
Discrete Applied Mathematics 155 (2007) 1858–1877
www.elsevier.com/locate/dam

On the parallel computation of the biconnected and strongly
connected co-components of graphs

Stavros D. Nikolopoulos, Leonidas Palios
Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

Received 3 October 2004; received in revised form 10 June 2005; accepted 21 July 2006
Available online 27 March 2007

Abstract

In this paper, we consider the problems of co-biconnectivity and strong co-connectivity, i.e., computing the biconnected com-
ponents and the strongly connected components of the complement of a given graph. We describe simple sequential algorithms
for these problems, which work on the input graph and not on its complement, and which for a graph on n vertices and m edges
both run in optimal O(n + m) time. Our algorithms are not data structure-based and they employ neither breadth-first-search nor
depth-first-search.

Unlike previous linear co-biconnectivity and strong co-connectivity sequential algorithms, both algorithms admit efficient paral-
lelization. The co-biconnectivity algorithm can be parallelized resulting in an optimal parallel algorithm that runs in O(log2 n) time
using O((n+m)/log2 n) processors. The strong co-connectivity algorithm can also be parallelized to yield an O(log2 n)-time and
O(m1.188/ log n)-processor solution. As a byproduct, we obtain a simple optimal O(log n)-time parallel co-connectivity algorithm.

Our results show that, in a parallel process environment, the problems of computing the biconnected components and the strongly
connected components can be solved with better time-processor complexity on the complement of a graph rather than on the graph
itself.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Biconnected and co-biconnected components; Strongly connected and co-connected components; Co-biconnectivity algorithms; Strong
co-connectivity algorithms; Parallel algorithms

1. Introduction

A connected component of an undirected graph G is a maximal set of vertices of G such that for any two vertices
in the set, there exists a path in G connecting them. A biconnected component of an undirected graph G is a maximal
set of edges of G such that any two edges in the set lie on a simple cycle of G [8]; the biconnected co-components of
G are the biconnected components of the complement G of G. A strongly connected component of a directed graph
G is a maximal set of vertices in which there is a directed path from each vertex to all other vertices in the set; the
strongly connected co-components of G are the strongly connected components of the complement G of the directed
graph G. From the definitions, it follows that the connected (biconnected) components of an undirected graph define
a partition of the graph’s vertices (edges, respectively), and the strongly connected components of a directed graph
define a partition of the graph’s vertices. These decompositions are fundamental tools in graph theory with applications

E-mail addresses: stavros@cs.uoi.gr (S.D. Nikolopoulos), palios@cs.uoi.gr (L. Palios).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.03.016

http://www.elsevier.com/locate/dam
mailto:stavros@cs.uoi.gr
mailto:palios@cs.uoi.gr


S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1859

in compiler analysis, data mining, scientific computing and other areas. Thus, the computation of such components
occupies a central place in algorithmic graph theory, both in a sequential [8] and in a parallel process environment
[2,3,6,13,14,18,21–23], and is a key step in algorithms for a number of combinatorial problems on graphs.

Sequentially, the problems of determining the biconnected and the strongly connected components of a graph are
both solved by a search-and-label approach. For a graph on n vertices and m edges which is given in adjacency-list
representation, simple sequential algorithms—e.g., based on depth-first-search (DFS)—for both problems run optimally
in O(n+m) time [8,12].

By definition, the problems of determining the biconnected and the strongly connected co-components of a graph
G can be easily solved by first computing the complement G of G and then by applying biconnectivity and strong
connectivity algorithms on G. It takes �(n2) time to compute the complement explicitly, and thus, this approach leads to
algorithms which may be super-linear in the size of the input graph. On the related problem of computing the connected
co-components, Ito and Yokoyama [15] showed that a DFS tree and a breadth-first-search tree on the complement of
a given graph can be constructed in linear time; this result, in turn, implies a linear-time algorithm for computing the
co-components of a graph. Dahlhaus, Gustedt, and McConnell, in their paper on modular decomposition [9], described
a procedure for finding a DFS forest on the complement of a directed graph in O(n+m) time. In [10], the same authors
gave simple algorithms for computing the connected and biconnected co-components of an undirected graph and the
strongly connected co-components of a directed graph; this approach also relies on DFS. Recently, Chong et al. [6]
described a simple linear-time sequential algorithm for computing the connected co-components of a graph, which has
the advantage of admitting efficient parallelization.

Developing efficient parallel algorithms for finding the biconnected and the strongly connected components and
co-components of a graph turns out to be a more challenging problem. The problem is very important, especially for
graphs with large size, for which parallel processing may be the only approach for obtaining a solution in reasonable
time. Unfortunately, DFS seems difficult to parallelize; indeed, Reif shows that a restricted version of the approach
(lexicographic DFS) is P-complete [19].

Alternatively, there exist several parallel algorithms for the biconnected components problem and the strongly
connected components problem that avoid the use of DFS. Early O(log n)-time parallel biconnectivity algorithms appear
in Tarjan and Vishkin [23] and Tsin and Chin [24]. These algorithms follow a strategy that is based on transforming
the input graph G into another graph G′ such than the biconnected components of G are the connected components of
G′; their starting point is an arbitrary spanning tree, rather than a DFS tree. We note that the problem of computing the
connected components of a graph has been extensively studied in the literature; we point out the recent work of Chong
et al. [5], which describes a parallel algorithm for computing the connected components of a graph in O(log n) time
using O(n+m) processors. For the problem of finding the strongly connected components of a graph, Gazit and Miller
[11] proposed an NC algorithm, which is based upon matrix multiplication. This algorithm was improved by Cole and
Vishkin [7], but still requires O(log2 n) time and O(n2.376) processors. Kao [17] developed a more complicated NC
algorithm for planar graphs that requires O(log3 n) time and O(n/ log n) processors. An extensive coverage of parallel
connectivity, biconnectivity and strong connectivity algorithms can be found in [1,16,20].

As in the sequential environment, the parallel computation of the biconnected and the strongly connected co-
components of a graph can be easily done by computing the complement of the graph and then by applying one
of the parallel algorithms for the biconnected and the strongly connected components on the complement. However, as
in the sequential case, this yields non-optimal algorithms. To the best of our knowledge, no parallel algorithms which
“directly” compute the biconnected and the strongly connected co-components exist. We mention that for the problem
of computing the connected co-components of a graph on n vertices and m edges, the parallel version of the algorithm
by Chong et al. [6] runs in O(log n) time using O((n + m)/ log n) processors on the EREW PRAM, and is therefore
optimal.

In this paper, we establish properties of the complement of an undirected or a directed graph, which enable us
to describe simple and efficient sequential algorithms for computing the biconnected and the strongly connected
co-components of a graph without computing its complement. For a graph on n vertices and m edges, both the co-
biconnectivity and the strong co-connectivity algorithm run in optimal O(n+m) sequential time. More interestingly,
unlike previous such algorithms, both our algorithms admit efficient parallelization. In particular, the sequential co-
biconnectivity algorithm leads to an optimal parallel algorithm that runs in O(log2 n) time using O((n + m)/log2 n)

processors, while the strong co-connectivity algorithm gives an O(log2 n)-time and O(m1.188/ log n)-processor par-
allel solution. As a byproduct of the latter algorithm, we obtain a simple optimal parallel co-connectivity algo-



1860 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

rithm. Our proposed algorithms are not data structure-based and they employ neither breadth-first-search nor DFS
techniques.

The paper is organized as follows. In Section 2 we present the notation and related terminology and we prove results
on which the co-biconnectivity and the strong co-connectivity algorithms rely. In Section 3 we describe the sequential
and the parallel co-biconnectivity algorithms, establish their correctness and analyze their complexity, while in Section
4 we describe the sequential and the parallel strong co-connectivity algorithms. Finally, in Section 5 we conclude the
paper and discuss possible extensions.

2. Theoretical framework

We consider finite undirected and directed graphs with no loops or multiple edges. Let G be such a graph; then,
V (G) and E(G) denote the set of vertices and of edges of G, respectively. An edge (undirected or directed) is a pair
(undirected or directed) of distinct vertices x, y ∈ V (G), and is denoted xy; if G is an undirected graph, we say that x
is adjacent to y (and y is adjacent to x), whereas if G is a directed graph, we say that x is adjacent to y and y is adjacent
from x. For a set V ⊆ V (G) of vertices of the graph G, the subgraph of G induced by V is denoted G[V ]; for a set
E ⊆ E(G) of edges, the subgraph of G spanned by E is denoted G〈E〉.

The neighborhood N(x) of a vertex x ∈ V (G) of an undirected graph is the set of all the vertices of G which
are adjacent to x. The closed neighborhood of x is defined as N [x] := N(x) ∪ {x}. We use M(x) to denote the set
V (G)−N [x] of non-neighbors of x in G. The degree of a vertex x in an undirected graph G, denoted d(x), is the number
of vertices which are adjacent to x; thus, d(x)= |N(x)|. In the case where G is a directed graph, N+(x) := {w | xw ∈
E(G)} is the set of all the vertices of G which are adjacent from x, and N−(x) := {w |wx ∈ E(G)} is the set of all the
vertices of G which are adjacent to x; moreover, we use N(x) := N−(x)∪N+(x) and M(x) := V (G)− (N(x)∪{x})
to denote the set of all the neighbors and all the non-neighbors of x in G, respectively. The out-degree of a vertex x in
G, denoted d+(x), is the number of vertices which are adjacent from x, and its in-degree, denoted d−(x), is the number
of vertices which are adjacent to x; thus, d+(x)= |N+(x)| and d−(x)= |N−(x)|.

A sequence of vertices v0v1 · · · vk of a graph G is a path from v0 to vk (or a v0.vk path) of length k in G provided that
vi−1vi ∈ E(G) for i=1, 2, . . . , k. A cycle (or closed path) of length k+1 is a path v0v1 · · · vk such that vkv0 ∈ E(G).
A path (cycle) is undirected or directed depending on whether G is undirected or directed. A path (cycle) is called
simple if none of its vertices occurs more than once; it is called trivial if k = 0. An undirected graph G is connected if
between any two vertices u and v there exists a u.v path in G. A directed graph G is strongly connected if for any two
vertices u and v of G, there exists both a u.v path and a v.u path in G.

A connected component (or component) of an undirected graph G is a maximal set of vertices, say, C ⊆ V (G), such
that for every pair of vertices x, y ∈ C, there exists a x–y path in the subgraph G[C] of G induced by the vertices in C.
The co-connected components (or co-components) of G are the connected components of the complement G of G. A
component (co-component) is called non-trivial if it contains two or more vertices; otherwise, it is called trivial.

A biconnected component (or bicomponent) of an undirected graph G is a maximal set of edges such that any two
edges in the set lie on a simple cycle of G [8]. In particular, we give the following definition:

Definition 2.1. A set E of edges of an undirected graph G has the biconnectivity property if every pair of edges in E
lie on a common simple cycle in the subgraph of G spanned by the set E.

