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Abstract

In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs.
Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at
most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors.
Extending previous work on the NP-completeness of the harmonious coloring problem when restricted to the class of disconnected
graphs which are simultaneously cographs and interval graphs, we prove that the problem is also NP-complete for connected interval
and permutation graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many NP-complete problems on arbitrary graphs admit polynomial time algorithms when restricted to the classes of
interval graphs and cographs; NP-complete problems for these two classes of graphs that become solvable in polynomial
time can be found in [1,3,7,12,15,16]. However, the pair-complete coloring problem, which is NP-hard on arbitrary
graphs [17], remains NP-complete when restricted to graphs that are simultaneously interval and cographs [4]. A pair-
complete coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears together on at
least one edge, while the achromatic number �(G) is the largest integer k for which G admits a pair-complete coloring
with k colors. The achromatic number was introduced in [13,14].

Bodlaender [4] provides a proof for the NP-completeness of the pair-complete coloring problem for disconnected
cographs and interval graphs and extends his results for connected such graphs. His proof also establishes the NP-
hardness of the harmonious coloring problem for disconnected interval graphs and cographs; a harmonious coloring of
a simple graph G is a proper vertex coloring such that each pair of colors appears together on at most one edge, while
the harmonious chromatic number h(G) is the least integer k for which G admits a harmonious coloring with k colors
[6]. Note that the problem of determining the harmonious chromatic number of connected cographs is trivial, since in
such a graph each vertex must receive a distinct color as it is at distance at most 2 from all other vertices [6]. On the
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contrary, although the harmonious coloring problem is NP-complete for disconnected interval graphs, the complexity
of the problem for connected interval graphs is not straightforward. Moreover, the NP-hardness of the pair-complete
coloring problem for cographs also establishes the NP-hardness of the pair-complete coloring problem for the class of
permutation graphs, and, also, the NP-hardness of the harmonious coloring problem when restricted to disconnected
permutation graphs. However, the complexity of the harmonious coloring problem for connected permutation graphs
has not been studied. Motivated by these issues we prove that the harmonious coloring problem is also NP-complete
for connected interval and permutation graphs. In addition, we show that the problem remains NP-complete for the
class of split graphs.

2. NP-completeness results

The formulation of the harmonious coloring problem in [6] is equivalent to the following formulation.
Harmonious Coloring Problem.
Instance: Graph G = (V , E), positive integer K � |V |.
Question: Is there a positive integer k�K and a proper coloring using k colors such that each pair of colors appears

together on at most one edge?
We next prove our main result, that is, the harmonious coloring problem is NP-complete for connected interval

graphs; a graph G is an interval graph if its vertices can be put in one-to-one correspondence with a family of intervals
on the real line such that two vertices are adjacent in G if and only if their corresponding intervals intersect.

Theorem 2.1. Harmonious coloring is NP-complete when restricted to connected interval graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation from a strongly
NP-complete problem, that is, the 3-PARTITION problem [9]. The formulation of the 3-PARTITION problem [10] is
presented below.

3-PARTITION.
Instance: Set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for each a ∈ A, such that 1

4B < s(a) < 1
2B,

and such that
∑

a∈As(a) = mB.
Question: Can A be partitioned into m disjoined sets A1, A2, . . . , Am such that, for 1� i�m,

∑
a∈Ai

s(a) = B?.
(Note that each Ai must therefore contain exactly three elements from A.)

Let a set A={a1, . . . , a3m} of 3m elements, a positive integer B and let positive integer sizes s(ai) for each ai ∈ A be
given, such that 1

