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Abstract This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-
tree (or IP-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete
event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For
comparison reasons, some well-known event set algorithms have been selected and studied, that is, the Dynamic-heap and
the P-tree algorithms. To gain insight into the performance of the proposed event set algorithms and allow comparisons with
the other selected algorithms, they are tested under a wide variety of conditions in an experimental way. The time needed
for the execution of the Hold operation is taken as the measure for estimating the average time complexity of the algorithms.
The experimental results show that the BP-tree algorithm and the IBP-tree algorithm behave very well with the event set of

all the sizes and their performance is almost independent of the stochastic distributions.
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1 Introduction

In a discrete event simulation system an event (or
future event) is a collection of actions that are sched-
uled to be executed in a specific simulation time called
event time. In such a system events are kept in objects
known as event notices and maintained in a data struc-
ture known as event set. An event notice is represented
by a record with two fields, t and a, where t is the sched-
uled time for its occurrence, and a is the activity which
is scheduled in time t['=3],

In a discrete-event simulation system based on the
next-event time-advance approach, the next-event time-
advance mechanism is responsible for the simulation
clock. It initializes the simulation clock, and then de-
termines the event time of future events. The simulation
clock is then advanced to the event time of the earliest
future event with the minimum event time known as next
event and the system state is updated to count the oc-
currence of this event. When the next event occurs, it
is removed from the event set and the simulation clock
is advanced to the next-event time. The processing of
this event may lead to the generation and scheduling of
additional (new) future events. A new event is scheduled
when its event time ¢ becomes known. Then, an event
notice is created and inserted into the event set in such
a way that it is ensured that this event will occur at the
scheduled time t. This type of simulation approach is
referred to as discrete event-driven simulation.

The responsibility for the execution of these oper-
ations in a discrete event-driven simulation is due to
an algorithm known as an event set algorithm (or event
scheduling algorithm); that is, it

e scans the event set to determine the proper inser-

tion position for the new event,

e removes the next event from the event set, and
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e advances the simulation clock to the next-event

time.

It is obvious that being able to repeatedly select the
event notice from the event set that has the minimum
event time is essential. If all the event notices in this
event set are known in advance, and their event time re-
mains unchanged, then the problems of determining the
next event and updating the simulation clock are easily
solved by sorting the event notices and retrieving them
in order. In the simulation process discussed above, how-
ever, it is often necessary to insert new event notices into
the event set as other events are being processed. This
leads to the following set of priority queue operations:

e insert a new event notice into the event set (in a
proper position according to its event time),

e find the event notice with the minimum event time,

and

e remove the event notice with the minimum event

time from the event set.

The above priority queue operations are the most fre-
quent operations required by a discrete event simulation
system and they are involved in any event scheduling
algorithms. Thus, it is clear that the main factor that
affects the efficiency of an event scheduling algorithm is
the structure of the event set.

The most important requirements of an event
scheduling algorithm are operation speed and storage
economy. Many researchers have extensively studied
this field and presented both analytical and empirical
results concerning the time and space performance of
many event scheduling algorithms. They use different
data structures for the simulation of the event sets. They
are linear lists, special kinds of trees, time-indexed lists,
two-level structures and many others. Moreover, they
use different techniques for the operations performed by
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the scheduling algorithms; (see [4-13] for an exposition
of the main results).

The data structures used for the simulation of the
event set can generally be classified under three types;
that is, lists, tree structures and multi-lists. Lists
are structures that are based on the simple linear
list. They include doubly linked lists, indexed lists(4,
SPEEDES Queue which is based on the event hori-
zon technique!’® =171 and many others. Trees are struc-
tures that are based on the simple binary tree, and in-
clude binary heaps!*~614 gkip lists('4/, and priority
trees[1%18] which are studied here as well. Finally,
multi-lists are structures that are the result of a com-
bination of several types of lists. This is done in order
to combine the merits of two structures that may not
perform well when implemented separately. Such struc-
tures are the calendar queue and the SNOOPY calendar

queuel'?],

This paper describes efficient data structures, namely
the Indexed P-tree, Block P-tree, and Indexed-Block P-
tree (or IP-tree, BP-tree, and IBP-tree, respectively, for
short), for the simulation event set. All the structures
combine the advantages of both the P-tree and the static
representation of the list. The combination of the P-
tree and the list provides efficient date structures for the
simulation event set in the case where the event horizon
technique is applied. The main feature of each of our
event set algorithms is the efficiency of the merging pro-
cess in the event horizon technique; that is, the process
of sorting the event notices of the secondary queue and
inserting them back into the event set. We point out
that, in the horizon technique the most time consuming
operation performed by the event set algorithm is the
merging process of the secondary queue back into the
main event set.

