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Abstract

We consider two problems pertaining toP4-comparability graphs, namely, the problem
recognizing whether a simple undirected graph is aP4-comparability graph and the problem
producing an acyclicP4-transitive orientation of such a graph. Sequential algorithms for t
problems have been presented by Hoàng and Reedand very recently by Raschle and Simon, a
by Nikolopoulos and Palios. In this paper, we establish properties ofP4-comparability graphs
which allow us to describe parallel algorithms for the recognition and orientation problems o
class of graphs; for a graph onn vertices andm edges, our algorithms run inO(log2 n) time and
requireO(nm/ logn) processors on the CREW PRAM model. Since the currently fastest sequ
algorithms for these problems run inO(nm) time, our algorithms are cost-efficient; moreover,
the best of our knowledge, this is the first attempt to introduce parallelization in problems invo
P4-comparability graphs. Our approach relies on the parallel computation and proper orienta
theP4-components of the input graph.
 2003 Elsevier Inc. All rights reserved.

Keywords:Parallel algorithms; Perfectly orderable graphs;P4-comparability graphs;P4-components;
Recognition; AcyclicP4-transitive orientation; PRAM computation

1. Introduction

Let G = (V ,E) be a simple non-trivial undirected graph. Anorientationof the graph
G is an antisymmetric directed graph obtained fromG by assigning a direction to eac
edge ofG. An orientationU = (V ,F ) of G is calledtransitiveif U satisfies the following
condition: if abc is a chordless path on 3 vertices inG, thenU contains

−→
ab and

←−
bc, or←−

ab and
−→
bc, where by−→uv or ←−vu we denote an edge directed fromu to v. The relationF is
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Fig. 1. (a) A comparability graph, (b) aP4-comparability graph, (c) a graph which is notP4-comparability.

called atransitive orientationof E or equivalently of the graphG [14]. An orientationU
of a graphG is calledP4-transitiveif the orientation of every chordless path on 4 verti
of G is transitive; an orientation of such a pathabcd is transitive if and only if

−→
ab,

←−
bc and−→

cd, or
←−
ab,

−→
bc and

←−
cd. The term borrows from the fact that a chordless path on 4 vertic

denoted byP4.
A graph which admits an acyclic transitive orientation is called acomparability graph

[12,14]; Fig. 1(a) depicts a comparability graph. A graph is aP4-comparability graphif
it admits an acyclicP4-transitive orientation [15,16]. In light of these definitions, ev
comparability graph is aP4-comparability graph. Moreover, there existP4-comparability
graphs which are not comparability; Fig. 1(b) depicts such a graph, which is often re
to as a pyramid. The graph shown in Fig. 1(c) is not aP4-comparability graph.

In the early 1980s, Chvátal introduced the class ofperfectly orderablegraphs [5]. This
is a very important class of graphs, since a number of problems, which are NP-co
in general, can be solved in polynomial time on its members [3,5]; unfortunately
NP-complete to decide whether a graph is perfectly orderable [23]. Chvátal showed t
class of perfectly orderable graphs contains the comparability and the chordal grap
thus, it also contains important subclasses of comparability and chordal graphs, s
the bipartite graphs, permutation graphs, interval graphs, split graphs, cographs, th
graphs [14]. Later, Hoàng and Reed introduced the classes of theP4-comparability, the
P4-indifference, theP4-simplicial and the Raspail (also known as bipolarizable) gra
and proved that they are all perfectly orderable [16]. Moreover, the class of per
orderable graphs also includes a number of other classes of graphs which are characteri
by important algorithmic and structural properties; we mention the classes of brittl
chordal, HHD-free, Meyniel∩ co-Meyniel,P4-sparse, ptolemaic [14]. We note that t
class of perfectly orderable graphs is a subclass of the well-known class of perfect g

Many researchers have devoted their work to the study of perfectly orde
graphs. They have proposed both sequential and parallel algorithms for many differen
problems on subclasses of perfectly orderable graphs, such as, recognition as
problems pertaining to finding maximum cliques, maximum weighted cliques, maxi
independent sets, optimal coloring, breadth-first search trees and depth-first search tr
hamiltonian paths and cycles, and testing graphs for isomorphism [1,3,6–13,15,16,
24–29,31].

The comparability graphs in particular have been the focus of much research in
years which culminated into efficient recognition and orientation algorithms. Golu
presented algorithms for recognizing and assigning transitive orientations on comparabil
graphs inO(dm) time andO(n + m) space, wheren,m, and d are the number o
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vertices, the number of edges, and the maximum degree of the input graph respe
[13,14]. Due to the work of McConnell and Spinrad [21,22], the modular decompos
and transitive orientation problems for comparability graphs can be solved inO(n + m)

time. This gives linear time bounds for maximum clique and minimum vertex colorin
comparability graphs, as well as other combinatorial problems on comparability g
and their complements. Recently, Morvan andViennot [24] presented parallel algorithm
for the recognition and the computation of a transitive orientation of comparability gr
their algorithms run inO(logn) time and requireO(dm) processors on the CRCW PRA
model. They also presented a modular decomposition parallel algorithm which runs i
O(logn) time withO(n3) processors on the same model of parallel computation.

On the other hand, theP4-comparability graphs have not received as much atten
despite the fact that the definitions of the comparability and theP4-comparability graphs
rely on the same principles [11,15,16,28,29]. Hoàng and Reed addressed the problem
recognition and acyclicP4-transitive orientation on the class ofP4-comparability graphs
and they described polynomial time algorithmsfor their solution [15,16]. Their recognitio
and orientation algorithms requireO(n4) and O(n5) time respectively, wheren is the
number of vertices ofG. Newer results on these problems were provided by Raschle
Simon [29]; their algorithms for either problem run inO(n + m2), wherem is the number
of edges ofG. DifferentO(n + m2)-time recognition and acyclicP4-transitive orientation
algorithms forP4-comparability graphs were presented by Nikolopoulos and Palios [27
while recently the same authors improved their algorithms achieving anO(nm)-time and
O(n + m)-space complexity [28].

In this paper, we present parallel algorithms for the recognition and the ac
P4-transitive orientation problems onP4-comparability graphs and analyze their time a
processor complexity on the PRAM model of computation [2,17,30]. Both algorithm
in O(log2 n) time using a total ofO(nm/ logn) processors on the CREW PRAM mod
wheren and m are the number of vertices and edges of the input graph. They re
structural properties ofP4-comparability graphs, and on efficient parallel algorithms
the computation andP4-transitive orientation of theP4-components of the input graph. O
algorithms are cost efficient and, to the best of our knowledge, they are the first p
algorithms for problems involvingP4-comparability graphs.

The paper is structured as follows. In Section 2 we review the terminology that w
will be using throughout the paper and we state some useful lemmas. We descri
analyze the recognition and acyclicP4-transitive orientation algorithms in Sections 3 and
respectively, while in Section 5 we conclude with a summary of our results, extension
open problems.

