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Abstract

In this paper we show structural and algorithmic properties on the class of quasi-threshold graphs, or QT-graphs for short, and
prove necessary and sufficient conditions for a QT-graph to be Hamiltonian. Based on these properties and conditions, we construct
an efficient parallel algorithm for finding a Hamiltonian cycle in a QT-graph; for an input graph on n vertices and m edges, our
algorithm takes O(logn) time and requires O(n + m) processors on the CREW PRAM model. In addition, we show that the
problem of recognizing whether a QT -graph is a Hamiltonian graph and the problem of computing the Hamiltonian completion
number of a nonHamiltonian QT-graph can also be solved in O(logn) time with O(n + m) processors. Our algorithms rely on
O(log n)-time parallel algorithms, which we develop here, for constructing tree representations of a Q7-graph; we show that a QT-
graph G has a unique tree representation, that is, a tree structure which meets the structural properties of G. We also present parallel

algorithms for other optimization problems on QT-graphs which run in O(logn) time using a linear number of processors.
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1. Introduction

In this paper we consider finite undirected graphs with
no loops nor multiple edges. Let G be such a graph with
vertex set V(G) and edge set E(G). We say that G is a
Hamiltonian graph if it has a spanning cycle (as opposed
to the more usual definition which refers to spanning
path); such a cycle is called a Hamiltonian cycle of G.
The Hamiltonian completion number of the graph G is
the minimum number of edges which need to be added
to E(G) to make G Hamiltonian [3,13]; we denote the
Hamiltonian completion number of a graph G as
hen(G). If G is a Hamiltonian graph, then Acn(G) = 0.

A graph G is called quasi-threshold, or QT-graph for
short, if G contains no induced subgraph isomorphic to
P, or C; (cordless path or cycle on 4 vertices)
[11,21,26,27]. The class of QT-graphs is a subclass of
the class of cographs [8,9] and contains the class of
threshold graphs [7,12,23].

Many researchers have devoted their work to the
study of the class of QT-graphs. Wolk [26] called the
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members of this class comparability graphs of trees and
gave structural and algorithmic characterizations. Go-
lumbic [11] called these graphs trivially perfect with
respect to a concept of “perfection”. Ma et al. [21]
established the name quasi-threshold graphs (QT-
graphs) and studied algorithmic properties. A variety
of sequential and parallel algorithms have been
appeared in the literature for many interesting optimiza-
tion and combinatorial problems on the class of Q7-
graphs and, also, the classes of cographs and threshold
graphs. We present, here, efficient O(log n)-time parallel
algorithms for Hamiltonian problems on the class of
QT-graphs.

1.1. Related research

The class of QT-graphs is a subclass of the well-
known class of perfect graphs [5,12]; it is a very
important class of graphs, since a number of problems,
which are NP-complete in general, can be solved in
polynomial time on its members. For the class of OT-
graphs, Ma et al. [21] presented polynomial algorithms
for a number of optimization problems. In particular,
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they described an O(mm) time algorithm for the
recognition problem, and polynomial-time algorithms
for the Hamiltonian cycle problem and the bandwidth
problems. They also gave a formula for the clique
covering number and conditions for a Q7T-graph to be
Hamiltonian. Yan et al. [29] stated important character-
izations of these graphs and presented a linear-time
algorithm for the recognition problem. They also
proposed linear-time algorithms for the edge domina-
tion problem and the bandwidth problem.

Hamiltonian problems on QT-graphs have not been
the focus of much research in parallel process environ-
ment. However, algorithmic solutions can be obtained
from the variety of available sequential and parallel
algorithms for these problems on cographs, a superclass
of the class of QT-graphs. Cographs themselves were
introduced in the early 1970s by Lerchs [18] who studied
their structural and algorithmic properties. Lerchs has
shown, among other properties, the following two very
nice algorithmic properties: (i) cographs are exactly the
P, restricted graphs, and (ii) cographs admit a unique
tree representation, up to isomorphism, called cotree.

There are several algorithms for recognizing cographs
and constructing their cotrees. A linear time sequential
algorithm for recognizing a cograph, through the
construction of its cotree, is given in [§8]. It is known
that cographs can also be efficiently (but not optimally)
recognized in parallel by a polynomial number of
processors in polylogarithmic time; see [10,16,19]. In
fact, a nearly optimal parallel algorithm for the cograph
recognition and cotree construction problem was devel-
oped by He [16] which, on a graph on n vertices and m
edges, takes O(log’n) time and requires O(n + m)
processors on the CRCW PRAM model. Dahlhaus
[10] also proposed a nearly optimal parallel recognition
algorithm working in O(log’n) time with O(n+ m)
processors on the CREW PRAM model. For the same
problem, Lin and Olariu [19] presented a parallel
algorithm working in O(logn) time with O((n?> +
nm)/logn) processors on the EREW PRAM model.
All the algorithms determine if a graph is a cograph, and
if so construct its cotree.

Many interesting optimization problems in graph
theory, which are NP-complete in general graphs, have
polynomial sequential solutions and admit efficient or
even optimal parallel algorithms in the class of
cographs, and, thus, in the class of QT-graphs. Such
problems, with a large spectrum of practical applica-
tions, include the coloring problem, the Hamiltonian
cycle and Hamiltonian path problems, the minimum
path cover problem, and many other ones. Lin et al. [20]
presented an optimal sequential algorithm for determin-
ing the minimum path cover for a cograph, which
exhibits a Hamiltonian cycle or path as well, if such a
structure exists. Bodlaender and Mohring [4] proved
that the pathwidth of a cograph equals its treewidth and

proposed a linear-time algorithm to determine the
pathwidth of a cograph. In a parallel environment,
given the cotree of a cograph as input, both the
Hamiltonian path and Hamiltonian cycle problems are
solved in O(log? n) time with O(n?) processors [1], and
the minimum path cover problem and the maximum
matching problem are solved in O(logn) time with
O(n/log n) processors [19a,22].

The cotree of a cograph is constructed in 0(log2 n)
time with O(n+ m) processors [10,16], or in O(logn)
time with O((n* + nm)/logn) processors [19]; thus, the
cotree construction dominates the time and/or processor
complexity of the parallel algorithms in [1,20,22] for
solving various Hamiltonian and optimization problems
on cographs, and, thus, on QT-graphs. It follows that
these parallel algorithms need, in total, either 0(10g2 n)
time or O((n* 4+ nm)/logn) processors, since they
require the cotree as input, and not the standard
adjacency-list representation of the input cograph.

1.2. Our results

In this paper we study the class of Q7T-graphs in more
detail and show structural and algorithmic properties of
its members. We prove that a QT-graph G has a unique
tree representation, that is, a tree structure that meets
the structural properties of G; we refer to this tree as
cent-tree of the graph G and denote 7,(G). We define a
depth-first search traversal of the cent-tree T,(G), which
we call h-dfs, and prove necessary and sufficient
conditions for a QT-graph to be Hamiltonian. Conse-
quently, by taking advantage of these properties and
conditions, we construct efficient parallel algorithms for
Hamiltonian problems on QT-graphs.

In particular, we first describe a parallel algorithm for
the construction of the cent-tree of a Q7-graph, which
runs in O(logn) time using O(n + m) processors on the
CREW PRAM model. Then, we construct an algorithm
for finding a Hamiltonian cycle of a QT-graph; our
algorithm takes O(logn) time and requires O(n + m)
processors on the CREW PRAM model. In addition, we
show that the problem of recognizing whether a Q7-
graph is a Hamiltonian graph and computing the
Hamiltonian completion number of a nonHamiltonian
QT-graph can also be solved in O(logn) time with
O(n+m) processors. We also present parallel algo-
rithms for other optimization problems on Q7-graphs
which run in O(logn) time using a linear number of
processors.

Our algorithms run on the CREW PRAM model of
computation [2,17,25], and use a linear number of
processors on QT-graphs with n vertices and m edges.
More precisely, we present the following results:

(i) The cent-tree of a QT-graph can be constructed in
O(log n) time with O(n + m) processors.
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(i) A Hamiltonian cycle and a Hamiltonian comple-
tion edge set of a QT-graph can be constructed in
O(log n) time with O(n + m) processors.

(i) Hamiltonian QT-graphs can be recognized in
O(logn) time with O(n + m) processors.

(iv) The Hamiltonian completion number of a non-
Hamiltonian QT-graph can be computed in
O(log n) time with O(n + m) processors.

(v) Other optimization problems on QT-graphs can be
solved in O(logn) time with O(n + m) processors:
the maximum clique problem, the maximum
independent set problem, the clique cover problem
and the coloring problem.

It is worth noting that the algorithms we present here
are based on new algorithmic and structural properties
of QT-graphs and are not parallel versions of existing
sequential ones. Moreover, the input to all our
algorithms is the given graph in its adjacency-list
representation.

1.3. Organization of the paper

The paper is organized as follows. In Section 2 we
characterize the class of QT-graphs in detail and show
structural and algorithmic properties on the class of QT-
graphs. In Section 3 we prove necessary and sufficient
conditions for a QT-graph to be Hamiltonian. In
Sections 4 we present a parallel algorithm for construct-
ing the cent-tree representation of a QT-graph. Based
on this representation and the conditions of Section 3,
we present the main results of the paper in Sections 5
and 6; we describe parallel algorithms for finding a
Hamiltonian cycle in a QT-graph, recognizing a
Hamiltonian QT-graph, and computing the Hamilto-
nian completion number of a nonHamiltonian QT-
graph. In Section 7 we show that other optimization
problems on QT-graph can be efficiently solved in
parallel. Finally, in Section 8 we conclude with a
summary of our results and extensions.

2. Quasi-threshold graphs and their structures

Let G be such a graph with vertex set V' (G) and edge
set E(G). The neighborhood N(x) of a vertex xe V(G) is
the set of all the vertices of G which are adjacent to x.
The closed neighborhood of x is defined as N[x] =
{x} UN(x) [14]. Given a graph G, an edge (x,y) = (y, x)
of G can be classified as follows according to the
relationship of closed neighborhoods: (x,y) is free if
Nix] = N[y]; (x,y) is semi-free if N[x]=N[y] (or
Ny|eN[x]); and (x,y) is actual otherwise [15,24,23].
Obviously, the edge set E(G) of a graph G can be
partitioned into the three subsets of free edges, semi-free
edges and of actual edges, respectively.

The subgraph of a graph G induced by a subset S of
the vertex set V(G) is denoted by G[S]. For a vertex
subset S of G, we define G — S = G[V(G) — S].

The following lemma follows immediately from the
fact that for every subset ScV(G) and for a vertex
xe S, we have Ngg[x] = N[x]nS and that G — S is an
induced subgraph.

Lemma 2.1 (Nikolopoulos [24]). If G is a QT-graph,
then for every subset S<V(G), both G[S] and G[V(G) —
S] are also QT-graphs.

The following theorem provides important properties
for the class of QT-graphs. For convenience, we define

cent(G) = {xeV(G) | N[x] = V(G)}.

Theorem 2.1 (Nikolopoulos [24]). Let G be an undir-
ected graph.

(1) G is a QT-graph if and only if every connected
induced  subgraph  G[S],S<V(G), satisfies
cent(G|S]) #0.

(ii) G is a QT-graph if and only if G[V(G) — cent(G)] is
a QT-graph.

(iii) Let G be a connected QT-graph. If V(G)—
cent(GI[S]) #0, then G[V(G) — cent(G))] contains at
least two connected components.