To gain insight into the performance of the IP-tree,
the BP-tree and the IBP-tree, and allow comparisons
with other selected algorithms (i.e., Dynamic-heap and
P-tree), they are coded and tested under a wide variety
of conditions in an experimental way. The objective was
to estimate the average complexity of each algorithm.
For this purpose, we used a revised definition of com-
plexity, for a given configuration of event set and a given
distribution providing the scheduled time, to estimate
the time expected to be needed for the execution of the

Hold procedure (or Hold model).

Two main parameters affecting the execution time of
the above operations are (i) the schedule time T', and (ii)
the size N of the event set. The parameter T', which is
given by a stochastic distribution, determines how long
an event will remain in the event set. Six stochastic
distributions are especially chosen. They are not only
representative of typical simulation problems but also ca-
pable of showing the advantages and limitations of each
algorithm. All the chosen distributions have mean 1 (see
Table 1) and fall into three categories:

(A) unimodal continuous distributions,

(B) bimodal continuous distributions, and
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(C) discrete distributions.

The parameter N defines the notion of the small and
large event sets. In other words, it determines the size
of the event set, that is, the number of event notices in
the set at any time. Tests were performed with values
of N from 64 (small event set) to 262,144 (large event
set). This range is representative of actual simulations
and the behaviour of the algorithms for N > 262144 can
be extrapolated from the results.

The results of this work show that the IP-tree algo-
rithm combines time performance, storage economy and
simplicity of coding. The BP-tree and the IBP-tree al-
gorithms outperform the IP-tree algorithm, and the BP-
tree algorithm has a slightly better performance than the
IBP-tree algorithm.

The paper is organized as follows. Section 2 presents
the main features of the Hold model and the event hori-
zon technique. Section 3 describes the P-tree structure
on which our approach is based. The IP-tree, the BP-tree
and the IBP-tree structures are described in Sections 4,
5 and 6, respectively. An experimental evaluation of the
algorithms is presented in Section 7, where we also com-
pare the performance of the algorithms. Finally, Section
8 concludes the paper with a summary of our results.

2 Hold and Event Horizon

As already mentioned, the two basic operations per-
formed on the event set by an event set algorithm are (i)
insertion of a new event notice into event set, and (ii) de-
termination and deletion of the notice of the next event.
A standard metric for comparison of the performance of
an event set algorithm is the time required for a Hold
operation, which combines both insertion and deletion
operations>3:5:91 Under the Hold model, event notices
are repeatedly deleted and then re-inserted with a ran-
domly reduced priority; this sequence of operations is
known as a Hold operation. The Hold operation works
as follows:

1) determine and remove the event notice with the
minimum event time T, the current notice, from
the event set;

2) increase the event time value of the current no-
tice by T, where T is a random variate distributed
according to some distribution F(t), and

3) re-insert the new notice back into the event set; it
now has Thew = Tmin + 1 event time.

The Hold model has two parameters: N, the number
of notices in the event set, and F', the distribution used
to determine the time an inserted event will occur. Thus,
the model allows the average combined time for insertion
and deletion to be measured as a function of the size of
the event set and the stochastic distribution.

The event horizon is a fundamental concept that
applies to both parallel and sequential discrete event
simulations'®=17:19] Using event horizon one can im-
prove the performance of several event sets; that is, the
priority queue data structures such as linked lists and
various binary trees.
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In order to exploit the event horizon for event set
management algorithms, it is assumed that as new events
are generated they are not inserted into the main prior-
ity queue data structure immediately. They are collected
in an unsorted temporary (secondary) queue. In such
a way, one can always track the event with the earli-
est event time. As a result, when the event to be pro-
cessed happens to be in the secondary queue, the queue
is sorted and then it is “merged” back into the main
priority queue.

The secondary queue is most frequently a linked list,
providing the advantage of inserting a new event in con-
stant time since the list is kept unsorted (it is sorted
just before the merging process). Merging the two data
structures, however, is not always a simple process. The
main priority queue (event set) itself may be a very com-
plicated data structure.

