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Detecting Holes and Antiholes in Graphs

Stavros D. Nikolopoulos1 and Leonidas Palios1

Abstract. In this paper we study the problems of detecting holes and antiholes in general undirected graphs,
and we present algorithms for these problems. For an input graph G on n vertices and m edges, our algorithms
run in O(n + m2) time and require O(nm) space; we thus provide a solution to the open problem posed
by Hayward et al. in [17] asking for an O(n4)-time algorithm for finding holes in arbitrary graphs. The key
element of the algorithms is the use of the depth-first-search traversal on appropriate auxiliary graphs in which
moving between any two adjacent vertices is equivalent to walking along a P4 (i.e., a chordless path on four
vertices) of the input graph or on its complement, respectively. The approach can be generalized so that for a
fixed constant k ≥ 5 we obtain an O(nk−1)-time algorithm for the detection of a hole (antihole resp.) on at
least k vertices. Additionally, we describe a different approach which allows us to detect antiholes in graphs
that do not contain chordless cycles on five vertices in O(n +m2) time requiring O(n +m) space. Again, for
a fixed constant k ≥ 6, the approach can be extended to yield O(nk−2)-time and O(n2)-space algorithms for
detecting holes (antiholes resp.) on at least k vertices in graphs which do not contain holes (antiholes resp.) on
k − 1 vertices. Our algorithms are simple and can be easily used in practice. Finally, we also show how our
detection algorithms can be augmented so that they return a hole or an antihole whenever such a structure is
detected in the input graph; the augmentation takes O(n + m) time and space.
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1. Introduction. We consider finite undirected graphs with no loops or multiple edges.
Let G be such a graph and let v0, v1, . . . , vk−1 be a sequence of k distinct vertices such
that there is an edge from vi to v(i+1)mod k (for all i = 0, 1, . . . , k−1), and no other edge
between any two of these vertices; we say that this is a chordless cycle on k vertices. A
hole is a chordless cycle on five or more vertices; an antihole is the complement of a
hole.

Holes and antiholes have been extensively studied in many different contexts in algo-
rithmic graph theory. They constitute forbidden induced subgraphs for many different
classes of graphs, both perfect (see [4] and [14]) and not perfect. In fact, there is a struc-
tural characterization of a hierarchy of graph classes with no holes on k vertices in which
each class excludes antiholes on i vertices, 5 ≤ i ≤ k + 1; at one end of the hierarchy is
the class of graphs with no holes and at the other end is the class of graphs with no holes
and no antiholes [13] (the graphs with no holes and no antiholes form the class of weakly
chordal graphs, also known as weakly triangulated graphs [15]). Thus, the fast detection
of holes or antiholes helps in the efficient recognition of all these classes of graphs.

Moreover, the problem of detecting holes or antiholes has been the focus of consid-
erable attention lately in light of the recent proof by Chudnovsky et al. [8] of the perfect
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graph conjecture [1], which states that a graph is perfect if and only if it contains no holes
and no antiholes on an odd number of vertices. Thus, efficient algorithms for detecting
induced holes or antiholes on an odd number of vertices will imply fast recognition of
perfect graphs; the currently fastest algorithm for recognizing perfect graphs runs in
O(n9) time [7].

Several algorithms for detecting holes and antiholes in graphs have been proposed
in the literature. The definition of holes and antiholes implies that such algorithms can
be applied without error on the biconnected components of the input graph and of its
complement, respectively, instead of the entire graph. Although this approach may lead
to the fast detection of holes and antiholes in graphs with small biconnected components,
it does not yield any gain in the asymptotic sense.

The problem of determining whether a given graph on n vertices and m edges contains
a chordless cycle on k or more vertices, for some fixed value of k ≥ 4, is solved in O(nk)

time [16]. Spinrad [21] reduced the time complexity of the problem to O(nk−3 M), where
M � n2.376 is the time required to multiply two n×n matrices. Note that the problem of
determining whether a graph contains a chordless cycle on four or more vertices can be
solved in O(n+m) time [14], [20], [23] (it is the well-known chordal graph recognition
problem).

The algorithms of [16] and [21] can be used for the recognition of weakly chordal
graphs in O(n5) and O(n4.376) time, respectively. Further progress on the weakly chordal
graph recognition problem includes the O(n4)-time algorithm of Spinrad and Sritharan
[22], and the O(m2)-time algorithms of Hayward et al. [17] and of Berry et al. [2]. It is
interesting to note that the algorithm of [17] produces a hole or an antihole certificate
whenever the input graph is not weakly chordal. In the same paper the authors posed as
an open problem the designing of an O(n4)-time algorithm to find a hole in an arbitrary
graph.

In this paper we study the above-mentioned open problem and we present two al-
gorithms, one for the detection of holes and another for the detection of antiholes in
arbitrary graphs. Both algorithms run in O(n+m2) time and require O(nm) space, and
rely on the detection of a cycle in the input graph or in its complement, respectively,
satisfying certain conditions. The existence of such a cycle is checked by means of
running depth-first-search (DFS) on appropriate auxiliary (directed) graphs; in fact, in
order to achieve the stated space complexity, we run DFS on these graphs implicitly. The
approach can be generalized and yields algorithms for detecting holes and antiholes on
at least k vertices; these algorithms take O(n m p−1) time if k = 2p ≥ 6, and O(n+m p)

time if k = 2p + 1 ≥ 5, thus improving over the time complexity of the best currently
known algorithm for the problem [21].

We also describe another algorithm for the detection of antiholes in graphs that do
not contain chordless cycles on five vertices: the algorithm processes each edge of the
input graph in order to determine whether the endpoints of the edge participate in an
antihole (on at least six vertices), and relies on the computation of the co-connected
components of subgraphs of the input graph; it runs in O(n + m2) time and takes
O(n + m) space. In addition to providing a different way of approaching the problem,
this result has the potential to yield a linear-space antihole detection algorithm provided
that C5s can be detected in O(n + m2) time and O(n + m) space. The same approach
yields an O(n2m)-time and O(n2)-space algorithm for detecting holes in graphs that
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do not contain chordless cycles on five vertices. As with the previous approach, this
can also be extended to the problem of detecting antiholes on at least k vertices for
any constant k ≥ 6: for an undirected graph G on n vertices and m edges which does
not contain antiholes on k − 1 vertices, it can be determined whether G contains an
antihole on at least k vertices in O(n + m p−1) time if k = 2p or in O(n m p−1) time
if k = 2p + 1 using O(n + m) space; for holes, the respective time complexities are
O(n2 m p−2) time if k = 2p and O(n m p−1) time if k = 2p+1, and the space complexity
is O(n2).

Additionally, we describe how to augment our three main detection algorithms so
that they return a hole or an antihole in the case where such a structure exists in the
input graph; the augmented hole (antihole, respectively) detection algorithm produces
a hole (an antihole, respectively) in O(n + m) additional time and O(n + m) space,
thus, providing the most natural evidence that the input graph indeed contains a hole
or an antihole. Finally, we note that, as a by-product, our hole and antihole detection
algorithms can be used for recognizing weakly chordal graphs leading to a solution that
matches the best currently known time complexity for this problem [2], [17].