Clearly, a biconnected component of G is a maximal set of edges of G that have the biconnectivity property; moreover,
all the edges of G which belong to a set having the biconnectivity property belong to the same biconnected component of
G.A cutpoint (or articulation point) of G is a vertex whose removal increases the number of connected components of G
(i.e., the removal of the vertex disconnects a component of G), and a bridge is an edge with this property. By definition,
a biconnected component contains no cutpoints or bridges. The biconnected co-components (or co-bicomponents) of
a graph G are the biconnected components of the complement G of G.

A strongly connected component of a directed graph G is a maximal set of vertices such that for any two vertices x
and y in the set, there exists both a (directed) x.y path and a (directed) y.x path in the subgraph of G induced by the
vertices in the set; the strongly connected co-components (or strong co-components) of G are the strongly connected
components of the complement G of G.

Below we present some results on which our algorithms rely.



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1861

Lemma 2.1 (Chong et al. [6]). Let G be an undirected graph on n vertices and m edges. If v is a vertex of G of
minimum degree, then the degree of v does not exceed

√
2m.

Lemma 2.2. Let G be a directed graph on n vertices and m edges. If v is a vertex of G of minimum sum of in-degree
and out-degree, then the sum of in-degree and out-degree of v is less than 2

√
m.

Proof. Since v is G’s vertex of minimum sum of in-degree and out-degree, then for the sum of in-degrees and out-
degrees over all vertices x of G, which is equal to 2m, we have that

2m=
∑
x

(d−(x)+ d+(x))�n · (d−(v)+ d+(v)) 	⇒ d−(v)+ d+(v)�2m/n;

then, if we take into account that n >
√

m because m�n · (n− 1) < n2, we get that d−(v)+ d+(v) < 2
√

m. �

For an edge set E having the biconnectivity property, the following hold.

Lemma 2.3. Let G be an undirected graph, let set E ⊆ E(G) having the biconnectivity property, and let VE be the
set of vertices incident on the edges in E. Then,

(i) for every edge e ∈ E and any two vertices u, w ∈ VE, the subgraph G〈E〉 of G spanned by the edges in E contains
a simple path from u to w that passes through e;

(ii) for any simple path in G with endpoints in VE and edge set P, the set E ∪P has the biconnectivity property;
(iii) for any set E′ ⊆ E(G) such that E′ has the biconnectivity property and E ∩ E′ �= ∅, the set E ∪ E′ also has the

biconnectivity property.

Proof. (i) Since the set E has the biconnectivity property, there exists a simple path, say, �, in the graph G〈E〉 from
u to w. Additionally, if e′ is any edge of �, there exists a simple cycle in G〈E〉 that passes through both e and e′. If
the edge e is removed, this simple cycle becomes a simple path �′ = a · · · b, where a, b are the endpoints of e. Let x
(y, respectively) be the first (last, respectively) common vertex of the paths � and �′ as we move from a to b along �′;
because the two paths share the edge e′, the vertices x, y are well defined and distinct (note that x or y may coincide
with a, b). Then, if �= u · · · x · · · y · · ·w, the path that consists of the part of � from u to x, followed by the part of �′
from x to a, followed by the edge e, followed by the part of �′ from b to y, followed by the part of � from y to w is a
simple path from u to w through e, as desired. Otherwise, �= u · · · y · · · x · · ·w, and the desired path is formed by the
part of � from u to y, followed by the part of �′ from y to b, followed by the edge e, followed by the part of �′ from a
to x, followed by the part of � from x to w.

(ii) Let the simple path be � and let u, w ∈ VE be its endpoints. First, let us assume that none of the vertices of
� except for its endpoints u, w belong to VE. We show that, for any pair of edges in E ∪ P, the two edges lie on a
common simple cycle in the subgraph G〈E ∪P〉 of G spanned by the edges in E ∪P. This clearly holds for any two
edges in E. Next, consider the case where e ∈ E and e′ ∈ P: since, according to Lemma 2.3(i), there exists a simple
path along edges in E from u to w that passes through e, then the concatenation of this path with � gives a simple cycle
in G〈E∪P〉 that passes through both e and e′. Finally, consider the case where e, e′ ∈ P: then, any simple path along
edges in E from u to w concatenated with � gives the desired simple cycle.

Suppose now that there exist vertices of the path �, other than its endpoints, that belong to VE. Let us remove from �
any edges inE and let us break the resulting subpaths at their vertices that belong to VE. We obtain a collection of simple
paths �1, �2, . . . , �k . Then, as shown earlier, the union of E and the edge set of �1 has the biconnectivity property; in
turn, the union of this set with the edge set of �2 also has the biconnectivity property, and so on so forth; eventually,
after having considered all the paths �1, �2, . . . , �k , we have that the set E ∪P has the biconnectivity property.

(iii) Follows directly from Lemma 2.3(ii); note that if e = uw is an edge in E ∩ E′, then for any edge e′ ∈ E′ − E,
the biconnectivity of E′ implies that there exists a simple cycle that passes through e and e′, or equivalently that there
exists a simple path of edges in E′ from u ∈ VE to w ∈ VE through edge e′. �

Lemma 2.3 has the following interesting implications.



1862 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

Lemma 2.4. Let G be an undirected graph, let E1,E2 ⊆ E(G) be disjoint sets of edges having the biconnectivity
property, and let V1 and V2 be the sets of vertices incident on the edges in E1 and E2, respectively.

(i) The edge set of the subgraph of G induced by V1 (or V2) has the biconnectivity property.
(ii) If V1 ∩ V2 = ∅ and there exist distinct vertices u, w ∈ V1 and x, y ∈ V2 such that ux ∈ E(G) and wy ∈ E(G),

then the edge set of the subgraph of G induced by V1 ∪ V2 has the biconnectivity property.
(iii) Suppose that V1 ∩ V2 = {v}. If there exists a simple path � from a vertex in V1 to a vertex in V2 which does not

go through vertex v, then the edge set of the subgraph of G induced by V1 ∪ V2 ∪ V (�) has the biconnectivity
property.

(iv) If |V1 ∩ V2|�2, then the edge set of the subgraph of G induced by V1 ∪ V2 has the biconnectivity property.

Proof. (i) Trivially true due to Lemma 2.3(ii), since any edge e /∈E1 whose endpoints belong to V1 constitutes a simple
path connecting two vertices in V1.

(ii) In light of Lemma 2.4(i), it suffices to show that the set E=E1 ∪E2 ∪ {ux, wy} has the biconnectivity property.
The biconnectivity of E1 and E2 implies that for any two edges in E1 or E2, there exists a simple cycle in the subgraph
G〈E〉 spanned by the edges in E which passes through them. Additionally, for any edge e1 ∈ E1 and any edge e2 ∈ E2,
Lemma 2.3(i) implies that there exist paths of edges in E1 and E2 that lead from u to w through e1, and from x to y
through e2, respectively; these paths and the edges ux and wy form a simple cycle in G〈E〉 through e1 and e2. Since
this very cycle also goes through the edges ux and wy, it helps resolve the cases of pairs of edges ux and e, and wy

and e, for any edge e ∈ E1 ∪ E2.
(iii) It suffices to show that the set E1 ∪ E2 ∪ P has the biconnectivity property, where P is the edge set of the

path �. Let u ∈ V1 and x ∈ V2 be the endpoints of �, and let y be the first vertex in V2 that we meet as we move
along � from u to x; we break the path � at y and we obtain two simple paths �1 (with endpoints u and y) and �2 (with
endpoints y and x). The biconnectivity of E2 implies that there exists a simple path from y to v along edges in E2. By
concatenating �1 and this path we obtain a simple path �′ whose both endpoints belong to V1; then, Lemma 2.3(ii)
implies that the union of the edge set E(�′) of �′ and E1 has the biconnectivity property. In turn, this implies that the set
E1 ∪E2 ∪E(�′)=E1 ∪E2 ∪E(�1) has the biconnectivity property since the path � does not go through v, i.e., y �= v,
and thus the sets E2 and E(�′) share edges (Lemma 2.3(iii)). Finally, since the endpoints of the path �2 belong to the
vertex set of E1 ∪ E2 ∪ E(�1), its edge set can also be included and the resulting set has the biconnectivity property
(Lemma 2.3(ii)).

(iv) It suffices to show that the set E1 ∪ E2 has the biconnectivity property. Let x, y ∈ V1 ∩ V2, where x �= y. Since
the set E1 has the biconnectivity property, there exists a simple path � of edges in E1 from x to y (Lemma 2.3(i)).
Then, Lemma 2.3(ii) implies that the union A=E2 ∪P, where P is the edge set of the path �, has the biconnectivity
property; finally, Lemma 2.3(iii) completes the proof since the sets A and E1 each have the biconnectivity property
and they are not disjoint. �

3. Biconnected co-components

Let G be an undirected graph on n vertices and m edges. In this section, we present an O(n+m)-time algorithm for
computing the biconnected components of the complement G of G, which can be parallelized resulting in an optimal
algorithm that runs in O(log2 n) time using O((n+m)/log2 n) processors on the CREW PRAM model of computation.
The algorithm relies on Lemma 2.1 and the results established in the following two lemmata.

Lemma 3.1. Let G be an undirected graph on m�1 edges and x be a vertex of G. If C1, C2, . . . , Ck are the co-
components of the subgraph G[M(x)] of G induced by the set M(x) of non-neighbors of x in G, then

(i) the vertex sets C1, C2, . . . , Ck are disjoint;
(ii) their number k does not exceed 2

√
m;

(iii) for each non-trivial co-component Ci (i.e., |Ci |�2), the edges of the subgraph of the complement G induced
by

{x} ∪ Ci ∪ {u ∈ N(x) | |M(x)−N(u)|�2 and |Ci −N(u)|�1}



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1863

(i.e., the vertices in {x} ∪Ci and those among the vertices in N(x) that are not adjacent to at least 1 vertex in Ci

and to at least one additional vertex in M(x)) belong to the same biconnected component of G.

Proof. (i) Follows from the definition of connected components.
(ii) If k=1, the lemma clearly holds, since m�1. Suppose now that k�2. Since C1, C2, . . . , Ck are the co-components

of G[M(x)], then every vertex in Ci is adjacent in G to every vertex in Cj , for all j �= i. This implies that G contains
at least k(k − 1)/2 edges, and thus k(k − 1)/2�m. Since k2/4�k(k − 1)/2 for k�2, we have that k2/4�m. The
lemma follows.

(iii) First, we show that for each non-trivial co-component Ci , the edge set of the subgraph G[Ci ∪ {x}] has the
biconnectivity property. For any edge e = yz of G[Ci], the cycle xyz in G implies that the edge set {xy, xz, yz} has
the biconnectivity property. Then, consider the following process: we start with an arbitrary edge yz of G[Ci] and we
initialize the current edge set having the biconnectivity property to the set {xy, xz, yz}; then, we traverse G[Ci] in, say,
a DFS manner, and for each edge y′z′ we traverse, we insert the edges xy′, xz′, y′z′ in the current edge set; in each
step, the resulting edge set is guaranteed to have the biconnectivity property due to Lemma 2.4(iv), since the vertex
sets of the two merged edge sets share at least two elements, namely, x and at least one of y′, z′. Then, the fact that the
edge set of G[Ci ∪ {x}] has the biconnectivity property follows from the fact that the graph G[Ci] is connected.