3 P-tree

A Priority-tree (or P-tree) is either empty or a sorted,
non-increasing sequence of nodes. The “left path”, such
that to each node of the left path except the last one,
is associated a P-tree (possibly empty), the “right sub-
tree”. The nodes of the right subtree associated with a
node x on the left path, are ranked between x and the
left successor of z[71418],

Neglecting node values, a binary tree is a P-tree if
and only if each node having a right successor also has
a left successor. The terminal node on the leftmost path
is the element with the smallest key value. In order to
insert a new element x into a P-tree, T, the algorithm
P-insert below is applied recursively.

P-insert x into T

1. If T =0 or z.v > T.v, let  be the new root and T its

left subtree;

2. Otherwise search down the left path of T' for the first

node y, if any, such that y.v < z.v;
2.1. If none, append z as the new left leaf;
2.2. Otherwise y.v < z.v < z.v, where z is the prede-
cessor of y (y = z.£). P-insert z into the right sub-
tree of z;
where x, y and z denote nodes, u.f and u.v denote the
left subtree and the node value of u, respectively.

The detection of the event notice with the earliest
time value can be performed in constant time provided
that there is an additional pointer to the terminal notice
on the left path. After the removal of this notice, the
last right subtree, if it is not empty, is appended to the
left path.

4 Indexed P-Tree

An Indezed P-tree (or IP-tree) consists of a tree struc-
ture, the P-tree, and a static representation of a list
structure, the I-list. The elements of the I-list point
to specific event notices in the P-tree, see Fig.1. Using
the event horizon technique, when the event horizon is
crossed (i.e., when the event to be processed happens to

be in the secondary queue), the secondary priority queue
is sorted and then merged back into the main priority
queue (P-tree).

Ilist

Root pointer
—

—>

EXEIEE

—>

Current

o »
— Current pointer

Fig.1. IP-tree structure; consisting of a list of pointers, called Klist,

and a P-tree.

We next describe the main operations performed in
a discrete event simulation system using the IP-tree for
the simulation of the event set.

(i) Insert operation: according to the event horizon
technique, a new event notice is inserted into the sec-
ondary queue, which is a linked list structure. As the
secondary queue is kept unsorted, the insertion of a new
event notice can be completed in constant time.

(ii) Delete operation: the deletion of the current event
notice from the IP-tree structure can be implemented
in constant time as it only involves deleting the current
event notice from a P-tree structure.

(iii) Merge operation: suppose that the event notices
of the secondary queue have to be inserted into a stan-
dard P-tree structure. To this end, for each event notice
the P-tree event set algorithm scans the whole P-tree,
starting each time from the root of the tree, in order
to determine its proper insertion position. The IP-tree
event set algorithm takes advantage of the fact that the
event notices in the secondary list are sorted in decreas-
ing order, and the I-list determines some specific sub-
trees of the P-tree; recall that every subtree of a P-tree
is the P-tree itself. Thus, for each event notice the IP-
tree algorithm scans the I-list and determines the proper
insertion subtree. Then, it proceeds as the P-tree algo-
rithm does and completes the insertion operation. Thus,
in order to insert the event notices of the secondary list
into the IP-tree, there is no need to scan the whole P-tree
for each notice, meaning that the P-insert operation, as
it was described before, is not necessary to start from
the root of the P-tree.

In the merging process, some of the subtrees that are
not scanned during an insertion operation will not be
scanned by the next insertion operation either, as the
time-value of the event notice of the second operation is
less than or equal to the time-value of the event notice of
the first operation. Taking advantage of this knowledge,
the I-list is constructed in order to make the merging op-
eration more efficient. In particular, if an event notice,
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say b, is the next event to be inserted into the P-tree
and the event notice which was last inserted, say a, had
a greater event time, we do not need to check a notice,
say ¢, that a was compared with and was found to be
less than c¢. Thus, we need to keep pointers to the event
notices of the P-tree that a was compared with and then
moved to a right subtree. We shall call these specific
notices I-notices. In the IP-tree structure the pointers
which point to the I-notices are simply the elements of
the I-list. Note that the first I-notice is the root of the
P-tree and the last one is the current event notice; that
is, the leaf node on the leftmost path of the P-tree.