2. Theoretical framework

We consider simple non-trivial graphs. LetG be such a graph; we denote the vertex
and edge set ofG by V (G) andE(G) respectively. Apath in G is a sequence of vertice
v0v1 . . . vk such thatvi−1vi ∈ E(G) for i = 1,2, . . . , k; we say that this is a path fromv0
to vk and that itslengthis k. The path is undirected or directed depending on whetheG

is an undirected or a directed graph; adirectedpathv0v1 . . . vk is a path such that−−−→v0v1,
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−−−→v1v2, . . . ,
−−−−−→vk−1vk . A path is calledsimpleif none of its vertices occurs more than once

is calledtrivial if its length is equal to 0. A path (simple path)v0v1 . . . vk is called acycle
(simple cycle) of lengthk+1 if v0vk ∈ E(G). A simple path (cycle)v0v1 . . . vk is chordless
if vivj /∈ E(G) for any two non-consecutive verticesvi , vj in the path (cycle). Throughou
the paper, the chordless path (chordless cycle, respectively) onn vertices is denoted byPn

(Cn, respectively). In particular, a chordless path on 4 vertices is denoted byP4.
Let abcd be aP4 of a graphG. The verticesb and c are calledmidpointsand the

verticesa andd endpointsof the P4 abcd . The edge connecting the midpoints of aP4
is called therib; the other two edges (which are incident upon the endpoints) are c
wings. For example, the edgebc is the rib and the edgesab andcd are the wings of the
P4 abcd . Two P4s are calledadjacentif they have an edge in common. The transit
closure of the adjacency relation is an equivalence relation on the set ofP4s of a graphG;
the subgraphs ofG spanned by the edges of theP4s in the equivalence classes are
P4-componentsof G. Clearly, eachP4-component is connected and for any twoP4s ρ

andρ′ which belong to the sameP4-componentC, there exists a sequence of adjacentP4s
in C from ρ to ρ′. With a slight abuse of terminology, we consider that an edge w
does not belong to anyP4 belongs to aP4-component by itself; such a component
called trivial . A P4-component which is not trivial is callednon-trivial; clearly a non-
trivial P4-component contains at least oneP4. If the set of midpoints and the set
endpoints of theP4s of a non-trivialP4-componentC partition the vertex setV (C), then
theP4-componentC is calledseparable.

The definition of aP4-comparability graph requires that such a graph admit an ac
P4-transitive orientation. However, Hoàng and Reed [16] showed that in order to dete
whether a graph is aP4-comparability graph one can restrict one’s attention to
P4-components of the graph. In particular, what they proved [16, Theorem 3.1] c
paraphrased in terms of theP4-components as follows.

Lemma 2.1 [16]. LetG be a graph such that each of itsP4-components admits an acycl
P4-transitive orientation. ThenG is a P4-comparability graph.

Although determining that each of theP4-components of a graph admits an acyclicP4-
transitive orientation suffices to establish that the graph isP4-comparability, the directe
graph produced by placing the orientedP4-components together may contain cycles. Ho
ever, an acyclicP4-transitive orientation of the entire graph can be obtained after inve
of the orientations of some of theP4-components. Therefore, if one wishes to compute
acyclicP4-transitive orientation of aP4-comparability graph, one needs to detect direc
cycles (if they exist) formed by edges from more than oneP4-component and appropr
ately invert the orientation of one or more of theseP4-components. Fortunately, one do
not need to consider arbitrarily long cycles as shown in the following lemma [16].

Lemma 2.2 [16, Lemma 3.5].If a proper orientation of an interesting graph is cyclic, th
it contains a directed triangle.1

1 An orientation isproper if the orientation of everyP4 is transitive. A graph isinterestingif the orientation
of everyP4-component is acyclic.
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For a non-trivialP4-componentC, the set of verticesV (G) − V (C) can be partitioned
into three sets: the setR contains the vertices ofV (G) − V (C) which are adjacent to som
(but not all) of the vertices inV (C), the setP contains the vertices ofV (G) − V (C) which
are adjacent to all the vertices inV (C), and the setQ contains the vertices ofV (G)−V (C)

which are not adjacent to any of the vertices inV (C). The adjacency relation is consider
in terms of the input graphG.

In [29], Raschle and Simon showed that, for a non-trivialP4-componentC and a vertex
v /∈ V (C), if v is adjacent to the midpoints of aP4 of C and is not adjacent to its endpoin
then so isv with respect to everyP4 in C (that is,v is adjacent to the midpoints and n
adjacent to the endpoints of everyP4 in C). This implies that any vertex ofG, which does
not belong toC and is adjacent to at least one but not all the vertices inV (C), is adjacent
to the midpoints of all theP4s inC. Based on that, Raschle and Simon showed that:

Lemma 2.3 [29, Corollary 3.3].LetC be a non-trivialP4-component andR �= ∅. Then,C is
separable and every vertex inR is V1-universal andV2-null.2 Moreover, no edge betwee
R andQ exists.

The setV1 is the set of the midpoints of all theP4s inC, whereas the setV2 is the set of
endpoints. Figure 2 shows the partition of the vertices of a graph with respect to a sep
P4-componentC; the dashed segments betweenP andR, andP andQ indicate that there
may be edges between pairs of vertices in the corresponding sets. Then, aP4 with at least
one but not all its vertices inV (C) must be aP4 of one of the following types:

type (1) vpq1q2, wherev ∈ V (C), p ∈ P , q1, q2 ∈ Q,
type (2) p1vp2q , wherep1 ∈ P , v ∈ V (C), p2 ∈ P , q ∈ Q,
type (3) p1v2p2r, wherep1 ∈ P , v2 ∈ V2, p2 ∈ P , r ∈ R,
type (4) v2pr1r2, wherev2 ∈ V2, p ∈ P , r1, r2 ∈ R,
type (5) rv1pq , wherer ∈ R, v1 ∈ V1, p ∈ P , q ∈ Q,
type (6) rv1pv2, wherer ∈ R, v1 ∈ V1, p ∈ P , v2 ∈ V2,
type (7) rv1v2v

′
2, wherer ∈ R, v1 ∈ V1, v2, v

′
2 ∈ V2,

type (8) v′
1rv1v2, wherer ∈ R, v1, v

′
1 ∈ V1, v2 ∈ V2.

Fig. 2.

2 For a setA of vertices, we say that a vertexv is A-universal ifv is adjacent to every element ofA; a vertexv
is A-null if v is adjacent to no element ofA.
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Raschle and Simon proved that neither aP3 abc with a ∈ V1 andb, c ∈ V2 nor aP3 abc

with a, b ∈ V1 andc ∈ V2 exists [29, Lemma 3.4], which implies that:

Lemma 2.4 [29]. LetC be a non-trivialP4-component of a graphG. Then, noP4s of type
(7) or (8) with respect toC exist.

Let us consider a non-trivialP4-componentC of the graphG such thatV (C) ⊂ V (G),
and letSC be the set of non-trivialP4-components ofG which have a vertex belonging t
V (C) as well as a vertex not inV (C). Then, each of theP4-components inSC contains a
P4 of type (1)–(8) with respect toC. Additionally, if we take Lemma 2.4 into account, w
can partition the elements ofSC into two sets as follows.

• P4-components of type(A): theP4 components, each of which contains at least oneP4

of type (1)–(5) with respect toC;
• P4-components of type(B): the P4-components which contain onlyP4s of type (6)

with respect toC.

Let B be aP4-component which is of type (B) with respect to aP4-componentC.
Then, the general form of aP4 of type (6) with respect toC implies that every edge o
B has exactly one endpoint inV (C), that if an edge ofB is oriented towards its endpoi
that belongs toV (C), then so are all the edges ofB, and that the edges ofB incident
upon the same vertexv are all oriented either towardsv or away from it. The following
lemma is the heart of our algorithm for computing an acyclicP4-transitive orientation of a
P4-comparability graph (for the proof, see [28]).

Lemma 2.5. Let C1,C2, . . . ,C� be the non-trivialP4-components of a graphG ordered
by increasing vertex number and suppose that each component has received an
P4-transitive orientation. Consider the setSi = {Cj | j < i andCi is of type (B) with
respect toCj }. If the edges of eachP4-componentCi such thatSi �= ∅ get oriented towards
their endpoint which belongs toV (Cı̂ ), where ı̂ = min{j | Cj ∈ Si}, then the resulting
directed subgraph ofG spanned by the edges of theCis (1 � i � �) does not contain a
directed cycle.

Notation. Let G be a simple graph. Hereafter, the subgraph ofG induced by a vertex
subsetS ⊆ V (G) is denoted byG[S] and the subgraph spanned by an edge subsetW ⊆
E(G) is denoted byG〈W 〉. In the case that all the edges inW have been assigned a
orientation, the directed subgraph spanned by the oriented edges is denoted byG〈−→W 〉.

Additionally, we will be assuming that the input graphG hask P4-components, amon
which � are non-trivial (1� � � k). Without loss of generality, we assume that the� non-
trivial P4-components areC1,C2, . . . ,C� in order of increasing vertex number, while t
trivial ones areC�+1, . . . ,Ck .

