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Abstract

In this paper we show structural and algorithmic properties on the class of quasi-threshold graphs, or QT-graphs for short, and

prove necessary and sufficient conditions for a QT-graph to be Hamiltonian. Based on these properties and conditions, we construct

an efficient parallel algorithm for finding a Hamiltonian cycle in a QT-graph; for an input graph on n vertices and m edges, our

algorithm takes Oðlog nÞ time and requires Oðn þ mÞ processors on the CREW PRAM model. In addition, we show that the

problem of recognizing whether a QT-graph is a Hamiltonian graph and the problem of computing the Hamiltonian completion

number of a nonHamiltonian QT-graph can also be solved in Oðlog nÞ time with Oðn þ mÞ processors. Our algorithms rely on

Oðlog nÞ-time parallel algorithms, which we develop here, for constructing tree representations of a QT-graph; we show that a QT-

graph G has a unique tree representation, that is, a tree structure which meets the structural properties of G:We also present parallel

algorithms for other optimization problems on QT-graphs which run in Oðlog nÞ time using a linear number of processors.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Parallel algorithms; Quasi-threshold graphs; Recognition; Tree representation; Hamiltonian cycles; Hamiltonian completion number;

Complexity
1. Introduction

In this paper we consider finite undirected graphs with
no loops nor multiple edges. Let G be such a graph with
vertex set VðGÞ and edge set EðGÞ: We say that G is a
Hamiltonian graph if it has a spanning cycle (as opposed
to the more usual definition which refers to spanning
path); such a cycle is called a Hamiltonian cycle of G:
The Hamiltonian completion number of the graph G is
the minimum number of edges which need to be added
to EðGÞ to make G Hamiltonian [3,13]; we denote the
Hamiltonian completion number of a graph G as
hcnðGÞ: If G is a Hamiltonian graph, then hcnðGÞ ¼ 0:
A graph G is called quasi-threshold, or QT-graph for

short, if G contains no induced subgraph isomorphic to
P4 or C4 (cordless path or cycle on 4 vertices)
[11,21,26,27]. The class of QT-graphs is a subclass of
the class of cographs [8,9] and contains the class of
threshold graphs [7,12,23].
Many researchers have devoted their work to the

study of the class of QT-graphs. Wolk [26] called the
ess: stavros@cs.uoi.gr.
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members of this class comparability graphs of trees and
gave structural and algorithmic characterizations. Go-
lumbic [11] called these graphs trivially perfect with
respect to a concept of ‘‘perfection’’. Ma et al. [21]
established the name quasi-threshold graphs (QT -
graphs) and studied algorithmic properties. A variety
of sequential and parallel algorithms have been
appeared in the literature for many interesting optimiza-
tion and combinatorial problems on the class of QT-
graphs and, also, the classes of cographs and threshold
graphs. We present, here, efficient Oðlog nÞ-time parallel
algorithms for Hamiltonian problems on the class of
QT-graphs.

1.1. Related research

The class of QT-graphs is a subclass of the well-
known class of perfect graphs [5,12]; it is a very
important class of graphs, since a number of problems,
which are NP-complete in general, can be solved in
polynomial time on its members. For the class of QT-
graphs, Ma et al. [21] presented polynomial algorithms
for a number of optimization problems. In particular,
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they described an OðnmÞ time algorithm for the
recognition problem, and polynomial-time algorithms
for the Hamiltonian cycle problem and the bandwidth
problems. They also gave a formula for the clique
covering number and conditions for a QT-graph to be
Hamiltonian. Yan et al. [29] stated important character-
izations of these graphs and presented a linear-time
algorithm for the recognition problem. They also
proposed linear-time algorithms for the edge domina-
tion problem and the bandwidth problem.
Hamiltonian problems on QT-graphs have not been

the focus of much research in parallel process environ-
ment. However, algorithmic solutions can be obtained
from the variety of available sequential and parallel
algorithms for these problems on cographs, a superclass
of the class of QT -graphs. Cographs themselves were
introduced in the early 1970s by Lerchs [18] who studied
their structural and algorithmic properties. Lerchs has
shown, among other properties, the following two very
nice algorithmic properties: (i) cographs are exactly the
P4 restricted graphs, and (ii) cographs admit a unique
tree representation, up to isomorphism, called cotree.
There are several algorithms for recognizing cographs

and constructing their cotrees. A linear time sequential
algorithm for recognizing a cograph, through the
construction of its cotree, is given in [8]. It is known
that cographs can also be efficiently (but not optimally)
recognized in parallel by a polynomial number of
processors in polylogarithmic time; see [10,16,19]. In
fact, a nearly optimal parallel algorithm for the cograph
recognition and cotree construction problem was devel-
oped by He [16] which, on a graph on n vertices and m

edges, takes Oðlog2 nÞ time and requires Oðn þ mÞ
processors on the CRCW PRAM model. Dahlhaus
[10] also proposed a nearly optimal parallel recognition
algorithm working in Oðlog2 nÞ time with Oðn þ mÞ
processors on the CREW PRAM model. For the same
problem, Lin and Olariu [19] presented a parallel
algorithm working in Oðlog nÞ time with Oððn2 þ
nmÞ=log nÞ processors on the EREW PRAM model.
All the algorithms determine if a graph is a cograph, and
if so construct its cotree.
Many interesting optimization problems in graph

theory, which are NP-complete in general graphs, have
polynomial sequential solutions and admit efficient or
even optimal parallel algorithms in the class of
cographs, and, thus, in the class of QT-graphs. Such
problems, with a large spectrum of practical applica-
tions, include the coloring problem, the Hamiltonian
cycle and Hamiltonian path problems, the minimum
path cover problem, and many other ones. Lin et al. [20]
presented an optimal sequential algorithm for determin-
ing the minimum path cover for a cograph, which
exhibits a Hamiltonian cycle or path as well, if such a
structure exists. Bodlaender and Möhring [4] proved
that the pathwidth of a cograph equals its treewidth and
proposed a linear-time algorithm to determine the
pathwidth of a cograph. In a parallel environment,
given the cotree of a cograph as input, both the
Hamiltonian path and Hamiltonian cycle problems are
solved in Oðlog2 nÞ time with Oðn2Þ processors [1], and
the minimum path cover problem and the maximum
matching problem are solved in Oðlog nÞ time with
Oðn=log nÞ processors [19a,22].
The cotree of a cograph is constructed in Oðlog2 nÞ

time with Oðn þ mÞ processors [10,16], or in Oðlog nÞ
time with Oððn2 þ nmÞ=log nÞ processors [19]; thus, the
cotree construction dominates the time and/or processor
complexity of the parallel algorithms in [1,20,22] for
solving various Hamiltonian and optimization problems
on cographs, and, thus, on QT-graphs. It follows that
these parallel algorithms need, in total, either Oðlog2 nÞ
time or Oððn2 þ nmÞ=log nÞ processors, since they
require the cotree as input, and not the standard
adjacency-list representation of the input cograph.

1.2. Our results

In this paper we study the class of QT-graphs in more
detail and show structural and algorithmic properties of
its members. We prove that a QT-graph G has a unique
tree representation, that is, a tree structure that meets
the structural properties of G; we refer to this tree as
cent-tree of the graph G and denote TcðGÞ: We define a
depth-first search traversal of the cent-tree TcðGÞ; which
we call h-dfs, and prove necessary and sufficient
conditions for a QT-graph to be Hamiltonian. Conse-
quently, by taking advantage of these properties and
conditions, we construct efficient parallel algorithms for
Hamiltonian problems on QT -graphs.
In particular, we first describe a parallel algorithm for

the construction of the cent-tree of a QT-graph, which
runs in Oðlog nÞ time using Oðn þ mÞ processors on the
CREW PRAM model. Then, we construct an algorithm
for finding a Hamiltonian cycle of a QT -graph; our
algorithm takes Oðlog nÞ time and requires Oðn þ mÞ
processors on the CREW PRAMmodel. In addition, we
show that the problem of recognizing whether a QT-
graph is a Hamiltonian graph and computing the
Hamiltonian completion number of a nonHamiltonian
QT-graph can also be solved in Oðlog nÞ time with
Oðn þ mÞ processors. We also present parallel algo-
rithms for other optimization problems on QT -graphs
which run in Oðlog nÞ time using a linear number of
processors.
Our algorithms run on the CREW PRAM model of

computation [2,17,25], and use a linear number of
processors on QT -graphs with n vertices and m edges.
More precisely, we present the following results:
(i)
 The cent-tree of a QT-graph can be constructed in
Oðlog nÞ time with Oðn þ mÞ processors.
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(ii)
 A Hamiltonian cycle and a Hamiltonian comple-
tion edge set of a QT-graph can be constructed in
Oðlog nÞ time with Oðn þ mÞ processors.
(iii)
 Hamiltonian QT-graphs can be recognized in
Oðlog nÞ time with Oðn þ mÞ processors.
(iv)
 The Hamiltonian completion number of a non-
Hamiltonian QT-graph can be computed in
Oðlog nÞ time with Oðn þ mÞ processors.
(v)
 Other optimization problems on QT-graphs can be
solved in Oðlog nÞ time with Oðn þ mÞ processors:
the maximum clique problem, the maximum
independent set problem, the clique cover problem
and the coloring problem.
It is worth noting that the algorithms we present here
are based on new algorithmic and structural properties
of QT-graphs and are not parallel versions of existing
sequential ones. Moreover, the input to all our
algorithms is the given graph in its adjacency-list
representation.

1.3. Organization of the paper

The paper is organized as follows. In Section 2 we
characterize the class of QT-graphs in detail and show
structural and algorithmic properties on the class of QT -
graphs. In Section 3 we prove necessary and sufficient
conditions for a QT-graph to be Hamiltonian. In
Sections 4 we present a parallel algorithm for construct-
ing the cent-tree representation of a QT -graph. Based
on this representation and the conditions of Section 3,
we present the main results of the paper in Sections 5
and 6; we describe parallel algorithms for finding a
Hamiltonian cycle in a QT-graph, recognizing a
Hamiltonian QT -graph, and computing the Hamilto-
nian completion number of a nonHamiltonian QT -
graph. In Section 7 we show that other optimization
problems on QT-graph can be efficiently solved in
parallel. Finally, in Section 8 we conclude with a
summary of our results and extensions.
2. Quasi-threshold graphs and their structures

Let G be such a graph with vertex set VðGÞ and edge
set EðGÞ: The neighborhood NðxÞ of a vertex xAVðGÞ is
the set of all the vertices of G which are adjacent to x:
The closed neighborhood of x is defined as N½x� :¼
fxg,NðxÞ [14]. Given a graph G; an edge ðx; yÞ ¼ ðy; xÞ
of G can be classified as follows according to the
relationship of closed neighborhoods: ðx; yÞ is free if
N½x� ¼ N½y�; ðx; yÞ is semi-free if N½x�CN½y� (or
N½y�CN½x�); and ðx; yÞ is actual otherwise [15,24,23].
Obviously, the edge set EðGÞ of a graph G can be
partitioned into the three subsets of free edges, semi-free
edges and of actual edges, respectively.
The subgraph of a graph G induced by a subset S of
the vertex set VðGÞ is denoted by G½S�: For a vertex
subset S of G; we define G 	 S :¼ G½VðGÞ 	 S�:
The following lemma follows immediately from the

fact that for every subset SCVðGÞ and for a vertex
xAS; we have NG½S�½x� ¼ N½x�-S and that G 	 S is an
induced subgraph.

Lemma 2.1 (Nikolopoulos [24]). If G is a QT-graph,
then for every subset SCVðGÞ; both G½S� and G½VðGÞ 	
S� are also QT-graphs.

The following theorem provides important properties
for the class of QT -graphs. For convenience, we define

centðGÞ ¼ fxAVðGÞ j N½x� ¼ VðGÞg:

Theorem 2.1 (Nikolopoulos [24]). Let G be an undir-

ected graph.
(i)
 G is a QT-graph if and only if every connected

induced subgraph G½S�;SDVðGÞ; satisfies

centðG½S�Þa|:

(ii)
 G is a QT -graph if and only if G½VðGÞ 	 centðGÞ� is

a QT-graph.

(iii)
 Let G be a connected QT-graph. If VðGÞ 	

centðG½S�Þa|; then G½VðGÞ 	 centðGÞ� contains at

least two connected components.
Let G be a connected QT-graph. Then V1 :¼ centðGÞ
is not an empty set by Theorem 2.1. Put G1 :¼ G; and
G½VðGÞ 	 V1� ¼ G2,G3,?,Gr; where each Gi is a
connected component of G½VðGÞ 	 V1� and rX3: Then
since each Gi is an induced subgraph of G; Gi is also a
QT-graph, and so let Vi :¼ centðGiÞa| for 2pipr:
Since each connected component of Gi½VðGiÞ 	
centðGiÞ� is also a QT -graph, we can continue this
procedure until we get an empty graph. Then we finally
obtain the following partition of VðGÞ:
VðGÞ ¼ V1 þ V2 þ?þ Vk where Vi ¼ centðGiÞ:

Moreover we can define a partial order % on the set
fV1;V2;y;Vkg as follows:

Vi%Vj if Vi ¼ centðGiÞ and VjDVðGiÞ:

It is easy to see that the above partition of the vertex set
VðGÞ of the QT -graph G possesses the following
properties.