An example of an IP-tree structure is presented in
Fig.1. Let a be the last event notice which has been in-
serted into the P-tree and let 14 be its event time. The
pointers of the I-list were pointed at notices with event
time 18 and 17. Let b be the next event notice which has
to be inserted into the P-tree and let 13 be its event time.
Then, the time of the notice b is compared only with the
time of the left children of the I-notices. Thus, a search
is performed on the I-list and the I-notice whose left
child has the greatest but less event time than that of b
is determined; let ¢ be such an I-notice (in our example,
the event time of ¢ is 17). Then, the IP-tree algorithm
P-inserts the notice b into the P-tree rooted at c. Recall
that every subtree of a P-tree is also a P-tree.

5 Block P-Tree

The Block P-tree (or BP-tree) structure is a P-tree
that consists of nodes containing an array of an initially
fixed number of elements, say S, which we call super-
nodes. The elements of every supernode are kept sorted
in increasing order and the P-tree property is applied
to the event with the earliest event time of each supern-
ode. In other words, the position of a supernode in the
BP-tree is determined by the earliest event time that it
contains.

Inserting a new event notice is a very simple pro-
cess. As the BP-tree algorithm takes the advantage of
the event horizon technique, the new event notice can
be inserted in constant time into the secondary priority
queue which is a static representation of the list struc-
ture.

The deletion of the event notice with the earliest
event time is quite simple as well. The current super-
node containing the event notice with the earliest event
time is easily tracked since there always exists a pointer
pointing to it, and also since the current event notice can
be located in constant time. After deleting the current
event notice, the BP-tree may need to be updated. Thus,
if the new minimum element that the current supernode
contains is the minimum of all notices of the BP-tree, the
deletion operation is completed. Otherwise, the supern-
ode does not contain the current event notice and thus it
is reinserted in the BP-tree according to the value of the
minimum element that it contains. After the completion
of this process, the new current supernode contains the
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current event notice.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which
is a static representation of the list structure, is sorted
in increasing order. Then, the secondary queue forms a
single supernode which is then reinserted back into the
main priority queue (BP-tree). The advantage of this
implementation is that only one supernode has to be in-
serted into the BP-tree. Note that, the number of the
elements of each supernode can exceed the value of S, as
the secondary queue can consist of more than S elements
when the event horizon is crossed.

6 Indexed Block P-Tree

The Indezed-block P-tree (or IBP-tree) structure is
based on the IP-tree and the BP-tree structures. It con-
sists of an I-list and a BP-tree. Recall that the I-list is
a static representation of the list structure and its ele-
ments point to specific event notices of the BP-tree; see
Fig.2.

The insertion operation is a very simple process, since
the IBP-tree algorithm takes advantage of the event hori-
zon technique; that is, the new event notice can be in-
serted in constant time into the secondary priority queue
which is a static representation of the list structure.

The deletion of the event notice with the earliest
event time is quite simple as well and similar to the
deletion operation of the BP-tree algorithm. The cur-
rent supernode is tracked in constant time as there is a
pointer variable pointing to it. Since the elements of the
supernodes are sorted, the current event notice can be
located in constant time. After it is extracted, the BP-
tree may need to be updated. This operation is similar
to that performed by the BP-tree algorithm. Note that,
despite the fact that the deletion operation may result
in supernodes having less than S elements, it is essen-
tial that the supernodes cannot consist of more than S
elements.

Using the event horizon technique, when the event
horizon is crossed, the secondary priority queue, which
is a static representation of a list structure, is sorted in
increasing order and then merged back into the main
priority queue (BP-tree).

Let us describe the merging process of the BP-tree
structure and the secondary queue in the event horizon
technique. The event notices of the secondary queue, af-
ter being sorted, form arrays (supernodes) that contain
S elements. Thus, if the secondary queue contains M
elements, M /S supernodes have to be reinserted at the
BP-tree; each supernode contains S event notices, except
probably from the last one. Recall that the proper inser-
tion position of each supernode is determined according
to the value of the earliest event time that it contains, say
tmin- In order to complete the merging process, we take
advantages of the IP-tree algorithm and the I-list. Thus,
for each supernode, the IBP-tree algorithm scans the I-
list and determines the proper insertion subtree. Then
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the algorithm proceeds as the P-tree algorithm and com-
pletes the insertion operation. Note that the supernodes
are inserted in the BP-tree in decreasing order according
to the value of the earliest event time of each supernode.

An example of an IBP-tree structure is presented in
Fig.2. After deleting the current event notice, which in
our example has value equal to 0, the BP-tree is not
updated since the last supernode of the leftmost path of
the tree still contains the current event notice, which has
now the value equal to 1.