The paper is structured as follows. In Section 2 we establish the notation and the
terminology we use throughout the paper. In Section 3 we describe the hole detection
algorithm, establish its correctness, and analyze its complexity. An antihole detection
algorithm for general graphs is given in Section 4, while an antihole detection algo-
rithm for graphs that do not contain chordless cycles on five vertices is given in Sec-
tion 5. Section 6 concludes the paper with a summary of our results and some open
problems.

2. Preliminaries. Let G be a finite undirected graph with no loops or multiple edges.
We denote by V (G) and E(G) the vertex set and edge set of G. The subgraph of a
graph G induced by a subset S of vertices of G is denoted by G[S].

A path in G is a sequence of vertices v0v1 · · · vk such that vivi+1 ∈ E(G) for i =
0, 1, . . . , k − 1; we say that this is a path from v0 to vk and that its length is k. A path
is called simple if none of its vertices occurs more than once; it is called trivial if its
length is equal to 0. A simple path v0v1 · · · vk is chordless if vivj /∈ E(G) for any two
non-consecutive vertices vi , vj in the path. Throughout the paper the chordless path on
k vertices is denoted by Pk . In particular, a chordless path on three vertices is denoted
by P3 and a chordless path on four vertices is denoted by P4. A sequence of vertices
v0v1 · · · vk−1 forms a cycle (resp. simple cycle) iff v0vk−1 ∈ E(G) and v0v1 · · · vk−1 is
a path (resp. simple path) in G; its length is equal to k. A simple cycle v0v1 · · · vk−1 is
said to be chordless if no edge vivj exists in E(G) such that |i − j | 
= 1 mod k. The
chordless cycle on k vertices is denoted by Ck ; in particular, C5 is the chordless cycle
on five vertices.

The neighborhood N (x) of a vertex x ∈ V (G) is the set of all the vertices of G which
are adjacent to x . The closed neighborhood of x is defined as N [x] := N (x)∪ {x}. The
neighborhood of a subset S of vertices is defined as N (S) := (⋃

x∈S N (x)
) − S and

its closed neighborhood as N [S] := N (S) ∪ S. The notion of the neighborhood can be
extended to edges: for an edge e = xy, the neighborhood (closed neighborhood) of e is
the vertex set N ({x, y}) (resp. N [{x, y}]) and is denoted by N (e) (resp. N [e]). For an
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edge e = xy, we define the following three sets:

A(e; x) = N (x)− N [y],

A(e; y) = N (y)− N [x],

A(e) = N (x) ∩ N (y);

clearly, these sets form a partition of the neighborhood N (e) of the edge e.
We close this section by describing the co-connectivity problem which plays a crucial

role in the antihole detection algorithm for graphs that do not contain a C5, which we
propose in this paper. The co-connectivity problem on a graph G is that of finding the
connected components of the complement G; the connected components of G are called
co-connected components (or co-components) of G. The co-components of a graph G
on n vertices and m edges can be computed in O(n +m) time and space [5], [12], [18].

3. Detecting Holes. The hole detection algorithm relies on the result stated in the
following lemma.

LEMMA 3.1. An undirected graph G contains a hole if and only if G contains a cycle
u0u1 · · · uk , where k ≥ 4, such that the paths ui ui+1ui+2ui+3 for each i = 0, 1, . . . , k−3,
and the path uk−2uk−1uku0 are P4s of G.

PROOF. (�⇒) Suppose that G contains a hole; then the vertices of the hole induce a
cycle meeting the conditions of the lemma.

(⇐�) Suppose now that G contains a cycle as described in the lemma; let v0v1 · · · vh

be the shortest such cycle. Then this cycle is a hole:

(a) since the cycle meets the conditions of the lemma, then h ≥ 4, which implies that
the cycle is of length at least equal to 5;

(b) the cycle is chordless. Suppose for contradiction that there existed chords. With each
chord vivj , we associate its “length,” which is defined as length(vivj ) = | j − i |;
let v�vr , where � < r , be the chord with minimum length. Note that r ≥ � + 4;
this follows from the fact that r ≥ 4 (because v0v1v2v3 is a P4) and the fact that
vr−3vr−2vr−1vr is a P4. Then vr−2vr−1vrv� is a P4 in G because it is a path in
G, vr−2vr /∈ E(G) (recall that vr−3vr−2vr−1vr is a P4), and v�vr−2 /∈ E(G) and
v�vr−1 /∈ E(G) for otherwise these would be chords whose length-value would be
smaller than that of the chord v�vr , in contradiction to the minimality of length(v�vr ).
Additionally, vivi+1vi+2vi+3 is a P4 for all i = �, �+ 1, . . . , r − 3. Thus, the cycle
v�v�+1 · · · vr would meet the conditions of the lemma; as it would be shorter than
the cycle v0v1 · · · vh , this would contradict the fact that the latter cycle is the shortest
such cycle. Hence, the cycle v0v1 · · · vh is chordless.

Therefore, G contains a hole.

Lemma 3.1 is the basis of our algorithm for the detection of holes. Suppose that we
are interested in detecting whether a graph G contains a hole. We consider an auxiliary
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directed graph G ′ which is defined as follows:

V (G ′) = {vabc | abc is a P3 in the graph G},
E(G ′) = {(vabc, vbcd) | abcd is a P4 in the graph G}.

Note that if abc is a P3 of G, the graph G ′ contains the vertices vabc and vcba ; similarly,
if abcd is a P4 of G, the graph G ′ contains the edges (vabc, vbcd) and (vdcb, vcba).
The definition of G ′ implies that moving from vertex to vertex in G ′ is equivalent to
proceeding along P4s of G. Thus, the condition of Lemma 3.1 on G can be checked by
applying DFS on G ′ [10]; more specifically, it is not difficult to see that the following
holds:

LEMMA 3.2. Let G be a graph, let G ′ be the associated auxiliary graph defined
above, and suppose that we run DFS on G ′. If during the DFS, the DFS-path is
vu0u1u2vu1u2u3 · · · vuk−2uk−1uk , where ui 
= uj for all 0 ≤ i < j < k, and uk = u� for
some � such that 0 ≤ � < k, then the vertices u�, u�+1, . . . , uk−1 form a cycle in G
satisfying the conditions of Lemma 3.1. Moreover, if G contains a hole, then during the
DFS on G ′ we will find a sequence of vertices in G ′ whose associated P3s in G form a
cycle as in Lemma 3.1.