Finally, with a slight abuse of notation, we will be using vertices or edges to i
arrays.
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3. P4-comparability graph recognition

We will assume for the time being that the input graph is connected; the case
disconnected input graph is addressed in Section 3.5. So, letG be a connected simpl
graph onn vertices andm edges. Then,n = O(m) and logm = Θ(logn).

Let EC andET be the sets of the edges of all the non-trivial and trivialP4-components
of G respectively; because the edges inET span trivialP4-components, we will refer to
these edges astrivial edges. Since an edge belongs to exactly oneP4-component, it follows
thatE(G) is equal to the disjoint union ofEC andET .

Our parallel P4-comparability graph recognition algorithm involves the following
algorithmic steps.

Algorithm REC_P4G ( for the recognition of aP4-comparability graphG).

Phase I. Compute theP4-components of the graphG and aP4-transitive orientation(if
one exists) of each one of them.

1. Compute theP3s that participate inP4s in G: compute the BFS-trees (up to the 3
level) of the complementG of the graphG rooted at each ofG’s vertices and extrac
from them the soughtP3s.

2. Compute andP4-transitively orient theP4-components ofG: construct an auxiliary
graphĜ which has 2m vertices (two verticeŝuxy and ûyx for each edgexy of G),
andO(nm) edges recording information on theP3s of G which participate inP4s;
two verticesûxy and ûzy (respectivelyûyx and ûyz) are adjacent in̂G iff xyz is a
P3 in G participating in aP4 in G. Then, the connected components ofĜ yield
the P4-components ofG while the subscripts of the vertices in these conne
components yield theP4-transitive orientations of theP4-components.

LetC1,C2, . . . ,C� be the non-trivialP4-components of the input graphG and letE1,E2,

. . . ,E� be their edge sets.

Phase II. Check for directed cycles in the orientedP4-components.

3. Combine the oriented non-trivialP4-components: compute appropriate inversions
needed) of theP4-transitive orientationsG〈−→E1〉,G〈−→E2〉, . . . ,G〈−→E�〉 of the non-trivial
P4-componentsC1,C2, . . . ,C�, so that the directed graphG〈−−→EC〉, spanned by the
directed edges in

−−→
EC = −→

E1 ∪ −→
E2 ∪ · · · ∪ −→

E�, is acyclic if eachP4-transitive orientation
G〈−→Ei〉 is acyclic.

4. Detect directed cycles in theP4-transitive orientations of the non-trivialP4-compo-
nents: locate all those trivial edges of the graphG for which the directed graphG〈−−→EC〉
contains a directed path from one of their endpoints to the other, and orient th
that no cycle is formed (i.e., the orientation matches the direction of the path)
the oriented edges toG〈−−→EC〉 producingG〈−−−→

EC,F 〉. This has the effect that any direct
cycles inG〈−−→EC〉 give rise to a directed triangle (C3) or a directedC4 in G〈−−−→

EC,F 〉. Then,
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G is aP4-comparability graph if and only ifG〈−−−→
EC,F 〉 does not contain a directedC3

or a directedC4.

Steps 1 and 2 compute and orient theP4-components of the input graphG; note that
step 2 detects if aP4-component cannot admit aP4-transitive orientation (for example
if the graph contains aC5), in which case, the algorithm reports thatG is not a
P4-comparability graph and terminates. Step 3 computes appropriate orientation inve
of the non-trivialP4-components based on Lemma 2.5, which guarantees that ifG is a
P4-comparability graph then the resulting directed graphG〈−−→EC〉 spanned by the edges
the non-trivialP4-components has an acyclicP4-transitive orientation.

Remark 3.1. We note that in order to determine ifG is aP4-comparability graph, it would
suffice to check whether theP4-transitive orientation of eachP4-component (after step 2
is acyclic (Lemma 2.1). Finding a cycle in the directed graphG〈−→Ei〉 corresponding to
the P4-componentCi can be done either by computing the transitive closure ofG〈−→Ei〉
or by the method employed in step 4 above. The former approach turns out to be
expensive in the number of processors; recall that theP4-components share vertices a
that the computation of the transitive closure of a graph onn vertices takesO(log2 n)

time usingO(M(n)/ logn) processors on the CREW PRAM, whereM(n) � n2.376 is
the best-known sequential bound for the multiplication of two(n × n)-size arrays [17]
The latter approach also proves to be expensive; in order to be immune to orien
conflicts on the trivial edges arising from the fact that eachP4-component is assigne
an orientation independently from the orientations of the remainingP4-components
one needs to maintain separate orientation assignments for the trivial edges for ea
non-trivial P4-component. As there may existΩ(m) trivial edges andΩ(m) non-trivial
P4-components, one needs to be able to processΩ(m2) amount of information which ma
very well exceed the desiredO(nm logn) cost. Therefore, both of the above approac
exhibit high computational cost.

In the following paragraphs, we present parallel implementations for each step of t
proposed algorithm.

3.1. Computing theP3s that participate inP4s in the graphG

The P3s that participate inP4s in G are computed by means of the BFS-trees of
complementG of the graphG rooted at each ofG’s vertices. The approach is the one us
in [28]; we give next the basic ideas. It is important to observe that ifabcd is aP4 of G

then its complement is theP4 bdac and it belongs toG. If we consider the BFS treeTG(b)

of G rooted atb, then the verticesb, d , anda have to belong to the 0th, 1st, and 2nd le
respectively; the vertexc may belong to the 2nd or 3rd level, but not to the 1st level s
c is not adjacent tob in G (see Fig. 3).

In particular, aP3 abc of the graphG participates in aP4 in G if and only if in the
BFS-treeTG(b) rooted atb either exactly one ofa, c belongs to the 2nd level and th
other one to the 3rd level (see Fig. 3, case on the left) or botha andc belong to the 2nd
level and there exists at least one vertex inthe 1st level which is adjacent to exactly o
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Fig. 3. The two placements of theP4 bdac in the treeT
G

(b).

of them (see Fig. 3, case on the right). From a complexity point of view, working with
complementG of G has the important benefit that the vertices in the 2nd and 3rd lev
the BFS-tree ofG rooted at a vertexv are all adjacent tov in G, and thus their total numbe
does not exceed the degree ofv in G.

Next, we present a formal description of the construction procedure. The procedu
a(2m×n)-size arrayM[ ], whose entries are denoted byM[(a, b), c] wherea, b, c ∈ V (G)

anda, b are adjacent inG.

Procedure COMPUTE_P3s ( for the computation of theP3s that participate inP4s in
the graphG).

1. Initialize to 0 all the entries of the arrayM[].
2. For each vertexv of the graphG do in parallel

2.1 compute the setsL1(v), L2(v), andL3(v) of vertices in the 1st, 2nd, and 3rd lev
of the BFS treeTG(v) of the complementG rooted atv;

2.2 partition the setL2(v) into subsets of vertices so that two vertices belong to
same subset iff they have (inG) the same neighbors inL1(v);

2.3 for each vertexx ∈ L2(v) do in parallel
2.3.1 for each vertexy ∈ L3(v) do in parallel

if x, y are not adjacent inG
thenM[(v, x), y] ← 1 {P3 xvy participates in aP4 in G};
M[(v, y), x] ← 1;

2.3.2 for each vertexy ∈ L2(v) do in parallel
if x, y are not adjacent inG andx, y belong to different partition sets
of L2(v), thenM[(v, x), y] ← 1 {P3 xvy participates in aP4 in G}.

The correctness of Procedure COMPUTE_P3s follows from the fact that bothP3s of
eachP4 of the graphG are taken into account: for aP4 abcd of G, the P3 abc will
be reported by the algorithm while processing the BFS-tree ofG rooted atb, while the
P3 bcd will be reported while processing the BFS-tree rooted atc. Note that for the cas
on the left in Fig. 3, theP3 abc will be reported by means of substep 2.3.1; the case on
right in Fig. 3 is covered by substep 2.3.2.
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3.1.1. Time and processor complexity
We shall use a step-by-step analysis for computing the time and processor comp

of each step of Procedure COMPUTE_P3s.
1. The initialization of the(2m × n)-size arrayM[] can be carried out inO(1) time

usingO(nm) processors, or inO(logn) time usingO(nm/ logn) processors on the EREW
PRAM model.