Let G be a connected QT-graph. Then V' := cent(G)
is not an empty set by Theorem 2.1. Put G| = G, and
GV (G) — V1] = GouGsu - UG, where each G; is a
connected component of G[V(G) — V1] and r=3. Then
since each Gj is an induced subgraph of G, G; is also a
QT-graph, and so let V; = cent(G;)#0 for 2<i<r.
Since each connected component of G;[V(G;)—
cent(G;)] is also a QT-graph, we can continue this
procedure until we get an empty graph. Then we finally
obtain the following partition of V(G):

V(G)=Vi+ Vo4 - + Vi where V; = cent(G;).

Moreover we can define a partial order < on the set
{V1,Va, ..., Vi} as follows:

VixV; if Vi =cent(G;) and V;= V(G;).

It is easy to see that the above partition of the vertex set
V(G) of the QT-graph G possesses the following
properties.

Theorem 2.2 (Nikolopoulos [24]). Let G be a connected
OT-graph, and let V(G)=Vi+ Va+ - + Vi be the
partition defined above; in particular, V\ = cent(G). Then
this partition and the partially ordered set ({V;}, <) have
the following properties:

iV, then every vertex of V; and every vertex
(PY) If Vi Vj, th y f Vi and every
of V; are joined by an edge of G.
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(P2) For every V;, cent(G{U Vi | VisV;}]) =V;.

(P3) For every two Vs and Vi such that
ViV, G{UV: | Vig ViV is a  complete
graph. Moreover, for every maximal element V,; of
Vi), %), GAU Vi| Vig Vi Vi) is a maximal
complete subgraph of G.

(P4) Every edge with both endpoints in V; is a free edge,
and every edge with one endpoint in V; and the other
endpoint in V;, where V;#V;, is a semi-free edge.

The results of Theorem 2.2 provide structural proper-
ties for the class of QT-graphs. We shall refer to the
structure that meets the properties of Theorem 2.2 as
cent-tree of the graph G and denote it by T,(G). The
cent-tree T.(G) of a QT-graph is a rooted tree; it has
nodes V1, Va, ..., Vi, root V| = cent(G), and every node
V; is either a leaf or has at least two children. Moreover,
Vi< V; if and only if Vs is an ancestor of V; in T,(G).
Thus, we can state the following result (Fig. 1).

Corollary 2.1. A4 graph G is a QT-graph if and only if G
has a cent-tree Tc(G).

Observation 2.1. Let G be a QT-graph and let V =
Vi+ Vs + -+ + Vi be the above partition of V(G); V7 :
= cent(G). Let S = {v, 0541, ..., Uy, ..., Uy} be a stable set
such that v, e V; and V, is a maximal element of (V;, )
or, equivalently, V, is a leaf node of 7¢(G), s<t<gq. Itis
easy to see that S has the maximum cardinality o(G)
among all the stable sets of G. On the other hand, the
sets {J Vi| Vi< VigV,:}, for every maximal element V,
of (V;, %), provide a clique cover of size x(G) which is
the smallest possible clique cover of Gj that is a(G) =
k(G). Based on Theorem 2.2 or, equivalently, on the
properties of the cent-tree of G, it is easy to show that
the clique number w(G) equals the chromatic number
7(G) of the graph G; that is, y(G) = w(G).

Let V; and V; be disjoint vertex sets of the above
partition of V' (G) of a QT-graph G. We say that V; and
V; are adjacent if either V;< V; or V;<V;; otherwise, we
say that V; and V; are non-adjacent. Throughout the
paper, we call clique-adjacent (resp. independent), and

Fig. 1. The typical structure of the cent-tree 7¢(G) of a QT-graph.

denote V;x V; (resp. Vi=<V}), two adjacent (resp. non-
adjacent) vertex sets V; and ¥ of the partition of V' (G).

3. Hamiltonian Q7-graphs

Let G be a QT-graph G and let V1, V5, ..., V) be the
nodes of the cent-tree T,(G) rooted at r.=V;. We
consider a node V; of T¢(G) and let Vi, Vi, ..., Vi, be
its children, 1<i<k; note that p,>2 if V; is not a leaf;
otherwise p; = 0. We assign a label H-label (V;) to the
node V;, 1<i<k, which we compute as follows:

Vil — pi if V; is the root of
the tree,
H-label(V;) = { |Vil —pi+1 if Vi is an internal
node, and,
0 if V;is a leaf,

where p; is the number of children of the node V;. Fig. 2
depicts a node V; of a cent-tree along with its four
children V;, Vp, Vi and Vy; here, we have
H-label(V;) =1 if V; is the root of the tree or
H-label(V;) =2 if V; is an internal node, and
H-label(V;) =1, H-label(Vy) = —1, H-label(Vi3) =0
and H-label(V4) =0. We shall show that G is a
Hamiltonian QT-graph if H-label(¥;)>0 for each node
VieTo(G).

Let V; be an internal node of the cent-tree 7.(G) such
that H-label(V;)>0 and let Vi, Vi, ..., Vj, be its
children, p;>2. Since V; is an internal node and
H-label(V;) >0, it has more than p; — 1 vertices; let
list(V3) = (vit, -+, Vigp;—1), Vip;» ---» Vin;) be the list of the
vertices of the node V;, where n;=p; — 1.

We define the list a-vertices(V;) = (Vip,, Vi(p,+1)s --+» Vin,);
the elements of the list a-vertices(V;) are called available
vertices of the node V;. If V; is the root of the cent-tree
then a-vertices( Vi) = (Vi(p,+1)» Vi(p42)» ---» Vin;). In Fig. 2,
for the internal node V; we have a-vertices(V;) = {u, v}.

Let Vray, Vi) -5 Vi) be the left-to-right order
listing of the leaves of the cent-tree 7.(G), and let V)
be the lowest common ancestor of the nodes Vy(; and
Viis1), where 1<i<t—1. We define a sequence of

Fig. 2. A node of the cent-tree T,(G) of a QT-graph along with its
four children; the vertices of each node of 7.(G) are denoted by black
disks.
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nodes of the cent-tree 7.(G), which we call h-sequence
and denote h-sequence(7.), as follows:

h-sequence(T:)
= (Vry, Va)s Viys Va@ys - Viwys Vay = V1)s

where V) is the root of the tree 7.(G) and ¢ is the
number of leaves in 7;(G); the length of the s-sequence
of T.(G) is 2t.

By definition there exists no pair {Vyg, Vy(;} of
elements of the h-sequence(7t) such that Vg = Vy(j
for i#j and 1<i,j<t. On the other hand, there may
exist elements Va(l']), Va(iz)? ey Va(i,,,l) such that Va(,'l) =
Vai) = == = Va(i,.,) = Vi, where V; is an internal node
of T.(G) and p is equal to the number of children of V;.
Let a(i;) and a(i,—) be the indices of the leftmost and
rightmost occurrence of V; in h-sequence(7;), and let
a(iy) <a(i) <---<a(i,—1). We say that V,, is the first
occurrence of V;, Vi, is the second occurrence of V7,
and so on; V() is the last (rightmost) occurrence of V;
in h-sequence(7;). Based on the structure of the cent-
tree T.(G) and the fact that each internal node of 7¢.(G)
has at least two children we can easily conclude that
each internal node of 7,(G) appears at least once in the
h-sequence. Thus, we can prove the following result.

Proposition 3.1. A/l the nodes of the cent-tree Tc(G) of a
QT-graph G are appeared in the sequence h-sequence(T).
Moreover, two consecutive nodes in h-sequence(T.) are
clique-adjacent.

Proof. Let h-sequence(Tc) = (Vs Vay, Vi), -+
Vay = V1) and let V1, V>, ..., Vi be the nodes of the
cent-tree  T¢(G). By  definition, the  nodes
Viays Vi@ys -5 V@ form a left-to-right order listing of
the leaves of the cent-tree 7.(G) and the node V,(; is the
lowest common ancestor of the nodes Vi) and Vi),
where 1<i<t— 1. Thus, all the nodes of the cent-tree
T:(G) appeared in h-sequence(T).

Two consecutive nodes in /-sequence(7¢), say, Vi,
Vay of Vaiy, Vrir1), are clique-adjacent since the node
Vi) is an ancestor of both nodes V) and Vyyyy in
T.(G), that is, V,y<Vye and Vi< Viueny; see
Theorem 2.2 (property P3). [

Let Vi, V5, ..., Vi be the nodes of the cent-tree 7,(G)
of a QT-graph G and let h-sequence(7.) be the h-
sequence of 7;(G). We next use a depth-first search (dfs)
traversal strategy for visiting the vertices of the graph G
(i.e., the vertices in each node V;, 1 <i<k) and building
a depth-first tree. We shall use the A-sequence for the
process of selecting the next unvisited vertex; note that
in the standard dfs traversal when we have a choice of
vertices to visit, we select them in alphabetical order.
Based on the A-sequence for the selection process, we
describe a dfs traversal, which, hereafter, we shall call /-
dfs traversal; it works as follows:

The h-dfs traversal of the cent-tree T.(G):

(i) Compute the h-sequence (Vrqy, Vi), Vi) ---s
Vi Vawy = V1) of the cent-tree T¢(G);

(ii) Select an arbitrary vertex v from V() as starting
vertex; visit v and mark it “visited” (initially, all
vertices of G are marked “unvisited”);

(iii) Visit in turn each unvisited vertex v; of Vj(),
1<i<t, and mark v; “visited”;

(iv) Once all the vertices of V() have been visited, go to
node V,; and do the following:

e if there exists an unvisited vertex u; in V) = V,
then select u;, mark u; “visited” and if V,; = Vi
is its rightmost occurrence in /A-sequence(7c),
then select in turn each unvisited vertex of V;
and mark it “visited’’;

o if there exists no unvisited vertex u; in V5 = V;
then do nothing;

(v) Continue until the last vertex u of the rood node
Vaw = V1 becomes a visited vertex; that is, if i is
less that z, then increase the i by 1 and execute Steps
(ii) and (iv).

In Fig. 3 we show the A-dfs traversal of a cent-tree
T.(G) on six nodes; its h-sequence is the following:
Vrays Vs Vi) Va@ys Vi) Va)s Vi Vaw), - where
Vay = Vay = Vi) = Vaay = V1. The vertices v and u
are the first and the last vertices of the lists list(¥y(;))
and list(77), respectively.

We consider connected undirected QT-graphs and,
thus, the A-dfs forest of such a graph G contains only
one tree. Moreover, it is obvious that if each vertex of
the /-dfs tree of G rooted at ve V(G) has at most one
child, then G contains a Hamiltonian path beginning
with vertex v (it is the path from the root v to the unique
leaf u); G contains a Hamiltonian cycle if the root v of
the A-dfs tree and its unique leaf u are adjacent in G. We
next prove the following result.

Lemma 3.1. Let G be a QT-graph and let V1, V>, ...,V
be the nodes of its cent-tree T.(G). The QT-graph G is a
Hamiltonian graph if H-label(V;)=0 for each node
VieT:(G).

Va) = Vag = Vag = Vi

Fig. 3. The h-dfs traversal of a cent-tree 7.(G) of a QT-graph G.
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Proof. Let V1, V>, ..., Vi be the nodes of the cent-tree
T.(G) of the QT-graph G rooted at V;, and let
Vrays Vays Viys o, Vi, Vaw = V1)~ be the  h-se-
quence of T.(G). By definition, the internal node V;
appears p; — 1 times in the sequence h-sequence(7g),
where p; is the number of children V; in the cent-tree
TC(G); let Va(il) = Va(iz) = ... = Va(z’,,,l) =V, 1<igk.

Since H-label(V;)>0, it follows that the node V;
contains at least p; — 1 vertices; it contains p; vertices if
V; is the root V| of the cent-tree T.(G). Let n; be the
number of vertices in V;eT.(G) and let list(V;) =
(U,‘], ceey vi(pi,w, Vipiy «evs U,'n[).