Theorem 2.2 (Nikolopoulos [24]). Let G be a connected

QT-graph, and let VðGÞ ¼ V1 þ V2 þ?þ Vk be the

partition defined above; in particular, V1 :¼ centðGÞ: Then

this partition and the partially ordered set ðfVig;%Þ have

the following properties:
(P1)
 If Vi%Vj; then every vertex of Vi and every vertex

of Vj are joined by an edge of G:
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(P2)
Tc(G)

Fig. 1
For every Vj; centðG½f
S

Vi j Vi%Vjg�Þ ¼ Vj:

(P3)
 For every two Vs and Vt such that

Vs%Vt;G½f
S

Vi j Vs%Vi%Vtg� is a complete

graph. Moreover, for every maximal element Vt of

ðfVig;%Þ; G½f
S

Vi j V1%Vi%Vtg� is a maximal

complete subgraph of G:

(P4)
 Every edge with both endpoints in Vi is a free edge,

and every edge with one endpoint in Vi and the other

endpoint in Vj; where ViaVj ; is a semi-free edge.
The results of Theorem 2.2 provide structural proper-
ties for the class of QT -graphs. We shall refer to the
structure that meets the properties of Theorem 2.2 as
cent-tree of the graph G and denote it by TcðGÞ: The
cent-tree TcðGÞ of a QT-graph is a rooted tree; it has
nodes V1;V2;y;Vk; root V1 :¼ centðGÞ; and every node
Vi is either a leaf or has at least two children. Moreover,
Vs%Vt if and only if Vs is an ancestor of Vt in TcðGÞ:
Thus, we can state the following result (Fig. 1).

Corollary 2.1. A graph G is a QT-graph if and only if G

has a cent-tree TcðGÞ:

Observation 2.1. Let G be a QT -graph and let V ¼
V1 þ V2 þ?þ Vk be the above partition of VðGÞ; V1 :
¼ centðGÞ: Let S ¼ fvs; vsþ1;y; vt;y; vqg be a stable set
such that vtAVt and Vt is a maximal element of ðVi;%Þ
or, equivalently, Vt is a leaf node of TcðGÞ; sptpq: It is
easy to see that S has the maximum cardinality aðGÞ
among all the stable sets of G: On the other hand, the
sets f

S
Vi j V1%Vi%Vtg; for every maximal element Vt

of ðVi;%Þ; provide a clique cover of size kðGÞ which is
the smallest possible clique cover of G; that is aðGÞ ¼
kðGÞ: Based on Theorem 2.2 or, equivalently, on the
properties of the cent-tree of G; it is easy to show that
the clique number oðGÞ equals the chromatic number
wðGÞ of the graph G; that is, wðGÞ ¼ oðGÞ:

Let Vi and Vj be disjoint vertex sets of the above
partition of VðGÞ of a QT-graph G: We say that Vi and
Vj are adjacent if either Vi%Vj or Vj%Vi; otherwise, we
say that Vi and Vj are non-adjacent. Throughout the
paper, we call clique-adjacent (resp. independent), and
Vi 

Vi-1V3 V2 

V1

• • • 

cent(G)

 :

. The typical structure of the cent-tree TcðGÞ of a QT-graph.
denote ViEVj (resp. Vi^Vj), two adjacent (resp. non-
adjacent) vertex sets Vi and Vj of the partition of VðGÞ:
3. Hamiltonian QT-graphs

Let G be a QT-graph G and let V1;V2;y;Vk be the
nodes of the cent-tree TcðGÞ rooted at rc ¼ V1: We
consider a node Vi of TcðGÞ and let Vi1;Vi2;y;Vipi

be
its children, 1pipk; note that piX2 if Vi is not a leaf;
otherwise pi ¼ 0: We assign a label H-label ðViÞ to the
node Vi; 1pipk; which we compute as follows:

H-labelðViÞ ¼

jVij 	 pi if Vi is the root of

the tree;

jVij 	 pi þ 1 if Vi is an internal

node; and;

0 if Vi is a leaf ;

8>>>>>><
>>>>>>:

where pi is the number of children of the node Vi: Fig. 2
depicts a node Vi of a cent-tree along with its four
children Vi1; Vi2; Vi3 and Vi4; here, we have
H-labelðViÞ ¼ 1 if Vi is the root of the tree or
H-labelðViÞ ¼ 2 if Vi is an internal node, and
H-labelðVi1Þ ¼ 1; H-labelðVi2Þ ¼ 	1; H-labelðVi3Þ ¼ 0
and H-labelðVi4Þ ¼ 0: We shall show that G is a
Hamiltonian QT -graph if H-labelðViÞX0 for each node
ViATcðGÞ:
Let Vi be an internal node of the cent-tree TcðGÞ such

that H-labelðViÞX0 and let Vi1;Vi2;y;Vipi
be its

children, piX2: Since Vi is an internal node and
H-labelðViÞX0; it has more than pi 	 1 vertices; let
listðViÞ ¼ ðvi1;y; viðpi	1Þ; vipi

;y; vini
Þ be the list of the

vertices of the node Vi; where niXpi 	 1:
We define the list a-verticesðViÞ :¼ ðvipi

; viðpiþ1Þ;y; vini
Þ;

the elements of the list a-verticesðViÞ are called available

vertices of the node Vi: If Vi is the root of the cent-tree
then a-verticesðViÞ :¼ ðviðpiþ1Þ; viðpiþ2Þ;y; vini

Þ: In Fig. 2,
for the internal node Vi we have a-verticesðViÞ ¼ fu; vg:
Let Vf ð1Þ;Vf ð2Þ;y;Vf ðtÞ be the left-to-right order

listing of the leaves of the cent-tree TcðGÞ; and let VaðiÞ
be the lowest common ancestor of the nodes Vf ðiÞ and
Vf ðiþ1Þ; where 1pipt 	 1: We define a sequence of
Vi2

Vi u v

Vi1 Vi3 Vi4

Fig. 2. A node of the cent-tree TcðGÞ of a QT-graph along with its

four children; the vertices of each node of TcðGÞ are denoted by black

disks.
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Vf(1)

Va(1) = Va(2) = Va(4) = V1

Vf(4)Vf(3)

Vf(2)
Va(3)

v

uvi

Fig. 3. The h-dfs traversal of a cent-tree TcðGÞ of a QT-graph G:
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nodes of the cent-tree TcðGÞ; which we call h-sequence

and denote h-sequenceðTcÞ; as follows:
h-sequenceðTcÞ

¼ ðVf ð1Þ;Vað1Þ;Vf ð2Þ;Vað2Þ;y;Vf ðtÞ;VaðtÞ ¼ V1Þ;
where V1 is the root of the tree TcðGÞ and t is the
number of leaves in TcðGÞ; the length of the h-sequence
of TcðGÞ is 2t:
By definition there exists no pair fVf ðiÞ;Vf ð jÞg of

elements of the h-sequenceðTcÞ such that Vf ðiÞ ¼ Vf ð jÞ
for iaj and 1pi; jpt: On the other hand, there may
exist elements Vaði1Þ;Vaði2Þ;y;Vaðip	1Þ such that Vaði1Þ ¼
Vaði2Þ ¼ ? ¼ Vaðip	1Þ ¼ Vi; where Vi is an internal node
of TcðGÞ and p is equal to the number of children of Vi:
Let aði1Þ and aðip	1Þ be the indices of the leftmost and
rightmost occurrence of Vi in h-sequenceðTcÞ; and let
aði1Þoaði2Þo?oaðip	1Þ: We say that Vaði1Þ is the first
occurrence of Vi; Vaði2Þ is the second occurrence of Vi;
and so on; Vaðip	1Þ is the last (rightmost) occurrence of Vi

in h-sequenceðTcÞ: Based on the structure of the cent-
tree TcðGÞ and the fact that each internal node of TcðGÞ
has at least two children we can easily conclude that
each internal node of TcðGÞ appears at least once in the
h-sequence. Thus, we can prove the following result.

Proposition 3.1. All the nodes of the cent-tree TcðGÞ of a

QT-graph G are appeared in the sequence h-sequenceðTcÞ:
Moreover, two consecutive nodes in h-sequenceðTcÞ are

clique-adjacent.

Proof. Let h-sequenceðTcÞ ¼ ðVf ð1Þ;Vað1Þ;Vf ð2Þ;y;
VaðtÞ ¼ V1Þ and let V1;V2;y;Vk be the nodes of the
cent-tree TcðGÞ: By definition, the nodes
Vf ð1Þ;Vf ð2Þ;y;Vf ðtÞ form a left-to-right order listing of
the leaves of the cent-tree TcðGÞ and the node VaðiÞ is the
lowest common ancestor of the nodes Vf ðiÞ and Vf ðiþ1Þ;
where 1pipt 	 1: Thus, all the nodes of the cent-tree
TcðGÞ appeared in h-sequenceðTcÞ:
Two consecutive nodes in h-sequenceðTcÞ; say, Vf ðiÞ;

VaðiÞ or VaðiÞ; Vf ðiþ1Þ; are clique-adjacent since the node
VaðiÞ is an ancestor of both nodes Vf ðiÞ and Vf ðiþ1Þ in
TcðGÞ; that is, VaðiÞ%Vf ðiÞ and VaðiÞ%Vf ðiþ1Þ; see
Theorem 2.2 (property P3). &

Let V1;V2;y;Vk be the nodes of the cent-tree TcðGÞ
of a QT -graph G and let h-sequenceðTcÞ be the h-
sequence of TcðGÞ:We next use a depth-first search (dfs)
traversal strategy for visiting the vertices of the graph G

(i.e., the vertices in each node Vi; 1pipk) and building
a depth-first tree. We shall use the h-sequence for the
process of selecting the next unvisited vertex; note that
in the standard dfs traversal when we have a choice of
vertices to visit, we select them in alphabetical order.
Based on the h-sequence for the selection process, we
describe a dfs traversal, which, hereafter, we shall call h-
dfs traversal; it works as follows:
The h-dfs traversal of the cent-tree TcðGÞ:
(i)
 Compute the h-sequence ðVf ð1Þ;Vað1Þ;Vf ð2Þ;y;
Vf ðtÞ;VaðtÞ ¼ V1Þ of the cent-tree TcðGÞ;
(ii)
 Select an arbitrary vertex v from Vf ð1Þ as starting
vertex; visit v and mark it ‘‘visited’’ (initially, all
vertices of G are marked ‘‘unvisited’’);
(iii)
 Visit in turn each unvisited vertex vi of Vf ðiÞ;
1pipt; and mark vi ‘‘visited’’;
(iv)
 Once all the vertices of Vf ðiÞ have been visited, go to
node VaðiÞ and do the following:

�
 if there exists an unvisited vertex ui in VaðiÞ ¼ Vi;
then select ui; mark ui ‘‘visited’’ and if VaðiÞ ¼ Vi

is its rightmost occurrence in h-sequenceðTcÞ;
then select in turn each unvisited vertex of VaðiÞ
and mark it ‘‘visited’’;
�
 if there exists no unvisited vertex ui in VaðiÞ ¼ Vi;
then do nothing;
(v)
 Continue until the last vertex u of the rood node
VaðtÞ ¼ V1 becomes a visited vertex; that is, if i is
less that t; then increase the i by 1 and execute Steps
(iii) and (iv).
In Fig. 3 we show the h-dfs traversal of a cent-tree
TcðGÞ on six nodes; its h-sequence is the following:
ðVf ð1Þ;Vað1Þ;Vf ð2Þ;Vað2Þ;Vf ð3Þ;Vað3Þ;Vf ð4Þ;Vað4ÞÞ; where
Vað1Þ ¼ Vað2Þ ¼ Vað3Þ ¼ Vað4Þ ¼ V1: The vertices v and u

are the first and the last vertices of the lists listðVf ð1ÞÞ
and listðV1Þ; respectively.
We consider connected undirected QT-graphs and,

thus, the h-dfs forest of such a graph G contains only
one tree. Moreover, it is obvious that if each vertex of
the h-dfs tree of G rooted at vAVðGÞ has at most one
child, then G contains a Hamiltonian path beginning
with vertex v (it is the path from the root v to the unique
leaf u); G contains a Hamiltonian cycle if the root v of
the h-dfs tree and its unique leaf u are adjacent in G: We
next prove the following result.