Iist

: BP-tree
— Root pointer Root
k= —
-
—

[6Jioi6] [16]17]20]
[4]7118] [8Tii[i2] [15]15]16]
Current

— — [oJ1]2] [3T17]19] [3]13]14]

—_p

— Current pointer

10 [11]17

Fig.2. IBP-tree structure consisting of an Ilist, and a BP-tree
with S = 3.

7 Experimental Evaluation of the Algorithms

The main motivation for the empirical studies per-
formed so far comes from the fact that most of the
theoretical performance bounds associated with different
event set algorithms hide significant constant factors. In
addition, these results are usually expressed using differ-
ent concepts such as expected case, worst case and amor-
tized case bounds. Given the number of alternatives for
implementing the event set and the need for solutions
that are efficient in practice, the empirical studies have
then arisen as an effective tool to evaluate the perfor-
mance of an event set algorithm.

7.1 Test Conditions

Most of the research performed to date uses the Hold
procedure to estimate the average time complexity of an
event set algorithm. The time needed for the execution
of the Hold operations is the measure for estimating the
average time complexity. Obviously, the data structure
chosen to simulate the event set as well as the size of
the event set affects the processor time required for the
Hold operations (insertion and deletion). Tests were per-
formed for N = 2% k =6,7,...,18, where N is the size
of the event set; that is, the number of event notices in
the event set.

A crucial step in designing the tests lies in the se-
lection of the stochastic distribution which provides the
event time T'; that is, the parameter for the Hold proce-
dure that determines how long an event notice remains
in the event set. Six distributions have been chosen be-

cause they differ in their characteristics and reveal the
advantages and the disadvantages of an algorithm; see
Table 1. Each test includes the following operations:

1) generate N event notices with each one having
event time that is generated by the distribution F', and
insert them into the event set;

2) without counting time, execute 1.6 x 10° times the
Hold procedure with the distribution F’;

3) execute 1.6 x 105 Hold operations and count the to-
tal processor time (CPU time) needed to complete them.

Table 1. Six Distributions
(A)  Unimodal

EXP:  Negative exponential (mean 1).
Uo02: Uniform distribution over the interval
[0, 2].
U09: Uniform distribution over [0.9, 1.1].
(B) Bimodal
BIM: 0.9 probability — uniform over [0, S],

0.1 probability — uniform over the
interval [100S, 1015], where S is
chosen to give the mixed distribution
an average of unity.

(C) Discrete
D1: T is constant with value of unity.
D012: T is assigned the values 0, 1 or 2 with
equal probabilities.

Operation 1) initializes the system while operation
2) allows it to reach a steady state. Operation 3) yields
a measure of the complexity of the tested algorithms.
The algorithms were coded in C programming language
and the experimental results were taken from Sun-Blade-
1000, 2 x 750MHz Ultrasparc-I1I processors (8MB cache),
512MB RAM.

The IP-tree, the BP-tree and the BIP-tree algorithms
were coded and run to collect evidence of their perfor-
mance under realistic conditions. For comparison rea-
sons, well-known event set algorithms were also coded
and run under the same conditions; that is, the Dynamic-
heap and the P-tree algorithms. To gain insight into the
performance of the proposed algorithms and allow com-
parisons with the other event set algorithms, they were
tested under a wide variety of conditions in an experi-
mental way. The experimental results for each algorithm
(that is the time in seconds needed to complete each algo-
rithm) are represented in the form of tables and graphs;
see, Tables 2—6 and Figs. 3-8.

7.2 Dynamic-Heap and P-Tree: Hold Model

As expected, the Dynamic-heap algorithm provides a
very good time performance. The performance results
are given in Table 2. What is observed is the expected
logarithmic behavior of a heap data structure and the
fact that the time performance of the event set algo-
rithm is almost the same with all the distributions. We
note that the Static-heap algorithm has the same perfor-
mance.

One can easily observe (see Table 3), that the perfor-
mance of the P-tree is not as good as the performance
of the heap algorithm. Its CPU time increases with the
variance of the scheduling distribution. It is remarkable
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that the P-tree is efficient under constant values (D1 dis-
tribution). This performance was expected because each
new event notice becomes the new root of the P-tree,
which in this case is a sorted linked list, and thus the
new event is inserted in constant time. Its performance
is extremely worst with the discrete D012 distribution.
Furthermore, the P-tree algorithm becomes even more
inefficient as the size of the event set increases. The ex-
perimental results showed that the performance of the
P-tree algorithm cannot be improved by applying the
event horizon technique.