We select a vertex v from Vy(;) and we perform an /-
dfs traversal starting at vertex v. Since each node V;
contains at least p; — 1 vertices (p; vertices if V; = 1), it
follows that after visiting the vertices of the node Vy(;
there exists at least one unvisited vertex in V) and,
thus, the 4-dfs always selects the next vertex from V),
1<i<t—1; this is also true for the nodes V() and
Vawy= V1. On the other hand, the nodes V,; and
Vi) are clique-adjacent; see Proposition 3.1. Thus,
the h-dfs tree has the property that each node has at
most one child; that is, G contains a Hamiltonian path.
Since V7 is the root of T¢(G), we have that Vi<V,
that is, V4 and V) are clique-adjacent. Thus, G
contains a Hamiltonian cycle. [

We consider now the case where the cent-tree
T.(G) of a Hamiltonian QT-graph has nodes, say,
V; and ¥}, such that V;<V; and H-label(V;)>0 and
H-label(V;) <0. Let u be an available vertex of the node
V;. Hereafter, when we say that we v-move the available
vertex u from the node V; to node V;, we mean that (i)
we delete the vertex u from node V; and (ii) we add it to
node V;.

From the structure of the cent-tree 7.(G) of a QT-
graph, it is easy to see that if we apply a v-move
operation to nodes V; and V, then the resulting tree has
the Property (P3): for every two nodes V; and ¥V, such
that VgV, GH{UVi|VigVixV,}] is a complete
graph. Obviously, if V, is a maximal element of
({Vi}, x), then after applying a v-move operation the
graph G[{UV;| Vi< Vi< V:}] may not be a maximal
complete subgraph of G.

Consider the tree that results from the cent-tree 7¢(G)
of a QT-graph after applying some v-move operations
on appropriate nodes so that each node V; of that tree
has H-label greater than or equal to 0; we call such a
tree h-tree and denote it by 7j(G). Then, we prove the
following result.

Theorem 3.1. Let G be a QT-graph and let Vi, V>, ..., Vi
be the nodes of its cent-tree To(G). The QT-graph G is a
Hamiltonian graph if and only if either H-label(V;)=0
for each node Ve T.(G) or we can construct an h-tree
Ti(G).

Proof. The if implication follows directly from Lemma
3.1 since either H-label(7;)>0 for each node V; of the
cent-tree 7.(G) or H-label(V;) >0 for each node V; of
the h-tree T,(G), 1<i<k.

Suppose now that there exists a node in 7.(G), say,
Vi, such that H-label(V;)<0, and also suppose that
there exists no ancestor of the node V; in T.(G), say, V;,
with available vertices, that is, H-label(¥;) <0. Thus, we
cannot construct an h-tree Tj(G).

Let Vi1, Via, ..., Vi, be the children of the node V; in
the cent-tree 7.(G), and let n; be the number of vertices
of V;, that is, list(V;) = (vi,vi2, ..., 0i,). Since
H-label(V;) <0, exactly one of the following cases holds:

Case (1): n;<p;, if V; is the root of the cent-tree
T.(G);

Case (i1): n;<p; —
cent-tree T.(G);

Let (Vray, Vaq), ---5 Vawy = V1) be the h-sequence of
T.(G). We select a vertex v from V() and we perform
an h-dfs traversal to the vertices of G starting at vertex v.
We consider the two cases:

Case (i): V; = V) is the root of the cent-tree T,(G),
and n; <p;. From the structure of the cent-tree 7,(G),
we have that the subgraph of G induced by the vertices
of the subtrees of T,(G) rooted at Vi1, Via, ..., Vi,,, that
is, the graph G — V|, contains p; connected components,
say, Ci1, Ca, ..., Cip,. We consider the best case where
each induced graph G(Cj;), 1<i<p;, contains a
Hamiltonian path (or cycle). Since n; <pi, it follows
that the p; paths (path cover of G — V) cannot be
extended to a cycle using the n; vertices of the node Vy;
the p, paths can be extended to a (Hamiltonian) path if
n; = p; — 1. Thus, the whole graph G does not contain a
Hamiltonian cycle. Note that, the vertex vy, €V
has at least two children in the A-dfs tree if ny<p; — 1,
while it has exactly one child u, if n; = p; — 1; the vertex
u belongs to a node of the subtree of T.(G) rooted
at lel .

Case (ii): V; is an internal node, and n; <p; — 1. Again,
from the structure of the cent-tree 7.(G), we have that
the subgraph of G induced by the vertices of the subtrees
of T.(G) rooted at Vj, Vp, ..., Vi, contains p; con-
nected components, say, Cji, Cp, ..., Cyp,. From case (i),
we have that the subgraph of G induced by the vertices
of the subtree of T.(G) rooted at V; does not contain a
Hamiltonian cycle since n;<p; — 1; it does not also
contain a (Hamiltonian) path. Since there exists no
ancestor of the node V; in T.(G) with available vertices,
it follows that the paths cannot be extended to a
(Hamiltonian) path. Thus, even the node V| contains
n; = p; vertices, the whole graph G does not contain a
Hamiltonian cycle. Note that, the vertex v;, € V; has at
least two children in the /-dfs tree.

Thus, in both cases (i) and (ii) the QT-graph G does
not contain a Hamiltonian cycle, and the theorem is
proved. O

1, if V; is an internal node of the
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4. Construction of the cent-tree of a QT-graph

The characterizations provided by Theorem 2.2
enable us to describe a parallel algorithm for construct-
ing the cent-tree of a QT-graph.

4.1. The degree-tree

Let G be a QT-graph and let 7.(G) be its cent-tree
with node set {Vi, V3, ..., Vix} and root V;. We have
proved that if the node V; is an ancestor of the node V;
in the cent-tree 7c(G), then V; and V; are clique-
adjacent; see Theorem 2.2. Thus, if the sequence of
nodes (V71, V>, ..., V;) forms a path from the root V; of
the cent-tree to a node Vj, then d(V)>d(V3)> - >
d(V;), where d(V;) denotes the degree of the vertices of
G that belong to node V;; recall that all the vertices of G
that belong to node V; have the same degree and each
internal node of the cent-tree of G has at least two
children. It follows that if {v;, v2, ..., v,} is a clique in a
QOT-graph, then d(v) =d(v2) = =d(v,), | <p<n.

Based on this property, we describe an algorithm that
produces a tree representation of a QT-graph; see also
[29]. We call this tree degree-tree of the QT-graph G and
we denote it by 74(G). The details of the algorithm are
given as follows:

(1) Sort the vertices vy, v2, ..., v, of G according to their
degrees; let D = (vy,v2,...,0,) be a sequence such
that d(v)=d(vy)= - =d(vy).

(2) Construct the tree T4(G) in the following manner:

(i) set V(Tq) = {v1,v2,...,0,} and E(Ty) = 0;

(ii) for every vertex v;e D, 2<i<n, find the vertex
vy, if it exists, such that & is the maximum index
satisfying 1 <k<i and (vg,v;) is an edge in G;
add the edge (v, v;) in the edge set E(Tq).

(3) Root the tree T4(G) at vertex r = vy; the resulting
tree is the degree-tree T4(G).

We call D-TREE-CON the above construction algo-
rithm, and show that it can be easily implemented to run
on a PRAM model of computation.

Time and processor complexity. The algorithm takes
as input a QT-graph G on n vertices and m edges, where
G is given in an adjacency-list representation, and

\4

constructs the degree-tree T4(G); its time and processor
complexity is analyzed as follows:

Step 1: It is known that the degree of each vertex of a
graph G on n vertices and m edges can be computed in
O(logn) time using O((n + m)/logn) processors on the
EREW PRAM model; G is given in an adjacency-list
representation. It is also known that n elements can be
sorted in O(log n) time with O(n) processors on the same
model of computation [2,17,25].

Step 2: Let D = (vy, v, ...,0,) be the vertex sequence
computed in Step 1, and let N(v;) = {uy,uz, ..., uz} be
the set of vertices adjacent to v;, 1<i<n. For each
vertex v; we compute the vertex u, if it exists, such that:
ue N(v;) and u is the nearest vertex to the left of v; in the
sequence D. This computation can be carried out
through the general prefix computation (GPC, see [2])
in O(logn) time with O(n) processors on the CREW
PRAM model.

Step 3: The problem of rooting the tree T4(G) at the
vertex r =v; can be solved in O(logn) time with
O(n/logn) processors on the EREW PRAM using the
well-known Euler-tour technique [2,17,25]. Thus, this
step can be performed within the stated bounds.

Taking into consideration the time and processor
complexity of each step of the construction algorithm
D-TREE-CON, we can state the following result.

Lemma 4.1. The degree-tree of a QT-graph can be
constructed in O(log n) time with O(n + m) processors on
the CREW PRAM model.

4.2. The cent-tree construction algorithm

Based on the structural properties of the degree-tree
T4(G) of a QT-graph G, we next present a parallel
algorithm for the construction of the cent-tree 7,(G) of
the graph G.

We observe that, a vertex u and its parent p(u) belong
to the same node V;e T,(G) if and only if u is a unique
child of the vertex p(u) in the degree-tree T4(G); see Fig.
4. Let uy, ...,u; be the vertices of the degree-tree T4(G)
with the property that their parents have at least two
children, and let R = {r = uy,us, ..., ux }, where r is the

Vi

Ve

Fig. 4. The degree-tree T4(G) and the cent-tree 7.(G) of a QT-graph G.
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root of the tree T4(G); the vertices of R of the tree T4(G)
of Fig. 4 are denoted by gray disks.

Let V1, V>, ..., Vi be the nodes of the cent-tree 7.(G)
rooted at V. It is easy to see that u;e V;, 1<i<k. The
node V] is the root of the cent-tree and the node V; =
{u;} has parent the node V; = {u;} in Tc(G) if u; is
the least ancestor of u; in T4(G) which belongs to R. The
vertex u¢ R of the graph G belongs to the node V; if
the vertex u; is the least ancestor of u in T4(G), 1 <i<k;
see Fig. 4.

Based on the above observations and properties, we
describe the following parallel algorithm; it takes as
input a QT-graph G and produces the cent-tree of the
QT-graph G.

Algorithm  Cent-Tree-Construction
CON):

Input: a quasi-threshold graph G on n vertices and m
edges.

Output: the cent-tree T.(G) of the input graph G.

(CENT-TREE-

1. Compute the degree-tree 74(G) and let V(Ty) =
{r=v1,02, ..., 00 };

2. For each vertex v;e V(Ty), 1 <i<n, do in parallel
if v; is the root r of the tree or its parent p(v;) has
more than one child,
then set color(v;)« red; otherwise color(v;)«
black;
let R={r=uj,uy, ...,u;} be the set of the red
vertices of T4(G), k= 1;

3. For each vertex v;eV(T4) — R, 2<i<n, do in

parallel
find the least ancestor u; of vertex v; with read
color and set p(v;) < u;;
let T, (G) be the resulting tree rooted at r = u;; we
set p(r) «<r;

4. For each red vertex u;€ T,(G) construct a node set

Vi and set Vi {u;}, | <i<k;
5. Construct the tree graph T.(G), in parallel, as
follows:
5.1 Set V(TC)F{VC =V, V..., V/C};
5.2 For each red vertex u;€ T,(G), 2<i<k, do in
parallel
if u; is the parent of u;, then add the edge
(Vi, V) into E(T);
6. Compute the vertices of each node V7, V3, ..., Vj of
the tree 7.(G) as follows:
for each black vertex v;e T,(G), 2<i<k, do in
parallel
if u; is the parent of v;, then add the vertex v;
into node set V;
7. Root the tree T.(G) at node V;; the rooted tree
T.(G) is the cent-tree of the input graph G;

Time and processor complexity. We next compute the
time and processor complexity of the proposed parallel

algorithm for the construction of the cent-tree of a Q7-
graph. Its step-by-step analysis is as follows:

Step 1: The degree-tree T4(G) of a QT-graph on n
vertices and m edges is constructed in O(log n) time with
O(n + m) processors on the CREW PRAM model; see
Lemma 4.1.