2. This step is executed for each vertexv ∈ V (G) and consists of two substeps.
substep 2.1 we compute the setsL1(v), L2(v), andL3(v) of the vertices of the 1st, 2nd
and 3rd level respectively of the BFS treeTG(v) of the complementG rooted atv. For this
computation, we work as follows.

Computation of all the vertices of the1st,2nd and3rd levels ofTG(v):

(i) compute the vertex setsN(v) andV (G) − N(v) of the graphG;
L1(v) ← V (G) − N(v);

(ii) L2(v) ← ∅;
for each vertexxi ∈ N(v) do in parallel

compute the numberni of neighbors ofxi (in G) which belong toL1(v);
if ni < |L1(v)| then addxi to L2(v);

(iii) L3(v) ← ∅;
for each vertexxi ∈ N(v) − L2(v) do in parallel

compute the numberni of neighbors ofxi (in G) which belong toL2(v);
if ni < |L2(v)| then addxi to L3(v).

(i) We use an auxiliary arrayAv[] of lengthn and setAv[i] ← 1, for 1� i � n. Then,
for each vertexui adjacent to vertexv, we setAv[ui] ← 0. Using parallel prefix and arra
packing computations onAv[], we can compute the vertices of the setV (G) − N(v), i.e.,
the vertices of the setL1(v), in O(logn) time usingO(n/ logn) processors on the EREW
PRAM model.

(ii) Initially, we set Av[i] ← 0, for 1� i � n. Then, for each vertexxi ∈ N(v), we
compute the numberni of neighbors ofxi which belong toL1(v); this computation take
O(log(deg(xi))r) time and requiresO(deg(xi)) processors on the CREW PRAM mod
Next, we setAv[xi] ← 1 if ni < |L1(v)|; this assignment operation takesO(1) sequential
time. Note that the number|L1(v)| is computed inO(logn) time usingO(n/ logn)

processors on the EREW PRAM model. Thus, the whole step takesO(logk) = O(logn)

time and requiresO(
∑|N(v)|

i=1 deg(xi)r) = O(m) processors on the CREW PRAM mod
wherek = max1�i�|N(v)| deg(xi) = O(n).

(iii) This step is executed within the same time and processor bounds as step (ii).

Complexity of substep2.1. Since substep 2.1 is executed for each vertexv ∈ V (G), it
requires in totalO(logn) time withO(nm) processors on the CREW PRAM model.

In substep 2.2 we partition the setL2(v) into subsets of vertices so that two vertic
belong to the same subset if and only if they have (inG) the same neighbors inL1(v).
Let x1, x2, . . . , xk(v) be the vertices of the setL2(v); clearly,k(v) � deg(v) since all the
vertices inL2(v) are adjacent tov in G. Moreover, letNx[] be an array of sizen such that
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Nx [y] = 1 if y ∈ L1(v) andy is a neighbor ofx in G andNx [y] = 0 otherwise (note tha
two vertices of the setL2(v) have the same neighbors inL1(v) in the graphG if and only if
they have the same neighbors inL1(v) in the graphG). It is then obvious that two vertice
xi, xj ∈ L2(v) have (inG) the same neighbors inL1(v) if and only if Nxi [] = Nxj [], that
is, Nxi [p] = Nxj [p] for p = 1,2, . . . , n. Thus, we compute an arraySv[] of sizek(v) such

that, forxi, xj ∈ L2(v), Sv[xi] = Sv[xj ] if and only ifxi, xj have (inG) the same neighbor
in L1(v).

Computation of the arraySv[]:

(iv) Av[] ← [x1, x2, . . . , xk(v)], that is,Av[i] ← xi for i = 1,2, . . . , k(v);
(v) for each vertexxi ∈ L2(v) do in parallel

for each vertexy ∈ V (G) do in parallel
if y ∈ L1(v) andxi is adjacent toy in G thenNxi [y] ← 1 elseNxi [y] ← 0;

(vi) sort the verticesx1, x2, . . . , xk(v) in the arrayAv[] according to their neighbors in th
setL1(v), i.e.,xi � xj , iff the contents ofNxi [] form a string of 0s and 1s which
lexicographically smaller or equal to the corresponding string ofNxj [];

(vii) construct an auxiliary graphH having vertex setV (H) = {x1, x2, . . . , xk(v)} and
edge setE(H) = ∅;

(viii) for eachi = 2,3, . . . , k(v) do in parallel
u ← Av[i], w ← Av[i − 1];
if Nu[] = Nw[] then add the edgeuw to E(H);

(ix) compute the connected components of the graphH , and letCv[] be the output array
of lengthk(v) such thatCv[xi] = Cv[xj ] iff xi, xj belong to the same connect
component of the graphH ;
copy the contents ofCv[] to Sv[].

(iv) The auxiliary arrayAv[] of lengthk(v) � deg(v) can be computed inO(1) time
usingO(deg(v)) processors on the EREW PRAM model.

(v) The vertexy belongs toL1(v) if and only if the verticesv, y are not adjacent inG.
Since the setL2(v) containsO(deg(v)) vertices and the adjacency in the graphG can
be checked inO(1) sequential time (using an(n × n)-size array), the arrayNxi [] can be
computed inO(1) time usingO(ndeg(v)) processors on the CREW PRAM model.

(vi) It is well known that the sorting problem onn elements has an optimal solutio
which takesO(logn) time and requiresO(n) processors on the EREW PRAM mod
[2,17]. Moreover, we can check whether the contents ofNxi [] form a string which
is lexicographically smaller or equal to that ofNxj [] in O(logn) using O(n/ logn)

processors on the EREW PRAM model. Thus, this step can be executed inO(log2 n)

time usingO(ndeg(v)/ logn) processors on the EREW PRAM model; recall that
arrayNxi [] is of lengthn, 1� i � k(v).

(vii) Sincek(v) � deg(v), we can copy the verticesx1, x2, . . . , xk(v) of L2(v) in the set
V (H) in O(1) time withO(deg(v)) processors on the EREW PRAM model.

(viii) It is easy to see that, for each value ofi, the condition of the if-statement can
checked inO(logn) time usingO(n/ logn) processors on the EREW PRAM model. Th
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the whole step can be executed inO(logn) time usingO(ndeg(v)/ logn) processors on
the same model of computation.

(ix) By construction, the graphH hasO(deg(v)) vertices and less thank(v), i.e.,
O(deg(v)), edges. Thus, the connected components of the graphH can be computed in
O(logn) time using a total ofO(deg(v)) processors on the EREW PRAM model [4] (fo
graphG onn vertices andm edges, the parallel connectivity algorithm in [4] computes
connected components ofG in O(logn) time usingO(n + m) processors on the EREW
PRAM). Finally, copyingCv[] in Sv[] takesO(1) time andO(deg(v)) processors on th
EREW PRAM model.

Complexity of substep2.2. Since substep 2.2 is executed for each vertexv ∈ V (G), it re-
quires in totalO(log2 n) time with O((

∑
v ndeg(v))/ lognr) = O(nm/ logn) processors

on the CREW PRAM model.
In substep 2.3, we compute the(2m × n)-size arrayM[] such thatM[(v, x), y] = 1

if and only if xvy is a P3 of the graphG which participates in aP4 in G. Since
L2(v) ∩ L3(v) = ∅ andL2(v),L3(v) ⊆ N(v), substep 2.3 can be carried out inO(1) time
usingO(deg2(v)) processors on the CREW PRAM model; it is assumed that the adjac
in G is checked in constant time using an(n × n)-size array.

Complexity of substep2.3. This substep is executed for each vertexv ∈ V (G) and, thus,
in total, it requiresO(1) time with O(

∑
v deg2(v)r) = O(nm) processors on the CREW

PRAM model.