Next, it suffices to prove that, for any vertex u ∈ N(x) such that u is non-adjacent in G to vertices w ∈ Ci and
w′ ∈ M(x) − {w}, the edges of the subgraph G[{x, u} ∪ Ci] belong to the same biconnected component. The pairs
uw, uw′, xw, xw′ are edges in G which form the cycle uwxw′, and thus the edge set {uw, uw′, xw, xw′} of G has the
biconnectivity property; as this edge set and the edge set of G[{x} ∪ Ci] share the edge xw, Lemma 2.3(iii) implies
that the edges of G[{x, u} ∪ Ci] indeed belong to the same biconnected component. �

Lemma 3.1 implies that the non-neighbors of a vertex x in G (on n vertices and m edges), which may be as many as
�(n), participate in O(

√
m) biconnected components in the complement G. Thus, it might be possible to retain only

�(
√

m) vertices among the non-neighbors of x while still not loosing information on the biconnected components of G.
Additionally, if we chose x to be a minimum degree vertex v in G, which according to Lemma 2.1 has O(

√
m) neighbors,

then the total number of vertices to retain would be O(
√

m). Of course, the cutpoints and the bridge endpoints in G

need to be retained. Although finding these points seems to necessitate the computation of the biconnected components
of G, a set S containing them can be easily constructed. In particular, we define:

S = {v} ∪N(v) (1)

∪ {y | y forms a trivial co-component of G[M(v)]} (2)

∪ {w |w ∈ M(v) s.t. ∃u ∈ N(v) for which M(v)−N(u)= {w}}, (3)

i.e., in addition to the entire closed neighborhood of v and the vertices forming trivial co-components of G[M(v)], the
set S contains each vertex w ∈ M(v) which is the only non-neighbor of some neighbor of v. Lemma 3.2 establishes
the fact that this set S indeed contains the cutpoints and the bridge endpoints in G.

Lemma 3.2. Let G be an undirected graph and let S be the set of vertices described above. Then, the set S contains
all the cutpoints and the endpoints of all the bridges of the complement G of G.

Proof. Let x be a cutpoint or an endpoint of a bridge in G. The definition of a cutpoint or a bridge implies that either
x has degree 1 in G or its removal disconnects a connected component of G. Since the set S contains the entire closed
neighborhood N [v] of v in G (see Eq. (1)), we need consider only the case that x belongs to the set M(v) of non-
neighbors of v in G. Then, the degree of x in G is at least equal to 1, since vx ∈ E(G). If the degree is 1, then x’s only
neighbor in G is v, and thus x forms a single-vertex (i.e., trivial) co-component of G[M(v)]. But then, x is contained
in the set S; see Eq. (2).

Suppose now that the vertex x belongs to a connected component A of G and that x’s removal disconnects the
subgraph G[A]. Then, M(v) ∪ {v} ⊆ A, as all the vertices in M(v) are connected in G through v. In fact, A contains
vertices from N(v) as well, for otherwise the removal of x would not disconnect G[A]. When x is removed, the vertices
in (M(v) − {x}) ∪ {v} (and perhaps some vertices in N(v) as well) remain connected, yet there exists a subset A′ of
vertices in A which are no longer connected in G to the vertices in (M(v)− {x}) ∪ {v}. Hence, A′ ⊆ N(v) and every



1864 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

Fig. 1. A graph G and the corresponding graph Ĝ.

vertex in M(v)− {x} is adjacent in G to every vertex in A′. But then, if u is a vertex in A′, the number of neighbors of
u (in G) which belong to M(v) is |M(v)| − 1, and x is u’s only non-neighbor in M(v). Thus, x is contained in the set
S; see Eq. (3). �

Then, for each non-trivial co-component Ci of G[M(v)] (i.e., |Ci |�2), we replace the vertices not in the set S by two
new vertices pi, qi with appropriate adjacencies to vertices in S so that the resulting graph maintains all the information
on the biconnected components of G and only that. More specifically, if we define

R = {u |u ∈ N(v) and |M(v)−N(u)|�1} (4)

(i.e., the set R is the set of all neighbors of v which are adjacent to either all the non-neighbors of v or all but one
non-neighbor of v in G), the algorithm uses an auxiliary graph Ĝ, defined as follows:

V (Ĝ)= S ∪ {pi, qi |Ci is non-trivial},
E(Ĝ)= E1 ∪ E2 ∪ E3 ∪ E4,

where

E1 = {xy | (x, y ∈ N(v) or x ∈ N [v], y ∈ M(v) ∩ S) and xy /∈E(G)},
E2 = {vpi, vqi, piqi |Ci is non-trivial},
E3 = {wqi |Ci is non-trivial and w ∈ Ci ∩ S},
E4 = {upi, uqi |Ci is non-trivial and u ∈ N(v)− R such that ∃ y ∈ Ci : uy /∈E(G)}.

The graph Ĝ models the complement G of G, where the sets of vertices Ci − S, for each non-trivial co-component
Ci have been replaced by the vertices pi, qi : the edge set E1 contains the edges of G connecting pairs of vertices in
S except if both vertices belong to M(v), the sets E2 and E4 are motivated by Lemma 3.1(iii), and the set E3 along
with the edge piqi of E2 ensures the connectivity of each of the sets {pi, qi} ∪ (Ci ∩ S). Moreover, note that if in
G a neighbor u of v has exactly one non-neighbor, say, w, belonging to M(v), then S contains both u and w so that
u, w ∈ V (Ĝ) and uw ∈ E(Ĝ). Fig. 1 shows a graph G and the corresponding graph Ĝ: Note that vertex f of G
forms a trivial co-component of G[M(v)], and vertices x, y, and z are non-adjacent to two, one, and three vertices
in M(v), respectively;thus, in this case, R = {y} and S = N [v] ∪ {d, f }. Then, the edge setsE1, E2, E3, and E4 of
the graph Ĝ shown in the figure are: E1 = {vd, vf , xz, xf , yd}, E2 = {vp1, vq1, p1q1, vp2, vq2, p2q2}, E3 = {dq2},
and E4 = {xp1, xq1, zp1, zq1}. The graph Ĝ has two biconnected components, namely, the edge sets of the subgraphs
induced by {v, x, z, p1, q1, f } and {v, d, p2, q2}, whereas the edge yd is a bridge; one can verify that the graph G has
two biconnected co-components, the edge sets of the subgraphs of G induced by {v, x, z, a, b, c, f } and {v, d, e}, and
the edge yd is again a bridge of G.

The algorithm receives as input an undirected graph given in adjacency-list representation. It returns the biconnected
components of the graph G as follows: for each such biconnected component, it returns a subset Bi of its edges such
that every vertex of the component is incident on at least one edge in Bi . In other words, each biconnected component



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1865

is the subgraph of G induced by the vertices incident on the edges in one of the sets Bi . (It is important to note that
returning the edge sets of the biconnected components of G could require �(n2) time, where n is the number of vertices
of the graph G, since the sum of sizes of all the edge sets could be equal to |E(G)| which may be as large as �(n2).)
The total description size of the sets Bi is linear in the size of the input graph.

Algorithm BICONNECTED_CO-COMPONENTS

for the computation of the biconnected components of the complement of a graph

Input: an undirected graph G.
Output: sets of edges of the complement G such that all edges of the subgraph of G spanned by

each such set form a biconnected component of G.
1. v← a vertex of minimum degree in G;

let N(v) and M(v) be the sets of neighbors and non-neighbors of v in G;
S ← N(v) ∪ {v}; { S will be a superset of the set of cutpoints and bridge endpoints in G}

2. if the degree of v in the graph G is 0
then compute the co-components C1, C2, . . . , Ct of G[V (G)− {v}];

the biconnected components of G are the edge sets of the subgraphs G[Ci ∪ {v}], for
the non-trivial co-components Ci (i.e., |Ci |�2);
exit;

3. R← ∅;
for each vertex u in N(v) do

compute the number �u of neighbors of u (in G) which belong to M(v);
if �u = |M(v)| − 1 or �u = |M(v)|
then insert the vertex u in R;
if �u = |M(v)| − 1 and w is the non-neighbor of u in G which belongs to M(v)

then insert the vertex w in S; {potential cutpoint in G}
4. construct the graph G[M(v)] and compute its co-components C1, C2, . . . , Ck;

for each co-component Ci , i = 1, 2, . . . , k, do
if Ci is a trivial co-component (i.e., |Ci | = 1)
then insert the only element of Ci in S; {potential bridge endpoint in G}

5. construct the auxiliary graph Ĝ defined earlier in this section in terms of the graph G, the
co-components C1, C2, . . . , Ck , and the computed sets R and S;

6. compute the biconnected components (edge sets) B̂1, B̂2, . . . , B̂� of Ĝ;
for each i = 1, 2, . . . , � do

Bi ← B̂i ;
for each co-component Ci of G[M(v)], i = 1, 2, . . . , k, do

if Ci is non-trivial and the edge piqi belongs to the component B̂j

then for each vertex w ∈ Ci − S do
insert the edge vw in Bj ;

remove from Bj all edges incident on pi or qi ;
7. print the resulting edge sets B1,B2, . . . ,B�; the biconnected components of G are the edge

sets of the subgraphs of G induced by the vertices of the subgraphs spanned by B1,B2, . . . ,B�;

We note that the set S collected by the algorithm contains precisely the required vertices: the vertices in Eq. (1) are
collected in Step 1, those in Eq. (2) in Step 4, and those in Eq. (3) in Step 3. Additionally, the set R indeed contains
the vertices in N(v) which have at most one non-neighbor in G belonging to M(v) in accordance with Eq. (4). Before

proving the correctness of the algorithm, we state and prove an important fact about the auxiliary graph Ĝ.

Lemma 3.3. Let G be an undirected graph, v a vertex of G, and the graph Ĝ as defined above. Then, for each non-
trivial co-component Ci of the graph G[M(v)], the vertices pi, qi belong to the vertex set of exactly one and the same
biconnected component of Ĝ, which also contains v and the vertices in Ci ∩ S.



1866 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

Proof. First, observe that the edge set of the subgraph of Ĝ induced by the vertices in {v, pi, qi} ∪ (Ci ∩ S) has the
biconnectivity property; note that Ĝ contains the cycle piqiv, as well as the cycle wqiv, for each vertex w ∈ Ci ∩ S

(Lemma 2.3(iii)). Thus, there exists a biconnected component of Ĝ whose vertex set contains {v, pi, qi} ∪ (Ci ∩ S).
The proof will be complete if we show that neither pi nor qi belong to the vertex sets of more than one bicon-

nected component of Ĝ; to do that, we show that any component containing pi contains qi as well and that any
component containing qi contains pi as well, and then, according to Lemma 2.4(iv), such a component is uniquely
identified.