Step 2: Let vy, 09, ..., v, be the vertices of the degree-
tree T4(G) rooted at r = v;. Obviously, the parent p(v;)
of a vertex v;e T4(G), 2<i<n, has more than one child
if there exist a vertex v; such that p(v;) = p(v;). Let
(i), P(Vi2)), ---, P(vi(n)) be the sorted sequence of the
parents of the vertices of T4(G); we set p(vy()) = 0 and
P(Vi(ns1)) = n+ 1. Then, the vertex v ; has more than
one child if p(vi(;-1)) #p(vi(;) and p(vi ;) = p(vi(j41)),
1<j<n. Since the sorting problem and the array
packing problem on n elements can be solved in
O(logn) time with O(n) processors on the EREW
PRAM model [2,17], this step can be executed within the
same time and processor bounds.

Step 3: The tree T,(G) can be computed by using the
pointer jumping technique on the degree-tree 74(G); for
each vertex v;€ T4(G), 1 <i<n such that p(v;) is a black
vertex, do the following: set p(v;) = p(p(v;)); continue,
until p(v;) is a red vertex, for every v;€ T4(G) (this is the
well-known parallel prefix algorithm [2,17]). Thus, the
tree T,(G) can be constructed in O(log n) time with O(n)
processors on the CREW PRAM model.

Steps 4 and 5: 1t is easy to see that the node sets
Vi,Va, ..., Vi, and, thus, the set V(7.), can be
computed in O(1) time with O(k) processors on the
EREW PRAM model. The pair (V;, V) is added into
E(T.), if the vertex u; € V; has parent the vertex u;e V; in
the tree 7,(G). Thus, the computation of the edge set
E(T.) requires O(1) parallel time and O( k) processors
on the CREW PRAM model.

Step 6: It is easy to see that the elements of the node sets
Vi, Va, ..., Vk can be computed from the tree T,(G); the
vertex v belongs to V; if the representative u; of the set V; is
the parent of v in the tree T;(G). This computation can be
carry out by using the sorted sequence of the parents of the
vertices of the tree T4(G); it needs O(log n) time and O(n)
processors on the EREW PRAM model.

Step 7: We solve the problem of rooting T¢(G) at the
vertex V| by applying the Euler tour technique on the
tree graph T.(G); it takes O(logn) time and requires
O(n/logn) processors on the EREW PRAM model
[2,17,25].

Therefore, from the previous step-by-step analysis, it
follows that the construction algorithm CENT-TREE-
CON runs in O(logn) time using a total of O(n+ m)
processors on the CREW PRAM model of computa-
tion. Thus, we have proved the following result.

Theorem 4.1. The cent-tree of a QT-graph can be
constructed in O(logn) time with O(n+ m) processors
on the CREW PRAM model.
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5. Finding a Hamiltonian cycle in a QT-graph

In this section, we first describe a parallel algorithm
which constructs an A-tree 7,(G) of a Hamiltonian QT -
graph G. Recall that an A-tree of a QT-graph G has the
property that H-label(V;)>0 for each node V;e T;(G).
Next, we present a parallel algorithm which produces a
Hamiltonian cycle of G; it works on the cent-tree 7.(G)
if H-label(V;) >0, for each node V; e T.(G); otherwise, it
works on an A-tree 75(G) (see Theorem 3.1).

5.1. Construction of an H-tree

Consider the case where the cent-tree of a Hamilto-
nian QT-graph G has nodes, say, V|, V3, ..., V[, with
H-labels less than zero. In this case, we are interested in
constructing an h-tree 75,(G) from the cent-tree 7,(G).
An h-tree can be constructed by moving available
vertices from certain nodes of T.(G) to nodes
Vi, V3, ..., Vi, (see Section 3). Recall that, if a Hamilto-
nian QT-graph G has a node, say, V;, such that
H-label(V;) <0, then there exists an ancestor V; of V;
in the cent-tree 7¢(G) such that H-label(V;)>0; that is,
the node V; contains available vertices.

In more detail, an A-tree T,(G) can be constructed in
the following manner: First, we determine the nodes of
the cent-tree 7.(G) with H-labels greater than zero and
the available vertices which they contain. Next we
determine the nodes V7, V3, ..., V], of the cent-tree
T.(G), such that H-label(V])<0, and we v-move
|H-label(V7)| available vertices to node ¥/ so that
H-label(V]) =0, where 1<i<Kk’. To this end, we add
d; = |H-label(V])| dummy vertices, say, v}, v}, ..., 0%,
to node V}, and we assign to each dummy vertex vj; an
available vertex from an ancestor V; of the node V7; (see
Fig. 5; the available and the dummy vertices are denoted
by grey and white disks, respectively). We call m-vertex
the available vertex which has been assigned to a
dummy vertex. Since G is a Hamiltonian QT-graph, we
can always construct an /i-tree 7;(G) (see Theorem 3.1),
and, thus, there is an one-to-one correspondence
between the m-vertices and the dummy vertices. Finally,
we v-move the m-vertices to appropriate nodes of the

cent-tree and delete the dummy vertices from the cent-
tree.

It is clear that the crucial factor of the above h-tree
construction algorithm is the process of assignment
available vertices to dummy vertices. We next show that
this process can be efficiently implemented using the /-
dfs traversal strategy and simple algorithmic techniques
on certain nodes and vertex lists. This, in turn, implies
an efficient implementation of the /A-tree construction
algorithm. We proceed as follows:

Step (A): Construction of the available-dummy tree
(ad-tree)

(1) Determine, first, the nodes V; of the cent-tree 7.(G)
such that H-label(7;)>0, compute the available
vertices of V;, and paint them with grey color;
initially, all the vertices of 7.(G) are black. Next,
determine the nodes V] of the cent-tree 7.(G) such
that H-label(¥7)<0 and add a list of d/ dummy
vertices (v}, v}, ...,vl,) to the node V], 1<i<Kk;
paint the dummy vertices of v/ with white color. Let
T/(G) be the resulting tree.

(2) Delete from T/(G) the nodes V; such that
H-label(V;) = 0, that is, the node V; contains only
black vertices. Then, delete from the remaining
nodes of T.(G) all the black vertices. Now, the
nodes of the tree 7.(G) contain either available or
dummy vertices; a node with available (resp.
dummy) vertices is called a-node (resp. d-node).

(3) For each node V; of the tree T.(G) (except from the
root) do the following: if the parent p(V;) of the
node V; is a d-node, then determine the lowest a-
node ancestor V; of the node V; in T/(G), and set
p(Vi) = V;. Now, all the d-nodes of the resulting
tree 7/(G) are leaves.

(4) For each a-node V; of the tree T/(G) compute two
vertex lists, namely a-list(¥;) and d-list(V;), as
follows: a-list(V;) contains the available vertices of
V; and d-list(V;) contains the dummy vertices of all
the d-node children of V;.

(5) Delete from T7(G) the d-nodes. The resulting tree is
called ad-tree (available-dummy tree) and denoted
by Tad(G)'

Fig. 5. The tree 7.(G) and the ad-tree T,,(G) of a QT-graph G.
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Let Ay, 4, ..., A4, be the nodes of the ad-tree T,;(G)
constructed by the above algorithm, and let a-list(4;) =
(vi1, Vi2y ..., Uig,) be the list of the available vertices of the
node A4; and d-list(4;) = (vj;, )y, ..., v}, ) be the list of
the available vertices of A4;, 1 <i<t.

Observation 5.1. From the construction of the ad-tree
T.4(G), it is clear that T,,(G) consists of those nodes of
the tree 7(G) which contain available vertices, that is,
the construction algorithm establishes a one-to-one
correspondence between the nodes V; of the tree T.(G)
which contain available vertices and the nodes 4; of the
ad-tree T,q4(G), 1<i<t. Moreover, the a-list(4;) of the
nodes A; contains only the available vertices of the node
VieT.(G). On the other hand, the d-list(4;) may
contain dummy vertices from several nodes of the tree
T/(G), or it may by an empty list.

In Fig. 5, the tree T.(G) contains three nodes with
available vertices (gray disks), that is, the nodes Vi, Vs
and V¥, with 3, 2 and 2 available vertices, respectively;
the ad-tree T,4(G) consists of the nodes A, 4> and A3
which correspond to nodes V|, V5 and Vy; the a-lists of
the nodes A4, 4> and A5 contain the available vertices of
the nodes V7, Vs and Vi, respectively. The d-list(4;) of
the tree 7,,(G) contains the dummy vertices (white
disks) of the nodes V> and Vs, while the d-list(43)
contains the dummy vertices of the node V7; the
d-list(A) is an empty list.

Observation 5.2. By construction, the trees 7.(G) and
T.4(G) have the following property: if two nodes V; and
V; have an ancestor (resp. independent) relation in
T/(G), then the corresponding nodes A4; and A4; have the
same relation in the ad-tree T,;(G); that is, if V;<V;
(resp. V;=<V;) in the tree T/(G), then A;<A; (resp.
A;=A4;) in T,4(G). Recall that, two nodes V; and V; are
independent if they are not clique-adjacent; see Section
2. It follows that the available vertices of the nodes of
the tree 7/(G) preserve their ancestor relation in the ad-
tree T,4(G); see Fig. 5: the available vertices of the nodes
Vi, Vs and Vy of the tree T.(G) preserve their ancestor
(resp. independent) relation in the tree T,4(G).

The nodes of the tree 7/(G) which contain dummy
and/or black vertices do not appear in the ad-tree
T.a(G); in Fig. 5, such nodes are: V,, V3, Vs and V7.
Moreover, the black vertices of the tree 7(G) do not
appear in the ad-tree T,;(G). On the other hand, all the
dummy vertices of T.(G) appear in T,4(G) and have the
following property: if an available vertex, say, x, of a
node V; and a dummy vertex, say, y, of a node V; have
an ancestor relation in 77(G), then these vertices
preserve this relation in the ad-tree T,;(G); that is, if
xeV; and yeVj, and V;<V; in T.(G), then xe 4; and
y€Aj, and 4;< A; in the tree T,4(G); the vertices x and y
have an ancestor relation if both belong to the same
node in 7T,,4(G).

In Fig. 5, the dummy vertices (white disks) of the
nodes V> and Vs of the tree T.(G) have ancestors the
available vertices (gray disks) of the node V|, while the
dummy vertices of the node V7 have ancestors the
available vertices of the nodes V4 and V. Thus, by
construction, this relation is preserved in the tree
T.i(G); the node A4; contains the dummy vertices of
the nodes 7, and Vg, and the available vertices of the
node V7, while the node 43 contains the dummy vertices
of the node V777, and the available vertices of the node V.

From the above observations, we state the following
properties of the nodes and vertices of the trees 77.(G)
and T,4(G).

Lemma S.1. Let V|, V>, ..., Vi be the nodes of the tree
T/(G) and let A\, A, ..., V,; be the nodes of the ad-tree
T.q4(G) (see Fig. 5).

(1) All the available and dummy vertices of the tree
T/(G) appears in the ad-tree T,;(G). No black
vertex of T.(G) appears in Tpq(G).

(i) If xeV; is an available vertex, yeV; is a dummy
vertex, and V;<V; in T.(G), then xe A;, ye A;, and
either A;i<Aj or A; = Aj in Toq(G).

(iii) If yeV; is a dummy vertex and xeV; is an available
vertex, and V;<V; in T.(G), then ye A; and x€ A;,
and Aj < Ai-

(iv) If yeV; is a dummy vertex and xeV; is an available
vertex, and Vi< V; in T.(G), that is, neither A;< A;
nor Ai< Aj, then ye A; and x € A;, and either A;< A;
or A;=< A;.