Taking into consideration the time andprocessor complexity of each step of t
procedure COMPUTE_P3s, we conclude that it is executed inO(log2 n) time with
O(nm/ logn) processors on the CREW PRAM model. Thus, we have proved the follo
result.

Theorem 3.1. Let G be a connected simple graph onn vertices andm edges.
ProcedureCOMPUTE_P3scomputes all theP3s of the graphG that participate in aP4
in O(log2 n) time usingO(nm/ logn) processors on the CREW PRAM model.

3.2. Computing and orienting theP4-components of the graphG

The algorithm uses an auxiliary grapĥG which serves as a constructive to
for computing theP4-components of the graphG and for deciding whether eac
P4-component admits aP4-transitive orientation; if so, the algorithm produces such
orientation for eachP4-component.

The graphĜ has 2m vertices andO(nm) edges, and records all theP3s which
participate inP4s inG. In particular,

V
(
Ĝ

) = {
ûxy, ûyx | xy ∈ E(G)

}

and

E
(
Ĝ

) = {
ûxyûzy, ûyxûyz | xyzis aP3 in aP4 in G

}
.
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Fig. 4. If G is the pyramid, the grapĥG has 6 connected components.

That is,Ĝ has two vertices, say,̂uxy andûyx , for each edgexy of G, and for eachP3 xyz

participating in aP4 in G, Ĝ has an edge connecting the verticesûxy andûzy and anothe
edge connecting the verticesûyx and ûyz. It is important to note the subscripts of t
vertices incident upon an edge of̂G: the two edges corresponding to eachP3 in a P4 of
G connect vertices of̂G whose subscripts correspond to the two transitive orientation
theP3; in this way, from the twoP3s of aP4 of G, Ĝ will contain two pairs of inciden
edges which correspond to the twoP4-transitive orientations of theP4. Figure 4 gives an
example of the construction; it depicts the graphĜ when the graphG is the pyramid.

The definition of the grapĥG implies thatĜ has the following important properties:

(A1) The edges ofG corresponding to the vertices of each connected componentĜ

span aP4-component ofG.
(A2) Each of theP4-components of the graphG admits aP4-transitive orientation if and

only if for no pair of verticesx, y ∈ V (G) both ûxy and ûyx belong to the sam
connected component of̂G.

(A3) If each of theP4-components of the graphG admits aP4-transitive orientation, the
the connected components ofĜ can be partitioned into pairs of “twin” components,
i.e., for each vertex̂uab belonging to the one component in such a pair, the vertexûba

belongs to the other component in the pair. If we select one component from
such pair, then, for each edgexy of G, we will pick exactly one of the verticeŝuxy

andûyx ; then, we obtain aP4-transitive orientation of eachP4-component ofG by
orienting the edge in accordance with the ordering of thesubscripts of the selecte
vertices, i.e., if the vertex̂uab is selected then the edge ofG connectinga andb is
oriented froma to b.

Property (A3) relies on the following lemma.

Lemma 3.1. Let G be a simple graph and let̂G be the corresponding graph obtained
described in this section. Additionally, let̂Ci (1 � i � p) be the connected componen
of Ĝ. If ûab ∈ Ĉi and ûba ∈ Ĉj , then, for every vertex̂ust ∈ Ĉi , the vertexûts belongs
to Ĉj .
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Proof. Sinceûab and ûst both belong toĈi , there exists a path from̂uab to ûst . Then,
by the construction of the grapĥG, there exists also a path from̂uba to ûts . Thus,
ûts ∈ Ĉj . �

The following procedure takes advantage of the properties ofĜ in order to compute an
P4-transitively orient theP4-components of the input graphG.

Procedure COMPUTE_TRO_P4C ( for computing andP4-transitive orienting the
P4-components of the graphG).

1. Construct a grapĥG having vertex setV (Ĝ) = {ûxy, ûyx | xy ∈ E(G)} and edge se
E(Ĝ) = ∅.

2. For eachP3 xyz reported by Procedure COMPUTE_P3s, add the edgesûxyûzy

and ûyxûyz to the setE(Ĝ), where byûab and ûba we denote the vertices of̂G
corresponding to the edgeab of G.

3. Compute the connected componentsĈ1, Ĉ2, . . . , Ĉp of the grapĥG;
let Ĉ[] be the output array of length 2m such that̂C[ûxy] = Ĉ[ûzw] iff ûxy, ûzw belong
to the same connected component; letûx1y1, ûx2y2, . . . , ûxpyp be the representatives
the connected componentŝC1, Ĉ2, . . . , Ĉp respectively.

4. For each representativeûxiyi ∈ Ĉi do in parallel
if Ĉ[ûxiyi ] = Ĉ[ûyixi ], thenA[xiyi] ← 1 {A[] is an array of size 2m initialized to 0}.

5. Check if all the 2m entries of the arrayA[] have values equal to 0;
if this is not the case then the graphG is not aP4-comparability graph; exit
{ if the procedure does not exit here, then eachP4-component of the graphG admits
a P4-transitive orientation}.

6. Selectk = p/2 connected components from̂C1, Ĉ2, . . . , Ĉp as follows:
for each representativêuxiyi ∈ Ĉi , 1� i � p, do in parallel

find the representativêuxj yj of the connected component̂Cj that contains the
vertexûyixi ;
if the index number of̂uxiyi is less than the index number ofûxj yj

then select the connected componentĈi .
7. LetC1,C2, . . . ,Ck be the connected components selected in step 6;

for each vertex̂uxy ∈ Ci , 1� i � k, do in parallel
orient the edgexy of G from x to y.

Observe that in step 6 exactly one component from each pair of “twin” conn
components will be selected. IfE1,E2, . . . ,Ek are the edge sets corresponding to
vertex sets of the selected componentsC1,C2, . . . ,Ck respectively, then the graphG hask
P4-components with edge setsE1,E2, . . . ,Ek .

Additionally, all the edges ofG get oriented in step 7; for each edgexy of G, the
graphĜ contains two vertices,̂uxy and ûyx , exactly one of which belongs to one of t
Cis, 1� i � k. The correctness of the algorithm follows from the stated propertie
the graphĜ; the correctness of step 4 relies on Lemma 3.1, which implies that if a
of verticesûxy, ûyx belong to the same connected componentĈi , then for every vertex
ûab ∈ Ĉi , the vertexûba belongs tôCi as well.
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3.2.1. Time and processor complexity
We now compute the time and processor complexities of each step of Procedure

PUTE_TRO_P4C.
1. The 2m vertices of the grapĥG can be easily computed from the adjacency

of the input graphG. Let v1, v2, . . . , vn be the vertices ofG. We use an arrayP [] of
length 2m for the implementation of the vertex setV (Ĝ): for each edgevivj of G,
we setP [kij ] ← ûvivj and P [kji] ← ûvj vi , wherekij = ∑i−1

�=1 deg(v�) + rank(vi, vj ),

kji = ∑j−1
�=1 deg(v�) + rank(vj , vi), and rank(v,u) denotes the rank of the vertexu in

the adjacency list of the vertexv. Furthermore, we establish pointers from each of
two verticesûvivj andûvj vi to the other. It is easy to see that this step can be complete
in O(logn) time with O(m/ logn) processors on the EREW PRAM model, using pre
sums and list ranking computations [2,17].

2. The procedure COMPUTE_P3s computes all theP3s that participate inP4s in the
graphG, and stores this information in the arrayM[] of size(2m × n) (see Section 3.1)
recall thatM[(v, x), y] = 1 if and only if xvy is a P3 participating in aP4 in G. Since
the size ofM[] is O(nm), the computation of the edge setE(Ĝ) of the graphĜ can be
completed inO(1) time usingO(nm) processors on the EREW PRAM model.