If the graph G has n vertices and m edges, the graph G ′ has O(nm) vertices and O(m2)

edges; note that a P4 abcd is uniquely characterized by the ordered pair ((a, b), (c, d))
where (a, b) and (c, d) are ordered pairs of adjacent vertices in G. Thus, constructing
G ′, so that we can run DFS on it, clearly requires O(m2) space. To reduce the space
required, we do not construct G ′; instead, we run DFS on it implicitly: in order to search
the graph G exhaustively, we start from each P3 of G; in the general step, we try to extend
a P3 abc into P4s of the form abcd , then, for each such P4, we proceed by extending the
P3 bcd into P4s of the form bcde, and so on; in the above cases, the active-path is abc, it
becomes abcd, then abcde, and so on (when we backtrack, the corresponding vertices
are removed from the end of the current active-path); if ever we proceed to a P3 xyz such
that z appears again in the current active-path, then the graph G contains a cycle as in
Lemma 3.1 and consequently a hole. Note that the current active path contains precisely
the vertices of the P3s associated with the vertices in the current DFS-path on G ′, where
the common vertices of G in adjoining P3s are recorded exactly once.

During the DFS on the graph G ′, vertices (corresponding to P3s of G) are marked
so that they are not “visited” again. In order to simulate this, we use an auxiliary array
visited P3[(a, b), c], where a, b, c ∈ V (G) and a, b are adjacent in G; for each edge ab
of G, the array has entries visited P3[(a, b), c] as well as visited P3[(b, a), c] for every
c ∈ V (G), and hence its size is 2m · n. The entry visited P3[(a, b), c] is equal to 1
iff the vertices a, b, c induce a P3 abc of G which has already been visited during the
DFS, otherwise it is equal to 0 (note that if abc is a P3 of G, the array contains the
entries visited P3[(a, b), c] and visited P3[(c, b), a]). Additionally, in order to be able
to test whether a vertex belongs to the current active-path, we use another auxiliary array
in path[ ] of size n; for a vertex v, in path[v] is equal to 1 if v belongs to the current
active-path, and is 0 otherwise. Below, we give a detailed description of the algorithm
when applied on a connected input graph G; the case of a disconnected input graph is
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discussed after the analysis of the algorithm. The algorithm assumes that G is given in
adjacency-list representation, from which it computes the adjacency matrix of G so that
adjacency tests can be answered in constant time.

HOLE-DETECTION ALGORITHM

Input: a connected undirected graph G.
Output: a message whether G contains a hole or not.

1. Initialize the entries of the arrays visited P3[ ] and in path[ ] to 0;
compute the adjacency matrix A[ ] of G;

2. for each vertex u of G do
2.1 in path[u]← 1;
2.2 for each edge vw of G do

if u is adjacent to v and non-adjacent to w and
visited P3[(u, v), w] = 0

then in path[v]← 1;
process(u, v, w);
in path[v]← 0;

if u is non-adjacent to v and adjacent to w and
visited P3[(u, w), v] = 0

then in path[w]← 1;
process(u, w, v);
in path[w]← 0;

2.3 in path[u]← 0;
3. Print that G does not contain a hole.

where the procedure process( ) is as follows:

process(a, b, c)

1. in path[c]← 1;
2. visited P3[(a, b), c]← 1;

visited P3[(c, b), a]← 1;
3. for each vertex d adjacent to c in G do

3.1 if d is adjacent neither to a nor to b in G
then {abcd is a P4 of G}

3.2 if in path[d] = 1
then print that G has a hole; exit;
else if visited P3[(b, c), d] = 0

then process(b, c, d);
4. in path[c]← 0;

It is important to observe that the description of the procedure process( ) guarantees
that from a P3 abc we proceed to a P3 bcd only if abcd is a P4 of the input graph G.
Additionally, following the general description of the DFS, the procedure sets the cor-
responding entries of the array visited P3[ ] shortly after it begins, thus preventing a
second call to the procedure on the same P3. Thus, the procedure process( ) is called
exactly once for each P3 of G.
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The correctness of the algorithm follows from Lemmas 3.1 and 3.2, and from the
correctness of the implicit execution of DFS on the graph G ′.

Time and space complexity. Let n and m be the number of vertices and edges of the
input graph G, respectively. Since G is connected, n = O(m). We note that in order to
be able to access the endpoints of an edge in constant time, we assume that the record of
each edge uv of G contains pointers to u and v; similarly, in order to be able to access
an edge in constant time given its endpoints, we assume that each entry of the adjacency
matrix of G corresponding to two vertices u and v that are adjacent in G also stores a
pointer to the edge uv.

Before analyzing the time complexity of each step of the algorithm, we turn to the
procedure process( ). We note that the procedure is called exactly once for each P3 of
G, i.e., O(nm) times, and that, if we ignore the time taken by the recursive calls, a call
process(a, b, c) takes O(|N (c)| + 1) time by using the adjacency list of the vertex c to
retrieve c’s neighbors, and by using the adjacency matrix A[ ] to answer adjacency tests
in constant time. Therefore, the time taken by all the calls to the procedure process( ) is
O(m2), since each quadruple of vertices a, b, c, d where abc is a P3 and d is adjacent
to c is uniquely characterized by the ordered pair ((a, b), (c, d)) where (a, b) and (c, d)
are ordered pairs of adjacent vertices in G.

Step 1 of the main body of the algorithm clearly takes O(nm) time. If the time taken
by the calls to the procedure process( ) is ignored, Step 2 takes O(nm) time; again, the
adjacencies are checked in constant time by means of the adjacency matrix A[ ] of G.
Step 3 takes constant time. Thus, the time complexity of the algorithm for a connected
graph on n vertices and m edges is O(m2). The space needed is O(nm): O(n) and O(nm)
for the arrays in path[ ] and visited P3[ ], respectively, and O(n2) for the matrix A[ ]
and the adjacency-list representation of the input graph.

Summarizing, we have the following result.

LEMMA 3.3. Let G be a connected undirected graph on n vertices and m edges. Then
the proposed algorithm determines whether G contains a hole in O(m2) time and O(nm)
space.

The case of a disconnected input graph. If the input graph G is disconnected, we work
on each of its connected components; let ni and mi denote the number of vertices and
edges of the i th connected component, respectively. The computation of the connected
components takes O(n+m) time [10], while processing each of them takes O(m2

i ) time.
Since

∑
i mi = m, we have that O(n+m2) time suffices for detecting holes in any graph

on n vertices and m edges. In this case the space needed is O(
∑

i (ni mi )) = O(nm).
Therefore, we obtain the following theorem.

THEOREM 3.1. Let G be an undirected graph on n vertices and m edges. Then there is
an algorithm to determine whether G contains a hole using O(n+m2) time and O(nm)
space.

3.1. Providing a Certificate. The hole-detection algorithm can be easily augmented so
that it provides a certificate whenever it decides that the input graph G contains a hole.
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To facilitate the computation of the certificate, we slightly modify the definition of the
array in path[ ]: in particular, for vertices participating in the active-path, the entries of
the array in path[ ] store the position of the corresponding vertex in the path, i.e., if v is
the i th vertex in the active-path, in path[v] is equal to i (if v does not participate in the
active-path, in path[v] remains 0); this may necessitate replacing the call process(a, b, c)
by process(a, b, c, i), whenever c is the i th vertex in the path.

