
2 + 1

All the procedures � |Tt |
2 	

Procedure kPC_1 and
Procedure kPC_2_a λT (t�) − |F(Vr)|

Procedure kPC_2_b λT (tr) − |F(V�)|

NETWORKS—2007—DOI 10.1002/net 237

The previous lemma shows that if the size of the kPC
returned by our subroutine process(t) for the graph G[t] is
λ′

T (t) = |Tt |
2 + 1 (procedure kPC_1), then it is a mini-

mum kPC. Moreover, if the size of the kPC returned by the
process(t) is � |Tt |

2 	 (all the procedures), then it is obviously
a minimum kPC of G[t]. We will prove that the size λ′

T (t)
of the kPC P ′

T (t) that our subroutine process(t) returns is
minimum.

Lemma 4.2. Let t be an S-node of T(G) and let PT (t�)
and PT (tr) be a minimum kPC of G[t�] and G[tr], respec-
tively. If the subroutine process(t) returns a kPC of G[t]
of size λ′

T (t) = �|Tt |
2 	, then λ′

T (t) ≥ max{λT (t�) −
|F(Vr)|, λT (tr) − |F(V�)|}.

Proof. Since λ′
T (t) = �|Tt |

2 	, we have λ′
T (t) = λT (t),

that is, the kPC that the subroutine process(t) returns is
minimum. Thus, the proof follows from Lemma 2.1. ■

Let t be an S-node of T(G) and let PT (t�) and PT (tr) be a
minimum kPC of G[t�] and G[tr], respectively. Furthermore,
we assume that the conditions |S�| = |Tr | = |Sr | = 0 and
|N�| = |Vr | do not hold together. We consider the case where
the subroutine process(t) returns a kPC P ′

T (t) of the graph
G[t] of size λ′

T (t) = λT (t�) − |F(Vr)| (cases 1 and 2.a). We
prove the following lemma.

Lemma 4.3. Let t be an S-node of T(G) and let PT (t�)
and PT (tr) be a minimum kPC of G[t�] and G[tr],
respectively. If the subroutine process(t) returns a kPC of
G[t] of size λ′

T (t) = λT (t�) − |F(Vr)|, then λ′
T (t) >

max{� |Tt |
2 	, λT (tr) − |F(V�)|}.

Proof. We consider the cases 1 and 2.a. In these cases,
the size λ′

T (t) of the constructed kPC is computed using
Equations (3) and (4) and the fact that λ′

T (t) = |Nt | +
|St | + |Tt |. After performing simple computations, we con-
clude that in these cases the subroutine process(t) returns
λ′

T (t) = λT (t�) − |F(Vr)| if the following condition holds:

|N�| +
⌈ |S�| − |Sr |

2

⌉
> |F(Vr)| + |Tr | + δ(|S�| − |Sr |)

2
.

(6)

We will show that (i) λ′
T (t) > � |Tt |

2 	 and, (ii) λ′
T (t) >

λT (tr) − |F(V�)|. We first consider the case where δ(|S�| −
|Sr |) = 0. In this case either the values of |S�| and |Sr | are
both odd numbers or they are both even numbers. In any case,
|S�| + |Sr | is an even number and thus, |Tt | is also an even
number. Thus, according to Proposition 2.1 and since G[t] is
a cograph, we have |Tt | = |S�| + |Sr | + 2|T�| + 2|Tr |.
(i) We first show that λ′

T (t) = λT (t�) − |F(Vr)| > � |Tt |
2 	.

From Eq. (6) and, since 2|Tr | + |Sr | = |Tr | (see Proposi-
tion 2.1), we obtain

2|F(Vr)| + |Tr | < 2|N�| + |S�|. (7)

By Proposition 2.1 and Eq. (7) we have

2(|N�| + |S�| + |T�| − |F(Vr)|)
> 2|F(Vr)|+|Tr |+|S�|+2|T�|−2|F(Vr)| = |T�|+|Tr | = |Tt |.
Since λT (t�) − |F(Vr)| = |N�| + |S�| + |T�| − |F(Vr)|, it
follows that λT (t�) − |F(Vr)| > � |Tt |

2 	.
(ii) We next show that λ′

T (t) = λT (t�)−|F(Vr)| > λT (tr)−
|F(V�)|. According to Proposition 2.2, we have λT (tr) −
|F(V�)| ≤ |F(Vr)| + |Tr | − |F(V�)|. From Eq. (7) and since

|N�| ≤ |F(N�)| ⇔ |N�| ≤ |F(V�)| ⇔ |N�| − |F(V�)| ≤ 0,

we obtain |F(Vr)|+|Tr |−|F(V�)| < 2|N�|+|S�|−|F(Vr)|−
|F(V�)| ≤ 2|N�|+|S�|+|T�|−|F(Vr)|−|F(V�)| = λT (t�)−
|F(Vr)| + |N�| − |F(V�)| ≤ λT (t�) − |F(Vr)|.