3. The grapĥG has 2m vertices andO(nm) edges. Thus, the connected compone
Ĉ1, Ĉ2, . . . , Ĉp of the grapĥG can be computed inO(logm) time using a total ofO(nm)

processors on the EREW PRAM model [4]. Clearly,p � 2m.
4. Step 3 computes the connected components of the graphĜ, that is, an arraŷC[] of

length 2m such that̂C[ûxy] = Ĉ[ûzw] if and only if ûxy, ûzw belong to the same connect
component. Thus, thanks to the pointers between each pair of vertices ofĜ corresponding
to the same edge ofG, the arrayA[] can be easily computed inO(1) time usingO(m)

processors on the EREW PRAM model.
5. The decision whether the arrayA[] contains at least one entry with value equal t

can be done inO(logm) time with O(m/ logm) processors on the EREW PRAM mod
(it can be done by simply finding the maximum element ofA[]).

6. Step 5 guarantees that for nox, y ∈ V (G) the verticesûxy and ûyx both belong to
the same connected componentĈi , (1� i � p). Then, from property (A3) of the grapĥG,
the p connected componentŝC1, . . . , Ĉp form k = p/2 pairs of “twin” components. In
this step, we have to select one component fromeach such pair, obtaining a collection
componentsC1,C2, . . . ,Ck , which implies that ifûxy ∈ Ci thenûyx /∈ Cj , for 1� j � k.
The vertices of the connected componentsC1,C2, . . . ,Ck can be computed as follows:

Computation of the vertices of the connected componentsC1,C2, . . . ,Ck :

(i) for each representativêuxiyi of Ĉi , 1� i � p, do in parallel
ûxj yj ← Ĉ[ûyixi ] { representative of component containingûyixi }
if the index number of̂uxiyi is greater than the index number ofûxj yj

thenĈ[ûxiyi ] ← 0 {mark the representative of̂Ci };
(ii) for each vertexûxy ∈ V (Ĝ) do in parallel

if Ĉ[ûxy] = 0 or Ĉ[Ĉ[ûxy]] = 0 { the representative is marked}
thenD[ûxy] ← (0, ûxy) elseD[ûxy] ← (Ĉ[ûxy], ûxy);
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(iii) Sort the arrayD[] and, then, delete the pairs(0, ûxy);
the vertices of the selected connectedcomponent are in consecutive positions inD[];
assign them to setsC1,C2, . . . ,Ck .

(i) In order to ensure that the body of the for-loop will be executed exactly once for ea
representativêuxiyi , 1� i � p, we make a copy of the arraŷC[], sort it, and then execut
the for-loop for each entry of the sorted array which differs from the entry preceding it i
the array. The if-statement can be executed inO(1) sequential time for each vertexûyixi ,
1 � i � p. Sincep � 2m andn elements can be optimally sorted inO(logn) time with
O(n) processors on the EREW PRAM model [2,17], the whole step takesO(logm) time
and usesO(m) processors on the EREW PRAM model.

(ii) It is easy to see that both steps are executed inO(1) time with O(m) processors on
the CREW PRAM model.

(iii) This step is executed inO(logm) time withO(m) processors on the EREW PRA
model.

Thus, the above described procedure computes the vertices of the connected
nentsC1,C2, . . . ,Ck in O(logm) time usingO(m) processors on the EREW PRA
model.

7. The vertices of the connected componentsC1,C2, . . . ,Ck computed in step 6
correspond to edges of the graphG. Thus, having computed the vertices of each conne
componentC1,C2, . . . ,Ck , the orientation assignment can be executed inO(1) time using
O(m) processors on the EREW PRAM model.

Taking into consideration the time andprocessor complexity of each step of t
procedure COMPUTE_TRO_P4C and the fact that logm = Θ(logn) because the graphG
is connected, we conclude that:

Theorem 3.2. ProcedureCOMPUTE_TRO_P4Cruns in O(logn) time usingO(nm)

processors on the CREW PRAM model.

Corollary 3.1. Let G be a connected simple graph onn vertices andm edges. Then, th
P4-components of the graphG can be computed andP4-transitively oriented inO(log2 n)

time usingO(nm/ logn) processors on the CREW PRAM model.

In the following, we will be processing the non-trivialP4-components. These can
easily located as they contain at least 3 edges,whereas the trivial ones contain exactly o
edge.

3.3. Combining the oriented non-trivialP4-components

The procedure for combining the oriented non-trivialP4-components relies o
Lemma 2.5: ifC1,C2, . . . ,C� are the non-trivialP4-components of a graphG ordered by
increasing vertex number, then the edges of eachP4-componentCi which is of type (B)
with respect to anotherP4-componentCj with j < i are oriented towards their endpo
which belongs toV (Cı̂ ), whereı̂ = min{j | Ci is of type (B) with respect toCj }. If the
P4-componentCi is not of type (B) with respect to anyP4-componentCj with j < i, then
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Ci may be assigned anyP4-transitive orientation; in particular, the orientation assigned
Procedure COMPUTE_TRO_P4C in Section 3.2 will do. Lemma 2.5 implies that if
of the oriented (non-trivial)P4-components contains a directed cycle, the resulting dire
graph (spanned by their edges) will be acyclic. Conversely, if the resulting directed
contains a directed cycle, then it must be the case that aP4-component contains a directe
cycle, implying that the input graphG is not aP4-comparability graph.

The procedure also takes advantage of the following observation, which is a
consequence of the definition of theP4-components of type (B) and of the form of th
P4s of type (6):

Observation 3.1. LetC andC ′ be two non-trivialP4-components of a graph such thatC ′ is
of type(B) with respect toC. Then, for any edgexy of C ′, exactly one ofx, y belongs toC.

This observation has two very important consequences. First, it implies th
P4-componentC ′ is of type (B) with respect to aP4-componentC if and only if exactly
one endpoint of each edge ofC ′ belongs toC; note that each edge of aP4 of types
(1)–(5) with respect toC has at most one endpoint inC, while at least one edge of suc
a P4 has none of its endpoints inC. This yields an efficient way to determine wheth
a P4-component is of type (B) with respect to anotherP4-component. Second, if we a
given aP4-componentC ′ and we are interested in finding theP4-componentsC such that
C ′ is of type (B) with respect toC, then we only need to pick an arbitrary edge ofC ′ and
look at theP4-components that contain the edges incident upon the endpoints ofe; this is
directly implied by Observation 3.1, since exactly one of the endpoints of the arbit
chosen edge ofC ′ belong to any suchP4-componentC. This enables us to determine f
eachP4-component ofG the P4-components with respect to which it is of type (B)
checkingO(n�) = O(nm) pairs ofP4-components instead of theO(�2) = O(m2) pairs
that the brute-force approach would necessitate.

In more detail, the procedure for combining the oriented non-trivialP4-components
works as follows:

Procedure TRO_ALL_P4C ( for combining the oriented non-trivialP4-components).

1. Sort the non-trivialP4-components of the graphG in order of increasing verte
number; let them beC1,C2, . . . ,C� in that order.

2. For each non-trivialP4-componentCi (1� i � �), do in parallel
2.1 select an arbitrary edgexiyi of Ci ; initialize a setSi to the set{i};
2.2 for each vertexz adjacent toxi in G do in parallel

find theP4-componentCj to which the edgexiz belongs;
if j < i and exactly one endpoint of each edge ofCi belongs toCj

then addj to the setSi { Ci is of type(B) w.r.t. Cj andj < i};
2.3 repeat substep 2.2 foryi instead ofxi ;
2.4 ı̂ ← minimum element ofSi ;

if ı̂ �= i then for each edgee of Ci do in parallel
oriente towards its (exactly one) endpoint that belongs toCı̂ .
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Note that, after substep 2.3, the setSi containsi and the index numbers of all th
non-trivial P4-componentsCj such thatj < i andCi is of type (B) with respect toCj .
Moreover, in substep 2.4, if̂ı = i, then theP4-componentCi is not of type (B) with
respect to any of theP4-componentsCj with j < i; in this case, nothing needs to be do
and theP4-componentCi retains the orientation assigned to it by Procedure COM
TE_TRO_P4C. Then, the correctness of the procedure follows from Lemma 2.5, wh
correctness of the orientation assignment follows from Observation 3.1.