Let B̂ be any biconnected component of Ĝ containing pi ; then, there exists an edge, say, piw, in B̂. If w=qi , we are
done; otherwise, because in Ĝ the vertex qi is adjacent to all the neighbors of pi (except for qi), Ĝ contains the simple
cycle piwqi , which implies that qi belongs to the vertex set of B̂. Next, let B̂

′
be any biconnected component of Ĝ

containing qi ; then, there exists an edge, say, qiw, in B̂
′
. If w= pi , we are again done; otherwise, if w ∈ Ci ∩ S ∩ {v}

(i.e., qiw ∈ E2 ∪ E3), then B̂
′

contains pi as well, because its vertex set shares two vertices with the vertices in
{v, pi, qi} ∪ (Ci ∩ S) (Lemma 2.4(iv)), whereas if w ∈ N(v)− R (i.e., qiw ∈ E4), then pi is also adjacent to w and
Ĝ contains the simple cycle piwqi , again implying that pi belongs to the vertex set of B̂

′
. �

The correctness of the algorithm follows from the correctness of Steps 2 and 6. The correctness of Step 2 is established
in Lemma 3.4; the correctness of Step 6 follows from the fact that all the edges in the graph Ĝ that are not incident on
any pi or qi are edges of the complement G, from Lemma 3.3, and from Lemma 3.5 with the aid of Lemma 3.1.

Lemma 3.4. Let G be an undirected graph, v be a vertex of G whose degree is 0, and let C1, C2, . . . , Ct be the
co-components of the subgraph G[V (G)− {v}]. Then, the biconnected components of the complement G of G are the
edge sets of the subgraphs of G induced by the vertex sets Ci ∪ {v}, for each non-trivial Ci (i.e., |Ci |�2), 1� i� t .

Proof. Clearly, the vertices of the graph G other than v are partitioned in the sets C1, C2, . . . , Ct . For each singleton
set Ci , the unique vertex in Ci is adjacent in the complement G only to v; thus, the edge connecting it to v is a bridge in
G and does not belong to any biconnected component of G. For any other set Cj , we have that |Cj |�2, which implies
that the edge set of the subgraph G[Cj ∪ {v}] has the biconnectivity property (see the proof of Lemma 3.1(iii)). The
lemma follows from the fact that the edge set of G contains precisely the bridges vw (for all vertices w belonging to
trivial components Ci) and the edges of the subgraphs G[Cj ∪ {v}] (for the non-trivial co-components Cj ), and from
the observation that the subgraphs G[Cj ∪ {v}] and G[Cj ′ ∪ {v}], for any two non-trivial co-components Cj and Cj ′ ,
share only vertex v, and thus their edge sets do not belong to the same biconnected component of G. �

Lemma 3.5. The algorithm BICONNECTED_CO-COMPONENTS correctly computes the biconnected components of the
complement G of the input graph G.

Proof. Let R and S, and Ĝ be the sets and the auxiliary graph computed by the algorithm BICONNECTED_CO-

COMPONENTS when applied on G. The proof proceeds by showing that if two edges e1, e2 ∈ E(G) belong to the
same biconnected component in G, then the “corresponding” edges ê1, ê2 ∈ E(Ĝ) also belong to the same bicon-
nected component in Ĝ, and vice versa. The correspondence between edges of G and edges of Ĝ is defined as
follows:

C1. For an edge e = uw ∈ E(G), the edge ê ∈ E(Ĝ) corresponding to e is:

(a) if u, w ∈ N(v), or u ∈ N [v] and w forms a trivial co-component of G[M(v)], or u ∈ R and w ∈ Ci ∩ S for
some non-trivial co-component Ci of G[M(v)], then ê = e;

(b) if u ∈ N [v] − R and w ∈ Ci for some non-trivial co-component Ci of G[M(v)], then ê = upi or ê = uqi ;
(c) if e is any edge of G[Ci] for some non-trivial co-component Ci of G[M(v)], then ê is any edge of Ĝ[{pi, qi} ∪

(Ci ∩ S)].
C2. For an edge ê = uw ∈ E(Ĝ), the edge e ∈ E(G) corresponding to ê is:

(a) if u, w ∈ N(v), or u ∈ N [v] and w forms a trivial co-component of G[M(v)], or u ∈ R and w ∈ Ci ∩ S for
some non-trivial co-component Ci of G[M(v)], then e = ê;



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1867

(b) if u ∈ N [v] − R and w ∈ {pi, qi} ∪ (Ci ∩ S) for some non-trivial co-component Ci of G[M(v)], then e = uy

where y ∈ Ci ;
(c) if ê is any edge of Ĝ[{pi, qi} ∪ (Ci ∩ S)] for some non-trivial co-component Ci of G[M(v)], then e is any edge

of G[{v} ∪ Ci].

First, note that all the edges of G have been considered in the correspondence scheme C1 and all the edges of Ĝ

have been considered in the correspondence scheme C2. Additionally, note that for a non-trivial co-component Ci of
G[M(v)], all the edges of G[{v}∪Ci] belong to the same biconnected component of G (Lemma 3.1(iii)), that the edges
upi and uqi , where u ∈ N [v] − R, belong to the same biconnected component of Ĝ (because upiqi is a simple cycle
in Ĝ; see edge set E4), and that all the edges of Ĝ[{pi, qi} ∪ (Ci ∩ S)] also belong to the same biconnected component
of Ĝ (Lemmata 3.3 and 2.4(i)).

(	⇒) Let e1, e2 ∈ E(G) be two edges belonging to the same biconnected component of G; we will show that the
corresponding edges ê1, ê2 ∈ E(Ĝ) belong to the same biconnected component of Ĝ. Since e1, e2 belong to the same
biconnected component of G, there exists a simple cycle, say, O, in G that passes through them. We will replace parts
of the cycle O by paths in the graph Ĝ, obtaining a simple cycle in Ĝ which passes through ê1 and ê2. Since all the
vertices in N [v] as well as those in M(v) forming trivial co-components of the subgraph G[M(v)] appear in Ĝ, we
need only concentrate in the parts of the cycle O in the subgraphs of G induced by the non-trivial co-components
ofG[M(v)]. So, we process in turn each such co-component contributing vertices to the cycle O.

Let Ci be a non-trivial co-component of the subgraph G[M(v)]. It is important to observe that the following property
holds:

P1. Let aa′ be an edge of the complement G such that a ∈ Ci and a′ /∈Ci , for a non-trivial co-component Ci of
G[M(v)]; then, clearly a′ ∈ N [v]. Moreover,

• if a′ ∈ R, then a ∈ Ci ∩ S and a′a ∈ E(Ĝ);
• if a′ ∈ N [v] − R, then a′pi, a

′qi ∈ E(Ĝ).

Note that if a′ ∈ R, then a′ would have at most one non-neighbor belonging to M(v) in G; because aa′ ∈ E(G), a′
would have exactly one non-neighbor in M(v), which would precisely be a, and thus a ∈ S. The fact that a′a ∈ E(Ĝ)

follows from the definition of the edge set E1. In turn, if a′ ∈ N [v] − R, then the fact that a′pi, a
′qi ∈ E(Ĝ) follows

from the definitions of the edge sets E2 (if a′ = v) and E4 (if a′ ∈ N(v)− R).
Since all the edges of the subgraph Ĝ[{pi, qi} ∪ (Ci ∩ S)] belong to the same biconnected component (Lemma

3.3) and the algorithm correctly puts all the edges of the subgraph G[{v} ∪ Ci] in the same biconnected component
(Lemma 3.3 and Step 6), it suffices to consider edges e1, e2 of G that do not have all their four endpoints in Ci . Thus,
we distinguish the following cases:

(i) Exactly one of the edges e1, e2 has both its endpoints in the co-component Ci : Suppose that this edge is e1. Then,
if e2= x2y2, let aa′ · · · x2y2 · · · b′b be the subpath of O passing through e2 such that only a, b belong to Ci (note
that the edge e2 may coincide with the edges aa′ or b′b). Clearly, a′, b′ ∈ N [v] (Property P1), yet not both a′ and
b′ belong to R, for otherwise a = b, in contradiction to the fact that the cycle O is simple and passes through the
edge e1 which has both its endpoints in Ci . Thus, assume without loss of generality that a′ ∈ N [v] −R; then, a′
is adjacent to pi and qi (Property P1). Then, we replace the part a′a · · · x1y1 · · · bb′ of the cycle O, which passes
through e1 = x1y1, by the path a′qibb′ if a′ ∈ N [v] − R and b′ ∈ R, or the path a′piqib

′ if a′, b′ ∈ N [v] − R.
In each case, the edge e1 is replaced by an edge bqi or piqi of Ĝ[{pi, qi} ∪ (Ci ∩ S)], while the edge aa′ is
replaced by a′qi or a′pi and the edge bb′ remains unchanged if b′ ∈ R or else is replaced by b′qi ; in all cases,
our correspondence scheme C1 is followed.

(ii) None of the edges e1, e2 has both its endpoints in the co-component Ci : If the edges e1 = x1y1 and e2 = x2y2
belong to a path aa′ · · · x1y1 · · · x2y2 · · · b′b along the cycle O such that none of the vertices of the path except
for a, b belongs to Ci , then if the rest of O is the path as · · · tb, we replace the path a′as · · · tbb′ by a path exactly
as in case (i).
Suppose now that the edges e1, e2 belong to paths aa′ · · · x1y1 · · · b′b and cc′ · · · x2y2 · · · d ′d, along the cycle O
such that none of the vertices of the paths except for a, b, c, d belongs to Ci . As above, not both a′ and b′ and not
both c′ and d ′ belong to R. Suppose without loss of generality that a′, d ′ ∈ N [v] − R; then, a′pi, d

′pi ∈ E(Ĝ)



1868 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

(Property P1). On the other hand, let b̂ = b if b′ ∈ R (then, b̂ ∈ Ci ∩ S) or b̂ = qi otherwise, and let us define ĉ

similarly. Then, we replace the path a′a · · · dd ′ by a′pid
′, and the path b′b · · · cc′ by b′b̂c′ if b̂= ĉ or by b′b̂qi ĉc

′
if b̂ �= ĉ. Note that if e1, e2 /∈ {aa′, bb′, cc′, dd ′}, they are not modified by the processing of Ci ; if any coincides
with aa′, bb′, cc′, or dd ′, it is replaced by pia

′, b̂b′, ĉc′, and pid
′, respectively, in accordance with the scheme

C1.

After all the non-trivial co-components Ci have been processed, the above replacements yield a simple cycle in Ĝ that
passes through the edges ê1, ê2; this implies that ê1, ê2 belong to the same biconnected component of Ĝ, as desired.

(⇐	) Let ê1, ê2 ∈ E(Ĝ) be two edges belonging to the same biconnected component of Ĝ; we will show that the
corresponding edges e1, e2 ∈ E(G) belong to the same biconnected component of G. This half of the proof proceeds
similarly to the first half. Because ê1, ê2 belong to the same biconnected component of Ĝ, there exists a simple cycle,
say, Ô, in Ĝ that passes through them. As above, we will replace parts of the cycle Ô by paths in the graph G, obtaining
either a simple cycle in G that passes through e1 and e2, or a collection O1, O2, . . . , Ot of simple cycles in Gsuch
that e1 ∈ O1, e2 ∈ Ot , and for all i = 1, 2, . . . , t − 1, there exist edges e ∈ Oi and e′ ∈ Oi+1 belonging to the same
biconnected component of G; in either of these cases, we conclude that the edges e1, e2 belong to the same biconnected
component of G.