4B < s(ai) < 1
2B, and such that

∑
ai∈As(ai) = mB. We may suppose that, for each ai ∈ A, s(ai) > m

(if not, then we can multiply all s(ai) and B with m + 1).
Extending the result of Bodlaender [4], we construct the following connected graph which is an interval and a

permutation graph: consider a clique with m vertices, a clique with B vertices, and add a vertex v that is connected to
every vertex in the two cliques; let G1 be the resulting graph. Next we construct for every ai ∈ A a tree Ti of depth one
with s(ai) leaves and root xi , that is, every leaf is adjacent to the root; note that there are 3m such trees T1, T2, . . . , T3m.
Then we construct a path P = [v1, v2, . . . , v3m] of 3m vertices, and we connect each vertex vi of the path P to all the
vertices of the tree Ti , 1� i�3m. Additionally, for each vertex vi ∈ P , we add m − 1 + B − s(ai) + i − 1 vertices and
connect them to vertex vi ; let G2 be the resulting graph. Note that the graph G1 ∪ G2 is disconnected. Finally, we add
an edge to the graph G1 ∪G2 connecting vertices v1 and v and let G be the resulting graph. The graph G is a connected
graph and it is illustrated in Fig. 1.

One can easily verify that G is an interval graph. A clique can be represented as a number of intervals that share at
least one point in common. Two cliques sharing a vertex u can be represented as a number of intervals such that one of
them, which corresponds to u, shares at least one point with the intervals corresponding to the vertices of each clique.
Thus, the vertices of G can be put in one-to-one correspondence with a family of intervals on the real line such that
two vertices are adjacent in G if and only if their corresponding intervals intersect.

It is easy to see that the total number of edges in G is

(m

2

)
+

(
B

2

)
+ m + B + 3m + mB + 3m + mB + 3m(m − 2) + 2mB +

3m∑
i=1

i =
(

4m + B + 1
2

)
.
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Fig. 1. Illustrating the constructed connected interval and permutation graph G.

For every harmonious coloring of G and every pair of distinct colors i, j , i �= j , there must be at most one edge with its
endpoints colored with i and j. Thus, it follows that the harmonious chromatic number cannot be less than 4m+B + 1,
and if it is equal to 4m+B + 1 then we have, for every pair of distinct colors i, j , 1� i, j �4m+B + 1, a unique edge
with its endpoints colored with i and j. Thus, we have an exact coloring of G; an exact coloring of G with k colors is a
harmonious coloring of G with k colors in which, for each pair of colors i, j, there is exactly one edge (a, b) such that
a has color i and b has color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + B + 1 if and only if A can be
partitioned in m sets A1, . . . , Am such that

∑
a∈Aj

s(a) = B, for all j, 1�j �m.
(⇐�) Suppose now a 3-partition of A in A1, . . . , Am such that ∀j : ∑

a∈Aj
s(a) = B exists. We show how to find a

harmonious coloring of G using 4m+B +1 colors. We color the vertices of the first clique with colors 1, 2, . . . , m, the
vertices of the second clique with m+ 1, m+ 2, . . . , m+B, and vertex v with m+B + 1. For convenience and ease of
presentation, let M be the set containing colors 1, 2, . . . , m, let B be the set containing colors m+1, m+2, . . . , m+B,
and let K be the set containing colors m + B + 2, m + B + 3, . . . , 4m + B + 1. If ai ∈ Aj then we color the vertex
xi with color j. Each color j ∈ M is assigned to the three vertices corresponding to three ai that have together exactly
B neighbors of degree 2. We assign to each one of these B neighbors a different color from B, and next we assign to
each vertex vi of the path P a distinct color from K. Recall that each vertex vi , 1 < i < 3m, is connected to two other
vertices of P, i.e., vi−1 and vi+1, and m + B + i − 1 more vertices, vertex v1 is connected to v2, v and m + B other
vertices, while vertex v3m is connected to v3m−1 and m + B + 3m − 1 more vertices (see Fig. 1).

Next, we color the rest m− 1 +B − s(ai)+ i − 1 neighbors of each vi . We assign a distinct color from the set M\ci

to m− 1 neighbors of vi , where ci is the color previously assigned to the vertex xi . We next assign a distinct color from
the set B\Ci to B − s(ai) neighbors of vi , where Ci is the set of the colors previously assigned to s(ai) neighbors of
the vertex xi . Finally, we assign a different color to the rest i − 1 neighbors of vi , 3� i�3m, using color m + B + 1
and the colors assigned to the vertices vj , 1�j � i − 2. Note that, in order to color the m + B − s(a2) neighbors of v2,
we only need to use color m + B + 1 and colors from M and B, while for the m − 1 + B − s(a1) neighbors of v1 we
only use colors from M and B. A harmonious coloring of G using 4m+B + 1 colors results, and thus, the harmonious
chromatic number of G is 4m + B + 1.