Now, suppose that the algorithm concludes that G contains a hole; then the condition in
Step 3.2 of the procedure process( ) during the execution of a call, say, process(a, b, c, k),
is found true for some vertex d . If d is located in the j th position of the current active-path,
the vertices located in positions j, j + 1, . . . , k form a cycle satisfying the conditions
in the statement of Lemma 3.1. Then if this cycle is chordless, it is a hole; otherwise, in
accordance with the second part of the proof of Lemma 3.1, it suffices to find a chord of
the cycle with the minimum length-value.

Therefore, in order to isolate a hole, we execute the following steps right before
stopping in Step 3.2 of process(a, b, c, k):

(i) the length-value is initialized to k − j corresponding to the edge cd which closes
the cycle (note that the vertices c and d are in positions k and j of the active-path,
respectively);

(ii) we consider all edges incident on the vertices of the cycle, we find those which
have both endpoints on the cycle and are not edges of the cycle, and among these
we find an edge (if any) exhibiting the minimum length-value;

(iii) if the edge exhibiting the computed minimum length-value is incident on the vertices
in positions imin and imax of the active-path, where j ≤ imin < imax ≤ k, then the
vertices in the positions imin, imin + 1, . . . , imax induce a hole in G.

The correctness of the computation follows from the proof of Lemma 3.1. Moreover, it
is not difficult to see that the certificate computation takes O(n + m) time: the edges
incident on a vertex can be accessed in constant time per such edge using the adjacency-
list representation of the input graph, and finding the position of a vertex in the active-
path is done in constant time by using the updated array in path[ ]. The additional space
required for this computation is O(1). Thus, we have:

THEOREM 3.2. Let G be an undirected graph on n vertices and m edges. The hole-
detection algorithm presented in this section can be augmented so that it outputs a hole
as a certificate whenever G contains one. The certificate computation takes O(n + m)
time and O(1) space.

3.2. Detecting Holes on at Least k Vertices. The above approach which yields the hole-
detection algorithm can be generalized to yield algorithms for the detection of holes on
at least k vertices, where k ≥ 5. For an input graph G, we consider the following family
of directed graphs G(�):

V (G(�)) = {vu1u2···u�−1 | u1u2 · · · u�−1 is a P�−1 in the graph G},
E(G(�)) = {(vu1u2···u�−1 , vu2u3···u� ) | u1u2 · · · u� is a P� in the graph G}.
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Clearly, G = G(2) and G ′ = G(4) where G ′ is the auxiliary graph defined in Section 3.
Then, in the same fashion in which the execution of DFS on G ′ = G(4) enables us to
solve the problem of detecting a hole (on at least five vertices), the execution of DFS on
G(k−1) enables us to solve the problem of detecting whether an undirected graph contains
a hole on at least k vertices, for any constant k ≥ 5. This follows from the following
extension of Lemma 3.1:

COROLLARY 3.1. Let k ≥ 5 be a constant. An undirected graph G contains a hole
on at least k vertices if and only if G contains a cycle u0u1 · · · ut , where t ≥ k − 1,
such that every path ui ui+1 · · · ui+k−2 for each i = 0, 1, . . . , t − k + 2, and the path
ut−k+3ut−k+4 · · · ut u0 are all Pk−1s of G.

Then Lemma 3.2 and Corollary 3.1 yield the following corollary:

COROLLARY 3.2. Let G be a graph, let k ≥ 5 be a constant, let G(k−1) be the associated
auxiliary graph defined above, and suppose that we run DFS on G(k−1). Then, if during the
DFS, the DFS-path isvu0···uk−3vu1···uk−2 · · · vur−k+3···ur , where ui 
= uj for all 0 ≤ i < j < r ,
and ur = up for some p such that 0 ≤ p < r , then the vertices up, up+1, . . . , ur−1 form
a cycle in G satisfying the conditions of Corollary 3.1. Moreover, if G contains a hole
on at least k vertices, then during the DFS on G(k−1) we will find a sequence of vertices
in G(k−1) whose associated Pk−2s in G form a cycle as in Lemma 3.1.

In this case as well, we do not construct the graph G(k−1). Instead, we implicitly run
DFS on it: we start from each Pk−2 of G that we have not encountered so far; in the general
step, we try to extend a Pk−2 u0u1 · · · uk−3 into Pk−1s of the form u0u1 · · · uk−3uk−2, then,
for each such Pk−1, we proceed by extending the Pk−2 u1u2 · · · uk−2 into Pk−1s, and so
on. Since there are O(ma) chordless paths on 2a vertices and O(nma) on 2a+1 vertices,
and it takes O(k) time to determine whether a vertex extends a Pk−1 into a Pk , we have:

COROLLARY 3.3. Let G be an undirected graph on n vertices and m edges, and let
k ≥ 5 be a constant. Then, by implicitly running DFS on the auxiliary graph G(k−1),
we can determine whether G contains a hole on at least k vertices in O(n m p−1) time if
k = 2p, and in O(n + m p) time if k = 2p + 1.

Corollary 3.3 implies that the detection of holes on at least k vertices takes O(nk−1) time
resulting in an improved time complexity on this problem [16], [21]. The drawback is
that the space needed is O(m p−1) if k = 2p, and O(n m p−1) if k = 2p + 1.

4. Detecting Antiholes. Since an antihole is the complement of a hole, one can use
the algorithm of the previous section on the complement of a graph in order to determine
whether it contains an antihole. Such an approach may however require 
(n4) time,
where n is the number of vertices of the graph, since the complement may have as many
as 
(n2) edges. Below, we present an algorithm for the detection of antiholes which
applies the approach described in Section 3 on the complement of the input graph G
without however computing the complement explicitly and which takes O(n+m2) time
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and O(nm) space when G has n vertices and m edges. As in Section 3, the algorithm
uses an array visited P3[(a, b), c], where a, b, c ∈ V (G) and ab ∈ E(G), and thus is
of size 2m · n; visited P3[(a, b), c] is equal to 1 iff acb is a P3 of G which has already
been visited during the DFS, and is 0 otherwise. The input graph G is assumed to be
connected; if G is disconnected, then we apply the algorithm on each of G’s connected
components; it is important to observe that the subgraph induced by the vertices of an
antihole is connected.

ANTIHOLE-DETECTION ALGORITHM

Input: a connected undirected graph G.
Output: a message whether G contains an antihole or not.

1. Initialize the entries of the arrays visited P3[ ] and in path[ ] to 0;
compute the adjacency matrix of G;

2. for each vertex u of G do
2.1 in path[u]← 1;
2.2 for each edge vw of G do

if u is adjacent neither to v nor to w and
visited P3[(v,w), u] = 0

then in path[v]← 1;
process(v, u, w);
in path[v]← 0;

2.3 in path[u]← 0;
3. Print that G does not contain an antihole.

where the procedure process( ) is as follows:

process(a, b, c)

1. in path[c]← 1;
2. visited P3[(a, c), b]← 1;

visited P3[(c, a), b]← 1;
3. for each vertex d adjacent to b in G do

3.1 if d is adjacent to a and non-adjacent to c in G
then {abcd is a P4 of G}

3.2 if in path[d] = 1
then print that G has an antihole; exit;
else if visited P3[(b, d), c] = 0

then process(b, c, d);
4. in path[c]← 0;

Note that for a call process(a, b, c), a and c are adjacent in G, while b is adjacent to
neither a nor c. So, if there exists a vertex d such that d is adjacent to a and b and not
adjacent to c, then the vertices a, b, c, d induce the P4 abcd in G.