Since all the vertices in N [v] as well as those in M(v) forming trivial co-components of the subgraph G[M(v)] appear
in both G and Ĝ, we need only concentrate in the parts of the cycle Ô containing vertices that belong to non-trivial
co-components of G[M(v)].

Therefore, let us consider a non-trivial co-component Ci of the subgraph G[M(v)]. Then, the following property
holds:

P2. Let âa′ be an edge of the graph Ĝ such that â ∈ {pi, qi} ∪ (Ci ∩ S) and a′ /∈ {pi, qi} ∪ (Ci ∩ S), for a non-trivial
co-component Ci of G[M(v)]; then, clearly a′ ∈ N [v]. Moreover, there exists a vertex a such that aa′ ∈ E(G); in
particular:

• if a′ ∈ R, then â ∈ Ci ∩ S and a ′̂a ∈ E(G), i.e., a = â;
• if a′ ∈ N [v] − R, then there exists a vertex a ∈ Ci such that aa′ ∈ E(G) and the edge aa′ belongs to the same

biconnected component of G as all the edges of the subgraph G[{v} ∪ Ci].

Property P2 is established in the same way as Property P1; the fact that if a′ ∈ N [v] − R, the edge aa′ belongs to the
same biconnected component of G as all the edges of G[{v} ∪Ci] follows from Lemma 3.1(iii). Since all the edges of
the subgraph Ĝ[{pi, qi} ∪ (Ci ∩ S)] belong to the same biconnected component of Ĝ (Lemma 3.3), and the algorithm
correctly puts all the edges of the subgraph G[{v}∪Ci] in the same biconnected component of G (Lemma 3.3 and Step
6), we do not need to consider edges ê1, ê2 that have all their four endpoints in {pi, qi}∪ (Ci ∩S). Thus, we distinguish
the following cases:

(i) Exactly one of the edges ê1, ê2 has both its endpoints in {piqi} ∪ (Ci ∩ S): Suppose that this edge is ê1, and let
âa′ · · · x2y2 · · · b′b̂ be the subpath of Ô passing through ê2 = x2y2 such that only â, b̂ belong to Ĉi (note that the
edge ê2 may coincide with the edges âa′ or b̂b′). According to Property P2, a′, b′ ∈ N [v] and there exist vertices
a, b ∈ Ci such that aa′, bb′ ∈ E(G). Additionally, it is important to note that not both a′ and b′ belong to the
set R, for otherwise â = b̂, in contradiction to the fact that the cycle Ô is simple and passes through the edge e1
which has both endpoints in {pi, qi} ∪ (Ci ∩ S). Thus, assume without loss of generality that a′ ∈ N [v] − R.
Then, if a �= b, we replace the part a ′̂a · · · x1y1 · · · b̂b′ of the cycle passing through the edge e1 = x1y1 by the
path a′�b′, where � is any a.b path in G (such a path � always exists as G[Ci] is connected), and the edge e1
is any edge of the path �. Suppose now that a = b, and let w ∈ M(v)− {a} be a vertex non-adjacent to a′ in G;
recall that a′ ∈ N [v] − R). Then, we replace the cycle Ô by the cycle aa′ · · · x2y2 · · · b′ and we add the cycle
O1 = vaa′w; the two cycles share edge aa′, and we consider as edge e1 the edge va. In either case, the edge
e1 follows our correspondence scheme C2; in turn, if ê2 differs from both aa′ and bb′, then it is not modified,
whereas otherwise it is replaced by aa′ or bb′, again in accordance with the scheme C2 holds.

(ii) None of the edges ê1, ê2 has both its endpoints in {piqi} ∪ (Ci ∩ S): If the edges ê1= x1y1 and ê2 = x2y2 belong
to a path âa′ · · · x1y1 · · · x2y2 · · · b′b̂ of the cycle Ô such that none of the vertices of the path except for â, b̂

belongs to Ci , then we find vertices a, b ∈ Ci such that a′a, b′b ∈ E(G) (Property P2) and we replace Ô by



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1869

the cycle a′ · · · x1y1 · · · x2y2 · · · b′�, where � is a b–a path in G[Ci]; note that if a′, b′ ∈ R, the edges âa′, b̂b′
are not modified, whereas if a′, b′ ∈ N [v] − R, either they do not change or they are replaced by edges a′x, b′y
wherex, y ∈ Ci , in accordance with our scheme C2.

(ii) Suppose now that the edges ê1, ê2 belong to paths âa′ · · · x1y1 · · · b′b̂ and ĉc′ · · · x2y2 · · · d ′d̂ of Ô such that
none of the vertices of the paths except for â, b̂, ĉ, d̂ belongs to Ci . As discussed in case (i), there exists ver-
tices a, b, c, d ∈ Ci such that aa′, bb′, cc′, dd ′ ∈ E(G), and not both a′ and b′, and similarly c′ and d ′ belong
to R. Assume without loss of generality that a′, d ′ ∈ N [v] − R; then, the edges aa′ and dd ′ belong to the
same biconnected component of G (Lemma 3.1(iii). Then, we find a b–a path � and a d–c path �′ in the sub-
graph G[Ci] (such paths always exist as G[Ci] is connected), and we get the cycles a′ · · · x1y1 · · · b′� and
c′ · · · x2y2 · · · d ′�′, where the edges aa′ and dd ′ belong to the same biconnected component of G. Note that

the edges âa′, b̂b′, ĉc′, d̂d ′ are replaced by aa′, bb′, cc′, dd ′, where a, b, c, d ∈ Ci in accordance with our
correspondence scheme C2.

After all the non-trivial co-components of G[M(v)] that contributed vertices to the cycle Ô have been processed, the
above replacements yield either a simple cycle in G that passes through e1 and e2, or a collection O1, O2, . . . , Ot of
simple cycles in G such that e1 ∈ O1, e2 ∈ Ot , and for all i = 1, 2, . . . , t − 1, there exist edges e ∈ Oi and e′ ∈ Oi+1
belonging to the same biconnected component of G, as desired. �

Let us now compute the time and space complexity of the algorithm. As mentioned, the input graph G is given in
adjacency-list representation. Moreover, if n and m are the numbers of vertices and edges of G, recall that the degree
of the vertex v is |N(v)| =O(

√
m) (Lemma 2.1) and that the number k of co-components of the subgraph G[M(v)] is

O(
√

m) (Lemma 3.1(ii)). Then, the following facts hold:
F1. The cardinality of the set S is O(

√
m). Note that the number of elements inserted in S in Steps 1, 3, and 4 is

|N(v)| + 1=O(
√

m), at most |N(v)| =O(
√

m) since at most one vertex is inserted per vertex u ∈ N(v), and at
most k = O(

√
m), respectively.

F2. The number of vertices of the graph Ĝ is O(
√

m). This follows from Fact F1 and the fact that k = O(
√

m).

F3. The sum of the cardinalities of the edge sets B̂1, B̂2, . . . , B̂� is O(m). This follows from the fact that the number
of edges of the graph Ĝ is O(m), since V (Ĝ)= O(

√
m).

F4. The sum of the cardinalities of the edge sets B1,B2, . . . ,B� is O(n+m). This follows from Fact F3 in light of
the fact that the vertices pi, qi , for each co-component Ci of G[M(v)], belong to exactly one set B̂j (Lemma3.3);
then, each vertex w ∈ Ci − S contributes exactly the edge vw in exactly one set Bj .

From a data structure point of view, all the graphs are represented by adjacency lists, the sets N(v), M(v), R, and S
are stored in arrays of size n, and the sets B̂i and Bi , i = 1, 2, . . . , �, are stored in linked lists.

Step 1 clearly takes O(n+m) time and O(n) space. Step 2 takes O(n+m) time and space since the co-components
of a graph can be computed in time linear in its size [9,10,15,6]. In Step 3, computing the value of �u for a vertex
u ∈ N(v) takes time proportional to the degree d(u) of u in the graph G; moreover, if there is just one non-neighbor
of u in M(v), this vertex can be found in O(|M(v)|)= O(d(u)) time as well. Thus, the execution of Step 3 for all the
vertices in N(v) takes O(n+∑

ud(u))= O(n+m) time. An adjacency-list representation of the subgraph G[M(v)]
can be obtained from a copy of the adjacency lists for the graph G in O(n + m) time using O(n + m) space. Since
the co-components C1, C2, . . . , Ck can be computed in O(n + m) time and space, and the for-loop in Step 4 takes
O(
√

m) time, the entire Step 4 is completed in O(n+m) time and space. In Step 5, in order to obtain an adjacency-list
representation of the graph Ĝ, we need to find the pairs of adjacent vertices and link the appropriate records in the
adjacency lists. The pairs of adjacent vertices contained in the set E1 can be determined by using a linear-time sorting
algorithm to compatibly order the set S and the adjacency lists (for the graph G) of the vertices in S; then, the vertices
of S missing from the adjacency list of each of the vertices in S can be computed in O(n + m) time and space. The
pairs of adjacent vertices contained in the sets E2 and E3 can be easily determined and recorded in O(k)=O(

√
m) and

O(n) time and space, respectively, while the pairs in E4 can be found if, for each vertex u ∈ N(v) − R, we count its
neighbors (in G) in each of the sets Ci , which can also be done in O(n+m) time and space. Thus, Step 5 can be carried
out in O(n+m) time and space. The same holds for Step 6 as well: note that computing the biconnected components
of a graph takes time linear in the size of the graph [8], that the vertices pi, qi belong to exactly one set B̂j (Lemma
3.3), and that the sum of the cardinalities of the sets B̂j is O(m) (Fact F3). Finally, in light of Fact F4, Step 7 takes
O(n+m) time. Summarizing, we have:



1870 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

Theorem 3.1. Let G be an undirected graph on n vertices and m edges.Then, algorithm BICONNECTED_CO-COMPONENTS

computes the biconnected components of the complement G in O(n+m) time and space.

3.1. Parallelizing the algorithm

In this section, we show how the algorithm BICONNECTED_CO-COMPONENTS can be efficiently parallelized. The
parallel algorithm executes the exact same steps as the sequential algorithm with the only exception that, for efficiency
reasons, we replace the edge set

E4 = {upi, uqi |Ci is non-trivial and u ∈ N(v)− R such that ∃y ∈ Ci : uy /∈E(G)}
in Step 5 of the sequential algorithm by the edge set

E′4 = {upi, uqi |Ci is non-trivial and u ∈ N(v)− R such that

u and the representative of Ci belong to the same co-component of G[(N(v)− R) ∪M(v)]}.
Note that E4 ⊆ E′4, since if for a vertex u ∈ N(v) − R there exists y ∈ Ci such that uy /∈E(G), then u and

all the vertices in Ci belong to the same co-component of G[(N(v) − R) ∪ M(v)]. On the other hand, E′4 may
contain edges upi, uqi incident on a vertex u ∈ N(v) − R although u is adjacent in G to all the vertices in Ci . It
is as if we apply the algorithm on a graph G′ which is obtained from G after the removal of some edges uw where
u ∈ N(v)−R and w ∈ M(v); equivalently, the complement of G′ is obtained from the complement G after the addition
of these edges. Interestingly, the condition that “u and the representative of Ci belong to the same co-component of
G[(N(v)−R)∪M(v)]” ensures that this change does not affect the correctness of the algorithm because, as we show
in Lemma 3.6, the endpoints of these added edges belong to the vertex set of the same biconnected component of G

(see Lemma 2.4(i)).