Proof. It follows directly from the structure of the cent-
tree T.(G) (see Theorem 2.2), the construction of the ad-
tree T,4(G), that is, Steps (1)—(5), and the Observations
S5.1and 5.2. O

Observation 5.3. In Step (2), all the nodes V; of the tree
T/(G) such that H-label(V;) = 0 are deleted from T/(G),
1 <i<k. Thus, if the root ¥V} of the tree 7.(G) has zero
H-label, then the result is a forest; note that
H-label(V) >0, for otherwise the input graph G would
not be a Hamiltonian graph (see Theorem 3.1). In such a
case, we independently work in each tree T.(G;) of the
forest, and we assign available vertices of the tree T/(G;)
to dummy vertices of the tree T%(G;), | <i<p;, where p)
is the number of children of Vj. Thus, for simplicity in
the description of the algorithm, we assume that the root
of the tree 7.(G) has H-label(V;)>0, that is, 7
contains at least one available vertex, and, thus, V] is
the root of the ad-tree T,4(G).

Having constructed the ad-tree T,;(G) of the input
graph G, let us now describe an algorithm which assigns
available vertices to dummy vertices; more precisely, it
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assigns available vertices of the lists a-list(4;), 1 <i<t,
to the dummy vertices of the lists d-list(4;), 1<j<t,
where A4; is an ancestor of 4; in the ad-tree T,4(G), or

A; = A;.

We assume that the tree 7,4(G) is a binary tree rooted
at A;; otherwise, we make it binary using a standard
technique [17]. We consider a leaf node, say, 4;, of the tree
T.4(G) and let p(A4;)# A, be its parent. Let p(4;) has two
children, that is, the node A; and the sibling of 4;, denoted
by sib(A4;), and let p(p(4;)) be the parent of p(4;). We
apply the rake operation at node 4; [17,17a]; that is,

® we remove first the node 4; and, then, the node p(4;)
from the tree 7,,(G), and
® we connect the sibling of the node 4; to node p(p(4;)).

Before removing the nodes A4; and p(4;), we assign
available vertices to dummy vertices and update the lists
a-list and d-list as follows:

(i) Before the removal of A;:
Let a-list(A,») = (U,’],Ul‘z, ...,Uial.) and d—liSt(Ai) =
(U, Vo, '“71);:!,-)?
e if a;<d;, then assign the a; available vertices of
the list a-list(4;) to dummy vertices
Uj1s Uiy +ov Uy, Of d-list(4;), and
concatenate the list (v, v, .,
d-list(p(4;)); see Fig. 6;
e if d;<a;, then assign the d; available vertices of

s Uig) to

the list a-list(4;,) to dummy vertices
Uiy Uiy -+ Uy, OF d-list(A4;); see Fig. 7;

The remaining available vertices
Vdyoy s Udisn s -+ » Vig; 10 a-list(A4;) are removed along

with the node A4; from the tree 7,,(G);

p(p(AY))

(if) Before the removal of p(4;):
Let a-list(ja(Ai)) = (U,‘] y Uiy ouny Uia,-) and
d-list(p(4;)) = (U}, Vs ""Ui'd,)§
e if a;<d;, then assign the @; available vertices of
the list a-list(p(4;)) to dummy vertices
Ujs Uiy +ov Uy, OF d-list(p(4;)), and
concatenate the list (v}, v ...
d-list(p(p(A4;))); see Fig. 6;
e if d;<a;, then assign the d; available vertices of
the list a-list(p(4;)) to dummy vertices
Uiy Uiy -+ Uy, OF d-list(p(4;)), and
concatenate the list (vg.,,0d.y; -, Viq;) tO
a-list(sib(A;)); see Fig. 7,

V) to

By the above process, that is, the application of the rake
operation at leaf node A4;, we establish an one-to-one
correspondence between available vertices and dummy
vertices of the nodes A; and p(4;), and also we update:

(i) the list d-list(p(p(A4;))) by adding dummy vertices or
(ii) the list a-list(sib(A;)) by adding available vertices.

The update operations (i) and (ii) guarantee that, after
the application of the rake operation at node 4;, the
ancestor relation between the remaining available and
dummy vertices in 7,;(G) is preserved (see Lemma 5.1).
Thus, if we repeatedly apply the rake operations on the
tree T,4(G), the available vertices is correctly assigned to
dummy vertices, that is, an available vertex v of the node
Ve T.(G) is always assigned to a dummy vertex v’ such
that v'e V] and V; is an ancestor of V/ in the cent-tree
T.(G). Moreover, it is known that we can contract
the tree T,4(G) into a three-node binary tree, using the
rake operation [17]; recall that we have assumed that the

Fig. 7. A rake operation at the node A4, € T,4(G); it contains three available vertices (gray disks) and two dummy vertices (white disks).
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T.q(G) is a binary tree. Let 4> and A5 be the children of
the root A4, of the resulting three-node binary tree. Then,
we assign available vertices of the root V] to dummy
vertices of the nodes V7, and V3, and complete the
assignment process. Note that, since the input graph G is
a Hamiltonian graph, the above described algorithm
always succeeds in assigning available vertices to all the
dummy vertices of the tree T,,(G).

We are interested in implementing the above algo-
rithm in a parallel model of computation. It is known
that a binary tree can be efficiently contracted into a
three-node tree on the EREW PRAM model using the
rake operation [17]. We make the (general) tree ad-tree
T.4(G) binary as follows: Each node V; with more that
two children is replaced by a balanced binary tree,
rooted at V;, whose leaves are the children of V;.

Before describing the above algorithm more formally,
let us define the notation and the terminology we shall
use hereafter. Let x-list = (xj,x2,...,Xx,) be a list on n
vertices. The position of a vertex x; in x-list, denoted
pos(x;), is defined as follows: pos(x;) :== 1 and pos(x;) :
= pos(x;_1) + 1; note that, if the x-list is implemented
by an array A, then the pos(x;) is the index of x; in 4; if
it is implemented by a link-list L, then the pos(x;) is the
rank of x; in L. A sublist (x;, X;11, ..., xx) of the list x-list
is defined to be the list which results from x-list after
deleting the vertices with positions less than pos(x;) and
greater than pos(xy).

Let y-list = (y1,y2, ...,»,) be a list on n vertices. By
V1,2, ooy yn) < (X1,X2, ..., X,) denote the one-to-one
correspondence between the vertex y; of the list y-list
and the vertex x; of the list x-list, 1 <i<n. Finally, by x-
list || y-list denote the list (x, X2, ..., Xu, Y1, .-, Vu), and
by () denote the empty list.

We now formally describe the above procedure, which
assigns available vertices to dummy vertices, as follows:

Step (B): Assignment of available vertices to dummy
vertices

(6) Make the ad-tree T,,;(G) binary: each node 4; with
more that two children is replaced by a balanced
binary tree whose leaves are the children of 4;,
I1<i<t; let A, A, ...,Ay be the nodes of the
resulting binary tree, ¢ >1¢;

(7) For each new internal node A; of the binary tree
T.4(G), compute two vertex lists, namely a-list and
d-list, such that a-list(4;) = () and d-list(4;) = ();

(8) Compute the position (i.e., index, or rank) of each
vertex of the a-list(4;) = (v, v, ..., 0i,) and
d-list(4;) = (v}, v}y, ..., v;,) of the node A4,
1<ig?;

(9) Contract the binary tree 7,4(G) into a three-node
binary tree, using the rake operation;
when a node A4; is subject to rake operation, adjust
the a-list and d-list of the nodes 4;, p(4;), p(p(4;))
and sib(4;), as follows:

(i) Let a-list(A;) = (vi1, vy -+, Vig,) and
d-list(A;) = (v}, Vs -5 Vg )
if d,»<a,» then

(V115 V12, -~,U'1d,)<—>(1)11,0127 s U1y,
else
(v/ll’v/lza -~-,U/10,)<—’(011,012, ---,Ulu,-);

d-list(p(4;)) < d-list(p(4:))]| (Vg - Vig);
(11) Let a-list(p(A[)) = (U,‘] y U2y oeny Uia,') and

d-list(p(4;)) = (vjy, vy, --~v”:‘d,-)§
if diéa,- then

(V)1 Vs -0y Vi) & (11, 012, ., 014,),
a-list(sib(A;)) < a-list(sib(A4:)|| (V14,5 ---» Via;)
else

(V)1 Vs - Vig,) > (011, 012, ., 014,);

d-list(p(p(4i))) < d-list(p(p(A)))I(tg,, > ---> Vg )i

(10) Let ¥} be the root of the resulting three-node tree
and let V,, V3 be the children of V7; Let
a-liSt(Al):(1711,1)12,...,Ulal) be the list of the
available vertices of 17;

(i) if d-list(A42) contains dummy vertices, say,

/ / /
Uyy, Uy, --ns Uy, then
/! / / .
(02171)227 ~~-702d2)(_>(171170127 "-7vld2)a
(i) if d-list(43) contains dummy vertices, say,
/ / /
V31, Uy, --- s U3y, then
!/ / / .
(V51 V3 "'703d3)<_>(vl(dg+l)vUl(d2+2)7 o> Vl(dotds) )3

Observation 5.4. In Step (10), we assign d, + d; avail-
able vertices from the list a-list(4;) of the root A4, of the
three-node tree to the dummy vertices of the lists
d-list(A;) and d-list(43). It is clear that, we can always
do this assignment since the input Q7-graph G is a
Hamiltonian graph, and, thus, if the nodes V; and V3 of
the three-node tree contain ¢, and d; dummy vertices,
respectively, then the root node V; contains a; >d> + ds
available vertices.

Finally, we show how we can construct the A-tree of
input Hamiltonian QT-graph G, given the available-
dummy vertex assignment computed in Steps (1)—(10).
We proceed as follows:

Let v}, v}y, ..., v}, be the dummy vertices of the node
V] of the cent-tree T¢(G), 1 <i<p; see Step (1), and let
vi1, U2, ..., Ui, be the corresponding available vertices
computed by the above algorithm in Steps (9)—-(10). If
the vertex v;; belongs to the node Ve T¢(G), then we add
the vertex v; to node V; and delete it from the node 7,
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1<j<n;. The resulting nodes are the nodes of the i-tree
T, (G) of the input graph G.

The formal description of the last step of the
construction algorithm, that is, the step which computes
the vertices of each node V;e T;,(G), is as follows:

Step (C): Computation of the vertices of each node of
the h-tree
(11) Let

/ / /

(vly, Vs, ...,vgnl)<—>(v,-1,v,-2, ey Uin), and  let
Uips Uiy +--5 Uj, be the dummy vertices of the node
VieT.(G), 1<i<p. Then,

add the vertices v, vp, ...
VieT.(G), and

if v;j e V;, then delete v;; from the node Ve T.(G),
I<j<n;.

We call H-TREE-CON the above described algorithm,
that is, Steps (1)—(11), which constructs an A-tree T;(G)
of a Hamiltonian Q7-graph G, and show that it can be
efficiently implemented on the CREW PRAM model of
computation.

Correctness. The Steps (1)—(5) of the algorithm H-
TREE-CON construct the ad-tree T,;(G) having the
properties of Lemma 5.1. The correctness of Steps (6)—
(9) follows from Lemma 5.1 and the way we assign
available-dummy vertices and update the a-lists and d-
lists during each rake operation on the binarized ad-tree
T..(G). Step (10) assigns available vertices from the root
A, of the resulting three-node tree to the dummy vertices
of its two children A4, and A3. This assignment always is
completed since the input QT-graph is a Hamiltonian
graph; see Observation 5.4 and Theorem 3.1. Step (11)
completes the construction of the A-tree 7,(G). Thus,
the correctness of the algorithm ensues from the
correctness of its steps.