The correctness of the algorithm is established as in the case of the hole-detection
algorithm of the previous section.

Time and space complexity. Similarly to the case of the hole-detection algorithm, we
obtain the results stated in Lemma 4.1 and Theorem 4.1 below; observe that if we ignore
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the time taken by the recursive calls, the execution of the call process(a, b, c) takes
O(|N (b)|+1) time, and that each quadruple of vertices a, b, c, d where abc is a P3 of G
and d is adjacent to b in G is uniquely characterized by the ordered pair ((a, c), (b, d)),
where (a, c) and (b, d) are ordered pairs of adjacent vertices in G.

LEMMA 4.1. Let G be a connected undirected graph on n vertices and m edges. Then
the proposed algorithm determines whether G contains an antihole using O(m2) time
and O(nm) space.

THEOREM 4.1. Let G be an undirected graph on n vertices and m edges. Then there is
an algorithm to determine whether G contains an antihole using O(n + m2) time and
O(nm) space.

4.1. Providing a Certificate. Similarly to the hole-detection algorithm, the above al-
gorithm can be easily augmented so that it provides a certificate whenever it decides
that the input graph G contains an antihole. In this case as well, we use the modified
array in path[ ], which is described in Section 3.1. If the algorithm concludes that G
contains an antihole, then the condition in Step 3.2 of the procedure process( ) during
the execution of a call, say, process(a, b, c, k), is found true for some vertex d; suppose
that d is located in the j th position of the current active-path. Then the vertices located
in positions j , j + 1, . . . , k of the path form a cycle in G satisfying the conditions in the
statement of Lemma 3.1.

Since an antihole is the complement of a hole, the observations in Section 3.1 imply
that, in order to isolate an antihole, we need to find a pair of vertices of the cycle, say at
positions i and i ′, such that the vertices are not adjacent in G, are not consecutive in the
cycle, and the length-value |i−i ′| is minimized. To do that efficiently, we use an auxiliary
array pathvertex[1 .. k] whose entries correspond to the vertices in the active-path, and
we work as follows:

(i) The length-value is initialized to k − j corresponding to the pair of vertices c, d
(which are located in positions k and j of the active-path, respectively), and the
entries of the array pathvertex[ ] are initialized to 0.

(ii) For each vertex v of G such that v is in position i of the active-path, where j ≤
i ≤ k − 4, we do the following: we set to 1 the entries of the array pathvertex[ ]
corresponding to the neighbors of v; next, we find the leftmost entry equal to 0 (if
any) in the subarray pathvertex[i + 4 .. k]; if this is the entry t corresponding to
vertex u, and if the difference t − i is less than the current length-value, we update
the length-value to t − i and the associated pair of vertices to v, u; finally, we reset
to 0 the entries of the array pathvertex[ ] corresponding to the neighbors of v, so
that all the entries of the array are again equal to 0.

(iii) If the two vertices associated with the computed minimum length-value are located
in positions imin and imax of the active-path, where j ≤ imin < imax ≤ k, then the
vertices in the positions imin, imin + 1, . . . , imax induce an antihole in G.

It is important to observe that the size of the array pathvertex[ ] is O(n), since the vertices
in the active-path are distinct. The correctness of the computation again follows from the
proof of Lemma 3.1. Its time complexity is O(n+m): the initialization assignments take
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O(n) time while the processing of each vertex takes time proportional to the number of its
neighbors, thanks to the adjacency-list representation of the graph and the array in path[ ].
The additional space required is O(n). Therefore, the following theorem holds:

THEOREM 4.2. Let G be an undirected graph on n vertices and m edges. The antihole-
detection algorithm presented in this section can be augmented so that it outputs an
antihole as a certificate whenever G contains one. The certificate computation takes
O(n + m) time and O(n) space.

4.2. Detecting Antiholes on at Least k Vertices. The approach used in the algorithm in
this section can be generalized to yield an algorithm for detecting antiholes on at least
k ≥ 5 vertices; see also Section 3.2. Since the number of P�s of a graph on n vertices
and m edges is O(mα) if � = 2α and O(n mα) if � = 2α + 1, as with Corollary 3.3, we
have the following result:

COROLLARY 4.1. Let G be an undirected graph on n vertices and m edges, and let
k ≥ 5 be a constant. Then there is an algorithm to determine whether G contains an
antihole on at least k vertices using O(n m p−1) time if k = 2p, and O(n + m p) time if
k = 2p + 1.

5. Detecting Antiholes in Graphs that Do Not Contain a C5. In this section we use
a different approach to solve the problem of detecting antiholes (and holes), which yields
efficient algorithms for graphs that do not contain C5s. In particular, for each edge e = xy
of the input graph G, we consider the partition of the vertices of G into the sets {x, y},
A(e; x), A(e; y), A(e), and V (G)− N [e], and we try to determine whether paths ayuxb
in the complement G, where a ∈ A(e; x), u ∈ V (G) − N [e], and b ∈ A(e; y), can be
extended to form an antihole in G. This approach helps us detect antiholes in general
graphs if we take advantage of the following property:

LEMMA 5.1. Let G be an undirected graph. Then G contains an antihole if and only
if there exists an edge e = xy of G and a vertex u ∈ V (G) − N [e] such that in the
complement of the subgraph of G induced by N (e) ∩ N (u) there exists a path from a
vertex in A(e; x) to a vertex in A(e; y).

PROOF. (�⇒) Suppose that G contains an antihole and let this be the complement of
the hole v0v1 · · · vk , where k ≥ 4. Then the vertices v1 and vk are adjacent in G; let e be
the edge of G connecting them. Then v0 ∈ V (G)−N [e], v2 ∈ A(e; vk), vk−1 ∈ A(e; v1),
and {v2, . . . , vk−1} ⊆ N (e) ∩ N (v0); these and the fact that the sequence vk−1, . . . , v2

induces a path in G imply that the conditions of the lemma hold for the edge v1vk of G
and the vertex v0.

(⇐�) Suppose now that there exists an edge e = xy of G and a vertex u ∈ V (G)−
N [e] such that in the complement of the subgraph G[N (e) ∩ N (u)] there exists a path
from a vertex in A(e; x) to a vertex in A(e; y). Let p0 p1 · · · pk be a shortest such
path; that is, p0 ∈ A(e; x) ∩ N (u), pk ∈ A(e; y) ∩ N (u), pi ∈ A(e) ∩ N (u) for
all i = 1, 2, . . . , k − 1, and pi pj ∈ E(G) for 0 ≤ i < j − 1 ≤ k − 1. Then the
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subgraph G[{x, u, y, p0, p1, . . . , pk}] of G is the complement of a chordless cycle of
length at least 5; in other words, G contains an antihole.