Lemma 3.6. Let G be an undirected graph, v a vertex of G, M(v) the non-neighbors of v in G, R the set of neighbors
of v with at most one non-neighbor in M(v), and G̃ the subgraph G[(N(v)−R)∪M(v)]. If two vertices a, b ∈ V (G̃)

belong to the same co-component of G̃, then the vertices a, b, v belong to the vertex set of the same biconnected
component of the complement G.

Proof. It suffices to show that, for any two vertices x, y which are adjacent in the complement of the graph G̃, the
vertices x, y, v belong to the vertex set of the same biconnected component of G; then, since for any three consecutive
vertices p, q, r in a path in the complement of G̃, the biconnected components to which p, q and q, r belong share the
vertices q and v, the lemma follows from Lemma 2.4(iv).

So, let us consider two vertices x, y which are adjacent in the complement of G̃. If both x, y belong to M(v), then
they belong to the same co-component of the subgraph G[M(v)], which has obviously cardinality at least equal to 2,
and then by Lemma 3.1(iii) the vertices x, y, v belong to the vertex set of the same biconnected component of G. The
same conclusion is also reached if x ∈ N(v) − R and y ∈ M(v) as a result of Lemma 3.1(iii). Now, suppose that
x, y ∈ N(v) − R, and let w, w′, w′′ ∈ M(v) be vertices such that xw, yw′, yw′′ ∈ E(G). Then, x, y, v, w, w′ all
belong to the vertex set of the same biconnected component of G: this follows from the simple cycle xyw′′vw in G if
w = w′, and from the simple cycle xyw′vw in G if w �= w′. �

Next, we analyze the time and processor complexity of each step of the algorithm on the PRAM model of parallel
computation; for details on the PRAM techniques mentioned below, see [1,16]. As in the description of the sequential
co-biconnectivity algorithm, we assume that the input graph is given in adjacency-list representation. We also assume
that, for each edge uv, the two records in the adjacency lists of u and v are linked together (this helps us re-index the
vertices in any subgraph of the given graph fast); all these links can be easily established in optimal O(1) time using
O(m) processors on the EREW PRAM model using an auxiliary array [16].

Step 1: The computation of the degree of a vertex u of the graph G can be done by applying list ranking on the
adjacency list of u and by taking the maximum rank; this can be done in O(log n) time using O(d(u)/ log n) processors
on the EREW PRAM, where d(v) denotes the degree of vertex v in G. The computation for all the vertices takes
O(log n) time and O(m/ log n) processors on the same model of computation. Locating a vertex v of minimum degree



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1871

in G can be executed in O(log n) time using O(n/ log n) processors on the EREW PRAM model. The computation
of the vertex sets N(v) and M(v), and the initialization of S can be easily done in O(log n) time using O(n/ log n)

processors on the EREW PRAM model.
Step 2: If the degree of the vertex v is equal to 0 in G, then the algorithm computes the connected co-components

C1, C2, . . . , Ct of the graph G[V (G)−{v}]. This computation is done by applying the optimal parallel co-connectivity
algorithm of Chong et al. [6] which, on the graph G[V (G)− {v}] on n− 1 vertices and O(m) edges, runs in O(log n)

time with O((n+m)/ log n) processors on the EREW PRAM model.
Step 3: The set R and the updated set S can be computed as follows: first, for each vertex u in N(v), we compute

the number �u of neighbors of u (in G) which belong to M(v). If �u = |M(v)| − 1 or �u = |M(v)| then we insert the
vertex u in R; if �u = |M(v)| − 1, we also insert the vertex u in a set, say, R′. Next, for each vertex w in M(v), we
compute the number aw of vertices in R′ which are adjacent to w; this is done by computing the degree of w in the
subgraph G[R′ ∪M(v)] induced by the vertices in R′ and M(v). Then, if aw < |R′| we insert the vertex w in S. The
construction of the subgraph G[R′ ∪M(v)] can be done in O(log n) time using O((n + m)/ log n) processors on the
EREW PRAM model, while the computation of the values aw can be carried out within the same time and processor
complexity as the computation of the vertex degrees in G (see Step 1) and along with the updating of S take O(log n)

time using O(m/ log n) processors on the EREW PRAM model.
Step 4: An adjacency-list representation of the graph G[M(v)] can be obtained by appropriate processing of a copy

of the adjacency-list representation of G. Then, re-indexing (based on the ranks of the vertices in the set M(v)) is
applied to map the vertices in M(v) to consecutive integers starting from 1. To do that, each vertex in M(v) broadcasts
its new index number to its adjacency list; next, for each edge, the two adjacency list records associated with it,
exchange the new index information. Then, the adjacency-list representation of G[M(v)] can be readily converted into
the new indexing scheme. The above computations can be done in O(log n) time using O((n+m)/ log n) processors
on the EREW PRAM model (see also [6]). The co-components C1, C2, . . . , Ck of the graph G[M(v)] are computed
in O(log n) time using O((n+m)/ log n) processors on the EREW PRAM model [6].

Then, for each co-component Ci , i = 1, 2, . . . , k, checking whether |Ci | = 1, and conditionally inserting the only
element of Ci in S takes O(log n) time using O(n/ log n) processors on the EREW PRAM model, since k�

√
2m=O(n).

Step 5: Having computed the vertex set S and the co-components C1, C2, . . . , Ck , the vertex set V (Ĝ) can be easily
computed in O(log n) time using O(n/ log n) processors on the EREW PRAM model. Let us now see how we compute
the edge set E(Ĝ); it consists of the edge sets E1, E2, E3 and E′4, where the set E′4 is:

E′4 = {upi, uqi | ∀ non-trivial Ci, u ∈ N(v)− R, and

u and the representative of Ci belong to the same co-component of G[(N(v)− R) ∪M(v)]}.

Since |S|=O(
√

m) (Fact F1), the set E1 can be computed in O(log n) time using O(m/ log n) processors on the EREW
PRAM model; the computation of the sets E2 and E3 can also be completed within the same time and processor bounds
on the same model of computation.

We focus now on the computation of the set E′4. To do that efficiently, we first construct the graph G̃ =G[(N(v)−
R)∪M(v)]. The adjacency-list representation of the graph G̃ can be obtained in O(log n) time using O((n+m)/ log n)

processors on the EREW PRAM model (see Step 4). The co-components of the graph G̃ are computed in O(log n) time
using O((n+m)/ log n) processors on the EREW PRAM model [6]. Since |N(v)−R|=O(|N(v)|)=O(

√
m) and the

number k of co-components Ci is O(
√

m), we can check whether each vertex u ∈ N(v)− R and the representative of
each Ci belong to the same co-component of G̃ in O(log n) time using O(m/ log n) processors on the EREW PRAM
model.

Step 6: The biconnected components of the auxiliary graph Ĝ can be computed by applying a parallel algorithm which
computes the biconnected components of a graph on N vertices in O(log2N) time using O(N2/log2 N) processors on

the CREW PRAM [16]; since Ĝ has O(
√

m) vertices (Fact F2), the biconnected components of Ĝ can be computed in
O(log2 n) time using O(m/log2 n) processors on the CREW PRAM model.

Let � be the total number of edges in the biconnected components B̂1, B̂2, . . . , B̂�; Fact F3 implies that �=O(m).
The algorithm which computes B̂1, B̂2, . . . , B̂� generates an output array b[ ] of length � such that b[e] is equal to an
edge which is the representative of the biconnected component containing edge e; let e1, e2, . . . , e� be the edges of the
biconnected components and let ê1, ê2, . . . , ê� be the representatives.



1872 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

Let � be the number of vertices in the set
⋃k

i=1 (Ci −S), and let these vertices be w1, w2, . . . , w�. Let e′1, e′2, . . . , e′�
be the edges vw1, vw2, . . . , vw� of the complement G. We construct an array c[ ] of length �; the entry c[e′i], for each
edge e′i = vwi , is initially assigned the dummy value e∗. For each edge piqi , 1� i�k, we find the representative êj

of the biconnected component B̂j to which piqi belongs (recall that b[piqi] = êj ); this computation can be done in
O(log n) time using O(m/ log n) processors on the EREW PRAM model. Then, for each vertex wj ∈ Ci − S, we
assign to c[vwj ] the representative êt of the biconnected component of Ĝ to which the edge piqi belongs, that is,
c[vwj ]= êt ; this computation can be done in O(log n) time using O(m/ log n) processors on the EREW PRAM model
(to avoid concurrent-read operations we produce |Ci − S| copies of the representative êt , which for all Cis can be done
in O(log n) time using O(n/ log n) processors on the same model of computation). Finally, in order to remove from
B̂1, B̂2, . . . , B̂� all edges e in {e1, e2, . . . , e�} that are incident on some pi or qi for 1� i�k (such edges correspond
to entries of the array b[ ] only), we assign to b[e] the value e∗ if at least one of the endpoints of e is some pi or qi .
This computation can be done in O(1) time using O(m) processors on the EREW PRAM model.

We copy the elements of the arrays b[ ] and c[ ] in a new array d[ ] of length � + � such that d[i] = (ei, b[ei]),
1� i��, and d[�+ j ] = (e′j , c[e′j ]), 1�j ��. Then, we delete all the entries of d[ ] of the form (e, e∗) and move the
remaining entries in consecutive locations; the resulting array represents the elements of the edge sets B1,B2, . . . ,B�.
This computation can be easily done in O(log n) time with O(m/ log n) processors on the EREW PRAM model using
prefix sums and array packing on the elements of the array d[ ]; see [1,16].

Step 7: Since the sum of the cardinalities of the sets B1,B2, . . . ,B� is O(n+m) (Fact F4), returning the array d[ ]
can be done in O(1) time using O(n+m) processors.

Taking into consideration the time and processor complexity of each step of the algorithm, we obtain the following
theorem.

Theorem 3.2. Let G be an undirected graph on n vertices and m edges.Then, algorithm BICONNECTED_CO-COMPONENTS

can be parallelized to yield the biconnected components of G in O(log2 n) time using O((n + m)/log2 n) processors
on the CREW PRAM model.

It is interesting to note that with the exception of the computation of the biconnected components of the graph Ĝ

in Step 6 (due to the use of the CREW PRAM algorithm in [16]), the rest of the computation can be carried out in
O(log n) time using O((n+m)/ log n) processors on the EREW PRAM model.