, Ui, to the node

Time and processor complexity. We use a step-by-step
analysis and compute the time and the number of
processors required for the execution of each step of the
algorithm H-TREE-CON, and we also determine the
type of the PRAM model on which each step is
executed.

Step 1: The cent-tree T.(G) of a QT-graph on n
vertices and m edges is constructed in O(logn) time
using O(n+m) processors on the CREW PRAM
model; see Algorithm CENT-TREE-CON.

The number of children Vji, Vi, ..., Vi, of a node
VieT:(G), 1<i<k, can be computed in O(log p;) time
with O(p;/log p;) processors on the EREW PRAM. It
follows that the H-labels of the nodes of the cent-tree
T.(G) are computed in O(logn) time with O(n/logn)
processors on the EREW PRAM model. The total
number of dummy vertices we add to the nodes
Vi, V3, ..., Vi is bounded by Zf;l (Vi—pi+ 1)<k =
O(n). Thus, the nodes of the tree 7.(G) can be computed
in O(logn) time with O(n/logn) processors on the

EREW PRAM model. Thus, in total, the execution of
the step takes O(logn) time and requires O(n+ m)
processors on the CREW PRAM model.

Step 2: Here, the nodes V; such that H-label(V;) =0
are deleted from T (G). This can by done using the well-
known pointer jumping technique on T/(G): it takes
O(logn) time and requires O(n) processors on the
CREW PRAM model [17]. It is easy to see that the black
vertices can be deleted from the remaining nodes of
T/(G) in O(logn) time using O(n/logn) processors, and,
thus, the whole step is executed in O(logn) time using
O(n + m) processors on the CREW PRAM model.

Step 3: The lowest a-node ancestor V; of the node V;
in T7(G) (if the parent p(V;) of the node V; is a d-node)
can be determined using the pointer jumping technique
on T/(G). Thus, the step takes O(logn) time and
requires O(n) processors on the CREW PRAM model.

Step 4: In this step, for each g-node V;eT.(G) two
lists are computed: a-list(V;) contains the available
vertices of V; and d-list(V;) contains the dummy vertices
of all the d-node children of V;. The total number of
available vertices in the nodes of the tree T.(G), and,
thus, the total number of dummy vertices, is less than 7.
For the computation of the d-list(V;) we use an array of
size > | |V;;| and store the vertices of all the children of
Vi; then we can select the vertices of the d-node children
of V; using the array packing technique [2]. Thus, this
step can be executed in O(logn) time with O(n/logn)
processors on the EREW PRAM model.

Step 5: The d-nodes, which are deleted from T.(G),
are all leaves of the tree T/(G). Thus, all the deletion
operations can be done in O(1) parallel time with O(n)
processors on the EREW PRAM model.

Steps 6 and 7: In Step 6, the ad-tree T,;(G) is made
binary, while in Step 7 the a-list and d-list of each new
internal node of the binary tree 7,,(G) are computed to
be empty. It is known that an arbitrary n-node tree can
be made binary in O(logn) time with O(n/logn)
processors on the EREW PRAM model [17]. The a-list
and d-list can be obviously computed in O(1) parallel time
with O(n) processors on the EREW PRAM model.
Therefore, both steps are executed in O(logn) time with
O(n/log n) processors on the EREW PRAM model.

Step 8: The a-list(4;) and the d-list(4;) of each node
A; of the binary tree T,;(G) are implemented by link-
lists, 1<i</. It is well-known that the list-ranking
problem on a linked-list with n» nodes can be optimally
solved in O(logn) time with O(n/logn) processors on
the EREW PRAM model [2,17,25]. It is easy to see that,
the number of available vertices in the binary tree
T.4(G) equals the number of available vertices in the
tree 7/(G); thus, in total, T,4(G) contains less than n
available vertices and less than n dummy vertices. It
follows that the whole step can be executed in O(logn)
time with O(n/logn) processors on the EREW PRAM
model.



S.D. Nikolopoulos | J. Parallel Distrib. Comput. 64 (2004) 48—67 61

Step 9: It is well-known that a binary tree can be
contracted into a three-node binary tree in O(log ) time
with O(n/logn) processors on the EREW PRAM
model; the rake operation is applied concurrently to
several leaves (see [17,25]). When a node A; of the binary
tree T,4(G) is subject to rake operation, the following
assignment and update operations are performed:

e Available vertices of the lists a-list(4;) and
a-listp((A;)) are assigned to dummy vertices of the
lists d-list(4;) and d-listp((4;)). Since the rank of
each vertex of the lists ¢-list and d-list is known, an
assignment operation is performed in O(1) parallel
time with p processors on the EREW PRAM
model, where p = max{/,,7,}, and ¢,, /) are the
lengths of the lists a-list and d-list, respectively.

e The d-list of the node p(4;), and either the d-list of
the node p(p(4;)) or the a-list of the node sib(4;),
are updated using the concatenation operation; for
each list, this operation can be done in O(1)
sequential time. Then, the rank of each vertex of
the updated a-list and d-list is computed. It is easy
to see that the list-ranking problem on a list, say, L,
which is produced by L« L;||L,, where L; and L,
are two list of lengths /| and /5, respectively, can be
solved in O(1) parallel time with £, processors on
the EREW PRAM model, if the rank of each vertex
of the two concatenated lists L and L,, is known.

Thus, the whole step is executed in O(logn) time with
O(n/log n) processors on the EREW PRAM model of
computation.

Step 10: This step performs only assignment opera-
tions: first, available vertices of the a-list(4;) are
assigned to dummy vertices of the d-list(4), and, then,
available vertices of the a-list(4,) are assigned to
dummy vertices of the d-list(A43). Since the rank of each
vertex of the lists a-list(4), d-list(4,) and d-list(A43) is
known, this step takes O(1) parallel time with
max{/1,/»} processors on the EREW PRAM model,
where /1, ¢, are the lengths of the lists d-list(4,) and
d-list(As), respectively.

From the previous step-by-step analysis, it follows
that the parallel algorithm H-TREE-CON runs in
O(logn) time using a total of O(n+ m) processors on
the CREW PRAM model of computation. Thus, we
have proved the following result.

Lemma 5.2. An h-tree T;,(G) of a Hamiltonian QT-graph
G on n vertices and m edges can be constructed in O(log n)
time with O(n+ m) processors on the CREW PRAM
model.

5.2. Finding of a Hamiltonian cycle

In Section 3, we proved necessary and sufficient
conditions for a QT-graph to contain a Hamiltonian

cycle; see Theorem 3.1. Based on these conditions, we
develop here a parallel algorithm for finding a Hamilto-
nian cycle in a Hamiltonian QT-graph.

Let G be Hamiltonian QT-graph and let
V1, Va, ..., Vi be the nodes of its cent-tree T.(G) rooted
at V. If H-label(V;) >0 for each node V;e T,(G), then
T1(G) = T:(G); otherwise, we construct an h-tree 7,(G)
of G from the cent-tree 7.(G). Consider the /-sequence
(Vf(l), Va(l)a ceey Va(t) = Vl) of the tree Th(G) and con-
struct the A-dfs tree of the vertices of the graph G using
the h-traversal on the tree 7),(G). We select an arbitrary
vertex v from the set V) as start point. Since
H-label(V;) >0 for each node V;e T(G), it is easy to
see that each node of the 4-dfs tree rooted at ve Vy(;) has
at most one child; its unique leaf u belongs to node V)
and, thus, (v,u)€ E(G); see Fig. 3. Thus, we can find a
Hamiltonian cycle of the graph G from its A-dfs tree.

We have already described efficient parallel algo-
rithms for constructing the cent-tree and the A-tree of a
QOT-graph G (see Sections 4 and 5.1). Moreover, it is
easy to see that the /i-sequence of the graph G can be
also efficiently constructed in parallel; the leaves
Viays Vr@ys -5 Vrq) of the cent-tree or the h-tree of G
are computed by using the Euler-tour technique and the
nodes V), Vo), ---» Vau—1) are computed by solving
the LCA problem [2,17,25]. Therefore, it is becoming
obvious that we need an efficient parallel algorithm for
the h-traversal, that is, a parallel algorithm for
constructing the A-dfs tree of the Q7-graph G. Thus,
we will restrict our attention to design such an
algorithm. Note that, no efficient parallel algorithm
has been so far developed for the (standard) dfs
traversal; various graph numberings, including depth
first search, where the numbering algorithm is restricted
to a particular order of visiting the edges of the graph,
are shown to be P-complete [25].

Next, we describe a method for constructing the
h-dfs tree of a Hamiltonian QT-graph G, which leads
to an efficient parallel algorithm for constructing a
Hamiltonian cycle on the graph G; it works as
follows:

(1) We first construct a directed graph F on n vertices,
and set V(F) := V(G) and E(F) = 0;

(i1) Then, we compute the h-sequence
(Vf(]), Va(l)7 ey Va(t) =711) of the h-tree T,(G),
and the list(V;) = (v, vi2, ..., Uiy,) Of each node V;
of the h-tree Ty(G), 1<i<k; we add the edge
oy, vijp1y > in E(F), 1<j<n; — 1

(ii)) Let Vg, Vay, Vyiv1) be three consecutive nodes in
the i-sequence, and let V,(;) be the jth occurrence of
Vaiy in the h-sequence and let list(V,;) =
(Uj17 -y Uiy ~~~anr1i)'

If i<t — 1, then we compute the last vertex v, of
the list(Vy;)) and the first vertex v, of the
list(Vy(y1y); we add the edges <wv/,v;) and
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(v, vy in E(F), and delete the edge <{vj(;_1y,v; >
from E(F), 2<j<n;.

If i = ¢, then we compute the last vertex v, of the
list(Vy(;)); we add the edges v/, v; >, and delete the
edge vy ;—1),v;» from E(F), 2<j<n;.

Let v be the first vertex of the node V() and let T be
the underline undirected graph of the resulting graph F.
By construction, the graph 7T is a tree. We root the tree
T at vertex v and let 7, be the resulting rooted tree. It is
easy to see that 7, may contain vertices that have two
children (see Fig. 8). Thus, Steps (i)—(iii) of the above
method do not guarantee that the /-dfs tree forms a
(Hamiltonian) path, that is, an 4-dfs path. Fig. 8 depicts
the results of Steps (i)—(iii).

Next, we describe how the edge set E(F) can be
modified so that the underline undirected graph of the
resulting graph F produces a A-dfs path of the graph G.
We proceed as follows:

(iv) Let V), Vyir1) be two consecutive nodes in the
h-sequence (V) Vaay, - Vay = V1), and et
liSt(Va(i)) = (1],'17 -v, Ui, --~>Uin,)7 fori<<tr—1.

We first determine a vertex v; of the list(Vy;)),
1<j<n;—1, with the following property:
{vij, Vi j41y > €E(F) and vy, v, » € E(F), where vy,
is the first vertex of the list(Vy(i1));

(v) If such a vertex v; exists, then we delete the edge
(v, vy from E(F), determine the last vertex v, =
Ui, Of the list(V,(;), and add the edge {v/,v;)> in
E(F);

Let 7" be the underline undirected graph of the graph F
computed by the above method. Steps (iv)—(v) guarantee
that 7" is a tree graph. We root the tree graph 7’ at
vertex v and let T; be the resulting rooted tree. It is easy
to see that each internal vertex of the tree 7T’ é has now
exactly one child, and, thus, T!; forms a h-dfs path of the
graph G (see Fig. 9).

Thus, we can produce a Hamiltonian path (v =
vg, U1, ..., 0y, = u) of the input graph G, using the A-dfs
tree constructed by the above method. The root v of the

Fig. 8. The results of Steps (i)—(iii) of the A-dfs tree construction of a
QT-graph G.