Lemma 3.1. Let G be a QT -graph and let V1;V2;y;Vk

be the nodes of its cent-tree TcðGÞ: The QT -graph G is a

Hamiltonian graph if H-labelðViÞX0 for each node

ViATcðGÞ:
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Proof. Let V1;V2;y;Vk be the nodes of the cent-tree
TcðGÞ of the QT-graph G rooted at V1; and let
ðVf ð1Þ;Vað1Þ;Vf ð2Þ;y;Vf ðtÞ;VaðtÞ ¼ V1Þ be the h-se-
quence of TcðGÞ: By definition, the internal node Vi

appears pi 	 1 times in the sequence h-sequenceðTcÞ;
where pi is the number of children Vi in the cent-tree
TcðGÞ; let Vaði1Þ ¼ Vaði2Þ ¼ ? ¼ Vaðip	1Þ ¼ Vi; 1pipk:
Since H-labelðViÞX0; it follows that the node Vi

contains at least pi 	 1 vertices; it contains pi vertices if
Vi is the root V1 of the cent-tree TcðGÞ: Let ni be the
number of vertices in ViATcðGÞ and let listðViÞ ¼
ðvi1;y; viðpi	1Þ; vipi

;y; vini
Þ:

We select a vertex v from Vf ð1Þ and we perform an h-
dfs traversal starting at vertex v: Since each node Vi

contains at least pi 	 1 vertices (pi vertices if Vi ¼ V1), it
follows that after visiting the vertices of the node Vf ðiÞ
there exists at least one unvisited vertex in VaðiÞ and,
thus, the h-dfs always selects the next vertex from VaðiÞ;
1pipt 	 1; this is also true for the nodes Vf ðtÞ and
VaðtÞ ¼ V1: On the other hand, the nodes VaðiÞ and
Vf ðiþ1Þ are clique-adjacent; see Proposition 3.1. Thus,
the h-dfs tree has the property that each node has at
most one child; that is, G contains a Hamiltonian path.
Since V1 is the root of TcðGÞ; we have that V1%Vf ð1Þ;
that is, Vf ð1Þ and V1 are clique-adjacent. Thus, G

contains a Hamiltonian cycle. &

We consider now the case where the cent-tree
TcðGÞ of a Hamiltonian QT -graph has nodes, say,
Vi and Vj ; such that VipVj and H-labelðViÞ40 and
H-labelðVjÞo0: Let u be an available vertex of the node
Vi: Hereafter, when we say that we v-move the available
vertex u from the node Vi to node Vj ; we mean that (i)
we delete the vertex u from node Vi and (ii) we add it to
node Vj:
From the structure of the cent-tree TcðGÞ of a QT -

graph, it is easy to see that if we apply a v-move
operation to nodes Vi and Vj ; then the resulting tree has
the Property (P3): for every two nodes Vs and Vt such
that Vs%Vt; G½f

S
Vi j Vs%Vi%Vtg� is a complete

graph. Obviously, if Vt is a maximal element of
ðfVig;%Þ; then after applying a v-move operation the
graph G½f

S
Vi j V1%Vi%Vtg� may not be a maximal

complete subgraph of G:
Consider the tree that results from the cent-tree TcðGÞ

of a QT-graph after applying some v-move operations
on appropriate nodes so that each node Vi of that tree
has H-label greater than or equal to 0; we call such a
tree h-tree and denote it by ThðGÞ: Then, we prove the
following result.

Theorem 3.1. Let G be a QT-graph and let V1;V2;y;Vk

be the nodes of its cent-tree TcðGÞ: The QT-graph G is a

Hamiltonian graph if and only if either H-labelðViÞX0
for each node ViATcðGÞ or we can construct an h-tree

ThðGÞ:
Proof. The if implication follows directly from Lemma
3.1 since either H-labelðViÞX0 for each node Vi of the
cent-tree TcðGÞ or H-labelðViÞX0 for each node Vi of
the h-tree ThðGÞ; 1pipk:
Suppose now that there exists a node in TcðGÞ; say,

Vi; such that H-labelðViÞo0; and also suppose that
there exists no ancestor of the node Vi in TcðGÞ; say, Vj;
with available vertices, that is, H-labelðVjÞp0: Thus, we
cannot construct an h-tree ThðGÞ:
Let Vi1;Vi2;y;Vipi

be the children of the node Vi in
the cent-tree TcðGÞ; and let ni be the number of vertices
of Vi; that is, listðViÞ ¼ ðvi1; vi2;y; vini

Þ: Since
H-labelðViÞo0; exactly one of the following cases holds:

Case (i): niopi; if Vi is the root of the cent-tree
TcðGÞ;

Case (ii): niopi 	 1; if Vi is an internal node of the
cent-tree TcðGÞ;
Let ðVf ð1Þ;Vað1Þ;y;VaðtÞ ¼ V1Þ be the h-sequence of

TcðGÞ: We select a vertex v from Vf ð1Þ and we perform
an h-dfs traversal to the vertices of G starting at vertex v:
We consider the two cases:
Case (i): Vi ¼ V1 is the root of the cent-tree TcðGÞ;

and n1op1: From the structure of the cent-tree TcðGÞ;
we have that the subgraph of G induced by the vertices
of the subtrees of TcðGÞ rooted at V11;V12;y;V1p1 ; that
is, the graph G 	 V1; contains p1 connected components,
say, C11;C12;y;C1p1 : We consider the best case where
each induced graph GðC1iÞ; 1pipp1; contains a
Hamiltonian path (or cycle). Since n1op1; it follows
that the p1 paths (path cover of G 	 V1) cannot be
extended to a cycle using the n1 vertices of the node V1;
the p1 paths can be extended to a (Hamiltonian) path if
n1 ¼ p1 	 1: Thus, the whole graph G does not contain a
Hamiltonian cycle. Note that, the vertex v1n1AV1

has at least two children in the h-dfs tree if n1op1 	 1;
while it has exactly one child u; if n1 ¼ p1 	 1; the vertex
u belongs to a node of the subtree of TcðGÞ rooted
at V1p1 :
Case (ii): Vi is an internal node, and niopi 	 1: Again,

from the structure of the cent-tree TcðGÞ; we have that
the subgraph of G induced by the vertices of the subtrees
of TcðGÞ rooted at Vi1;Vi2;y;Vipi

; contains pi con-
nected components, say, Ci1;Ci2;y;Cipi

: From case (i),
we have that the subgraph of G induced by the vertices
of the subtree of TcðGÞ rooted at Vi does not contain a
Hamiltonian cycle since niopi 	 1; it does not also
contain a (Hamiltonian) path. Since there exists no
ancestor of the node Vi in TcðGÞ with available vertices,
it follows that the paths cannot be extended to a
(Hamiltonian) path. Thus, even the node V1 contains
n1 ¼ p1 vertices, the whole graph G does not contain a
Hamiltonian cycle. Note that, the vertex vini

AVi has at
least two children in the h-dfs tree.
Thus, in both cases (i) and (ii) the QT-graph G does

not contain a Hamiltonian cycle, and the theorem is
proved. &
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4. Construction of the cent-tree of a QT-graph

The characterizations provided by Theorem 2.2
enable us to describe a parallel algorithm for construct-
ing the cent-tree of a QT-graph.

4.1. The degree-tree

Let G be a QT-graph and let TcðGÞ be its cent-tree
with node set fV1;V2;y;Vkg and root V1: We have
proved that if the node Vi is an ancestor of the node Vj

in the cent-tree TcðGÞ; then Vi and Vj are clique-
adjacent; see Theorem 2.2. Thus, if the sequence of
nodes ðV1;V2;y;ViÞ forms a path from the root V1 of
the cent-tree to a node Vi; then dðV1Þ4dðV2Þ4?4
dðViÞ; where dðViÞ denotes the degree of the vertices of
G that belong to node Vi; recall that all the vertices of G

that belong to node Vi have the same degree and each
internal node of the cent-tree of G has at least two
children. It follows that if fv1; v2;y; vpg is a clique in a
QT-graph, then dðv1ÞXdðv2ÞX?XdðvpÞ; 1pppn:
Based on this property, we describe an algorithm that

produces a tree representation of a QT -graph; see also
[29]. We call this tree degree-tree of the QT-graph G and
we denote it by TdðGÞ: The details of the algorithm are
given as follows:
(1)
 Sort the vertices v1; v2;y; vn of G according to their
degrees; let D ¼ ðv1; v2;y; vnÞ be a sequence such
that dðv1ÞXdðv2ÞX?XdðvnÞ:
(2)
 Construct the tree TdðGÞ in the following manner:

(i)
 set VðTdÞ ¼ fv1; v2;y; vng and EðTdÞ ¼ |;

(ii)
 for every vertex viAD; 2pipn; find the vertex

vk; if it exists, such that k is the maximum index
satisfying 1pkoi and ðvk; viÞ is an edge in G;
add the edge ðvk; viÞ in the edge set EðTdÞ:
(3)
 Root the tree TdðGÞ at vertex r ¼ v1; the resulting
tree is the degree-tree TdðGÞ:
We call D-TREE-CON the above construction algo-
rithm, and show that it can be easily implemented to run
on a PRAM model of computation.

Time and processor complexity. The algorithm takes
as input a QT -graph G on n vertices and m edges, where
G is given in an adjacency-list representation, and
V

V4

V2

Fig. 4. The degree-tree TdðGÞ and the c
constructs the degree-tree TdðGÞ; its time and processor
complexity is analyzed as follows:

Step 1: It is known that the degree of each vertex of a
graph G on n vertices and m edges can be computed in
Oðlog nÞ time using Oððn þ mÞ=log nÞ processors on the
EREW PRAM model; G is given in an adjacency-list
representation. It is also known that n elements can be
sorted in Oðlog nÞ time with OðnÞ processors on the same
model of computation [2,17,25].

Step 2: Let D ¼ ðv1; v2;y; vnÞ be the vertex sequence
computed in Step 1, and let NðviÞ ¼ fu1; u2;y; udi

g be
the set of vertices adjacent to vi; 1pipn: For each
vertex vi we compute the vertex u; if it exists, such that:
uANðviÞ and u is the nearest vertex to the left of vi in the
sequence D: This computation can be carried out
through the general prefix computation (GPC, see [2])
in Oðlog nÞ time with OðnÞ processors on the CREW
PRAM model.

Step 3: The problem of rooting the tree TdðGÞ at the
vertex r ¼ v1 can be solved in Oðlog nÞ time with
Oðn=log nÞ processors on the EREW PRAM using the
well-known Euler-tour technique [2,17,25]. Thus, this
step can be performed within the stated bounds.
Taking into consideration the time and processor

complexity of each step of the construction algorithm
D-TREE-CON, we can state the following result.

Lemma 4.1. The degree-tree of a QT-graph can be

constructed in Oðlog nÞ time with Oðn þ mÞ processors on

the CREW PRAM model.

4.2. The cent-tree construction algorithm

Based on the structural properties of the degree-tree
TdðGÞ of a QT-graph G; we next present a parallel
algorithm for the construction of the cent-tree TcðGÞ of
the graph G:
We observe that, a vertex u and its parent pðuÞ belong

to the same node ViATcðGÞ if and only if u is a unique
child of the vertex pðuÞ in the degree-tree TdðGÞ; see Fig.
4. Let u2;y; uk be the vertices of the degree-tree TdðGÞ
with the property that their parents have at least two
children, and let R ¼ fr ¼ u1; u2;y; ukg; where r is the
V7

1

V6

V5

V3

ent-tree TcðGÞ of a QT-graph G:
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root of the tree TdðGÞ; the vertices of R of the tree TdðGÞ
of Fig. 4 are denoted by gray disks.
Let V1;V2;y;Vk be the nodes of the cent-tree TcðGÞ

rooted at V1: It is easy to see that uiAVi; 1pipk: The
node V1 is the root of the cent-tree and the node Vi ¼
fuig has parent the node Vj ¼ fujg in TcðGÞ if uj is
the least ancestor of ui in TdðGÞ which belongs to R: The
vertex ueR of the graph G belongs to the node Vi if
the vertex ui is the least ancestor of u in TdðGÞ; 1pipk;
see Fig. 4.
Based on the above observations and properties, we

describe the following parallel algorithm; it takes as
input a QT -graph G and produces the cent-tree of the
QT-graph G:

Algorithm Cent-Tree-Construction (CENT-TREE-

CON):

Input: a quasi-threshold graph G on n vertices and m

edges.
Output: the cent-tree TcðGÞ of the input graph G:
1.
 Compute the degree-tree TdðGÞ and let VðTdÞ ¼
fr ¼ v1; v2;y; vng;
2.
 For each vertex viAVðTdÞ; 1pipn; do in parallel

if vi is the root r of the tree or its parent pðviÞ has
more than one child,

then set colorðviÞ’ red; otherwise colorðviÞ’
black;

let R ¼ fr ¼ u1; u2;y; ukg be the set of the red
vertices of TdðGÞ; kX1;
3.
 For each vertex viAVðTdÞ 	 R; 2pipn; do in
parallel

find the least ancestor ui of vertex vi with read
color and set pðviÞ’ui;

let TgðGÞ be the resulting tree rooted at r ¼ u1; we
set pðrÞ’r;
4.
 For each red vertex uiATgðGÞ construct a node set
Vi and set Vi’fuig; 1pipk;
5.
 Construct the tree graph TcðGÞ; in parallel, as
follows:

5.1 Set VðTcÞ’frc ¼ V1;V2;y;Vkg;

5.2 For each red vertex uiATgðGÞ; 2pipk; do in
parallel
if uj is the parent of ui; then add the edge
ðVi;VjÞ into EðTcÞ;
6.
 Compute the vertices of each node V1;V2;y;Vk of
the tree TcðGÞ as follows:

for each black vertex viATgðGÞ; 2pipk; do in
parallel
if uj is the parent of vi; then add the vertex vi

into node set Vj;

7.
 Root the tree TcðGÞ at node V1; the rooted tree

TcðGÞ is the cent-tree of the input graph G;
Time and processor complexity. We next compute the
time and processor complexity of the proposed parallel
algorithm for the construction of the cent-tree of a QT-
graph. Its step-by-step analysis is as follows:

Step 1: The degree-tree TdðGÞ of a QT-graph on n

vertices and m edges is constructed in Oðlog nÞ time with
Oðn þ mÞ processors on the CREW PRAM model; see
Lemma 4.1.