4. Strongly connected co-components

In this section, we present a simple optimal sequential algorithm for computing the strongly connected components
of the complement G of a directed graph G, and we show how it can be efficiently parallelized. As with the case of the
biconnected components of the complement of an undirected graph, the algorithm uses an auxiliary graph of small size
which, however, captures all the information on the strongly connected components of the complement of the given
directed graph G. More specifically, for a vertex v of G of minimum sum of in-degree and out-degree, we define the
directed graph Hv as follows:

V (Hv)=N(v) ∪ {v} =N−(v) ∪N+(v) ∪ {v},
E(Hv)= {xy | x, y ∈ N(v) and xy ∈ E(G)} ∪ { vx | x ∈ N(v) and M(v) ∪ {v} ⊆ N−(x)}

∪ {xv | x ∈ N(v) and M(v) ∪ {v} ⊆ N+(x)},
where M(v)= V (G)− (N(v) ∪ {v}) is the set of non-neighbors of v in G. The graph Hv has as vertices the vertex v

and all its neighbors in G, i.e., all the vertices that are adjacent to or from v in G; its edge set contains all the edges
between neighbors of v in G, edges vx from only the vertices x that are adjacent to v and to all the non-neighbors of v

in G, and edges xv from only the vertices x that are adjacent from v and from all the non-neighbors of v in G. Fig. 2
shows a directed graph G and the corresponding graph Hv . The usefulness of the graph Hv is shown in the following
lemma.

Lemma 4.1. Let G be a directed graph, v a vertex of G, N(v)= N−(v) ∪ N+(v) the set of neighbors of v in G, and
M(v)= V (G)− (N(v) ∪ {v}) the set of non-neighbors of v.



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1873

Fig. 2. A directed graph G and the corresponding directed graph Hv .

(i) If x is a vertex of G such that x /∈N(v), i.e., none of the directed edges vx and xv belongs to E(G), then the
vertices v and x belong to the same strongly connected component of G.

(ii) Let Hv be the directed graph defined above. Then, any two vertices x, y ∈ V (Hv) belong to the same strongly
connected component of G if and only if they belong to the same strongly connected component of Hv .

Proof. (i) Trivially true, since the complement G contains both the directed edges vx and xv.
(ii) (	⇒) Suppose that the vertices x, y ∈ V (Hv) belong to the same strongly connected component of the com-

plement G of G; we show that they belong to the same strongly connected component of Hv . Since the vertices x, y

belong to the same strongly connected component of G, then in G there exist a directed x−y path and a directed y−x

path; let u0u1 · · · uk , where u0 = x and uk = y, and w0w1 · · ·w�, where w0 = y and w� = x, be shortest such paths,
respectively. We distinguish the following two cases:

(a) x = v and y ∈ N(v): If ui ∈ N(v) for all i = 1, 2, . . . , k, then the path vu1 · · · uk−1y is also a v–y path in Hv .
Otherwise, since u0u1 · · · uk is a shortest v–y path in G, we conclude that u1 ∈ M(v) and ui ∈ N(v) for 2� i�k.
Moreover, because u1u2 ∈ E(G) where u1 ∈ M(v) and u2 ∈ N(v), we have that M(v)∪ {v}�N−(u2) and thus
vu2 /∈E(Hv) or equivalently vu2 ∈ E(Hv). Then, Hv contains the directed path vu2 · · · uk−1y from v to y. In a
similar fashion, if wi ∈ N(v) for all i = 0, 1, . . . , � − 1, then the path yw1 · · ·w�−1v is also a y–v path in Hv;
otherwise, w�−1 ∈ M(v) and wi ∈ N(v) for 0� i�� − 2, which implies that w�−2v ∈ E(Hv) and thus Hv

contains the directed path yw1 · · ·w�−2v from y to v.
(b) x, y ∈ N(v): If ui ∈ N(v) for all i=0, 1, . . . , k, then the path xu1 · · · uk−1y is also an x−y path in Hv . Otherwise,

let k′ =mini{ui ∈ M(v) ∪ {v}}; k′ is well defined (since there exists a vertex ui /∈N(v)), k′> 0, and ui ∈ N(v)

for 0� i < k′; moreover, because uk′−1uk′ ∈ E(G), i.e., uk′−1uk′ /∈E(G), and because uk′−1 ∈ N(v) and uk′ ∈
M(v) ∪ {v}, we have that uk′−1v /∈E(Hv) or equivalently uk′−1v ∈ E(Hv). Additionally, if k′′ = maxi{ui ∈
M(v) ∪ {v}}, then k′′ is well defined, k′′< k, ui ∈ N(v) for k′′< i�k, and vuk′′+1 ∈ E(Hv). Then, the vertices
x, u1, . . . , uk′−1, v, uk′′+1, . . . , uk−1, y form a directed path in Hv from x to y. In a similar fashion, if wi ∈ N(v)

for all i = 0, 1, . . . , �, then the path yw1 · · ·w�−1x is also a y−x path in Hv; otherwise, if �′ = mini{wi ∈
M(v) ∪ {v}} and �′′ = maxi{wi ∈ M(v) ∪ {v}}, the vertices y, w1, . . . , w�′−1, v, w�′ ′+1, . . . , w�−1, x form a
directed path in Hv from y to x.

In either case, the vertices x and y belong to the same strongly connected component of Hv .
(⇐	) Suppose that the vertices x and y belong to the same strongly connected component of Hv; we show that they

belong to the same strongly connected component of G. As above, let u0u1 · · · uk , where u0 = x and uk = y, and
w0w1 · · ·w�, where w0 = y and w� = x, be shortest directed paths in Hv from x to y and from y to x, respectively.
Again, we distinguish the following cases:

(a) x= v and y ∈ N(v): Because the above paths are shortest, then ui ∈ N(v) for all i=1, 2, . . . , k, and wj ∈ N(v)

for all j=0, 1, . . . , �−1. Since vu1 ∈ E(Hv), then M(v)∪{v}�N−(u1), i.e., there exists a vertex z ∈ M(v)∪{v}
such that zu1 ∈ E(G). Similarly, since w�−1v ∈ E(Hv), there exists a vertex z′ ∈ M(v)∪{v}such that w�−1z

′ ∈
E(G). Then, G contains the directed paths vzu1 · · · uk−1y (or vu1 · · · uk−1y if z = v) and yw1 · · ·w�−1z

′v (or
yw1 · · ·w�−1v if z′ = v) from v to y, and from y to v, respectively.



1874 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

(b) x, y ∈ N(v): If ui ∈ N(v) for all i=0, 1, . . . , k, then the path xu1 · · · uk−1y is also a path in G. Otherwise, exactly
one of the vertices ui is equal to v (note that if there were more than one such vertices, then clearly there exists a
shorter path from x to y); let this vertex be uj , where 1�j �k−1. Then, ui �= v, ∀i �= j . Since uj−1v ∈ E(Hv),
then M(v) ∪ {v}�N+(uj−1), i.e., there exists a vertex a ∈ M(v) ∪ {v} such that uj−1a ∈ E(G). Similarly,
since vuj+1 ∈ E(Hv), there exists a vertex b ∈ M(v) ∪ {v} such that buj+1 ∈ E(G). But then, G contains the
directed path xu1 · · · uj−1av (or xu1 · · · uj−1v if a = v) from x to v, and the directed path vbuj+1 · · · uk−1y (or
vuj+1 · · · uk−1y if b=v) from v to y; thus, there exists a directed path in G from x to y. Similar statements for the
path yw1 · · ·w�−1x imply that either this is a path in G (if wi ∈ N(v), ∀i = 0, 1, . . . , �) or there exist an index
j ′ (1�j ′��− 1) and vertices a′, b′ ∈ M(v) ∪ {v} such that G contains the directed paths yw1 · · ·wj ′−1a

′v (or
yw1 · · ·wj ′−1v if a′ = v) and vb′wj ′+1 · · ·w�−1x (or vwj ′+1 · · ·w�−1x if b′ = v); thus, there exists a directed
path in G from y to x as well.

In either case, the vertices x, y belong to the same strongly connected component of G. �

Our algorithm takes advantage of Lemma 4.1 to reduce the computation of the strongly connected components in
the complement G to the same computation in the graph Hv for a vertex v of G of minimum sum of in-degree and
out-degree; the choice of v implies that the graph Hv has O(

√
m) vertices (Lemma 2.2), where m is the number of edges

of G, and thus the strongly connected components in Hv can be computed efficiently. Since the strongly connected
components of a graph are vertex-disjoint, the algorithm uses an array sccc[ ] of size equal to the number of vertices of
the input graph G in which it records the strongly connected components of G; in particular, sccc[a] = sccc[b] iff a, b

belong to the same strongly connected component of G. In more detail, the algorithm works as follows:

Algorithm STRONG_CO-COMPONENTS

for the computation of the strongly connected components of the complement of a graph
Input: a directed graph G.
Output: an array sccc[ ] as described above.

1. v← a vertex of G of minimum sum of in-degree and out-degree;
2. if the in-degree and out-degree of v are both equal to 0

then { G is disconnected or a single-vertex graph; G is strongly connected}
for each vertex w of G do

sccc[w] ← v; {v: representative of the s.c.c of G}
exit;

3. construct the auxiliary graph Hv defined earlier and, from that, its complement Hv;
4. compute the strongly connected components of the graph Hv and store them in the standard

representative-based representation in an array c[ ];
5. for each vertex w of the graph G do

if w ∈ V (Hv)

then sccc[w] ← c[w];
else sccc[w] ← c[v];

The correctness of the algorithm follows from Lemma 4.1 and from the fact that if a directed graph has a vertex with
both its in-degree and its out-degree equal to 0, then its complement is strongly connected. Let us now compute the
time and space complexity. The input graph G is assumed to be given in adjacency-list representation; let n and m
be the numbers of its vertices and edges. Then, Step 1 can be executed in O(n + m) time, while Step 2 takes O(n)

time. An adjacency-list representation of the graph Hv can be obtained from a copy of the adjacency lists of G in
O(n+m) time; from that, an adjacency-list representation of its complement Hv can be obtained in O(m) time, since
the number of vertices of Hv is O(

√
m) (Lemma 2.2). Hence, Step 3 takes O(n + m) time. Step 4 takes O(m) time,

since the computation of the strongly connected components of a graph can be done in time linear in the size of the
graph [8], and the graph Hv has O(

√
m) vertices and thus O(m) edges. Finally, Step 5 takes O(n) time. The space

required includes the arrays sccc[ ] and c[ ], and the adjacency-list representations of the graphs G, Hv , and Hv; thus,
the algorithm requires O(n+m) space. The following theorem summarizes our results:



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1875

Theorem 4.1. Let G be a directed graph on n vertices and m edges. Then, algorithm STRONG_CO-COMPONENTS

computes the strongly connected components of G in O(n+m) time and space.

4.1. Parallelizing the algorithm

Let us now see how the algorithm STRONG_CO-COMPONENTS can be parallelized; we obtain an O(log2 n)-time and
O(m1.188/ log n)-processor CREW PRAM solution for the problem. For details on the PRAM techniques mentioned
below (i.e., prefix sums, array packing, list ranking), see [1,16].

Step 1: The out-degree d+(u) of a vertex u of the graph G can be easily computed by applying list ranking on the
adjacency list of u and by taking the maximum rank; this can be done in O(log n) time using O(d+(u)/ log n) processors
on the EREW PRAM. The computation for all the vertices takes O(log n) time and O(m/ log n) processors on the same
model of computation. The computation of the in-degree of a vertex u can be done by counting the vertices u in all
the adjacency lists of the graph G; this computation can be done in O(log2 n) time with O(m/ log n) processors on the
EREW PRAM, using list ranking and sorting on the elements of the adjacency lists of the graph G. Locating the vertex
v of minimum sum of in-degree and out-degree in G can be executed in O(log n) time using O(n/ log n) processors on
the EREW PRAM.