Fig. 9. The structure of a Hamiltonian cycle of a QT-graph G; it is
produced using the A-dfs traversal of the h-tree T)(G).

h-dfs tree belongs to node Vy(;) and its unique leaf u
belongs to node V' and, thus, (v, u) € E(G); see Theorem
2.2. Thus, we can extend the Hamiltonian path to a cycle
by adding the edge {u,v) in E(F) and taking the
underline undirected graph, say, HC, of the resulting
graph; HC forms a Hamiltonian cycle of G.

We next present in a more formal way the parallel
algorithm for the construction of a Hamiltonian cycle of
a QT-graph; the details of the algorithm are given as
follows.

Algorithm Hamiltonian-Cycle-Construction (HAMIL-
TON-CYCLE-CON):

Input: a QT-graph G on n vertices and m edges, which
is Hamiltonian.

Output: a Hamiltonian cycle HC of the input graph G.

1. Compute the cent-tree 7.(G) of the input graph G;
let V1, Va, ..., Vi be the nodes of the cent-tree 7.(G)
rooted at r. = V7;

2. If H-label(V;) =0, for 1<i<k, then T,(G) < T.(G);
otherwise, compute an h-tree T,(G) of the input
graph G;

3. Compute the h-sequence(T}) = (Vyay, Vaq),
Vi - Vit Vaw = V1);

4. Construct a directed graph F, in parallel, as follows:
V(F)<V(G) and E(F)«<®, and paint its
vertices black;

5. For each vertex V;eT;(G), 1<i<k, do in parallel

construct the linked-list list(V;) =
(Uil y Uiy eey Ui}1i)) and

add the edge {vj, vy ;1) in E(F), 1<j<n; —
1;

6. For each internal node
1<i<t, do in parallel
let list( Va(,')) = (Uih .o Ui, ...,U,‘n,.); Vf(tJrl) “— Vf(l);
if V) is the jth occurrence of V,; in the
h-sequence(T},), then

V(i) € h-sequence(T}),
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e find the jth vertex v; of the list(Vy;));
paint v; with read color;
e add (vs,v; ) in E(F), where v, is the last
vertex of the list(Vy(;));
e add (v, v, in E(F), where v, is the first
vertex of the list(Vyy1));
7. For each internal node V,; €h-sequence(T}),
1<i<t, do in parallel
let list( Va(i)) = (vt -, Ujjy +evs Vi, )3 Vf(l+1) «— Vf(l);
if v; and v ;) are read vertices of the
list(V,(;)), then
o delete edge <wy,vij+1)) from the set
E(F);
else-if v; is a read vertex and v;( ;41 is a black
vertex, then
o delete (v, vy from E(F), where vy, is the
first vertex of the list(Vy(11));
e add <ws,v, ) in E(F), where v, is the last
vertex of the list(V,;));
8. Construct a spanning cycle HC of G, in parallel, as
follows:
set V(HC)«< V(F);
add (v;,v;) in E(HC), for every edge {v;,v; ) in
E(F);

Correctness. The correctness of the parallel algorithm
HAMILTON-CYCLE-CON is established through
Theorem 3.1 and the correctness of the A-tree construc-
tion algorithm H-TREE-CON; see Lemma 5.2.

Time and processor complexity. We next compute the
time and processor complexity of the proposed parallel
algorithm for the construction of a Hamiltonian cycle of
a QT-graph G; its step-by-step analysis is as follows.

Step 1: The cent-tree T.(G) of a QT-graph on n
vertices and m edges is constructed in O(logn) time
using O(n+m) processors on the CREW PRAM
model; see Algorithm CENT-TREE-CON.

Step 2: The H-labels of the nodes of the cent-tree
T.(G) are computed in O(logn) time with O(n/logn)
processors on the EREW PRAM model; see Step 1—
Algorithm H-TREE-CON. The #hA-tree T,(G) of a
Hamiltonian QT-graph is constructed in O(logn) time
with O(n + m) processors on the CREW PRAM model;
see Lemma 5.1.

Step 3: Let h-sequence(Ty) = (Vray, Vaary, Vi), -+
Vawy = V1). By definition, the node sequence
(Vray, Vi@ys ---» Vrw) is a left-to-right order listing of
the leaves of the tree T3(G), and the node V) is the
LCA of the nodes Vy(; and Vi), where 1<i<t — 1. It
is well-known that we can optimally compute the left-to-
right order listing of the leaves of a tree in O(logn)
parallel time on the EREW PRAM model by using the
Euler-tour technique [2,17,25]. We can also optimally
compute the LCA of two vertices of a rooted tree in
O(logn) parallel time on the CREW PRAM model
[2,17,25]. Thus, the A-sequence of the A-tree T,(G) can

be computed in O(logn) time with O(n/logn) proces-
sors on the CREW PRAM model.

Step 4: The directed graph F can be constructed in
O(1) parallel time with O(n) processors on the EREW
PRAM model; its vertices can be painted within the
same time and processor bounds.

Step 5: Having computed the vertices of the nodes
Vi, Va, ..., Vi of T)(G), it is easy to see that the linked-
lists list(V;) = (vi1, vi2, ..., Viy;), 1<i<k, can be con-
structed in O(1) parallel time with a total of O(n)
processors on the EREW PRAM model; note that
Zf;l n; = n. Obviously, all the edges {vj;,vi(j41), for
1<i<k and 1<j<n; — 1, can be added in the set E(F)
in O(1) parallel time with O(n) processors on the EREW
PRAM model.

Step 6: Let list(Vy;)) = (vit, ..., Vjj, ..., Uin,) be the list
of the vertices of the node V; € T;,(G), 1 <i<k. It is well-
known that the list-ranking of list(¥;) determines the
distance of each vertex v;; from the first vertex v;; of the
list. The list-ranking problem on a list with n; vertices
can be solved in O(logn;) time with O(n;/logn;)
processors on the EREW PRAM model, 1 <i<k. Thus,
we can rank all the lists list(7;), 1<i<k, in O(logn)
time with O(n) processors on the EREW PRAM model.
Then, we can easily see that all the operations of this
step are executed within the same time and processor
bounds.

Step 7: Having computed the rank of each vertex of
the list list(7;), 1<i<k, it is easy to see that, this step
can be executed in O(1) time with O(n) processors on
the CREW PRAM model.

Step 8: Since the connected directed graph F contains
O(n) edges, the spanning cycle HC can be constructed in
O(1) parallel time with O(n) processors on the EREW
PRAM model.

Therefore, from the previous step-by-step analysis, it
follows that the Hamiltonian cycle construction Algo-
rithm HAMILTON-CYCLE-CON runs in O(logn)
time using a total of O(n + m) processors on the CREW
PRAM model. Thus, we have proved the following
result.

Theorem 5.1. A Hamiltonian cycle of a QT-graph can be
constructed in O(log n) time with O(n + m) processors on
the CREW PRAM model.

6. Recognition and Hamiltonian completion number

The O(logn)-time parallel algorithm H-TREE-CON
for constructing the A-tree of a Hamiltonian QT-graph
can be easily modified so that it can also be served
as a recognition algorithm for Hamiltonian QT-graphs:
if the input QT-graph G is not a Hamiltonian
graph, then the algorithm fails to construct the A-tree
Ti(G).
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It is possible, however, to obtain a much simpler
parallel algorithm for recognizing whether the input
QT-graph G is a Hamiltonian graph. We describe, first,
a simple O(logn)-time parallel recognition algorithm
working with a linear number of processors, and, then,
we show that the problem of computing the Hamilto-
nian completion number of a QT-graph can also be
solved within the same time and processor bounds.

6.1. Recognition of a Hamiltonian QT-graph

Let G be QT-graph and let V1, V>, ..., Vi be the nodes
of its cent-tree 7.(G) rooted at V. Based on Theorem
3.1, we check whether H-label(V;)>0 for each node
Vie To(G); if so, then the QT-graph is a Hamiltonian
graph; otherwise, we apply the contraction process on
the binarized cent-tree 7.(G) and properly count the
dummy-available vertices in T.(G) after each rake
operation.

More precisely, let H-label(V;) be the H-label of the
node V;eT.(G). It is easy to see that the H-label(V;)
determines the number of the dummy-available vertices
of the node V;: if H-label(V;)>0, then V; contains
H-label(V;) available vertices, while if H-label(V;) <0, it
contains |H-label(V;)| dummy vertices; see Step (1) of
the algorithm H-TREE-CON.

Thus, we assign a number /(V;) to each node of the
binarized cent-tree, say, T,(G), and initially set A(V;) :
= H-label(V;) for each V;e Tp(G); we call it h-number of
the node V;. If a node V; of the tree T)(G) is subject to
rake operation, we adjust either the s-number of the
node p(p(V;)) or the h-number of the node sib(V;) as
follows:

(i) Before the removal of 4;:
o if i(V;)<O0, then h(p(V;)) <h(p(Vi)) + h(Vi);
(i) Before the removal of p(4;):

oif  h(p(Vi))<0, then  h(p(p(Vi)))«
hip(p(Vi))) +h(p(V3));

o if A(p(Vi))>0, then h(sib(V;))«h(sib(V;))+
h(p(V1));

Let V; be the root of the resulting three-node tree and

let V11, V12 be the children of V. From the correctness
of the algorithm H-TREE-CON, which constructs the /-
tree of a Hamiltonian QT-graph G, it follows that if
h(V;) <0 then the node V; contains d; = |A(V;)| dummy
vertices and «a; =0 available vertices; otherwise, it
contains d; = 0 dummy vertices and a; = h(V;) available
vertices, i =1,11,12. Thus, the h-tree T,(G) of the
graph G can be constructed, and, thus, G is a
Hamiltonian graph, if ¢, >0 and a;>d; + d)»; in all
the other cases, G is not a Hamiltonian graph.

Thus, we can decide whether a QT-graph is a
Hamiltonian graph by applying the contraction process
on the binarized cent-tree 7.(G) and computing the /-
numbers of the nodes V7, Vy; and V', of the resulting

three-node tree. This computation is described in the
following algorithm.

Algorithm  Hamiltonian-graph-recognition (HAMIL-
TON-REC):

Input: a quasi-threshold graph G on n vertices and m
edges.

Output: yes, if G is a Hamiltonian graph; otherwise,
no.

1. Compute the cent-tree 7.(G) of the graph G, and
make it binary;
let 7,(G) be the resulting binary tree and let
V1, Va, ..., Vi be its nodes, k' >k;
2. For each node V;eTy(G), 1<i<k’, compute its
H-label(V;) and set:
h(V;) < H-label(V;);
3. If h(V;) =0, for each node V;e Tp(G), 1 <i<k’, then
G is a Hamiltonian QT-graph; exit;
4. Contract the binary tree 7} into a three-node binary
tree, using the rake operation;
when a node V; is subject to rake operation, we
adjust either the s-number of the node p(p(V;)) or
the s-number of the node sib(V7;), as follows:
if h(V;) <0 then
it h(V)+h(p(17)) <0
then  h(p(p(V3))) < h(p(p(V3))) + h(Vi) +
hp(V)
else
h(sib(V)) h(sib(V:)) +h(V)) + h(p(V,));
if h(V;)=0 then
if h(p(V3)) <0
then A(p(p(V3))) —h(p(p(V3))) + h(p(Vi))
else h(sib( V7)) —h(sib(V:)) + h(p(Vy);
5. Check the A-numbers of the nodes V7, Vi, and Vs,
of the three-node binary tree;
if h(V11)>0 then /’l(V]l)(—O, and if h(V12)>0
then h( V12) «0;
if A(V1)=0 and A(Vy)=h(Vy1) + h(V12) then
G is a Hamiltonian QT-graph; otherwise, G
is not a Hamiltonian QT-graph;

From the step-by-step analysis of the algorithm H-
TREE-CON for constructing the A-tree of a Hamilto-
nian Q7-graph (see Section 5.1), we can easily conclude
that the Steps (1)-(4) of the proposed recognition
algorithm are executed in O(logn) time with O(n + m)
processors on the CREW PRAM model. Obviously, the
Step 5 is executed in O(1) sequential time. Thus, we have
the following result.