Step 2: Let v1; v2;y; vn be the vertices of the degree-
tree TdðGÞ rooted at r ¼ v1: Obviously, the parent pðviÞ
of a vertex viATdðGÞ; 2pipn; has more than one child
if there exist a vertex vj such that pðviÞ ¼ pðvjÞ: Let
pðvið1ÞÞ; pðvið2ÞÞ;y; pðviðnÞÞ be the sorted sequence of the
parents of the vertices of TdðGÞ; we set pðvið0ÞÞ :¼ 0 and
pðviðnþ1ÞÞ :¼ n þ 1: Then, the vertex við jÞ has more than
one child if pðvið j	1ÞÞapðvið jÞÞ and pðvið jÞÞ ¼ pðvið jþ1ÞÞ;
1pjpn: Since the sorting problem and the array
packing problem on n elements can be solved in
Oðlog nÞ time with OðnÞ processors on the EREW
PRAMmodel [2,17], this step can be executed within the
same time and processor bounds.

Step 3: The tree TgðGÞ can be computed by using the
pointer jumping technique on the degree-tree TdðGÞ; for
each vertex viATdðGÞ; 1pipn such that pðviÞ is a black
vertex, do the following: set pðviÞ :¼ pðpðviÞÞ; continue,
until pðviÞ is a red vertex, for every viATdðGÞ (this is the
well-known parallel prefix algorithm [2,17]). Thus, the
tree TgðGÞ can be constructed in Oðlog nÞ time with OðnÞ
processors on the CREW PRAM model.

Steps 4 and 5: It is easy to see that the node sets
V1;V2;y;Vk; and, thus, the set VðTcÞ; can be
computed in Oð1Þ time with Oð kÞ processors on the
EREW PRAM model. The pair ðVi;VjÞ is added into
EðTcÞ; if the vertex uiAVi has parent the vertex ujAVj in
the tree TgðGÞ: Thus, the computation of the edge set
EðTcÞ requires Oð1Þ parallel time and Oð kÞ processors
on the CREW PRAM model.

Step 6: It is easy to see that the elements of the node sets
V1;V2;y;Vk can be computed from the tree TgðGÞ; the
vertex v belongs to Vi if the representative ui of the set Vi is
the parent of v in the tree TgðGÞ: This computation can be
carry out by using the sorted sequence of the parents of the
vertices of the tree TdðGÞ; it needs Oðlog nÞ time and OðnÞ
processors on the EREW PRAM model.

Step 7: We solve the problem of rooting TcðGÞ at the
vertex V1 by applying the Euler tour technique on the
tree graph TcðGÞ; it takes Oðlog nÞ time and requires
Oðn=log nÞ processors on the EREW PRAM model
[2,17,25].
Therefore, from the previous step-by-step analysis, it

follows that the construction algorithm CENT-TREE-
CON runs in Oðlog nÞ time using a total of Oðn þ mÞ
processors on the CREW PRAM model of computa-
tion. Thus, we have proved the following result.

Theorem 4.1. The cent-tree of a QT-graph can be

constructed in Oðlog nÞ time with Oðn þ mÞ processors

on the CREW PRAM model.
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5. Finding a Hamiltonian cycle in a QT-graph
In this section, we first describe a parallel algorithm
which constructs an h-tree ThðGÞ of a Hamiltonian QT -
graph G: Recall that an h-tree of a QT-graph G has the
property that H-labelðViÞX0 for each node ViAThðGÞ:
Next, we present a parallel algorithm which produces a
Hamiltonian cycle of G; it works on the cent-tree TcðGÞ
if H-labelðViÞX0; for each node ViATcðGÞ; otherwise, it
works on an h-tree ThðGÞ (see Theorem 3.1).

5.1. Construction of an H-tree

Consider the case where the cent-tree of a Hamilto-
nian QT-graph G has nodes, say, V 0

1;V 0
2;y;V 0

k0 ; with
H-labels less than zero. In this case, we are interested in
constructing an h-tree ThðGÞ from the cent-tree TcðGÞ:
An h-tree can be constructed by moving available
vertices from certain nodes of TcðGÞ to nodes
V 0
1;V 0

2;y;V 0
k0 (see Section 3). Recall that, if a Hamilto-

nian QT-graph G has a node, say, Vi; such that
H-labelðViÞo0; then there exists an ancestor Vj of Vi

in the cent-tree TcðGÞ such that H-labelðVjÞ40; that is,
the node Vj contains available vertices.
In more detail, an h-tree ThðGÞ can be constructed in

the following manner: First, we determine the nodes of
the cent-tree TcðGÞ with H-labels greater than zero and
the available vertices which they contain. Next we
determine the nodes V 0

1;V 0
2;y;V 0

k0 of the cent-tree
TcðGÞ; such that H-labelðV 0

i Þo0; and we v-move
jH-labelðV 0

i Þj available vertices to node V 0
i so that

H-labelðV 0
i Þ ¼ 0; where 1pipk0: To this end, we add

d 0
i ¼ jH-labelðV 0

i Þj dummy vertices, say, v0i1; v0i2;y; v0id 0
i
;

to node V 0
i ; and we assign to each dummy vertex v0ij an

available vertex from an ancestor Vj of the node V 0
i ; (see

Fig. 5; the available and the dummy vertices are denoted
by grey and white disks, respectively). We call m-vertex

the available vertex which has been assigned to a
dummy vertex. Since G is a Hamiltonian QT-graph, we
can always construct an h-tree ThðGÞ (see Theorem 3.1),
and, thus, there is an one-to-one correspondence
between the m-vertices and the dummy vertices. Finally,
we v-move the m-vertices to appropriate nodes of the
 

V1 

V2 V4 V3 

V6 V5 V7 

Fig. 5. The tree T 0
cðGÞ and the ad-t
cent-tree and delete the dummy vertices from the cent-
tree.
It is clear that the crucial factor of the above h-tree

construction algorithm is the process of assignment
available vertices to dummy vertices. We next show that
this process can be efficiently implemented using the h-
dfs traversal strategy and simple algorithmic techniques
on certain nodes and vertex lists. This, in turn, implies
an efficient implementation of the h-tree construction
algorithm. We proceed as follows:

Step ðAÞ: Construction of the available-dummy tree

(ad-tree)
(1)
ree T
Determine, first, the nodes Vi of the cent-tree TcðGÞ
such that H-labelðViÞ40; compute the available
vertices of Vi; and paint them with grey color;
initially, all the vertices of TcðGÞ are black. Next,
determine the nodes V 0

i of the cent-tree TcðGÞ such
that H-labelðV 0

i Þo0 and add a list of d 0
i dummy

vertices ðv0i1; v0i2;y; v0id 0
i
Þ to the node V 0

i ; 1pipk0;
paint the dummy vertices of V 0

i with white color. Let
T 0
cðGÞ be the resulting tree.
(2)
 Delete from T 0
cðGÞ the nodes Vi such that

H-labelðViÞ ¼ 0; that is, the node Vi contains only
black vertices. Then, delete from the remaining
nodes of T 0

cðGÞ all the black vertices. Now, the
nodes of the tree T 0

cðGÞ contain either available or
dummy vertices; a node with available (resp.
dummy) vertices is called a-node (resp. d-node).
(3)
 For each node Vi of the tree T 0
cðGÞ (except from the

root) do the following: if the parent pðViÞ of the
node Vi is a d-node, then determine the lowest a-
node ancestor Vj of the node Vi in T 0

cðGÞ; and set
pðViÞ :¼ Vj: Now, all the d-nodes of the resulting
tree T 0

cðGÞ are leaves.

(4)
 For each a-node Vi of the tree T 0

cðGÞ compute two
vertex lists, namely a-listðViÞ and d-listðViÞ; as
follows: a-listðViÞ contains the available vertices of
Vi and d-listðViÞ contains the dummy vertices of all
the d-node children of Vi:
(5)
 Delete from T 0
cðGÞ the d-nodes. The resulting tree is

called ad-tree (available-dummy tree) and denoted
by TadðGÞ:
A3 A2

A1 

adðGÞ of a QT-graph G:
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Let A1;A2;y;At be the nodes of the ad-tree TadðGÞ
constructed by the above algorithm, and let a-listðAiÞ ¼
ðvi1; vi2;y; viai

Þ be the list of the available vertices of the
node Ai and d-listðAiÞ ¼ ðv0i1; v0i2;y; v0idi

Þ be the list of
the available vertices of Ai; 1pipt:

Observation 5.1. From the construction of the ad-tree
TadðGÞ; it is clear that TadðGÞ consists of those nodes of
the tree T 0

cðGÞ which contain available vertices, that is,
the construction algorithm establishes a one-to-one
correspondence between the nodes Vi of the tree T 0

cðGÞ
which contain available vertices and the nodes Ai of the
ad-tree TadðGÞ; 1pipt: Moreover, the a-listðAiÞ of the
nodes Ai contains only the available vertices of the node
ViAT 0

cðGÞ: On the other hand, the d-listðAiÞ may
contain dummy vertices from several nodes of the tree
T 0
cðGÞ; or it may by an empty list.
In Fig. 5, the tree T 0

cðGÞ contains three nodes with
available vertices (gray disks), that is, the nodes V1; V5

and V4 with 3, 2 and 2 available vertices, respectively;
the ad-tree TadðGÞ consists of the nodes A1; A2 and A3

which correspond to nodes V1; V5 and V4; the a-lists of
the nodes A1; A2 and A3 contain the available vertices of
the nodes V1; V5 and V4; respectively. The d-listðA1Þ of
the tree TadðGÞ contains the dummy vertices (white
disks) of the nodes V2 and V6; while the d-listðA3Þ
contains the dummy vertices of the node V7; the
d-listðA2Þ is an empty list.

Observation 5.2. By construction, the trees T 0
cðGÞ and

TadðGÞ have the following property: if two nodes Vi and
Vj have an ancestor (resp. independent) relation in
T 0
cðGÞ; then the corresponding nodes Ai and Aj have the

same relation in the ad-tree TadðGÞ; that is, if Vi%Vj

(resp. Vi^Vj) in the tree T 0
cðGÞ; then Ai%Aj (resp.

Ai^Aj) in TadðGÞ: Recall that, two nodes Vi and Vj are
independent if they are not clique-adjacent; see Section
2. It follows that the available vertices of the nodes of
the tree T 0

cðGÞ preserve their ancestor relation in the ad-
tree TadðGÞ; see Fig. 5: the available vertices of the nodes
V1; V5 and V4 of the tree T 0

cðGÞ preserve their ancestor
(resp. independent) relation in the tree TadðGÞ:
The nodes of the tree T 0

cðGÞ which contain dummy
and/or black vertices do not appear in the ad-tree
TadðGÞ; in Fig. 5, such nodes are: V2; V3; V6 and V7:
Moreover, the black vertices of the tree T 0

cðGÞ do not
appear in the ad-tree TadðGÞ: On the other hand, all the
dummy vertices of T 0

cðGÞ appear in TadðGÞ and have the
following property: if an available vertex, say, x; of a
node Vi and a dummy vertex, say, y; of a node Vj have
an ancestor relation in T 0

cðGÞ; then these vertices
preserve this relation in the ad-tree TadðGÞ; that is, if
xAVi and yAVj; and Vi%Vj in T 0

cðGÞ; then xAAi and
yAAj; and Ai%Aj in the tree TadðGÞ; the vertices x and y

have an ancestor relation if both belong to the same
node in TadðGÞ:
In Fig. 5, the dummy vertices (white disks) of the
nodes V2 and V6 of the tree T 0

cðGÞ have ancestors the
available vertices (gray disks) of the node V1; while the
dummy vertices of the node V7 have ancestors the
available vertices of the nodes V4 and V1: Thus, by
construction, this relation is preserved in the tree
TadðGÞ; the node A1 contains the dummy vertices of
the nodes V2 and V6; and the available vertices of the
node V1; while the node A3 contains the dummy vertices
of the node V7; and the available vertices of the node V4:

From the above observations, we state the following
properties of the nodes and vertices of the trees T 0

cðGÞ
and TadðGÞ:

Lemma 5.1. Let V1;V2;y;Vk be the nodes of the tree

T 0
cðGÞ and let A1;A2;y;Vt be the nodes of the ad-tree

TadðGÞ (see Fig. 5).
(i)
 All the available and dummy vertices of the tree

T 0
cðGÞ appears in the ad-tree TadðGÞ: No black

vertex of T 0
cðGÞ appears in TadðGÞ:
(ii)
 If xAVi is an available vertex, yAVj is a dummy

vertex, and Vi%Vj in T 0
cðGÞ; then xAAi; yAAj; and

either Ai%Aj or Ai ¼ Aj in TadðGÞ:

(iii)
 If yAVj is a dummy vertex and xAVi is an available

vertex, and Vj%Vi in T 0
cðGÞ; then yAAj and xAAi;

and Aj%Ai:

(iv)
 If yAVj is a dummy vertex and xAVi is an available

vertex, and Vj^Vi in T 0
cðGÞ; that is, neither Aj%Ai

nor Ai%Aj; then yAAj and xAAi; and either Aj%Ai

or Aj^Ai:
Proof. It follows directly from the structure of the cent-
tree TcðGÞ (see Theorem 2.2), the construction of the ad-
tree TadðGÞ; that is, Steps (1)–(5), and the Observations
5.1 and 5.2. &

Observation 5.3. In Step (2), all the nodes Vi of the tree
T 0
cðGÞ such that H-labelðViÞ ¼ 0 are deleted from T 0

cðGÞ;
1pipk: Thus, if the root V1 of the tree T 0

cðGÞ has zero
H-label, then the result is a forest; note that
H-labelðV1ÞX0; for otherwise the input graph G would
not be a Hamiltonian graph (see Theorem 3.1). In such a
case, we independently work in each tree T 0

cðGiÞ of the
forest, and we assign available vertices of the tree T 0

cðGiÞ
to dummy vertices of the tree T 0

cðGiÞ; 1pipp1; where p1
is the number of children of V1: Thus, for simplicity in
the description of the algorithm, we assume that the root
of the tree T 0

cðGÞ has H-labelðV1Þ40; that is, V1

contains at least one available vertex, and, thus, V1 is
the root of the ad-tree TadðGÞ:

Having constructed the ad-tree TadðGÞ of the input
graph G; let us now describe an algorithm which assigns
available vertices to dummy vertices; more precisely, it
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assigns available vertices of the lists a-listðAiÞ; 1pipt;
to the dummy vertices of the lists d-listðAjÞ; 1pjpt;
where Ai is an ancestor of Aj in the ad-tree TadðGÞ; or
Ai ¼ Aj:
We assume that the tree TadðGÞ is a binary tree rooted

at A1; otherwise, we make it binary using a standard
technique [17]. We consider a leaf node, say, Ai; of the tree
TadðGÞ and let pðAiÞaA1 be its parent. Let pðAiÞ has two
children, that is, the node Ai and the sibling of Ai; denoted
by sibðAiÞ; and let pðpðAiÞÞ be the parent of pðAiÞ: We
apply the rake operation at node Ai [17,17a]; that is,

* we remove first the node Ai and, then, the node pðAiÞ
from the tree TadðGÞ; and

* we connect the sibling of the node Ai to node pðpðAiÞÞ:

Before removing the nodes Ai and pðAiÞ; we assign
available vertices to dummy vertices and update the lists
a-list and d-list as follows:
(i)
 Before the removal of Ai:
Let a-listðAiÞ ¼ ðvi1; vi2;y; viai

Þ and d-listðAiÞ ¼
ðv0i1; v0i2;y; v0idi

Þ;

�

Fig. 6

Fig. 7
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if aiodi; then assign the ai available vertices of
the list a-listðpðAiÞÞ to dummy vertices
v0i1; v0i2;y; v0iai

of d-listðpðAiÞÞ; and
concatenate the list ðv0aiþ1

; v0aiþ2
;y; v0idi

Þ to
d-listðpðpðAiÞÞÞ; see Fig. 6;
�
 if dipai; then assign the di available vertices of
the list a-listðpðAiÞÞ to dummy vertices
v0i1; v0i2;y; v0idi

of d-listðpðAiÞÞ; and
concatenate the list ðvdiþ1 ; vdiþ2 ;y; viai

Þ to
a-listðsibðAiÞÞ; see Fig. 7;
By the above process, that is, the application of the rake
operation at leaf node Ai; we establish an one-to-one
correspondence between available vertices and dummy
vertices of the nodes Ai and pðAiÞ; and also we update:
(i)
 the list d-listðpðpðAiÞÞÞ by adding dummy vertices or

(ii)
 the list a-listðsibðAiÞÞ by adding available vertices.
The update operations (i) and (ii) guarantee that, after
the application of the rake operation at node Ai; the
ancestor relation between the remaining available and
dummy vertices in TadðGÞ is preserved (see Lemma 5.1).
Thus, if we repeatedly apply the rake operations on the
tree TadðGÞ; the available vertices is correctly assigned to
dummy vertices, that is, an available vertex v of the node
ViATcðGÞ is always assigned to a dummy vertex v0 such
that v0AV 0

i and Vi is an ancestor of V 0
i in the cent-tree

TcðGÞ: Moreover, it is known that we can contract
the tree TadðGÞ into a three-node binary tree, using the
rake operation [17]; recall that we have assumed that the
sib(Ai)

p(p(Ai))

s (gray disks) and three dummy vertices (white disks).

sib(Ai) 

 p( p(Ai)) 

es (gray disks) and two dummy vertices (white disks).
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TadðGÞ is a binary tree. Let A2 and A3 be the children of
the root A1 of the resulting three-node binary tree. Then,
we assign available vertices of the root V1 to dummy
vertices of the nodes V2 and V3; and complete the
assignment process. Note that, since the input graph G is
a Hamiltonian graph, the above described algorithm
always succeeds in assigning available vertices to all the
dummy vertices of the tree TadðGÞ:
We are interested in implementing the above algo-

rithm in a parallel model of computation. It is known
that a binary tree can be efficiently contracted into a
three-node tree on the EREW PRAM model using the
rake operation [17]. We make the (general) tree ad-tree
TadðGÞ binary as follows: Each node Vi with more that
two children is replaced by a balanced binary tree,
rooted at Vi; whose leaves are the children of Vi:
Before describing the above algorithm more formally,

let us define the notation and the terminology we shall
use hereafter. Let x-list ¼ ðx1; x2;y; xnÞ be a list on n

vertices. The position of a vertex xi in x-list, denoted
posðxiÞ; is defined as follows: posðx1Þ :¼ 1 and posðxiÞ :
¼ posðxi	1Þ þ 1; note that, if the x-list is implemented
by an array A; then the posðxiÞ is the index of xi in A; if
it is implemented by a link-list L; then the posðxiÞ is the
rank of xi in L: A sublist ðxi; xiþ1;y; xkÞ of the list x-list
is defined to be the list which results from x-list after
deleting the vertices with positions less than posðxiÞ and
greater than posðxkÞ:
Let y-list ¼ ðy1; y2;y; ynÞ be a list on n vertices. By

ðy1; y2;y; ynÞ2ðx1; x2;y; xnÞ denote the one-to-one
correspondence between the vertex yi of the list y-list
and the vertex xi of the list x-list, 1pipn: Finally, by x-
list jj y-list denote the list ðx1; x2;y; xn; y1;y; ynÞ; and
by ðÞ denote the empty list.
We now formally describe the above procedure, which

assigns available vertices to dummy vertices, as follows:
Step (B): Assignment of available vertices to dummy

vertices
(6)
 Make the ad-tree TadðGÞ binary: each node Ai with
more that two children is replaced by a balanced
binary tree whose leaves are the children of Ai;
1pipt; let A1;A2;y;At0 be the nodes of the
resulting binary tree, t0Xt;
(7)
 For each new internal node Ai of the binary tree
TadðGÞ; compute two vertex lists, namely a-list and
d-list, such that a-listðAiÞ ¼ ðÞ and d-listðAiÞ ¼ ðÞ;
(8)
 Compute the position (i.e., index, or rank) of each
vertex of the a-listðAiÞ ¼ ðvi1; vi2;y; viai

Þ and
d-listðAiÞ ¼ ðv0i1; v0i2;y; v0idi

Þ of the node Ai;
1pipt0;
(9)
 Contract the binary tree TadðGÞ into a three-node
binary tree, using the rake operation;
when a node Ai is subject to rake operation, adjust
the a-list and d-list of the nodes Ai; pðAiÞ; pðpðAiÞÞ
and sibðAiÞ; as follows:
(i)
 Let a-listðAiÞ ¼ ðvi1; vi2;y; viai
Þ and

d-listðAiÞ ¼ ðv0i1; v0i2;y; v0idi
Þ;

if dipai then

ðv011; v012;y; v01di
Þ2ðv11; v12;y; v1di

Þ;
else

ðv011; v012;y; v01ai
Þ2ðv11; v12;y; v1ai

Þ;
d-listðpðAiÞÞ’d-listðpðAiÞÞjjðv01aiþ1

;y; v01di
Þ;
(ii)
 Let a-listðpðAiÞÞ ¼ ðvi1; vi2;y; viai
Þ and

d-listðpðAiÞÞ ¼ ðv0i1; v0i2;y; v0idi
Þ;

if dipai then

ðv011; v012;y; v01di
Þ2ðv11; v12;y; v1di

Þ;
a-listðsibðAiÞÞ’a-listðsibðAiÞÞjjðv1diþ1 ;y; v1ai

Þ
else

ðv011; v012;y; v01ai
Þ2ðv11; v12;y; v1ai

Þ;
d-listðpðpðAiÞÞÞ’d-listðpðpðAiÞÞÞjjðv01aiþ1

;y; v01di
Þ;
(10)
 Let V1 be the root of the resulting three-node tree
and let V2; V3 be the children of V1; Let
a-listðA1Þ ¼ ðv11; v12;y; v1a1Þ be the list of the
available vertices of V1;
(i)
 if d-listðA2Þ contains dummy vertices, say,
v021; v022;y; v02d2

; then

ðv021; v022;y; v02d2
Þ2ðv11; v12;y; v1d2Þ;
(ii)
 if d-listðA3Þ contains dummy vertices, say,
v031; v032;y; v03d3

; then

ðv031; v032;y; v03d3
Þ2ðv1ðd2þ1Þ; v1ðd2þ2Þ;y; v1ðd2þd3ÞÞ;
Observation 5.4. In Step (10), we assign d2 þ d3 avail-
able vertices from the list a-listðA1Þ of the root A1 of the
three-node tree to the dummy vertices of the lists
d-listðA2Þ and d-listðA3Þ: It is clear that, we can always
do this assignment since the input QT -graph G is a
Hamiltonian graph, and, thus, if the nodes V2 and V3 of
the three-node tree contain d2 and d3 dummy vertices,
respectively, then the root node V1 contains a1Xd2 þ d3
available vertices.

Finally, we show how we can construct the h-tree of
input Hamiltonian QT -graph G; given the available-
dummy vertex assignment computed in Steps (1)–(10).
We proceed as follows:
Let v0i1; v0i2;y; v0ini

be the dummy vertices of the node
V 0

i of the cent-tree TcðGÞ; 1pipp; see Step (1), and let
vi1; vi2;y; vini

be the corresponding available vertices
computed by the above algorithm in Steps (9)–(10). If
the vertex vij belongs to the node VjATcðGÞ; then we add
the vertex vij to node V 0

i and delete it from the node Vj;
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1pjpni: The resulting nodes are the nodes of the h-tree
ThðGÞ of the input graph G:
The formal description of the last step of the

construction algorithm, that is, the step which computes
the vertices of each node ViAThðGÞ; is as follows:

Step ðCÞ: Computation of the vertices of each node of

the h-tree
(11)
 Let ðv0i1; v0i2;y; v0ini
Þ2ðvi1; vi2;y; vini

Þ; and let
v0i1; v0i2;y; v0ini

be the dummy vertices of the node
V 0

iATcðGÞ; 1pipp: Then,
add the vertices vi1; vi2;y; vini

to the node
V 0

iATcðGÞ; and
if vijAVj; then delete vij from the node VjATcðGÞ;

1pjpni:
We call H-TREE-CON the above described algorithm,
that is, Steps (1)–(11), which constructs an h-tree ThðGÞ
of a Hamiltonian QT -graph G; and show that it can be
efficiently implemented on the CREW PRAM model of
computation.

Correctness. The Steps (1)–(5) of the algorithm H-
TREE-CON construct the ad-tree TadðGÞ having the
properties of Lemma 5.1. The correctness of Steps (6)–
(9) follows from Lemma 5.1 and the way we assign
available-dummy vertices and update the a-lists and d-
lists during each rake operation on the binarized ad-tree
TadðGÞ: Step (10) assigns available vertices from the root
A1 of the resulting three-node tree to the dummy vertices
of its two children A2 and A3: This assignment always is
completed since the input QT-graph is a Hamiltonian
graph; see Observation 5.4 and Theorem 3.1. Step (11)
completes the construction of the h-tree ThðGÞ: Thus,
the correctness of the algorithm ensues from the
correctness of its steps.