(�⇒) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m + B + 1. Consider a
harmonious coloring of G using 4m + B + 1 colors. Without loss of generality we may suppose that the m vertices
of the first clique have distinct colors from M, while the B vertices of the second clique have distinct colors from
B. Also, without loss of generality, we color vertex v with color m + B + 1 since v is adjacent to all the vertices of
the two cliques. Since v3m is the vertex having the maximum degree, that is, 4m + B, it has to take a color from K.
Indeed, if it takes a color from M, then none of its neighbors can take a color from M and we cannot color 4m + B

vertices using only 4m + B + 1 − m colors. Using similar arguments, we cannot color vertex v3m using a color from
B or the color m + B + 1. Thus, without loss of generality, we assign to v3m the color 4m + B + 1. We color all
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its neighbors with distinct colors from M ∪ B ∪ {m + B + 1} ∪ K\{4m + B + 1}. Note that, vertex v3m−1 takes a
color from K\{4m + B + 1}; let 4m + B be this color. Indeed, using similar arguments, it cannot take a color from
M ∪ B ∪ {m + B + 1} ∪ {4m + B + 1}. Note that, color 4m + B + 1 cannot be assigned to any other vertex of G
since any pair of colors (4m + B + 1, j), 1�j �4m + B, already appears in the harmonious coloring. Recall that, for
every pair of distinct colors i, j , 1� i, j �4m + B + 1, there is a unique edge with its endpoints colored with i and j.
Recursively, as can easily be proved by induction on i, the same holds for all vi ∈ P , 1� i�3m − 2, that is, vi takes
a color fromK\L, where L is the set containing colors m + B + 1 + i + 1, m + B + 1 + i + 2, . . . , 4m + B + 1,
which are the colors already assigned to vertices vj , i < j �3m.

Note that pairs (�, �), � ∈ M, � ∈ B, have not appeared yet. Since every pair of colors must appear, we assign these
pairs to the mB edges that have both endpoints uncolored. Note that these edges are the edges (xi, y

i
j ), 1� i�3m,

1�j �s(ai), where xi corresponds to ai and yi
j corresponds to the jth neighbor of xi having degree 2. The vertices

xi cannot take a color from B, otherwise its s(ai) > m uncolored neighbors yi
j cannot be colored with m colors

from M. Thus, vertices xi are assigned a color from M and vertices yi
j are assigned a color from B (recall that

B/4 < s(ai) < B/2). Note that the only uncolored vertices are m−1+B−s(ai)+i−1 neighbors of each vi , 1� i�3m.
In order to color m − 1 + B − s(ai) of the uncolored neighbors of vi , we use distinct colors from (M∪B)\F, where
F is the set containing all colors already assigned to the s(ai) + 1 neighbors of vi . In order to color the last i − 1
uncolored neighbors of vi , i > 1, we can only use colors from K\L\{m + B + 1 + i, m + B + i} because the only
unused pairs are (m + B + 1 + i, j), where m + B + 1�j �m + B + 1 + i − 2.

Finally, let ai ∈ Aj if and only if the vertex xi (with neighbors yi
j ) is colored with color j ∈ M. We claim that for

all j,
∑

a∈Aj
s(a) = B. Indeed, each color j must be adjacent to some colors from B, and each color from B is assigned

to exactly one vertex which is adjacent to all xi colored with j. Hence, a correct 3-PARTITION exists.
The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation can be done easily

in polynomial time. �

We can easily show that the interval graph G illustrated in Fig. 1 is also a permutation graph. The graph G is
an interval graph if and only if it is a chordal graph and the graph G is a comparability graph [11]. Moreover, one
can easily verify that G admits an acyclic transitive orientation and, thus, it is a comparability graph. Since G and
G are comparability graphs, it follows that G is a permutation graph [11]. Consequently, we can state the following
theorem.

Theorem 2.2. Harmonious coloring is NP-complete when restricted to connected permutation graphs.