Similarly, we can prove that λT (t�) − |F(Vr)| > � |Tt |
2 	

and λT (t�) − |F(Vr)| > λT (tr) − |F(V�)|, for the case
where δ(|S�| − |Sr |) = 1, and, thus, λT (t�) − |F(Vr)| >

max{� |Tt |
2 	, λT (tr) − |F(V�)|}. ■

Using arguments similar to those used to prove
Lemma 4.3, we can show that if the subroutine process(t)
returns a kPC of G[t] of size λ′

T (t) = λT (tr)−|F(V�)| (case
2.b), then λ′

T (t) > max{� |Tt |
2 	, λT (t�) − |F(Vr)|}; note that,

in this case we have |Nr | + � |Sr |−|S�|
2 	 > |F(V�)| + |T�| +

δ(|Sr |−|S�|)
2 . Thus, we have proved the following result.

Lemma 4.4. Let t be an S-node of T(G) and let PT (t�) and
PT (tr) be a minimum kPC of G[t�] and G[tr], respectively.
The subroutine process(t) returns a kPC PT (t) of G[t] of size

λ′
T (t) =




|Tt |
2 + 1 if |S�| = |Tr | = 0 and

|N�| = |Vr |,

max
{⌈ |Tt |

2

⌉
,

λT (t�) − |F(Vr)|,
λT (tr) − |F(V�)|

}
otherwise.

Obviously, a minimum kPC of the graph G[t] is of size
λT (t) ≤ λ′

T (t). On the other hand, we have proved a lower
bound for the size λT (t) of a minimum kPC of the graph
G[t] (see Lemma 2.1), namely, λT (t) ≥ max{� |Tt |

2 	, λT (t�)−
|F(Vr)|, λT (tr) − |F(V�)|}. It follows that λ′

T (t) = λT (t),
and, thus, we can state the following result.

Lemma 4.5. Subroutine process(t) returns a minimum kPC
PT (t) of the graph G[t], for every internal S-node t ∈ T(G).

Since the above result holds for every S-node t of the
modified co-tree T(G), it also holds when t is the root of
T(G) and Tt = T . Thus, the following theorem holds:

Theorem 4.1. Let G be a cograph and let T be a terminal
set of G. Let t be the root of the modified co-tree T(G), and

238 NETWORKS—2007—DOI 10.1002/net

let PT (t�) and PT (tr) be a minimum kPC of G[t�] and G[tr],
respectively. Algorithm Minimum_kPC correctly computes a
minimum kPC of G = G[t] with respect to T = Tt of size
λT = λT (t), where

λT (t) =




λT (tr) + λT (t�) if t is a P-node,
|Tt |
2 + 1 if t is an S-node and

|S�| = |Tr | = 0 and

|N�| = |Vr |,
max

{⌈ |Tt |
2

⌉
,

λT (t�) − |F(Vr)|,
λT (tr) − |F(V�)|

}
otherwise.

Let G be a cograph on n vertices and m edges, T be a ter-
minal set, and let t be an S-node of the modified co-tree T(G).
From the description of the algorithm we can easily conclude
that a minimum kPC PT (t) of G[t] can be constructed in
O(E(G[t])) time, since we use at most |V(G[t�])| · |V(G[tr])|
edges to connect the paths of the minimum kPCs of the
graphs G[t�] and G[tr]; in the case where t is a P-node a
minimum kPC is constructed in O(1) time. Thus, the time
needed by the subroutine process(t) to compute a minimum
kPC in the case where t is the root of the tree T(G) is
O(n + m); moreover, through the execution of the subrou-
tine no additional space is needed. The construction of the
co-tree Tco(G) of G needs O(n + m) time and it requires
O(n) space [4, 6]. Furthermore, the binarization process of
the co-tree, that is, the construction of the modified co-tree
T(G), takes O(n) time. Hence, we can state the following
result.

Theorem 4.2. Let G be a cograph on n vertices and m edges
and let T be a terminal set of G. A minimum k-fixed-endpoint
path cover PT of G can be computed in O(n + m) time and
space.

5. CONCLUDING REMARKS

This paper presents a simple linear-time algorithm for the
k-fixed-endpoint path cover problem on cographs. Given a
cograph G and a set of vertices T , our algorithm constructs
a minimum k-fixed-endpoint path cover of G that contains a
large number of terminal paths.