Time and processor complexity. We use a step-by-step
analysis and compute the time and the number of
processors required for the execution of each step of the
algorithm H-TREE-CON, and we also determine the
type of the PRAM model on which each step is
executed.

Step 1: The cent-tree TcðGÞ of a QT-graph on n

vertices and m edges is constructed in Oðlog nÞ time
using Oðn þ mÞ processors on the CREW PRAM
model; see Algorithm CENT-TREE-CON.
The number of children Vi1;Vi2;y;Vipi

of a node
ViATcðGÞ; 1pipk; can be computed in Oðlog piÞ time
with Oðpi=log piÞ processors on the EREW PRAM. It
follows that the H-labels of the nodes of the cent-tree
TcðGÞ are computed in Oðlog nÞ time with Oðn=log nÞ
processors on the EREW PRAM model. The total
number of dummy vertices we add to the nodes
V 0
1;V 0

2;y;V 0
k0 is bounded by

Pk0

i¼1 ðV 0
i 	 pi þ 1Þok ¼

OðnÞ: Thus, the nodes of the tree T 0
cðGÞ can be computed

in Oðlog nÞ time with Oðn=log nÞ processors on the
EREW PRAM model. Thus, in total, the execution of
the step takes Oðlog nÞ time and requires Oðn þ mÞ
processors on the CREW PRAM model.

Step 2: Here, the nodes Vi such that H-labelðViÞ ¼ 0
are deleted from T 0

cðGÞ: This can by done using the well-
known pointer jumping technique on T 0

cðGÞ: it takes
Oðlog nÞ time and requires OðnÞ processors on the
CREW PRAMmodel [17]. It is easy to see that the black
vertices can be deleted from the remaining nodes of
T 0
cðGÞ in Oðlog nÞ time using Oðn=log nÞ processors, and,

thus, the whole step is executed in Oðlog nÞ time using
Oðn þ mÞ processors on the CREW PRAM model.

Step 3: The lowest a-node ancestor Vj of the node Vi

in T 0
cðGÞ (if the parent pðViÞ of the node Vi is a d-node)

can be determined using the pointer jumping technique
on T 0

cðGÞ: Thus, the step takes Oðlog nÞ time and
requires OðnÞ processors on the CREW PRAM model.

Step 4: In this step, for each a-node ViAT 0
cðGÞ two

lists are computed: a-listðViÞ contains the available
vertices of Vi and d-listðViÞ contains the dummy vertices
of all the d-node children of Vi: The total number of
available vertices in the nodes of the tree T 0

cðGÞ; and,
thus, the total number of dummy vertices, is less than n:
For the computation of the d-listðViÞ we use an array of
size

Ppi

i¼1 jVij j and store the vertices of all the children of
Vi; then we can select the vertices of the d-node children
of Vi using the array packing technique [2]. Thus, this
step can be executed in Oðlog nÞ time with Oðn=log nÞ
processors on the EREW PRAM model.

Step 5: The d-nodes, which are deleted from T 0
cðGÞ;

are all leaves of the tree T 0
cðGÞ: Thus, all the deletion

operations can be done in Oð1Þ parallel time with OðnÞ
processors on the EREW PRAM model.

Steps 6 and 7: In Step 6, the ad-tree TadðGÞ is made
binary, while in Step 7 the a-list and d-list of each new
internal node of the binary tree TadðGÞ are computed to
be empty. It is known that an arbitrary n-node tree can
be made binary in Oðlog nÞ time with Oðn=log nÞ
processors on the EREW PRAM model [17]. The a-list
and d-list can be obviously computed in Oð1Þ parallel time
with OðnÞ processors on the EREW PRAM model.
Therefore, both steps are executed in Oðlog nÞ time with
Oðn=log nÞ processors on the EREW PRAM model.

Step 8: The a-listðAiÞ and the d-listðAiÞ of each node
Ai of the binary tree TadðGÞ are implemented by link-
lists, 1pipt0: It is well-known that the list-ranking
problem on a linked-list with n nodes can be optimally
solved in Oðlog nÞ time with Oðn=log nÞ processors on
the EREW PRAM model [2,17,25]. It is easy to see that,
the number of available vertices in the binary tree
TadðGÞ equals the number of available vertices in the
tree T 0

cðGÞ; thus, in total, TadðGÞ contains less than n

available vertices and less than n dummy vertices. It
follows that the whole step can be executed in Oðlog nÞ
time with Oðn=log nÞ processors on the EREW PRAM
model.
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Step 9: It is well-known that a binary tree can be
contracted into a three-node binary tree in Oðlog nÞ time
with Oðn=log nÞ processors on the EREW PRAM
model; the rake operation is applied concurrently to
several leaves (see [17,25]). When a node Ai of the binary
tree TadðGÞ is subject to rake operation, the following
assignment and update operations are performed:
�
 Available vertices of the lists a-listðAiÞ and
a-listpððAiÞÞ are assigned to dummy vertices of the
lists d-listðAiÞ and d-listpððAiÞÞ: Since the rank of
each vertex of the lists a-list and d-list is known, an
assignment operation is performed in Oð1Þ parallel
time with p processors on the EREW PRAM
model, where p ¼ maxfca; cdg; and ca; cb are the
lengths of the lists a-list and d-list, respectively.
�
 The d-list of the node pðAiÞ; and either the d-list of
the node pðpðAiÞÞ or the a-list of the node sibðAiÞ;
are updated using the concatenation operation; for
each list, this operation can be done in Oð1Þ
sequential time. Then, the rank of each vertex of
the updated a-list and d-list is computed. It is easy
to see that the list-ranking problem on a list, say, L;
which is produced by L’L1jjL2; where L1 and L2

are two list of lengths c1 and c2; respectively, can be
solved in O(1) parallel time with c2 processors on
the EREW PRAM model, if the rank of each vertex
of the two concatenated lists L1 and L2; is known.
Thus, the whole step is executed in Oðlog nÞ time with
Oðn=log nÞ processors on the EREW PRAM model of
computation.

Step 10: This step performs only assignment opera-
tions: first, available vertices of the a-listðA1Þ are
assigned to dummy vertices of the d-listðA2Þ; and, then,
available vertices of the a-listðA1Þ are assigned to
dummy vertices of the d-listðA3Þ: Since the rank of each
vertex of the lists a-listðA1Þ; d-listðA2Þ and d-listðA3Þ is
known, this step takes Oð1Þ parallel time with
maxfc1; c2g processors on the EREW PRAM model,
where c1; c2 are the lengths of the lists d-listðA2Þ and
d-listðA3Þ; respectively.
From the previous step-by-step analysis, it follows

that the parallel algorithm H-TREE-CON runs in
Oðlog nÞ time using a total of Oðn þ mÞ processors on
the CREW PRAM model of computation. Thus, we
have proved the following result.

Lemma 5.2. An h-tree ThðGÞ of a Hamiltonian QT -graph

G on n vertices and m edges can be constructed in Oðlog nÞ
time with Oðn þ mÞ processors on the CREW PRAM

model.

5.2. Finding of a Hamiltonian cycle

In Section 3, we proved necessary and sufficient
conditions for a QT-graph to contain a Hamiltonian
cycle; see Theorem 3.1. Based on these conditions, we
develop here a parallel algorithm for finding a Hamilto-
nian cycle in a Hamiltonian QT-graph.
Let G be Hamiltonian QT-graph and let

V1;V2;y;Vk be the nodes of its cent-tree TcðGÞ rooted
at V1: If H-labelðViÞX0 for each node ViATcðGÞ; then
ThðGÞ :¼ TcðGÞ; otherwise, we construct an h-tree TcðGÞ
of G from the cent-tree TcðGÞ: Consider the h-sequence
ðVf ð1Þ;Vað1Þ;y;VaðtÞ ¼ V1Þ of the tree ThðGÞ and con-
struct the h-dfs tree of the vertices of the graph G using
the h-traversal on the tree ThðGÞ: We select an arbitrary
vertex v from the set Vf ð1Þ as start point. Since
H-labelðViÞX0 for each node ViAThðGÞ; it is easy to
see that each node of the h-dfs tree rooted at vAVf ð1Þ has
at most one child; its unique leaf u belongs to node V1

and, thus, ðv; uÞAEðGÞ; see Fig. 3. Thus, we can find a
Hamiltonian cycle of the graph G from its h-dfs tree.
We have already described efficient parallel algo-

rithms for constructing the cent-tree and the h-tree of a
QT-graph G (see Sections 4 and 5.1). Moreover, it is
easy to see that the h-sequence of the graph G can be
also efficiently constructed in parallel; the leaves
Vf ð1Þ;Vf ð2Þ;y;Vf ðtÞ of the cent-tree or the h-tree of G

are computed by using the Euler-tour technique and the
nodes Vað1Þ;Vað2Þ;y;Vaðt	1Þ are computed by solving
the LCA problem [2,17,25]. Therefore, it is becoming
obvious that we need an efficient parallel algorithm for
the h-traversal, that is, a parallel algorithm for
constructing the h-dfs tree of the QT -graph G: Thus,
we will restrict our attention to design such an
algorithm. Note that, no efficient parallel algorithm
has been so far developed for the (standard) dfs
traversal; various graph numberings, including depth
first search, where the numbering algorithm is restricted
to a particular order of visiting the edges of the graph,
are shown to be P-complete [25].
Next, we describe a method for constructing the

h-dfs tree of a Hamiltonian QT-graph G; which leads
to an efficient parallel algorithm for constructing a
Hamiltonian cycle on the graph G; it works as
follows:
(i)
 We first construct a directed graph F on n vertices,
and set VðFÞ :¼ VðGÞ and EðFÞ :¼ |;
(ii)
 Then, we compute the h-sequence
ðVf ð1Þ;Vað1Þ;y;VaðtÞ ¼ V1Þ of the h-tree ThðGÞ;
and the listðViÞ ¼ ðvi1; vi2;y; vini

Þ of each node Vi

of the h-tree ThðGÞ; 1pipk; we add the edge
/vij ; við jþ1ÞS in EðFÞ; 1pjpni 	 1;
(iii)
 Let Vf ðiÞ;VaðiÞ;Vf ðiþ1Þ be three consecutive nodes in
the h-sequence, and let VaðiÞ be the jth occurrence of
VaðiÞ in the h-sequence and let listðVaðiÞÞ ¼
ðvi1;y; vij ;y; vini

Þ:
If ipt 	 1; then we compute the last vertex vc of

the listðVf ðiÞÞ and the first vertex vh of the
listðVf ðiþ1ÞÞ; we add the edges /vc; vijS and
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/vij ; vhS in EðFÞ; and delete the edge /við j	1Þ; vijS
from EðFÞ; 2pjpni:
If i ¼ t; then we compute the last vertex vc of the

listðVf ðiÞÞ; we add the edges /vc; vijS; and delete the
edge /við j	1Þ; vijS from EðFÞ; 2pjpni:
v

Fig. 9. The structure of a Hamiltonian cycle of a QT-graph G; it is

produced using the h-dfs traversal of the h-tree ThðGÞ:
Let v be the first vertex of the node Vf ð1Þ and let T be
the underline undirected graph of the resulting graph F :
By construction, the graph T is a tree. We root the tree
T at vertex v and let Tg be the resulting rooted tree. It is
easy to see that Tg may contain vertices that have two
children (see Fig. 8). Thus, Steps (i)–(iii) of the above
method do not guarantee that the h-dfs tree forms a
(Hamiltonian) path, that is, an h-dfs path. Fig. 8 depicts
the results of Steps (i)–(iii).
Next, we describe how the edge set EðFÞ can be

modified so that the underline undirected graph of the
resulting graph F produces a h-dfs path of the graph G:
We proceed as follows:
(iv)
 Let VaðiÞ;Vf ðiþ1Þ be two consecutive nodes in the
h-sequence ðVf ð1Þ;Vað1Þ;y;VaðtÞ ¼ V1Þ; and let
listðVaðiÞÞ ¼ ðvi1;y; vij ;y; vini

Þ; for ipt 	 1:
We first determine a vertex vij of the listðVaðiÞÞ;

1pjpni 	 1; with the following property:
/vij; við jþ1ÞSAEðFÞ and /vij ; vhSAEðFÞ; where vh

is the first vertex of the listðVf ðiþ1ÞÞ;

(v)
 If such a vertex vij exists, then we delete the edge

/vij; vhS from EðFÞ; determine the last vertex vc ¼
vini

of the listðVaðiÞÞ; and add the edge /vc; vhS in
EðFÞ;
Let T 0 be the underline undirected graph of the graph F

computed by the above method. Steps (iv)–(v) guarantee
that T 0 is a tree graph. We root the tree graph T 0 at
vertex v and let T 0

g be the resulting rooted tree. It is easy
to see that each internal vertex of the tree T 0

g has now
exactly one child, and, thus, T 0

g forms a h-dfs path of the
graph G (see Fig. 9).
Thus, we can produce a Hamiltonian path ðv ¼

v0; v1;y; vn ¼ uÞ of the input graph G; using the h-dfs
tree constructed by the above method. The root v of the
u

. The results of Steps (i)–(iii) of the h-dfs tree construction of a

raph G:
h-dfs tree belongs to node Vf ð1Þ and its unique leaf u

belongs to node V1 and, thus, ðv; uÞAEðGÞ; see Theorem
2.2. Thus, we can extend the Hamiltonian path to a cycle
by adding the edge /u; vS in EðFÞ and taking the
underline undirected graph, say, HC; of the resulting
graph; HC forms a Hamiltonian cycle of G:
We next present in a more formal way the parallel

algorithm for the construction of a Hamiltonian cycle of
a QT -graph; the details of the algorithm are given as
follows.