Step 2: In this step, if the in-degree and out-degree of the vertex v are both equal to 0, the algorithm assigns the value
v to each entry of the array sccc[ ]; recall that the size of sccc[ ] equals the number of vertices in the input graph G. This
assignment can be done in O(log n) time using O(n/ log n) processors on the EREW PRAM (to avoid concurrent-read
operations we produce n copies of the value v, which can be done within the same time and processor bounds on the
same model of computation).

Step 3: We first construct the subgraph Gv of the graph G induced by the vertex set N(v) ∪ {v}. An adjacency-list
representation of the subgraph Gv can be obtained by first processing a copy of the adjacency-list representation of G,
and re-indexing (based on the ranks of the vertices in the adjacency lists of G) so that the vertices in N(v) ∪ {v} are
mapped to consecutive integers starting from 1; then, the adjacency lists of the graph Gv can be obtained in O(log n)

time using O((n+m)/ log n) processors on the EREW PRAM model (see also [6]).
We next compute the in-degree and the out-degree of the vertices of the graph Gv . This computation is done in a

fashion similar to that described in Step 1, and it thus can be done in O(log2 n) time with O(m/ log n) processors on the
EREW PRAM model. The construction of the auxiliary graph Hv defined in Lemma 4.1 can be done using the graph
Gv in the following manner (d−Gv

(x) and d+Gv
(x) denote the in-degree and the out-degree of the vertex x in the graph

Gv , respectively, whereas the in-degree and the out-degree of the vertex x in the input graph G are denoted by d−G(x)

and d+G(x), respectively):

• for each edge vx in Gv do the following:

if d−Gv
(x) �= d−G(x)− |V (G)− V (Gv)| then delete the edge vx from the graph Gv;

• for each edge xv in Gv do the following:

if d+Gv
(x) �= d+G(x)− |V (G)− V (Gv)| then delete the edge xv from the graph Gv .

It is not difficult to see that the above construction can be done in O(log n) time using O(n/ log n) processors on the
EREW PRAM model.

An adjacency-list representation of the complement Hv of the graph Hv can be obtained by first constructing an
adjacency matrix for Hv , and then by building the appropriate adjacency lists. All this can be carried out in O(log n)

time using O((n+m)/ log n) processors on the EREW PRAM model, thanks to the fact that |N(v) ∪ {v}| = O(
√

m)

(Lemma 2.2).
Step 4: The computation of the strongly connected components of the complement Hv of the graph Hv is done by

applying a parallel algorithm which computes the strongly connected components of a graph on N vertices in O(log2N)

time using O(N2.376/ log N) processors on the CREW PRAM [16]; since the graph Hv has O(
√

m) vertices (Lemma
2.2), the execution of the algorithm on Hv takes O(log2 n) time and requires O(m1.188/ log n) processors on the CREW
PRAM model.



1876 S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877

It is important to note that the component information needs to be re-indexed back to the original indexing scheme.
This can be easily done, while avoiding concurrent reads, by using one copy of the re-indexing array for each vertex
in N(v)∪ {v}; since |N(v)∪ {v}| =O(

√
m), the copying can be done in O(log m) time using O(m/ log m) processors

on the EREW PRAM, and the re-indexing in O(log n) time using O(
√

m/ log n) processors on the same model of
computation.

Step 5: Having computed the array c[ ], that is, the standard representative-based representation of the strongly
connected components of the graph Hv , the computation of the array sccc[ ] can be efficiently done in parallel. Indeed,
it is easy to see that the array sccc[ ] can be computed in O(log n) time using O(n/ log n) processors on the EREW
PRAM; again, to avoid concurrent-read operations we produce |V (G) − V (Hv)|< n copies of the value c[v] on the
same model of computation and within the same time and processor bounds.

Thus, we obtain the following result.

Theorem 4.2. Let G be a directed graph on n vertices and m edges. Then, algorithm STRONG_CO-COMPONENTS can
be parallelized to yield the strongly connected components of G in O(log2 n) time using O(m1.188/ log n) processors
on the CREW PRAM model.

4.2. Extending the approach to computing connected co-components

The approach can be extended to the computation of the co-components of an undirected graph in light of the fact
that the connected components of such a graph are identical to the strongly connected components of the directed graph
that results by replacing each undirected edge by two oppositely directed edges. In this case, for a vertex v of the input
graph G, we define the following auxiliary undirected graph Hv:

V (Hv)=N [v],
E(Hv)= {xy | x, y ∈ N(v) and xy ∈ E(G)} ∪ {vx | x ∈ N(v) and M(v) ∪ {v} ⊆ N(x)},

where N(v) and M(v) denote the sets of neighbors and non-neighbors of v in G. Then, the following lemma, analogous
to Lemma 4.1, holds:

Lemma 4.2. Let G be an undirected graph, v be a vertex of G, and let N(v) and M(v) be the sets of neighbors and
non-neighbors of v in G.

(i) If x is a non-neighbor of v in G, then the vertices v and x belong to the same connected component of G.
(ii) Let Hv be the undirected graph defined earlier. Then, two vertices x, y ∈ N(v)∪{v} belong to the same connected

component of G if and only if they belong to the same connected component of Hv .

Then, an algorithm similar to STRONG_CO-COMPONENTS applied on a vertex v of minimum degree in G yields a very
simple optimal sequential algorithm for computing the connected components of the complement of the given graph,
in light of Lemma 2.1 and the fact that the connected components of a graph can be computed in time linear in the size
of the graph [8].

Finally, a parallelization similar to the one described in Section 4.1 and the algorithm of Chong et al. for computing
the connected components of a graph on N vertices in O(log N) time using O(N2/ log N) processors on the EREW
PRAM [4] yields an optimal parallel co-connectivity algorithm simpler than the one in [6]. Therefore, we have:

Corollary 4.1. Let G be an undirected graph on n vertices and m edges. Then, the connected components of G can be
computed in O(log n) time using O((n+m)/ log n) processors on the EREW PRAM model.

5. Concluding remarks

In this paper we described sequential co-biconnectivity and strong co-connectivity algorithms which, for a graph on n
vertices and m edges, run in O(n+m) time and are therefore optimal. The algorithms are simple, work on the graph (and
not on its complement, thus avoiding a potential �(n2) time complexity), and admit efficient parallelization leading to
an optimal O(log2 n)-time parallel co-biconnectivity algorithm, and an O(log2 n)-time parallel strong co-connectivity



S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics 155 (2007) 1858–1877 1877

algorithm; both run on the CREW PRAM model of parallel computation. As a byproduct, we obtained a simple optimal
O(log n)-time EREW PRAM co-connectivity algorithm.

We leave as an open problem the design of optimal O(log n)-time parallel co-biconnectivity algorithms (note that the
connected co-components of a graph can be optimally computed in O(log n) parallel time on the EREW PRAM model
[6]). In particular, finding an O(log n)-time O(n2/ log n)-processor EREW PRAM biconnectivity algorithm would be
very interesting; note that such an algorithm would imply an optimal O(log n)-time parallel co-biconnectivity algorithm
(see Step 6 of our parallel algorithm for the problem).

Our parallel strong co-connectivity algorithm uses a CREW PRAM algorithm for computing the strongly connected
components which runs in O(log2 n) time with O(n2.376/ log n) processors (see Step 4). It would be worth investigating
the existence of cost-optimal or cost-efficient EREW PRAM such algorithms.

References

[1] S.G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Englewood Cliffs, NJ, 1997.
[2] B. Awerbuch, Y. Shiloach, New connectivity and MSF algorithms for ultra-computer and PRAM, IEEE Trans. Comput. 36 (1987) 1258–1263.
[3] F.Y. Chin, J. Lam, I. Chen, Efficient parallel algorithms for some graph problems, Comm. ACM 25 (1982) 659–665.
[4] K.W. Chong, Y. Han, Y. Igarashi, T.W. Lam, Improving the efficiency of parallel minimum spanning tree algorithms, Discrete Appl. Math. 126

(2003) 33–54.
[5] K.W. Chong, Y. Han, T.W. Lam, Concurrent threads and optimal parallel minimum spanning trees algorithm, J. ACM 48 (2001) 297–323.
[6] K.W. Chong, S.D. Nikolopoulos, L. Palios, An optimal parallel co-connectivity algorithm, Theory Comput. Syst. 37 (2004) 527–546.
[7] R. Cole, U. Vishkin, Faster optimal prefix sums and list ranking, Inform. and Comput. 81 (1989) 334–352.
[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., MIT Press, Inc., Cambridge, MA, 2001.
[9] E. Dahlhaus, J. Gustedt, R.M. McConnell, Efficient and practical algorithms for sequential modular decomposition, J. Algorithms 41 (2001)

360–387.
[10] E. Dahlhaus, J. Gustedt, R.M. McConnell, Partially complemented representation of digraphs, Discrete Math. Theoret. Comput. Sci. 5 (2002)

147–168.
[11] H. Gazit, G.L. Miller, An improved parallel algorithm that computes the BFS numbering of a directed graph, Inform. Process. Letters 28 (1988)

61–65.
[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[13] D.S. Hirschberg, Parallel algorithms for the transitive closure and the connected components problems, in: Proceedings of the Eighth ACM

Symposium on Theory of Computing (STOC’76), 1976, pp. 55–57.
[14] D.S. Hirschberg, A.K. Chandra, D.V. Sarwate, Computing connected components on parallel computers, Comm. ACM 22 (1979) 461–464.
[15] H. Ito, M. Yokoyama, Linear time algorithms for graph search and connectivity determination on complement graphs, Inform. Process. Letters

66 (1998) 209–213.
[16] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[17] M.-Y. Kao, Linear-processor NC algorithms for planar directed graphs I: strongly connected components, SIAM J. Comput. 22 (1993)

431–459.
[18] D. Nath, S.N. Maheshwari, Parallel algorithms for the connected components and minimal spanning trees, Inform. Process. Letters 14 (1982)

7–11.
[19] J. Reif, Depth-first search is inherently sequential, Inform. Process. Letters 20 (1985) 229–234.
[20] J. Reif (Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San Mateo, California, 1993.
[21] C. Savage, J. JáJá, Fast efficient parallel algorithms for some graph problems, SIAM J. Comput. 10 (1981) 682–691.
[22] Y. Shiloach, U. Vishkin, An O(log n) parallel connectivity algorithm, J. Algorithms 3 (1982) 57–67.
[23] R. Tarjan, U. Vishkin, Finding biconnected components and computing tree functions in logarithmic parallel time, SIAM J. Comput. 14 (1985)

862–874.
[24] Y.H. Tsin, F.Y. Chin, Efficient parallel algorithms for a class of graph theoretic problems, SIAM J. Comput. 13 (1984) 580–599.


	On the parallel computation of the biconnected and strongly connected co-components of graphs
	Introduction
	Theoretical framework
	Biconnected co-components
	Parallelizing the algorithm

	Strongly connected co-components
	Parallelizing the algorithm
	Extending the approach to computing connected co-components

	Concluding remarks
	References