Theorem 6.1. It can be decided whether a QT-graph on n
vertices and m edges is a Hamiltonian graph in O(logn)
time with O(n+ m) processors on the CREW PRAM
model.



S.D. Nikolopoulos | J. Parallel Distrib. Comput. 64 (2004) 48—67 65

6.2. Hamiltonian completion number

Let G be a nonHamiltonian Q7-graph on n vertices
and m edge, and let V7, V1 and V7, be the nodes of the
three-node tree computed by the algorithm Hamilton-
Rec; Vi is the root of the tree and Vi, Vi, are its
children.

Since G is not a Hamiltonian graph, at least one of the
h-numbers A(V7), h(V11) and A(V1;) has value less than
zero. Recall that, if 4#(V;) <0 then the node V; contains
d; = |h(V;)| dummy vertices and @; = 0 available ver-
tices, while if A(V;)>0, it contains d; =0 dummy
vertices and a; = h(V;) available vertices, i = 1,11, 12.
Moreover, if the nodes V7, and V7, contain a total of
dyy +d,=0 dummy vertices, then the root node V)
contains either d; <0 dummy vertices or a; <d)| + di»
available vertices; G is not a Hamiltonian graph, and,
thus, the h-tree T,(G) of the graph G cannot be
constructed (see Theorem 3.1).

The graph G becomes a Hamiltonian QT -graph if we
add n' = |d\; + di» + h(V1)] vertices in the root node V;
of the cent-tree 7.(G) and a number of appropriate
edges in E(G); that is, n' = dy, + di» + d, if d; <0, and
n =dy +dpr—a if a=0. The correctness of the
process for assignment available vertices to dummy
vertices, that is, Steps (1)-(10) of the algorithm H-
TREE-CON, implies that #’ is the minimum number of
vertices which need to be added to Ve T.(G), along
with m' edges, to make G a Hamiltonian QT-graph,
where m' =n-n' +n' - (W —1)/2; recall that V; is a
clique and V; = cent(G) (see Section 2). We denote G’
the resulting Hamiltonian QT-graph.

More precisely, the graph G’ is a Hamiltonian QT-
graph on n + n’ vertices and m + m’ edges; it has vertex
set V(G') = V(G)u V', where V' = {u),u}, ...,u,} and
edge set E(G') = E(G)+ E’, where E' contains n/
edges (x,y) such that xeV’ and yeV(G)uV’;
note that x#y since we consider graphs with no loops.
The cent-trees 7.(G') and T.(G) have the same
structure, and G’ contains the graph G as an induces
subgraph.

The Hamiltonian completion number hcn(G) of a
graph G is defined to be the minimum number of edges
which need to be added to E(G) to make G Hamiltonian
[3,13]. We prove the following.

Lemma 6.1. The number n' = |dy; + dio + h(V1)| equals
the Hamiltonian completion number hen(G) of a non-
Hamiltonian QT-graph G.

Proof. Let V', V3, ..., Vi be the nodes of the cent-tree
T.(G) of the QT-graph G rooted at V,. We add »’
vertices, say, u},u, ..., ul,, in the root node ¥V and n/
edges in E(G), and let G’ be the resulting Hamiltonian
QT-graph. By construction, the cent-tree 7.(G’) has

nodes V{, V2, ..., Vi, where V] is the root of T.(G’) and

Vi = V10V, and the vertex set V' = {u},u}, ..., u,} is
minimal.
Consider the h-sequence (Vyy, Vo), -5 Vay = V1)

of the h-tree T;(G’) and the h-dfs tree of the graph G'.
Let ve Vy(;) be the root of the A-dfs tree and let HC' =
(v, ...,v;, /' vj, ...,v) be the Hamiltonian cycle which is
produced by the A-dfs tree, where v’ € V. Note that, HC'
is a cycle on n+ ' vertices. By construction, the cycle
H(C' has the following properties:

(1) If «' eV, then its two adjacency vertices in HC',
say, v; and v;, are not vertices of V”; that is,
v, v;€ V(G), and

(ii) if v;e V; and v;e V;, then both nodes V; and V; are
leaves of the cent-tree Tc(G') and Vi# V.

Property (i) follows from the h-dfs traversal of the
cent-tree T.(G") (see Section 3): if V; (note that V' = V)
is not its last occurrence in the /#-sequence, then the A-dfs
visits only one unvisited vertex from V7, while if V] is its
last occurrence, then V| contains exactly one unvisited
vertex since the number 7’ is minimum. The property (ii)
follows from the structure of the /#-sequence: the internal
nodes (including the root node) and the leaf nodes
alternate in the h-sequence, and, thus, V; and V; are
leaves since v;e V;, v;e V; and u' e V.

Thus, if we remove each vertex ' €V’ from HC' and
make the vertices v; and v; to be adjacent, the resulting
structure HC* is a cycle on n vertices vy, vy, ..., v, Wwhere
vi€ V(G). On the other hand, since the vertices v; and v
belong to deferent leave nodes of T¢(G’), it follows that
v; and v; are not adjacent in the graph G. Thus, if we add
n' edges of the form (v;,v;) in E(G), then the resulting
graph is a Hamiltonian graph and the cycle HC* is a
Hamiltonian cycle of it.

The vertices v;e V; and v;e V; belong to leaf nodes,
that is, (v;,v;)¢ E(G), and the vertex u €V’ cannot be
replaced by a vertex ve V(G), for otherwise ¥’ would
contain less that n’ vertices, in contradiction to the fact
that 7’ is minimal. It follows that, the number #’' of
edges of the form (v;,v;) that need to be added to E(G)
to make G Hamiltonian is minimum. Thus, n' = hcen(G)
and the lemma is proved. [

By combining the Lemma 6.1 with the recognition
algorithm Hamilton-Rec, we obtain the following
parallel algorithm for computing the Hamiltonian
completion number fcn(G) of the QT-graph; it takes
as input a nonHamiltonian QT-graph G on n vertices
and m edges.

Algorithm  Hamiltonian-Completion-Number — (HC-
NUMBER):

1. Execute the Steps (1)—(4) of the Hamiltonian QT-
graph recognition algorithm;
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2. Compute the Hamiltonian completion number
hen(G) of G as follows:
if h(V11)>O then h(V11)<—0, and if /’l(V12)>0
then h(V]z) <—0,
hcn(G)<—|h(V1) +h(Vi) + h(V2));

The time and the processor complexity of the
proposed algorithm HC-NUMBER can be easily com-
puted: Step 1 is executed in O(logn) time with O(n + m)
processors on the CREW PRAM model (see algorithm
HAMILTON-REC), while Step 2 is executed in O(1)
sequential time. Thus, we state the following result.

Theorem 6.2. The Hamiltonian completion number of a
OT-graph on n vertices and m edges can be computed in
O(logn) time with O(n+ m) processors on the CREW
PRAM model.

7. Coloring and other optimization problems

The algorithmic properties of the Q7-graphs, which
we have shown in this paper, allow us to efficiently solve
other optimization problems on such graphs in parallel.
Specifically, we can solve the coloring problem, the
maximum clique problem, the maximum independent
set problem and other problems in O(log n) time using a
linear number of processors on the CREW PRAM
model.

Let G be a QT-graph and let Vi, V>, ...,V be the
nodes of the cent-tree 7,(G). We have shown, in Section
2, that for every two nodes Vy and V; such that Vi< V;;
that is, ¥ is an ancestor of V; in T.(G), the graph
G{UVi| VsxVixV,}] is a complete graph. Moreover,
for every maximal element V, of (V;, <), the graph
G{UVi| Vi< Vi< V,}] is a maximal complete subgraph
of G; see also Observation 2.1.

Based on these properties, it is easy to see that the
height of the tree T4(G) (see Section 4), equals the clique
number w(G) minus 1; recall that the height of a vertex
of T4(G) is the number of edges in the longest path from
the vertex in question to a leaf—all the leaves of 74(G)
have 0 heights. Moreover, the set which contains the
vertices of the ith level of the tree T4(G) is a stable set.
Since @(G) = yx(G), we can color the graph G by
computing the level Z(v;) of each vertex v; of the tree
T4(G) and setting color(v;) = £(v;), 1<i<n; assuming
that /(r) = 1, where r is the root of T4(G).

Let u be a leaf of the degree-tree T4(G) such that
/(u) = w(G) and let MC be the set of vertices of the path
from the root r of T4(G) to vertex u. Then, the vertex set
MC is the maximum clique of the graph G. Thus, we can
easily compute the set MC using the parallel pointer
jumping technique on the tree T4(G).

Let S = {vy,0541,...,0, ...,04} be a stable set such
that v,e V; and ¥, is a maximal element of (V;, <) or,

equivalently, V; is a leaf node of cent-tree T.(G),
s<t<q. It is easy to see that S has the maximum
cardinality «(G) among all the stable sets of G. It is also
easy to see that the set S contains the leave vertices of
the tree Tq(G). Recall that, the leaves of a tree can be
found using the Euler-tour technique [17].

Taking into consideration the above discussion, the
complexity of the algorithms for constructing the trees
T4(G) and T,(G) (see Section 4), and the complexity of
some standard algorithmic techniques for computing the
level function, the set of the leaves and certain paths on
the degree-tree and cent-tree of G [2,17,25], we state the
following results.

Theorem 8.1. The problems of coloring a QT-graph G on
n vertices and m edges and finding the maximum clique
and the maximum independent set of G can be solved in
O(logn) time with O(n + m) processors on the CREW
PRAM model.

8. Concluding remarks

In this paper we showed structural and algorithmic
properties on the class of QT-graphs and proved
necessary and sufficient conditions for a Q7-graph to
be Hamiltonian. We also showed that a QT-graph G has
a unique tree representation, that is, the cent-tree 7,(G),
which meets the structural properties of G.

By taking advantage of these properties and condi-
tions, we presented efficient parallel algorithms for
constructing the cent-tree 7.(G) and finding a Hamilto-
nian cycle of a QT-graph G; our algorithms run in
O(logn) time and require O(n + m) processors on the
CREW PRAM model, where 7 is the number of vertices
and m is the number of edges of the input graph. In
addition, we presented a simple O(logn)-time parallel
algorithm for recognizing whether a QT-graph is
Hamiltonian which requires O(n + m) processors, and
we showed that the problem of computing the Hamilto-
nian completion number of a QT-graph can also be
solved in O(logn) time with O(n + m) processors. We
also presented parallel algorithms for other optimization
problems on QT-graphs which run in O(logn) time
using a linear number of processors.

Different problems can be foreseen for further
research. An interesting optimization problem is the
construction of a Hamiltonian cycle of a QT-graph G in
the weighted case: each vertex and/or edge of G has
certain weight and we wish to minimize the total weight
of edges in a Hamiltonian cycle (for results on “heavy”
paths and cycles in weighted graphs; see [30]). A second
problem that is worth studying is the weighted version
of the Hamiltonian completion problem: we wish to
minimize the total weight of the edges which need to be
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added to E(G) to make G Hamiltonian. We pose these
as open problems for algorithmic study.

A topic for further research is the study of problems
on the line graph of a QT-graph (for results on line
graphs; see [6,28]). One can work towards the identifica-
tion of structural and algorithmic properties of such
graphs, which may lead to parallel and/or sequential
algorithms for the Hamiltonian problems we consider
here, as well as for other combinatorial and optimiza-
tion problems.
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