Lemma 5.1 readily implies an antihole-detection algorithm which for a graph G on n
vertices and m edges runs in
(nm2) time in the worst case: for the appropriate pairs of
an edge e = xy and a vertex u, we compute the co-components of the subgraph G[N (e)∩
N (u)] and check whether any of them contains vertices from both A(e; x) and A(e; y);
as there may be as many as 
(nm) such pairs, and for each one of them, 
(n + m)
time may be needed and suffices for the above-mentioned computations, the overall time
complexity is
(nm2). An improved algorithm can be obtained for graphs not containing
C5s, for which the following fact holds.

FACT 5.1. Let G be an undirected graph which does not contain a C5, and let e = xy be
an edge of G. Then for every pair of vertices a and b such that a ∈ A(e; x), b ∈ A(e; y),
and (N (a) ∩ N (b))− N [e] 
= ∅, it holds that a and b are adjacent in G.

PROOF. Let w be any vertex in (N (a) ∩ N (b))− N [e]; clearly, wa, wb ∈ E(G), and
wx, wy 
∈ E(G). If the vertices a and b were not adjacent in G, then the subgraph of G
induced by a, x , y, b, and w would be a C5, a contradiction.

In light of Fact 5.1, for any edge e = xy and any vertex u ∈ V (G) − N [e] of a
graph G that does not contain a C5, any path from a vertex in A(e; x)∩ N (u) to a vertex
in A(e; y) ∩ N (u) in the complement of the subgraph G[N (e) ∩ N (u)] is of length at
least 2. Moreover, such a path contains a vertex in A(e) ∩ N (u); otherwise, the vertices
of the path would belong to A(e; x) ∪ A(e; y), which implies that there exist vertices
a′ ∈ A(e; x) and b′ ∈ A(e; y) such that a′, b′ are consecutive in the path, in contradiction
to Fact 5.1. Then, instead of computing such a path we need only determine if there exist
vertices a ∈ A(e; x) ∩ N (u), b ∈ A(e; y) ∩ N (u), and v ∈ A(e) ∩ N (u) such that v, a
belong to the same co-component of the subgraph G[N (x) ∩ N (u)], and v, b belong to
the same co-component of the subgraph G[N (y)∩ N (u)]; see Figure 1: C and D denote
the co-components of the subgraphs G[N (x) ∩ N (u)] and G[N (y) ∩ N (u)] containing
v and a, and v and b, respectively, and the dotted paths indicate chordless paths in the
complements of these subgraphs. We show next that the existence of such vertices v, a,
and b is equivalent to the existence of an antihole in G.

x y
e

a b

u

v

C D

V (G)�N [e]

A(e;x) \N(u) A(e; y) \N(u)A(e) \N(u)

Fig. 1
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LEMMA 5.2. Let G be an undirected graph which does not contain a C5. Then G
contains an antihole if and only if there exists an edge e = xy of G and vertices
u ∈ V (G)− N [e], a ∈ A(e; x)∩ N (u), b ∈ A(e; y)∩ N (u), and v ∈ A(e)∩ N (u) such
that a, v belong to the same co-component of the subgraph G[N (x) ∩ N (u)], and b, v
belong to the same co-component of the subgraph G[N (y) ∩ N (u)].

PROOF. (�⇒) Suppose that G contains an antihole. Since G does not contain a C5,
the antihole is of length at least 6; let it be the complement of the hole v0v1 · · · vk

(k ≥ 5). The vertices v1 and vk are adjacent in G; if e is the edge of G connecting
them, then v0 ∈ V (G) − N [e], v2 ∈ A(e; vk) ∩ N (v0), vk−1 ∈ A(e; v1) ∩ N (v0), and
{v3, . . . , vk−2} ⊆ A(e) ∩ N (v0). Since k ≥ 5, it is easy to see that the conditions of the
lemma hold for v1, vk , v0, vk−1, v2, v3 in place of x , y, u, a, b, v, respectively.

(⇐�) Suppose now that there exists an edge e = xy of G and vertices u, a, b, v as
described in the statement of the lemma. Then in the complement of the subgraph of G
induced by N (e)∩N (u) there exists a path from vertex a ∈ A(e; x) to vertex b ∈ A(e; y).
Then, by Lemma 5.1, G contains an antihole.

We give below a detailed description of the antihole-detection algorithm for a con-
nected input graph G; for disconnected input graphs, we apply the algorithm on each
of their connected components; recall that the subgraph induced by the vertices of an
antihole is connected.

ANTIHOLE-DETECTION ALGORITHM FOR GRAPHS THAT DO NOT CONTAIN A C5

Input: a connected undirected graph G that does not contain a C5.
Output: a message whether G contains an antihole or not.

1. for each vertex u of G do
1.1 for each vertex w not adjacent to u in G do

1.1.1 compute the set Nu,w = N (u) ∩ N (w);
1.1.2 compute the co-components of G[Nu,w];
1.1.3 store the set Nu,w as a list of vertex records, ordered by

vertex index, where each vertex z ∈ Nu,w is associated with
the representative cc(Nu,w; z) of the co-component to which
it belongs;

1.2 for each edge e = xy of G such that x, y /∈ N [u] (i.e., u ∈ V (G)−
N [e]) do
1.2.1 {mark the co-components of G[Nu,x ] containing a vertex in

A(e; x)}
for each vertex w ∈ Nu,x do

mark1[w]← 0;
for each vertex w ∈ Nu,x − Nu,y do

mark1[cc(Nu,x ;w)]← 1; {mark the representative}
1.2.2 {mark the co-components of G[Nu,y] containing a vertex in

A(e; y)}
for each vertex w ∈ Nu,y do

mark2[w]← 0;
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for each vertex w ∈ Nu,y − Nu,x do
mark2[cc(Nu,y;w)]← 1; {mark the representative}

1.2.3 for each vertex v ∈ Nu,x ∩ Nu,y do
if mark1[cc(Nu,x ; v)] = 1 and mark2[cc(Nu,y; v)] = 1
then print that G contains an antihole; exit;

2. Print that G does not contain an antihole.

The correctness of the algorithm follows from Lemma 5.2: for a vertex u of G and
an edge e = xy such that x, y 
∈ N [u], we have that A(e; x) ∩ N (u) = Nu,x − Nu,y ,
A(e; y)∩N (u) = Nu,y−Nu,x , and A(e)∩N (u) = Nu,x ∩Nu,y ; moreover, the condition
“if mark1[cc(Nu,x ; v)] = 1 and mark2[cc(Nu,y; v)] = 1” and the fact that the vertex v
belongs to Nu,x ∩ Nu,y imply that in the complement of G[Nu,x ] there exists a path from
v to a vertex in A(e; x) and that in the complement of G[Nu,y] there exists a path from
v to a vertex in A(e; y).