Algorithm Hamiltonian-Cycle-Construction (HAMIL-

TON-CYCLE-CON):
Input: a QT -graph G on n vertices and m edges, which

is Hamiltonian.
Output: a Hamiltonian cycle HC of the input graph G:
1.
 Compute the cent-tree TcðGÞ of the input graph G;
let V1;V2;y;Vk be the nodes of the cent-tree TcðGÞ
rooted at rc ¼ V1;
2.
 If H-labelðViÞX0; for 1pipk; then ThðGÞ’TcðGÞ;
otherwise, compute an h-tree ThðGÞ of the input
graph G;
3.
 Compute the h-sequenceðThÞ ¼ ðVf ð1Þ;Vað1Þ;
Vf ð2Þ;y;Vf ðtÞ;VaðtÞ ¼ V1Þ;
4.
 Construct a directed graph F ; in parallel, as follows:

VðFÞ’VðGÞ and EðFÞ’|; and paint its
vertices black;
5.
 For each vertex ViAThðGÞ; 1pipk; do in parallel

construct the linked-list listðViÞ ¼
ðvi1; vi2;y; vini

Þ; and

add the edge /vij; við jþ1ÞS in EðFÞ; 1pjpni 	
1;
6.
 For each internal node VaðiÞAh-sequenceðThÞ;
1pipt; do in parallel

let listðVaðiÞÞ ¼ ðvi1;y; vij;y; vini

Þ; Vf ðtþ1Þ’Vf ð1Þ;

if VaðiÞ is the jth occurrence of VaðiÞ in the
h-sequenceðThÞ; then
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� find the jth vertex vij of the listðVaðiÞÞ;
paint vij with read color;

� add /vc; vijS in EðFÞ; where vc is the last
vertex of the listðVf ðiÞÞ;

� add /vij ; vhS in EðFÞ; where vh is the first
vertex of the listðVf ðiþ1ÞÞ;
7.
 For each internal node VaðiÞAh-sequenceðThÞ;
1pipt; do in parallel

let listðVaðiÞÞ ¼ ðvi1;y; vij;y; vini

Þ; Vf ðtþ1Þ’Vf ð1Þ;

if vij and við jþ1Þ are read vertices of the
listðVaðiÞÞ; then
� delete edge /vij; við jþ1ÞS from the set
EðFÞ;
else-if vij is a read vertex and við jþ1Þ is a black
vertex, then
� delete /vij ; vhS from EðFÞ; where vh is the
first vertex of the listðVf ðiþ1ÞÞ;

� add /vc; vhS in EðFÞ; where vc is the last
vertex of the listðVaðiÞÞ;
8.
 Construct a spanning cycle HC of G; in parallel, as
follows:
set VðHCÞ’VðFÞ;

add ðvi; vjÞ in EðHCÞ; for every edge /vi; vjS in
EðFÞ;
Correctness. The correctness of the parallel algorithm
HAMILTON-CYCLE-CON is established through
Theorem 3.1 and the correctness of the h-tree construc-
tion algorithm H-TREE-CON; see Lemma 5.2.

Time and processor complexity. We next compute the
time and processor complexity of the proposed parallel
algorithm for the construction of a Hamiltonian cycle of
a QT -graph G; its step-by-step analysis is as follows.

Step 1: The cent-tree TcðGÞ of a QT-graph on n

vertices and m edges is constructed in Oðlog nÞ time
using Oðn þ mÞ processors on the CREW PRAM
model; see Algorithm CENT-TREE-CON.

Step 2: The H-labels of the nodes of the cent-tree
TcðGÞ are computed in Oðlog nÞ time with Oðn=log nÞ
processors on the EREW PRAM model; see Step 1—
Algorithm H-TREE-CON. The h-tree ThðGÞ of a
Hamiltonian QT-graph is constructed in Oðlog nÞ time
with Oðn þ mÞ processors on the CREW PRAM model;
see Lemma 5.1.

Step 3: Let h-sequenceðThÞ ¼ ðVf ð1Þ;Vað1Þ;Vf ð2Þ;y;
VaðtÞ ¼ V1Þ: By definition, the node sequence
ðVf ð1Þ;Vf ð2Þ;y;Vf ðtÞÞ is a left-to-right order listing of
the leaves of the tree ThðGÞ; and the node VaðiÞ is the
LCA of the nodes Vf ðiÞ and Vf ðiþ1Þ; where 1pipt 	 1: It
is well-known that we can optimally compute the left-to-
right order listing of the leaves of a tree in Oðlog nÞ
parallel time on the EREW PRAM model by using the
Euler-tour technique [2,17,25]. We can also optimally
compute the LCA of two vertices of a rooted tree in
Oðlog nÞ parallel time on the CREW PRAM model
[2,17,25]. Thus, the h-sequence of the h-tree ThðGÞ can
be computed in Oðlog nÞ time with Oðn=log nÞ proces-
sors on the CREW PRAM model.

Step 4: The directed graph F can be constructed in
Oð1Þ parallel time with OðnÞ processors on the EREW
PRAM model; its vertices can be painted within the
same time and processor bounds.

Step 5: Having computed the vertices of the nodes
V1;V2;y;Vk of ThðGÞ; it is easy to see that the linked-
lists listðViÞ ¼ ðvi1; vi2;y; vini

Þ; 1pipk; can be con-
structed in Oð1Þ parallel time with a total of OðnÞ
processors on the EREW PRAM model; note thatPk

i¼1 ni ¼ n: Obviously, all the edges /vij ; við jþ1ÞS; for
1pipk and 1pjpni 	 1; can be added in the set EðFÞ
in Oð1Þ parallel time with OðnÞ processors on the EREW
PRAM model.

Step 6: Let listðVaðiÞÞ ¼ ðvi1;y; vij ;y; vini
Þ be the list

of the vertices of the node ViAThðGÞ; 1pipk: It is well-
known that the list-ranking of listðViÞ determines the
distance of each vertex vij from the first vertex vi1 of the
list. The list-ranking problem on a list with ni vertices
can be solved in Oðlog niÞ time with Oðni=log niÞ
processors on the EREW PRAM model, 1pipk: Thus,
we can rank all the lists listðViÞ; 1pipk; in Oðlog nÞ
time with OðnÞ processors on the EREW PRAM model.
Then, we can easily see that all the operations of this
step are executed within the same time and processor
bounds.

Step 7: Having computed the rank of each vertex of
the list listðViÞ; 1pipk; it is easy to see that, this step
can be executed in Oð1Þ time with OðnÞ processors on
the CREW PRAM model.

Step 8: Since the connected directed graph F contains
OðnÞ edges, the spanning cycle HC can be constructed in
Oð1Þ parallel time with OðnÞ processors on the EREW
PRAM model.
Therefore, from the previous step-by-step analysis, it

follows that the Hamiltonian cycle construction Algo-
rithm HAMILTON-CYCLE-CON runs in Oðlog nÞ
time using a total of Oðn þ mÞ processors on the CREW
PRAM model. Thus, we have proved the following
result.

Theorem 5.1. A Hamiltonian cycle of a QT-graph can be

constructed in Oðlog nÞ time with Oðn þ mÞ processors on

the CREW PRAM model.

6. Recognition and Hamiltonian completion number

The Oðlog nÞ-time parallel algorithm H-TREE-CON
for constructing the h-tree of a Hamiltonian QT -graph
can be easily modified so that it can also be served
as a recognition algorithm for Hamiltonian QT-graphs:
if the input QT-graph G is not a Hamiltonian
graph, then the algorithm fails to construct the h-tree
ThðGÞ:
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It is possible, however, to obtain a much simpler
parallel algorithm for recognizing whether the input
QT-graph G is a Hamiltonian graph. We describe, first,
a simple Oðlog nÞ-time parallel recognition algorithm
working with a linear number of processors, and, then,
we show that the problem of computing the Hamilto-
nian completion number of a QT-graph can also be
solved within the same time and processor bounds.

6.1. Recognition of a Hamiltonian QT-graph

Let G be QT -graph and let V1;V2;y;Vk be the nodes
of its cent-tree TcðGÞ rooted at V1: Based on Theorem
3.1, we check whether H-labelðViÞX0 for each node
ViATcðGÞ; if so, then the QT-graph is a Hamiltonian
graph; otherwise, we apply the contraction process on
the binarized cent-tree TcðGÞ and properly count the
dummy-available vertices in TcðGÞ after each rake

operation.
More precisely, let H-labelðViÞ be the H-label of the

node ViATcðGÞ: It is easy to see that the H-labelðViÞ
determines the number of the dummy-available vertices
of the node Vi: if H-labelðViÞ40; then Vi contains
H-labelðViÞ available vertices, while if H-labelðViÞo0; it
contains jH-labelðViÞj dummy vertices; see Step (1) of
the algorithm H-TREE-CON.
Thus, we assign a number hðViÞ to each node of the

binarized cent-tree, say, TbðGÞ; and initially set hðViÞ :
¼ H-labelðViÞ for each ViATbðGÞ; we call it h-number of
the node Vi: If a node Vi of the tree TbðGÞ is subject to
rake operation, we adjust either the h-number of the
node pðpðViÞÞ or the h-number of the node sibðVi) as
follows:
(i)
 Before the removal of Ai:

�
 if hðViÞo0; then hðpðViÞÞ’hðpðViÞÞ þ hðViÞ;
(ii)
 Before the removal of pðAiÞ:

�
 if hðpðViÞÞo0; then hðpðpðViÞÞÞ’

hðpðpðViÞÞÞ+hðpðViÞÞ;

�
 if hðpðViÞÞ40; then hðsibðViÞÞ’hðsibðViÞÞ+

hðpðViÞÞ;
Let V1 be the root of the resulting three-node tree and
let V11; V12 be the children of V1: From the correctness
of the algorithm H-TREE-CON, which constructs the h-
tree of a Hamiltonian QT-graph G; it follows that if
hðViÞo0 then the node Vi contains di ¼ jhðViÞj dummy
vertices and ai ¼ 0 available vertices; otherwise, it
contains di ¼ 0 dummy vertices and ai ¼ hðViÞ available
vertices, i ¼ 1; 11; 12: Thus, the h-tree ThðGÞ of the
graph G can be constructed, and, thus, G is a
Hamiltonian graph, if a1X0 and a1Xd11 þ d12; in all
the other cases, G is not a Hamiltonian graph.
Thus, we can decide whether a QT -graph is a

Hamiltonian graph by applying the contraction process
on the binarized cent-tree TcðGÞ and computing the h-
numbers of the nodes V1; V11 and V12 of the resulting
three-node tree. This computation is described in the
following algorithm.

Algorithm Hamiltonian-graph-recognition (HAMIL-

TON-REC):
Input: a quasi-threshold graph G on n vertices and m

edges.
Output: yes, if G is a Hamiltonian graph; otherwise,

no.
1.
 Compute the cent-tree TcðGÞ of the graph G; and
make it binary;

let TbðGÞ be the resulting binary tree and let
V1;V2;y;Vk0 be its nodes, k0

Xk;

2.
 For each node ViATbðGÞ; 1pipk0; compute its

H-labelðViÞ and set:

hðViÞ’H-labelðViÞ;
3.
 If hðViÞX0; for each node ViATbðGÞ; 1pipk0; then

G is a Hamiltonian QT-graph; exit;
4.
 Contract the binary tree Tb into a three-node binary
tree, using the rake operation;

when a node Vi is subject to rake operation, we
adjust either the h-number of the node pðpðViÞÞ or
the h-number of the node sibðVi), as follows:
if hðViÞo0 then

if hðViÞ+hðpðViÞÞo0

then hðpðpðViÞÞÞ’hðpðpðViÞÞÞ þ hðViÞ þ
hðpðViÞÞ

else
hðsibðViÞÞ’hðsibðViÞÞ þ hðViÞ+hðpðViÞÞ;
if hðViÞX0 then

if hðpðViÞÞo0

then hðpðpðViÞÞÞ’hðpðpðViÞÞÞ þ hðpðViÞÞ

else hðsibðViÞÞ’hðsibðViÞÞ þ hðpðViÞÞ;
5.
 Check the h-numbers of the nodes V1; V11 and V12;
of the three-node binary tree;
if hðV11Þ40 then hðV11Þ’0; and if hðV12Þ40
then hðV12Þ’0;

if hðV1ÞX0 and hðV1ÞXhðV11Þ þ hðV12Þ then
G is a Hamiltonian QT-graph; otherwise, G

is not a Hamiltonian QT-graph;
From the step-by-step analysis of the algorithm H-
TREE-CON for constructing the h-tree of a Hamilto-
nian QT -graph (see Section 5.1), we can easily conclude
that the Steps (1)–(4) of the proposed recognition
algorithm are executed in Oðlog nÞ time with Oðn þ mÞ
processors on the CREW PRAM model. Obviously, the
Step 5 is executed in Oð1Þ sequential time. Thus, we have
the following result.