Table 2. Dynamic-Heap Algorithm: Test Results

N Uo02 U91 EXP BIM D1 Do12
64 5.11 5.13 5.42 6.68 5.10 5.13
256 5.85 5.90 6.20 7.42 5.83 5.87
1024 6.60 6.58 6.88 8.14 6.51 6.57
4096 7.41 7.42 7.71 8.95 7.29 7.37
16384 8.36 8.35 8.76 9.95 8.03 8.11
65536 9.35 9.33 9.62 10.93 8.83 8.94
262144 10.53 10.54 10.89 12.12 9.54 9.74
Table 3. P-Tree Algorithm: Test Results
N Uo02 U91 EXP BIM D1 D012
64 3.27 2.67 3.78 7.87 2.33 3.58
256 4.02 2.99 4.48 16.15  2.33 6.80
1024 5.33 3.50 5.42 31.42 233 17.77
4096 7.82 4.42 6.41 58.61 2.35 73.14
16384  12.66 6.10 7.83 102.90 2.36 308.95
65536  22.00 9.26 9.52 141.88 2.39 1253.46
262144 54.41 20.78 13.69 280.26 2.42 4995.45
Table 4. IP-Tree Algorithm: Test Results
N Uo2 U991 EXP BIM D1 Doi12
64 4.04 3.81 4.39 5.26  3.46 3.72
256 4.46 4.17 4.88 6.37 3.66 4.01
1024 4.89 4.52 5.36 7.00 3.88 4.32
4096 5.43 5.02 598 7.79 4.13 4.72
16384 6.12 5.65 6.76  8.36 4.48 5.28
65536 6.86 6.21 7.50 852 4.74 5.72
262144 9.08 8.50 9.97 9.96 5.15 7.78
Table 5. BP-Tree Algorithm: Test Results
N U02 U9l EXP BIM D1 Do12
64 3.92 3.45 4.38 4.75 3.26 3.42
256 4.44 3.78 4.96 5.29 347 3.67
1024 4.98 4.13 5.58 6.15 3.66 3.92
4096 5.60 4.55 6.30 6.86 3.95 4.23
16384 6.30 5.08 7.09 7.41  4.24 4.66
65536 7.10 5.57 8.02 7.99 4.46 5.03
262144 852 7.69 9.94 9.34 4.77 6.74
Table 6. IBP-Tree Algorithm: Test Results
N U02 U9l EXP BIM D1 Do12
64 4.07 3.50 4.58 5.76  3.41 3.54
256 4.52  3.81 5.08 6.59 3.58 3.73
1024 5.03 4.15 5.65 7.39 3.76 3.96
4096 5.65 4.59 6.33 7.84 4.04 4.25
16384 6.35 5.11 7.14 8.05 4.35 4.68
65536 7.14  5.59 8.06 8.25 4.56 5.01
262144 8.66 7.66 9.91 9.45 4091 6.63
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Fig.4. Uniform (0.9, 1.1) distribution.

7.3 IP-Tree, BP-Tree and I BP-Tree: Event
Horizon

The experimental results of the performance of the IP-
tree algorithm are presented in Table 4. These show the
superiority of the IP-tree compared to the P-tree algo-
rithm and its excellent performance with all the sizes of
the event set and all the stochastic distributions. Specif-
ically, we observe that the CPU time for the D012 distri-
bution is extremely decreased compared with the results
taken by the P-tree algorithm. In addition, the CPU
time for all the distributions is almost the same.

Exponential
20 . : T : ‘
—+— Dynamic-heap
—X- P-tree
@ [P-tree
1S -8 BP-tree 1
B IBP-tree
10 | g
S _
0 L L

1024 4096 16384 65536 262144
Fig.5. Exponential distribution.

The experimental results of the performance of the
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BP-tree algorithm are presented in Table 5. The results
show the superiority of the algorithm compared to the
heap algorithm, and also to the P-tree and IP-tree algo-
rithms. Furthermore, its performance is slightly better
than the performance of the IBP-tree, apart from the
exponential and the discrete D012 distributions when
N > 65536. Note that the value of the parameter S
is equal to the size of the event set; that is S = N. Re-
call that the parameter S determines only the initial size
of the supernodes because the size changes as the sec-
ondary queue becomes a supernode every time the event
horizon is crossed. The experimental results show
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Fig.6. Bimodal distribution.
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Fig.8. Discrete (0,1,2) distribution.

that the algorithm performs better when the BP-tree has
initially only one supernode which contains N elements;
that is when S = N.