Time and space complexity. Let n and m be the number of vertices and edges of
the input graph G; since G is connected, n = O(m). Step 1.1.1 can be completed in
O(n) time, while the construction of G[Nu,w] and the computation of its co-components
can be done in O(|Nu,w|2) time [5], [12], [18]. Since |Nu,w| ≤ min{|N (u)|, |N (w)|},
we have that |Nu,w|2 ≤ |N (u)| · |N (w)|; thus, for a vertex u of G, Step 1.1.2 takes
O(n) +∑

w O(|N (u)| · |N (w)|) = O(m |N (u)|) time.2 The construction of the list
storing Nu,w in Step 1.1.3 can be done in O(|N (u)|) time by traversing the adjacency list
of u, by collecting those vertices that belong to Nu,w, and by updating the co-component
representative information; the ordering by vertex index comes for free, had we sorted
the adjacency lists of the vertices in G by vertex index, something which can be achieved
in O(n + m) time using radix sorting during a preprocessing phase.

The sorting of the lists representing the sets Nu,w implies that determining which
vertices belong to Nu,x − Nu,y , Nu,y − Nu,x , and Nu,x ∩ Nu,y can be achieved by simply
traversing the lists for Nu,x and Nu,y in lockstep fashion. Then each execution of Step 1.2
takes O(|N (u)|) time, since Nu,x , Nu,y ⊆ N (u). Thus, for a vertex u of G, Step 1.2
takes

∑
e O(|N (u)|) = O(m |N (u)|) time. Step 2 takes constant time. In total, the entire

execution of the algorithm on G takes O(
∑

u O(n + m + m |N (u)|)) = O(m2) time.
We now turn to the space complexity of the algorithm. The adjacency-list represen-

tation of the input graph requires O(n + m) space. For an iteration of the for loop in
Step 1, we need: O(n) space to store Nu,w and the re-indexing arrays, and O(n + m)
space to store G[Nu,w], both reusable in each iteration of the for loop in Step 1.1;∑

w O(1+ |Nu,w|) = O(n + m) space to store the list representations of the sets Nu,w

for all w ∈ V (G) − N [u]; O(n) space for the arrays mark1[ ] and mark2[ ], reusable
in each iteration of the for loop in Step 1.2. This space can be reused from iteration
to iteration of the for loop in Step 1, so that the space complexity of the algorithm is
O(n + m).

In summary, our antihole-detection algorithm runs in O(m2) time using O(n + m)
space when applied on a connected undirected graph on n vertices and m edges. If

2 Note that working on the subgraph G[Nu,w] requires re-indexing of vertices, i.e., mapping the indices
1, 2, . . . , n of vertices in G to the indices 1, 2, . . . , |Nu,w| of vertices in G[Nu,w] and vice versa; this can be
done by using two arrays of O(n) total space which take O(n) time to initialize and constant time to answer
each re-indexing request.
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the input graph is disconnected, then we apply the algorithm on each of its connected
components. Since the connected components of a graph can be computed in time and
space linear in the size of the graph [10] and since these components are pairwise vertex-
and edge-disjoint, we obtain the following result.

THEOREM 5.1. Let G be an undirected graph on n vertices and m edges which does not
contain a C5. Then there is an algorithm to determine whether G contains an antihole
using O(n + m2) time and O(n + m) space.

We note that the algorithm is applicable to graphs for which we know in advance that
they do not contain a C5. If the algorithm is applied on a general graph, then it exhibits
the following behavior: if it answers that an antihole exists, then indeed the input graph
contains an antihole (which however may be a C5); if it answers that it does not contain
an antihole, then the input graph contains no antihole on at least six vertices but it may
contain a C5.

5.1. Providing a Certificate. Like the previous algorithms, this algorithm too can be
augmented so that it provides a certificate whenever it decides that the input graph G
contains an antihole. In particular, if G contains an antihole, then whenever the algorithm
finds that, for a vertex u and an edge e = xy of G such that x, y /∈ N [u], there exists a
vertex v ∈ Nu,x ∩ Nu,y for which mark1[cc(Nu,x ; v)] = 1 and mark2[cc(Nu,y; v)] = 1,
it executes the following in Step 1.2.3 before terminating:

(i) computes the subgraph G[N (e) ∩ N (u)];
(ii) uses a dummy vertex s and makes it adjacent to all the vertices of the subgraph

except for those in Nu,x − Nu,y ;
(iii) runs BFS on the complement of the resulting graph starting at s until a vertex, say,

b, in Nu,y − Nu,x is encountered;

It is not difficult to see that if the path on tree edges from s to b in the BFS-tree of
Step (iii) is sv1v2 · · · vkb, then the vertices x, u, y, v1, . . . , vk, b induce an antihole in
G of length at least 6 (since G does not contain a C5, then k ≥ 2 in accordance with
Fact 5.1).

The computation of the adjacency-list representation of the subgraph G[N (e)∩N (u)]
can be done in O(n + m) time and space by using a copy of the adjacency-list repre-
sentation of G and by removing from it all unnecessary lists and vertex records. The
addition of the dummy vertex s can be done in O(n) time and space. Executing BFS on
the complement of the resulting graph can be done in time and space linear in the size
of the graph, i.e., in O(n +m) time and space (see [5], [12], and [18]). Finally, the path
on tree edges needed to complete the antihole can be easily obtained in time linear in its
length if the BFS-tree is represented by means of parent pointers. Therefore, we have:

THEOREM 5.2. Let G be an undirected graph on n vertices and m edges which does
not contain a C5. The antihole-detection algorithm presented in this section can be
augmented so that it provides a certificate that G contains an antihole, whenever it
decides so of G. The certificate computation takes O(n + m) time and space.
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REMARK 5.1 (Detecting Holes in Graphs Not Containing C5s). Since an antihole is the
complement of a hole and the complement of a C5 is also a C5, one can detect whether
a graph G without a C5 contains a hole by applying the above algorithm on its comple-
ment G; this results into an O(n4)-time and O(n2)-space algorithm. The time complexity
can be improved if the operation of the algorithm on G is interpreted in terms of G so
that G is not constructed explicitly.

In general terms, the algorithm processes all the P3s of G; for each such P3 xuy,
it tries to determine whether there exists a vertex w that is not adjacent to u, x , or
y, and there exists a path from w in G[Mu,x ] to a vertex adjacent to y and a path
from w in G[Mu,y] to a vertex adjacent to x , where Mu,x (resp. Mu,y) is the set of
vertices which are adjacent neither to u nor to x (resp. neither to u nor to y), i.e.,
Mu,x = (V (G)−N [u])∩(V (G)−N [x]) and Mu,y = (V (G)−N [u])∩(V (G)−N [y]).
Note that such a vertex w exists iff there exists a chordless path v1v2 · · · vk , where
k ≥ 3, such that v1 ∈ N (y) − (N (u) ∪ N (x)), vk ∈ N (x) − (N (u) ∪ N (y)), and
vi /∈ N (u) ∪ N (x) ∪ N (y) for all i = 2, 3, . . . , k − 1; this is equivalent to the vertices
x, u, y, v1, . . . , vk inducing a hole of length at least 6.