3. The complexity status of the problem

Based on Bodlaender’s results [4], Asdre and Nikolopoulos [2] show that the harmonious coloring problem is
NP-complete for disconnected quasi-threshold graphs. They also show that the pair-complete coloring problem is NP-
complete for quasi-threshold graphs and describe a polynomial solution for this problem on threshold graphs. Moreover,
they show that both harmonious coloring and pair-complete coloring problems are NP-complete for connected bipartite
permutation graphs. Since the problem of determining the harmonious chromatic number of a connected cograph is
trivial, the harmonious coloring problem is polynomially solvable on connected quasi-threshold and threshold graphs.
Fig. 2 shows a diagram of class inclusions for a number of graph classes, subclasses of permutation and chordal
graphs, and the current complexity status of the harmonious coloring problem for connected graphs of these classes;
for definitions of the classes shown, see [5,11]. We next show that the harmonious coloring problem is NP-complete
for split graphs, by exhibiting a reduction from the chromatic number problem for general graphs, which is known to
be NP-complete [10].

Let G be an arbitrary graph with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em. We construct in polynomial
time a split graph Ĝ, where V (Ĝ) = K + I , as follows: the independent set I consists of n vertices v̂1, v̂2, . . . , v̂n

which correspond to the vertices v1, v2, . . . , vn of the graph G and the clique K consists of m vertices û1, û2, . . . , ûm

which correspond to the edges e1, e2, . . . , em of G. A vertex ût ∈ K , 1� t �m, is connected to two vertices v̂i , v̂j ∈ I ,
1� i, j �n, if and only if the corresponding vertices vi and vj are adjacent in G. Note that, every ûi ∈ Ksees all the
vertices of the clique K and two vertices of the independent set I; thus, |E(Ĝ)| = m(m − 1)/2 + 2m.
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Fig. 2. The complexity status of the harmonious coloring problem for connected graphs belonging to subclasses of permutation and chordal graphs.
A → B indicates that class A contains class B.

We claim that the graph G has a chromatic number �(G) if and only if the split graph Ĝ has a harmonious chromatic
number h(Ĝ) = �(G) + m.

Let ci ∈ {1, . . . , �(G)} be the color assigned to the vertex vi ∈ G, 1� i�n, in a minimum coloring of G. We assign
the color ci to the vertex v̂i of the set I and a distinct color from the set {�(G) + 1, . . . , �(G) + m} to each vertex of
the clique K. Since two adjacent vertices of G receive a different color, the neighbors of each ûi ∈ K belonging to
the independent set have distinct colors. Moreover, every vertex v̂i ∈ I sees |NG(vi)| vertices of the clique K, where
NG(vi) is the neighborhood of the vertex vi in G. Thus, every pair of colors appears in at most one edge. In addition,
the number of colors assigned to the set I is equal to �(G) and the number of colors assigned to the clique is equal to
m. This results to a harmonious coloring of Ĝ using �(G) + m colors, which is minimum since the vertices of the set I
cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of Ĝ using h(Ĝ)= �(G)+m colors assigns m colors to the vertices of the clique
K and �(G) colors to the vertices of the set I. Note that, �(G) is the minimum number of colors so that vertices v̂i , v̂j

having a neighbor in common are assigned different colors. Since vi, vj are adjacent in G, it follows that we have a
minimum coloring of G using �(G) colors.

Thus, we have proved the following result.

Theorem 3.1. Harmonious coloring is NP-complete for split graphs.

4. Concluding remarks

We have shown that the connected interval graph G presented in this paper, which is also a permutation graph, has(
4m+B+1

2

)
edges and h(G) = 4m + B + 1. In [8] it was shown that if G is a graph with exactly

(
k
2

)
edges, then a

proper vertex coloring of G with k colors is pair-complete if and only if it is a harmonious coloring. Thus, if G is a graph

with
(

k
2

)
edges, then �(G) = k if and only if h(G) = k [6]. Consequently, for the graph G, which is simultaneously an

interval and a permutation graph, we have that �(G) = 4m + B + 1 and, thus, our results could be also used to prove
that the achromatic number is NP-complete for connected interval and permutation graphs.
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