3.3.1. Time and processor complexity
In order to be able to determine whether a vertex belongs to a non-trivialP4-component,

the procedure uses an auxiliary(n × �)-size arrayA[], which records for each vertex o
the graphG the non-trivialP4-components to which it belongs: if vertexv is a vertex of
the P4-componentCi (1 � i � �), then the entryA[v, i] is equal to 1, otherwise it is 0
Initializing all the entries of the arrayA[] to 0 is done inO(1) time usingO(n�) = O(nm)

processors on the EREW PRAM model. We set the appropriate entries ofA[] to 1
as follows: for each vertex̂uxy ∈ Ci , we assignA[x, i] ← 1 andA[y, i] ← 1, where
C1,C2, . . .Ck are the selected connected components of the graphĜ of Section 3.2 (see
steps 6 and 7 of Procedure COMPUTE_TRO_P4C). Assigning 1 to the appropriate
of A[] takesO(1) time usingO(m) processors on the EREW PRAM.

Below we give a step-by-step analysis of the time and processor complexity o
procedure TRO_ALL_P4C. Recall that� � m.

1. It is well known thatn elements can be sorted inO(logn) time withO(n) processors
on the EREW PRAM model [2,17]. Thus, this step is executed inO(logm) time with
O(m) processors on the EREW PRAM model.

2. Substep 2.1 can be carried out inO(1) time on the EREW PRAM usingO(m)

processors. In substep 2.2, findingCj is done inO(1) time using an array that indicate
for each edge ofG theP4-component to which it belongs; sinceO(

∑
1�i�� deg(xi)r) =

O(nm), this part of substep 2.2 can be carried out inO(1) time usingO(nm) processors
on the CREW PRAM.

The setSi is implemented by means of an(n × |Ci |)-size arrayBi[] (note that the
arraysBi [], 1� i � �, can all be placed in a single(n×m)-array if the edges are re-index
so that the edges of eachP4-component are assigned consecutive index numbers
can be easily achieved by sorting inO(logm) time with O(m) processors on the EREW
PRAM). The entries of each arrayBi[] are initialized toi (in this way, invalid entries do
not affect the subsequent minimum computations); the initialization of these arrays
i = 1,2, . . . , � takesO(1) time with O(nm) processors on the EREW PRAM. Then, f
each vertexz adjacent toxi and for each edgee of Ci we check ifj < i and ife has exactly
one endpoint inCj , and, if this is true, we set the entryBi [z, e] equal toj ; otherwise, we
set it to 0. Next, for each rowr of the arrayBi[], we compute the minimum over the entri
in the rowr; let it bepr . Then, ifpr = 0 (meaning that an edge ofCi has failed the test) o
pr = i (meaning that the vertex corresponding to the rowr is not adjacent toxi), we set the
entryBi [r,1] equal toi; otherwise (i.e.,pr < i andCi is of type (B) with respect toCpr ) we
setBi [r,1] equal topr . In this way, the minimum element ofSi among those contributed i
substep 2.2 can be computed as the minimum over the entriesBi [∗,1] in the first column of
the arrayBi[]. The above description implies that managing the setsSi for all i = 1, . . . , �
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in substep 2.2 takesO(logn) time usingO(nm/ logn) processors on the EREW PRAM
In total, substep 2.2 runs inO(logn) time usingO(nm/ logn) processors on the CREW
PRAM. In a similar fashion, substep 2.3 takesO(logn) time andO(nm/ logn) processors
on the CREW PRAM model.

As suggested, the computation ofı̂ for Ci in substep 2.4 is achieved by means o
minimum computation over the entries of two arrays of sizen; for all i = 1, . . . , �, this
takesO(logn) time usingO(nm/ logn) processors on the EREW PRAM. Thanks to
arrayA[], the rest of substep 2.4 is completed for alli in O(1) time andO(m) processors
on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.3. Given aP4-transitive orientation of eachP4-component of a connecte
simple graphG, ProcedureTRO_ALL_P4Cproduces aP4-transitive orientation of the
graphG〈EC〉 in O(logn) time usingO(nm/ logn) processors on the CREW PRAM mod
The resulting orientation is acyclic if and only if theP4-transitive orientation of each o
theP4-components is acyclic.

3.4. Detecting directed cycles in the non-trivialP4-components

Recall that if the input graphG is a P4-comparability graph, then Procedu
TRO_ALL_P4C produces an acyclicP4-transitive orientationG〈−−→EC〉 of the graphG〈EC〉
spanned by the edges of the non-trivialP4-componentsC1,C2, . . . ,C� of G; note that
EC = E1 ∪ E2 ∪ · · · ∪ E�, whereEi is the set of edges of theP4-componentCi , 1� i � �.

If G is not aP4-comparability graph then a non-trivialP4-component ofG either cannot
admit aP4-transitive orientation or contains a directed cycle. Whether each non-trivi
P4-component admits aP4-transitive orientation has been checked during the executi
of Procedure COMPUTE_TRO_P4C (see Section 3.2); if not, the procedure stop
reports that the input graph is not aP4-comparability graph. Therefore, the recognitio
will be complete after we check whether there exists a directed cycle in theP4-transitive
orientationG〈−→Ei〉 of the non-trivialP4-componentCi , 1� i � �.

In order to do this, we use a procedure which orients the trivial edges whose end
are connected by a directed path in the graphG〈−−→EC〉; we call these edgesforced, because
their orientation is constrained to match the direction of the path, otherwise a directed
is formed (see Fig. 5(a)). The procedure assigns to the forced trivial edges the appr

Fig. 5. (a) the edgeac is a forced trivial edge; (b) the edgesab andae are trivial but they are not forced.
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orientation by means of an iterative procedure, which keeps short-cutting directed
(respectively cycles) until they becomeof length at most 2 (respectively 4). At ea
iteration, it also checks for the existence of directed triangles, i.e.,C3s, orC4s which proves
to be sufficient for ensuring the detection of directed cycles of any length inG〈−−→EC〉. The
oriented forced trivial edges are added to the set

−−→
EC producing a set

−−−→
EC,F . The procedure

uses an auxiliary arrayR[] of sizen × n; for any two verticesx andy of G, R[x, y] is set
equal to 1 if a directedP3 from x to y has been found in the current iteration.

Procedure DDC_P4C ( for detecting directed cycles in theP4-components ofG).

1.
−−→
E′
C ← ∅; Q ← −−→

EC .
2. whileQ �= ∅ do

2.1
−−→
E′
C ← −−→

E′
C ∪ Q; Q ← ∅; initialize all the entries of arrayR[] to 0;

2.2 for every vertexx of G do in parallel
for every vertexz �= x do in parallel

for every vertexy adjacent to bothx andz do in parallel
if both −→xy ∈ −−→

E′
C and−→yz ∈ −−→

E′
C

then if −→zx ∈ −−→
E′
C

then there exists a directed cycle; exit;
elseR[x, z] ← 1;

2.3 for every pair of verticesx, z of G do in parallel
2.3.1 if R[x, z] = 1 andR[z, x] = 1

then there exists a directed cycle; exit;
2.3.2 if R[x, z] = 1 andx, z are adjacent inG

then if the edgexz belongs to
−−→
E′
C

then if it is oriented fromz to x

then there exists a directed cycle; exit;
else add−→xz to Q;

2.3.3 if R[z, x] = 1 andx, z are adjacent inG
then if the edgexz belongs to

−−→
E′
C

then if it is oriented fromx to z

then there exists a directed cycle; exit;
else add−→zx to Q;

2.4 for every edgexy of G which does not belong to
−−→
E′
C do in parallel

for every vertexz of G adjacent tox do in parallel
[2.4.1] if −→xz ∈ −−→

E′
C andR[z, y] = 1 then add−→xy to Q;

[2.4.2] if −→zx ∈ −−→
E′
C andR[y, z] = 1 then add−→yx to Q;

2.5 if there exists an edgexy of G such that both−→xy,−→yx ∈ Q

then there exists a directed cycle; exit.