The algorithm is given in detail below. It is a variant of the antihole algorithm pre-
sented earlier in this section, where all the “adjacencies” have been replaced by “non-
adjacencies” and vice versa.

HOLE-DETECTION ALGORITHM FOR GRAPHS NOT CONTAINING A C5

Input: an undirected graph G which does not contain a C5.
Output: a message whether G contains a hole or not.

1. for each vertex u of G do
1.1 for each vertex v adjacent to u in G do

1.1.1 compute the set Mu,v = (V (G)− N [u]) ∩ (V (G)− N [v]);
1.1.2 compute the connected components of G[Mu,v];
1.1.3 store the set Mu,v as a list of vertex records, ordered by

vertex index, where each vertex w ∈ Mu,v is associated with
the representative comp(Mu,v;w) of the component to which
it belongs;

1.2 for each vertex x adjacent to u in G do
for each vertex y adjacent to u and not adjacent to x in G do
{mark the conn.components of G[Mu,x ] containing a
neighbor of y in G}
for each vertex w ∈ Mu,x do

mark1[w]← 0;
for each vertex w ∈ Mu,x − Mu,y do

if w is adjacent to y in G
then mark1[comp(Mu,x ;w)]← 1;

{mark the representative}
{mark the conn.components of G[Mu,y] containing a
neighbor of x in G}
for each vertex w ∈ Mu,y do

mark2[w]← 0;
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for each vertex w ∈ Mu,y − Mu,x do
if w is adjacent to x in G
then mark2[comp(Mu,y;w)]← 1;

{mark the representative}
for each vertex v ∈ Mu,x ∩ Mu,y do

if mark1[comp(Mu,x ; v)] = 1 and
mark2[comp(Mu,y; v)] = 1

then print that G contains a hole; exit;
2. Print that G does not contain a hole.

It is not difficult to see that the algorithm runs in O(n2m) time and requires O(n2) space.
This result indicates that the same approach results in a hole-detection algorithm

which in the worst case proves asymptotically more time- and space-consuming than
the corresponding antihole-detection algorithm. This seems to be due to the fact that
checking whether a graph contains an antihole of length k requires that certain 
(k2)

edges exist and that certain k edges are missing, whereas in the case of a hole of length k,
one needs to verify that k edges exist and
(k2) edges are missing; in the former case, the
cost of checking the non-existence of the k edges can be paid for by the 
(k2) existing
edges, something which does not hold in the latter case.

REMARK 5.2 (Extending the Approach to Detecting Antiholes/Holes on at Least
k Vertices). The approach described in this section can be extended to yield an al-
gorithm for the detection of antiholes on at least k vertices in graphs not containing
antiholes on k − 1 vertices. In this case the vertex x is “expanded” into a Pk−5. Then,
for each such Pk−5 x1x2 · · · xk−5 and for each vertex y adjacent to all the vertices xi , we
work on the sets

A(x1 · · · xk−5, y; x) =
( ⋂

1≤i≤k−5

N (xi )

)
− N [y],

A(x1 · · · xk−5, y; y) =
( ⋂

1≤i≤k−6

N (xi )

)
∩ N (y)− N [xk−5],

A(x1 · · · xk−5, y) =
( ⋂

1≤i≤k−5

N (xi )

)
∩ N (y)

(instead of A(e; x), A(e; y), and A(e), respectively) and for vertices u in (
⋂k−5

i=2 N (xi ))−
(N (x1)∪N (y)), so that the vertices y, u, x1, . . . , xk−5 induce a Pk−3 in the input graph G.
Since the number of different choices of a Pk−5 x1x2 · · · xk−5 and a vertex y adjacent
to all the vertices xi is O(ma) if k − 4 = 2a and O(nma) if k − 4 = 2a + 1, then in
a fashion similar to the one we used to prove Theorem 5.1, we can show the following
corollary:

COROLLARY 5.1. Let G be an undirected graph on n vertices and m edges which does
not contain antiholes on k− 1 vertices. Then there is an algorithm to determine whether
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G contains an antihole on at least k vertices using O(n + m p−1) time if k = 2p, and
O(n m p−1) time if k = 2p + 1; the algorithm requires O(n + m) space.

Similarly, for the case of holes, we “expand” vertex x into a Pk−5 and we consider
vertices u in (N (x1) ∩ N (y)) − (⋃k−5

i=2 N (xi )) so that the vertices y, u, x1, . . . , xk−5

induce a Pk−3 in G; then, in light of Remark 5.1, we also have:

COROLLARY 5.2. Let G be an undirected graph on n vertices and m edges which does
not contain holes on k − 1 vertices. Then there is an algorithm to determine whether G
contains a hole on at least k vertices using O(n2 m p−2) time if k = 2p, and O(n m p−1)

time if k = 2p + 1; the algorithm requires O(n2) space.

In both the antihole and the hole case, the time complexity is O(nk−2).

6. Concluding Remarks. We have presented algorithms for detecting holes and anti-
holes in undirected graphs. For an input graph on n vertices and m edges, both algorithms
run in O(n + m2) time and require O(nm) space. The algorithms can be augmented so
that they return a hole or an antihole, whenever such a structure exists in the graph,
in O(n + m) additional time and space. We have also described an antihole detection
algorithm for graphs not containing a C5 which runs in O(n + m2) time and requires
only O(n + m) space.

The obvious open problem is to design algorithms for finding a hole and/or an antihole
in general graphs with improved time and/or space complexity; note that all the P3s
participating in P4s of a graph on n vertices and m edges can be computed in O(nm)
time [19]. It is worth mentioning that o(n + m2)-time algorithms for both problems
would imply an improvement on the currently best algorithms for recognizing weakly
chordal graphs [2], [17].

We also pose as an open problem the construction of O(n+m2)-time algorithms for
detecting whether a graph contains a C5; the existence of a C5 can be easily determined
in O(nm2) time. None of our algorithms seems to be modifiable to handle this special
case while maintaining the O(n + m2) time complexity. As we mentioned, due to our
antihole-detection algorithm for graphs that do not contain a C5, an O(n + m2)-time
and O(n + m)-space algorithm for detecting a C5 would imply an antihole-detection
algorithm of the same time and space complexity.

Finally, in light of the “strong perfect graph theorem” [8], it would be very interesting
to come up with efficient algorithms for the detection of odd-length holes and/or odd-
length antiholes in general graphs. Currently, the problem of detecting odd-length holes
in general graphs is open; an algorithm has been proposed for “cleaned” graphs only
which runs in O(n10) time [11]. Regarding the difficulty of this problem, it is worth
mentioning that the problem of determining whether a particular vertex participates in
an odd-length hole is NP-complete [3]. On the other hand, algorithms are available for
the detection of even-length holes [6], [9]; the fastest among them is claimed to run
in O(n15) time. Finally, if one is interested in detecting whether a graph contains an
odd-length hole or an odd-length antihole, then there exists an O(n9)-time algorithm
for it [7].
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