Table 6 presents the experimental results of the per-
formance of the IBP-tree algorithm. Its excellent per-
formance, regardless of the size of the event set or the
stochastic distribution, shows the superiority of the al-
gorithm over the IP-tree and the heap algorithms. The
IBP-tree algorithm outperforms the IP-tree algorithm
because it takes advantage of the properties of the latter
and, in addition, the size of the event set can be consid-
ered to be smaller as the event notices form supernodes.

Thus, if the size of the event set is equal to IV,
the IP-tree algorithm produces a P-tree containing N
nodes, while the IBP-tree algorithm can produce a much
smaller BP-tree, having N/S nodes, if the value of S is
sufficiently large. The experimental results show that
the IBP-tree algorithm has the best performance when
S =~ 3000. Consequently, when N < S the IBP-tree
algorithm behaves as the BP-tree algorithm.

7.4 Comparison of the Algorithms

The experimental results show that the IP-tree algo-
rithm has an extremely better performance than the P-
tree algorithm. The latter becomes very inefficient as the
size of the event set increases, especially with the D012
distribution. The BP-tree and IBP-tree algorithms are
even more efficient than the IP-tree algorithm as their
performances are excellent regardless of the size of the
event set or the distribution that is used.

What is also remarkable is the fact that the BP-tree
and the IBP-tree algorithms provide results which are
better even than the results of the well known efficient
Dynamic-heap algorithm. The latter performs, as ex-
pected, better than the P-tree algorithm regardless of
the distribution which is used. Furthermore, the BP-tree
and the IBP-tree algorithms outperform all the other al-
gorithms and their superiority can easily be concluded.
Figs. 3-8 present the performance of each one of the
algorithms under the six distributions.

We would like to comment on the logarithmic be-
haviour of the BP-tree and the IBP-tree algorithms. One
can easily observe from Figs. 3-8 that the two algorithms
behave like the Dynamic-heap algorithm. Furthermore,
the performance of the IP-tree algorithm resembles the
performance of the P-tree algorithm.

What should also be pointed out is that the event
horizon technique, when applied to the Dynamic-heap
algorithm or the P-tree algorithm, does not result in a
better performance. Applying the event horizon princi-
ple to the heap algorithm involves using a heap struc-
ture (static representation) as a main event set and a
list data structure (unsorted array) as a secondary event
set. When the minimum event time is found in the sec-
ondary list its elements are merged back into the main
priority queue data structure (merge operation). The ar-
ray is kept unsorted because experimental results show
that the performance of the Static-heap is not improved
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in the case that the secondary list is sorted either in
increasing or decreasing order. Furthermore, it is ob-
served that the event horizon technique does not affect
the performance of the Dynamic-heap algorithm; that is,
the performance of the algorithm with the event horizon
technique is almost the same as without it.

In the P-tree algorithm the secondary data structure
is an unsorted linked list. When the next-event to be
processed (event notice with the minimum event time)
happens to be in the secondary list, the latter is sorted
in an increasing order and its elements are placed back
into the main event set. The experimental results show
that when we apply event horizon the CPU times taken
by the P-tree algorithm are slightly increased for all the
distributions except for the D012 distribution.

8 Concluding Remarks

The P-tree structures proposed in this paper could
usefully replace the classic P-tree structure, as well as the
heap structure, in the simulation event set in a general
purpose discrete event simulation system. The proces-
sor time obtained with the IP-tree, the BP-tree and the
IBP-tree algorithms is relatively insensitive to variations
in the scheduling distributions or the number of event
notices in the event set, and points to their superiority
over the P-tree structure, and also over the Dynamic-
heap. Our proposed structures provide time efficiency,
size flexibility and space economy.

Future work might involve how the BP-tree or IBP-
tree algorithms can be efficiently parallelized. Further-
more, it would be interesting to study the performance of
algorithms that use other tree-like data structures under
the event horizon technique and/or the Flist technique.

In closing, we point out that the results of this work
prompt us to suggest the BP-tree and the IBP-tree as
efficient data structures for the simulation event set in a
general purpose discrete event simulation system.
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