Theorem 6.1. It can be decided whether a QT-graph on n

vertices and m edges is a Hamiltonian graph in Oðlog nÞ
time with Oðn þ mÞ processors on the CREW PRAM

model.
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6.2. Hamiltonian completion number

Let G be a nonHamiltonian QT -graph on n vertices
and m edge, and let V1; V11 and V12 be the nodes of the
three-node tree computed by the algorithm Hamilton-
Rec; V1 is the root of the tree and V11; V12 are its
children.
Since G is not a Hamiltonian graph, at least one of the

h-numbers hðV1Þ; hðV11Þ and hðV12Þ has value less than
zero. Recall that, if hðViÞo0 then the node Vi contains
di ¼ jhðViÞj dummy vertices and ai ¼ 0 available ver-
tices, while if hðViÞX0; it contains di ¼ 0 dummy
vertices and ai ¼ hðViÞ available vertices, i ¼ 1; 11; 12:
Moreover, if the nodes V11 and V12 contain a total of
d11 þ d12X0 dummy vertices, then the root node V1

contains either d1o0 dummy vertices or a1od11 þ d12
available vertices; G is not a Hamiltonian graph, and,
thus, the h-tree ThðGÞ of the graph G cannot be
constructed (see Theorem 3.1).
The graph G becomes a Hamiltonian QT-graph if we

add n0 ¼ jd11 þ d12 þ hðV1Þj vertices in the root node V1

of the cent-tree TcðGÞ and a number of appropriate
edges in EðGÞ; that is, n0 ¼ d11 þ d12 þ d1 if d1o0; and
n0 ¼ d11 þ d12 	 a1 if a1X0: The correctness of the
process for assignment available vertices to dummy
vertices, that is, Steps (1)–(10) of the algorithm H-
TREE-CON, implies that n0 is the minimum number of
vertices which need to be added to V1ATcðGÞ; along
with m0 edges, to make G a Hamiltonian QT -graph,
where m0 ¼ n  n0 þ n0  ðn0 	 1Þ=2; recall that V1 is a
clique and V1 ¼ centðGÞ (see Section 2). We denote G0

the resulting Hamiltonian QT-graph.
More precisely, the graph G0 is a Hamiltonian QT -

graph on n þ n0 vertices and m þ m0 edges; it has vertex
set VðG0Þ ¼ VðGÞ,V 0; where V 0 ¼ fu0

1; u0
2;y; u0

n0 g and
edge set EðG0Þ ¼ EðGÞ þ E0; where E0 contains m0

edges ðx; yÞ such that xAV 0 and yAVðGÞ,V 0;
note that xay since we consider graphs with no loops.
The cent-trees TcðG0Þ and TcðGÞ have the same
structure, and G0 contains the graph G as an induces
subgraph.
The Hamiltonian completion number hcnðGÞ of a

graph G is defined to be the minimum number of edges
which need to be added to EðGÞ to make G Hamiltonian
[3,13]. We prove the following.

Lemma 6.1. The number n0 ¼ jd11 þ d12 þ hðV1Þj equals

the Hamiltonian completion number hcnðGÞ of a non-

Hamiltonian QT-graph G:

Proof. Let V1;V2;y;Vk be the nodes of the cent-tree
TcðGÞ of the QT-graph G rooted at V1: We add n0

vertices, say, u0
1; u0

2;y; u0
n0 ; in the root node V1 and m0

edges in EðGÞ; and let G0 be the resulting Hamiltonian
QT-graph. By construction, the cent-tree TcðG0Þ has
nodes V 0

1;V2;y;Vk; where V 0
1 is the root of TcðG0Þ and
V 0
1 ¼ V1,V 0; and the vertex set V 0 ¼ fu0

1; u0
2;y; u0

n0 g is
minimal.
Consider the h-sequence ðVf ð1Þ;Vað1Þ;y;VaðtÞ ¼ V 0

1Þ
of the h-tree ThðG0Þ and the h-dfs tree of the graph G0:
Let vAVf ð1Þ be the root of the h-dfs tree and let HC0 ¼
ðv;y; vi; u0; vj;y; vÞ be the Hamiltonian cycle which is
produced by the h-dfs tree, where u0AV 0: Note that, HC0

is a cycle on n þ n0 vertices. By construction, the cycle
HC0 has the following properties:
(i)
 If u0AV 0; then its two adjacency vertices in HC0;
say, vi and vj; are not vertices of V 0; that is,
vi; vjAVðGÞ; and
(ii)
 if viAVi and vjAVj; then both nodes Vi and Vj are
leaves of the cent-tree TcðG0Þ and ViaVj:
Property (i) follows from the h-dfs traversal of the
cent-tree TcðG0Þ (see Section 3): if V1 (note that V 0DV1)
is not its last occurrence in the h-sequence, then the h-dfs
visits only one unvisited vertex from V1; while if V1 is its
last occurrence, then V1 contains exactly one unvisited
vertex since the number n0 is minimum. The property (ii)
follows from the structure of the h-sequence: the internal
nodes (including the root node) and the leaf nodes
alternate in the h-sequence, and, thus, Vi and Vj are
leaves since viAVi; vjAVj and u0AV1:
Thus, if we remove each vertex u0AV 0 from HC 0 and

make the vertices vi and vj to be adjacent, the resulting
structure HC� is a cycle on n vertices v1; v2;y; vn; where
viAVðGÞ: On the other hand, since the vertices vi and vj

belong to deferent leave nodes of TcðG0Þ; it follows that
vi and vj are not adjacent in the graph G: Thus, if we add
n0 edges of the form ðvi; vjÞ in EðGÞ; then the resulting
graph is a Hamiltonian graph and the cycle HC� is a
Hamiltonian cycle of it.
The vertices viAVi and vjAVj belong to leaf nodes,

that is, ðvi; vjÞeEðGÞ; and the vertex u0AV 0 cannot be
replaced by a vertex vAVðGÞ; for otherwise V 0 would
contain less that n0 vertices, in contradiction to the fact
that V 0 is minimal. It follows that, the number n0 of
edges of the form ðvi; vjÞ that need to be added to EðGÞ
to make G Hamiltonian is minimum. Thus, n0 ¼ hcnðGÞ
and the lemma is proved. &

By combining the Lemma 6.1 with the recognition
algorithm Hamilton-Rec, we obtain the following
parallel algorithm for computing the Hamiltonian
completion number hcnðGÞ of the QT-graph; it takes
as input a nonHamiltonian QT -graph G on n vertices
and m edges.

Algorithm Hamiltonian-Completion-Number (HC-

NUMBER):
1.
 Execute the Steps (1)–(4) of the Hamiltonian QT-
graph recognition algorithm;
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2.
 Compute the Hamiltonian completion number
hcnðGÞ of G as follows:
if hðV11Þ40 then hðV11Þ’0; and if hðV12Þ40

then hðV12Þ’0;
hcnðGÞ’jhðV1Þ þ hðV11Þ þ hðV12Þj;
The time and the processor complexity of the
proposed algorithm HC-NUMBER can be easily com-
puted: Step 1 is executed in Oðlog nÞ time with Oðn þ mÞ
processors on the CREW PRAM model (see algorithm
HAMILTON-REC), while Step 2 is executed in Oð1Þ
sequential time. Thus, we state the following result.

Theorem 6.2. The Hamiltonian completion number of a

QT-graph on n vertices and m edges can be computed in

Oðlog nÞ time with Oðn þ mÞ processors on the CREW

PRAM model.

7. Coloring and other optimization problems

The algorithmic properties of the QT -graphs, which
we have shown in this paper, allow us to efficiently solve
other optimization problems on such graphs in parallel.
Specifically, we can solve the coloring problem, the
maximum clique problem, the maximum independent
set problem and other problems in Oðlog nÞ time using a
linear number of processors on the CREW PRAM
model.
Let G be a QT -graph and let V1;V2;y;Vk be the

nodes of the cent-tree TcðGÞ:We have shown, in Section
2, that for every two nodes Vs and Vt such that Vs%Vt;
that is, Vs is an ancestor of Vt in TcðGÞ; the graph
G½f

S
Vi j Vs%Vi%Vtg� is a complete graph. Moreover,

for every maximal element Vt of ðVi;%Þ; the graph
G½f

S
Vi j V1%Vi%Vtg� is a maximal complete subgraph

of G; see also Observation 2.1.
Based on these properties, it is easy to see that the

height of the tree TdðGÞ (see Section 4), equals the clique
number oðGÞ minus 1; recall that the height of a vertex
of TdðGÞ is the number of edges in the longest path from
the vertex in question to a leaf—all the leaves of TdðGÞ
have 0 heights. Moreover, the set which contains the
vertices of the ith level of the tree TdðGÞ is a stable set.
Since oðGÞ ¼ wðGÞ; we can color the graph G by
computing the level cðviÞ of each vertex vi of the tree
TdðGÞ and setting colorðviÞ :¼ cðviÞ; 1pipn; assuming
that cðrÞ ¼ 1; where r is the root of TdðGÞ:
Let u be a leaf of the degree-tree TdðGÞ such that

cðuÞ ¼ oðGÞ and let MC be the set of vertices of the path
from the root r of TdðGÞ to vertex u: Then, the vertex set
MC is the maximum clique of the graph G: Thus, we can
easily compute the set MC using the parallel pointer
jumping technique on the tree TdðGÞ:
Let S ¼ fvs; vsþ1;y; vt;y; vqg be a stable set such

that vtAVt and Vt is a maximal element of ðVi;%Þ or,
equivalently, Vt is a leaf node of cent-tree TcðGÞ;
sptpq: It is easy to see that S has the maximum
cardinality aðGÞ among all the stable sets of G: It is also
easy to see that the set S contains the leave vertices of
the tree TdðGÞ: Recall that, the leaves of a tree can be
found using the Euler-tour technique [17].
Taking into consideration the above discussion, the

complexity of the algorithms for constructing the trees
TdðGÞ and TcðGÞ (see Section 4), and the complexity of
some standard algorithmic techniques for computing the
level function, the set of the leaves and certain paths on
the degree-tree and cent-tree of G [2,17,25], we state the
following results.

Theorem 8.1. The problems of coloring a QT -graph G on

n vertices and m edges and finding the maximum clique

and the maximum independent set of G can be solved in

Oðlog nÞ time with Oðn þ mÞ processors on the CREW

PRAM model.
8. Concluding remarks

In this paper we showed structural and algorithmic
properties on the class of QT -graphs and proved
necessary and sufficient conditions for a QT-graph to
be Hamiltonian. We also showed that a QT-graph G has
a unique tree representation, that is, the cent-tree TcðGÞ;
which meets the structural properties of G:
By taking advantage of these properties and condi-

tions, we presented efficient parallel algorithms for
constructing the cent-tree TcðGÞ and finding a Hamilto-
nian cycle of a QT -graph G; our algorithms run in
Oðlog nÞ time and require Oðn þ mÞ processors on the
CREW PRAM model, where n is the number of vertices
and m is the number of edges of the input graph. In
addition, we presented a simple Oðlog nÞ-time parallel
algorithm for recognizing whether a QT-graph is
Hamiltonian which requires Oðn þ mÞ processors, and
we showed that the problem of computing the Hamilto-
nian completion number of a QT -graph can also be
solved in Oðlog nÞ time with Oðn þ mÞ processors. We
also presented parallel algorithms for other optimization
problems on QT-graphs which run in Oðlog nÞ time
using a linear number of processors.
Different problems can be foreseen for further

research. An interesting optimization problem is the
construction of a Hamiltonian cycle of a QT -graph G in
the weighted case: each vertex and/or edge of G has
certain weight and we wish to minimize the total weight
of edges in a Hamiltonian cycle (for results on ‘‘heavy’’
paths and cycles in weighted graphs; see [30]). A second
problem that is worth studying is the weighted version
of the Hamiltonian completion problem: we wish to
minimize the total weight of the edges which need to be
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added to EðGÞ to make G Hamiltonian. We pose these
as open problems for algorithmic study.
A topic for further research is the study of problems

on the line graph of a QT-graph (for results on line
graphs; see [6,28]). One can work towards the identifica-
tion of structural and algorithmic properties of such
graphs, which may lead to parallel and/or sequential
algorithms for the Hamiltonian problems we consider
here, as well as for other combinatorial and optimiza-
tion problems.
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