Thus, it is worth investigating the existence of a linear-
time algorithm for finding a minimum k-fixed-endpoint path
cover on cographs such that it contains a large number of
semi-terminal paths; we pose it as an open problem.

It would also be interesting to define a variant of the k-
fixed-endpoint path cover problem, which would include a
pair of terminal sets T1 and T2. In this variant, we want to
compute a minimum path cover such that all the terminal
paths have one endpoint in T1 and the other in T2. Then, we
could use this extended k-fixed-endpoint path cover problem
to solve problem B (see Section 1).

Finally, an interesting open question would also be to see
if the k-fixed-endpoint path cover problem can be polyno-
mially solved on other classes of graphs; an interesting next
step would be to consider the class of interval graphs. This
promises to be an interesting area for further research.

REFERENCES

[1] G.S. Adhar and S. Peng, Parallel algorithm for path cover-
ing, Hamiltonian path, and Hamiltonian cycle in cographs,
International Conference on Parallel Processing, Vol. III,
Algorithms and Architecture, Pennsylvania State University
Press, PA, 1990, pp. 364–365.

[2] S.R. Arikati and C.P. Rangan, Linear algorithm for optimal
path cover problem on interval graphs, Inf Process Lett 35
(1990), 149–153.

[3] A. Brandstädt, V.B. Le, and J. Spinrad, Graph classes—
A survey, SIAM Monographs in Discrete Mathematics and
Applications, SIAM, Philadelphia, 1999.

[4] D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Com-
plement reducible graphs, Discr Appl Math 3 (1981),
163–174.

[5] D.G. Corneil and Y. Perl, Clustering and domination in
perfect graphs, Discr Appl Math 9 (1984), 27–39.

[6] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition
algorithm for cographs, SIAM J Comput 14 (1985), 926–984.

[7] P. Damaschke, Paths in interval graphs and circular arc
graphs, Discrete Math 112 (1993), 49–64.

[8] M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W. H. Freeman,
San Francisco, 1979.

[9] V. Giakoumakis, F. Roussel, and H. Thuillier, On P4-tidy
graphs, Discrete Math Theor Comput Sci 1 (1997), 17–41.

[10] C. Hoáng, Perfect graphs, Ph.D. Thesis, McGill University,
Montreal, Canada, 1985.

[11] W. Hochstättler and G. Tinhofer, Hamiltonicity in graphs with
few P4’s, Computing 54 (1995), 213–225.

[12] S.Y. Hsieh, An efficient parallel strategy for the two-fixed-
endpoint Hamiltonian path problem on distance-hereditary
graphs, J Parallel Distrib Comput 64 (2004), 662–685.

[13] S.Y. Hsieh, C.W. Ho, T.S. Hsu, and M.T. Ko, The Hamiltonian
problem on distance-hereditary graphs, Discr Appl Math 154
(2006), 508–524.

[14] R.W. Hung and M.S. Chang, Linear-time algorithms for the
Hamiltonian problems on distance-hereditary graphs, Theor
Comp Sci 341 (2005), 411–440.

[15] R.W. Hung and M.S. Chang, Solving the path cover problem
on circular-arc graphs by using an approximation algorithm,
Discr Appl Math 154 (2006), 76–105.

[16] H.A. Jung, On a class of posets and the corresponding com-
parability graphs, J Comb Theory (B) 24 (1978), 125–133.

[17] H. Lerchs, On cliques and kernels, Technical Report, Depart-
ment of Computer Science, University of Toronto, 1971.

[18] R. Lin, S. Olariu, and G. Pruesse, An optimal path cover
algorithm for cographs, Comput Math Appl 30 (1995),
75–83.

[19] R.M. McConnell and J. Spinrad, Modular decomposition and
transitive orientation, Discrete Math 201 (1999), 189–241.

NETWORKS—2007—DOI 10.1002/net 239

[20] K. Nakano, S. Olariu, and A.Y. Zomaya, A time-optimal solu-
tion for the path cover problem on cographs, Theor Comp Sci
290 (2003), 1541–1556.

[21] S.D. Nikolopoulos, Parallel algorithms for Hamiltonian prob-
lems on quasi-threshold graphs, J Parallel Distrib Comput 64
(2004), 48–67.

[22] R. Srikant, R. Sundaram, K.S. Singh, and C.P. Rangan,
Optimal path cover problem on block graphs and bipartite
permutation graphs, Theor Comp Sci 115 (1993), 351–357.

[23] Y. Suzuki, K. Kaneko, and M. Nakamori, Node-disjoint paths
algorithm in a transposition graph, IEICE Trans Inf Syst E89-
D (2006), 2600–2605.

240 NETWORKS—2007—DOI 10.1002/net