The cases handled by substeps 2.3.2, 2.4.1 and 2.4.2 are shown in Fig. 6. I
iteration, the procedure orients all theforced edges that short-cut directedP3s and directed
P4s in G〈−−→EC ′〉 and have not yet received an orientation. The case of an edge short-c
a directedP3 is handled in substep 2.3.2 or substep 2.3.3; because of substep 2.3.1,
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Fig. 6. The cases handled by substeps 2.3.2, 2.4.1 and 2.4.2 of Procedure DDC_P4C.

one of substeps 2.3.2 and 2.3.3 will be executed during each iteration. For an edgad of
G short-cutting a directedP4 abcd of G〈−−→EC ′〉, bothR[a, c] andR[b, d] will be set equal
to 1 in substep 2.2. Then, no matter whether the edge connectinga andd is considered a
the edgead or da, it will be oriented froma to d in substeps 2.4.1 and 2.4.2 respective

Additionally, it is important to observe that, in each iteration of the while-loop of ste
Procedure DDC_P4C detects all directedC3s and directedC4s: the former are detected
substep 2.2; the latter in substep 2.3.1 (for a directedC4 abcd , bothR[a, c] andR[c, a]
are set to 1), which also implies that−→yx /∈ −−→

E′
C in substep 2.4.1, and that−→xy /∈ −−→

E′
C in

substep 2.4.2.
The following lemma is crucial for the operation of the procedure.

Lemma 3.2. For every chordless directed pathρ of the graphG〈−−→E′
C〉 whose length is a

least4, one iteration of the while-loop of ProcedureDDC_P4Cproduces another directe
path on edges of the graphG with the same endpoints asρ and whose length does n
exceed5/6 of ρ ’s length.

Proof. Let the length of the pathρ be k; thenk � 4. We seeρ as the concatenation o
�k/3� directedP4s of G〈−−→EC〉, followed by at most two additional edges. Since none
these directedP4s is aP4 of the input graphG (because of the orientations of their edge
each such directedP4 has a chord, which is a trivial edge. The edge may span two or thr
edges of the directedP4; in either case, this edge will be assigned an orientation a
execution of the while-loop (see substeps 2.3.2, 2.3.3 and 2.4.1, 2.4.2). In this way
is a directed edge “short-cutting” two or three edges for every one of these directeP4s.
Thus, a new directed path of length at mostk − �k/3� = �2k/3� with the same endpoint
asρ is produced. Since�2k/3� � (2k + 2)/3 � 5k/6 for k � 4, the lemma follows. �

The correctness of the procedure is established by the following two lemmas.

Lemma 3.3. Upon completion, ProcedureDDC_P4Chas oriented every trivial edge fo
which the graphG〈−−→EC〉 contains a directed path from one endpoint of the edge to the o

Proof. Consider a trivial edgexy such that there exists a directed path fromx to y in
the graphG〈−−→E′

C〉. Then, there is a chordless such path inG〈−−→E′
C〉. For as long as the ne

chordless path has length at least equal to 4, new short-cutting directed edges will be
to G〈−−→E′

C〉. When the length of the resulting chordless path eventually becomes equ
or 3, then substeps 2.3.2–3 and 2.4.1–2 will assign to the edgexy an orientation fromx

to y. �
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Lemma 3.4. ProcedureDDC_P4Ccorrectly identifies whether the graphG〈−−→EC〉 contains
a directed cycle.

Proof. If G〈−−→EC〉 contains a cycle, then the procedure will shrink it as describe
Lemma 3.2, eventually yielding a directedC3 or a directedC4, which will be detected
by the procedure and the input graph will correctly be characterized as not be
P4-comparability graph. On the other hand, it is not difficult to see that wheneve
procedure reports the existence of a directed cycle, it has found two vertices, say,u andv,
such that there exists a directed path fromu to v and another formv to u. Since the edge
of these paths either belonged toG〈−−→EC〉 or were oriented because there was a directed
in G〈−−→EC〉 leading from one of their endpoints to the other, it is clear thatG〈−−→EC〉 contains
a directed cycle, and thus the procedure responded correctly.�
3.4.1. Time and processor complexity

The sets
−−→
E′
C and Q of oriented edges are maintained as arrays of sizem and 2m

respectively: for the set
−−→
E′
C , we maintain one entry per edge ofG where it is recorded

whether the corresponding edge belongs to the set and the assigned orientation;
setQ, we maintain two entries per edge corresponding to the two opposite orientati
the edge. In this way, testing the membership ofa (directed) edge in either of these sets
finding its orientation can be done in constant time.

Moreover, Lemma 3.2 implies that the number of iterations of the while-loo
O(logm) = O(logn): the length of the longest directed path (or cycle) isO(m), and at
every iteration each directed path is “short-cut” by a directed path of length which
most a constant factor (less than 1) of the length of the previous path.

1. It is easy to see that this step can be executed inO(1) time withO(m) processors on
the EREW PRAM model.

2. Let us consider a single iteration of the while-loop. Then, substep 2.1 takes co
time usingO(m) processors on the EREW PRAM model in light of the way the sets

−−→
E′
C and

Q are maintained. substep 2.5 can also be executed in constant time usingO(m) processors
on the EREW PRAM model.

In substep 2.2, for each pair of verticesx, z of the graphG, we haveO(deg(x)+deg(z))
processors, each associated with a neighbor ofx or z; each such processor checks whet
the associated vertex is adjacent to bothx and z and whether the conditions in the i
statement are satisfied, and produces a 1 if it finds that the value ofR[x, z] should be
set to 1, and a 0 otherwise. Then,R[x, z] is indeed set to 1 if the maximum of th
produced values is 1. With the help of an adjacency matrix ofG, the computation of eac
processor takesO(1) time on the CREW PRAM; next, the computation of the maxim
can be done inO(logn) time usingO((deg(x)+deg(z))/ lognr) processors on the EREW
PRAM. Thus, the execution of substep 2.2 can be completed inO(logn) time using
O((

∑
x

∑
z(deg(x)+deg(z))r)/ lognr) = O(nm/ logn) processors on the CREW PRA

model.
Substep 2.3 takesO(1) time usingO(n2) processors on the CREW PRAM: for ea

pair of verticesx, z, the computation takesO(1) time. It is important to observe that n
concurrent write occurs as the processor associated with the pairx, z is the only one to add
−→xz or −→zx to Q.
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Similarly to substep 2.2, substep 2.4 takesO(logn) times using O(nm/ logn)

processors on the CREW PRAM: for each edgexy of G not in
−−→
E′
C , we haveO(deg(x))

processors, each associated with a neighbor ofx; each processor checks if the conditio
in the if-statements of substeps 2.4.1 and 2.4.2 hold and produces a 1 if the cond
substep 2.4.1 is true,−1 if the condition in substep 2.4.2 is true, and 0 otherwise (note
sinceR[y, z] andR[z, y] cannot both be equal to 1 due to substep 2.3.1, at most o
these two conditions will hold). Then, the minimum and maximum of the produced v
are computed: if the maximum is 1, then−→xy is added toQ; if the minimum is−1, then−→yx

is added toQ. The computation of each processor takesO(1) time on the CREW PRAM
while the computation of the minimum and maximum can be done inO(logn) time using
O(deg(x)/ logn) processors on the EREW PRAM. This implies that, for all such edgexy,
substep 2.4 takesO(logn) time usingO(

∑
xy deg(x)/ lognr) = O(nm/ logn) processors

on the CREW PRAM model.
Taking into account the time and processor complexities of substeps 2.1–2.5, w

that the execution of one iteration of the while-loop can be completed inO(logn) using
O(nm/ logn) processors on the CREW PRAM model. Since the number of iteratio
O(logn), this implies that the entire step 2 takesO(log2 n) usingO(nm/ logn) processors
on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.4. It can be decided whether theP4-transitive orientations of theP4-compo-
nents of a connected simple graph onn vertices andm edges contain directed cycles
O(log2 n) time usingO(nm/ logn) processors on the CREW PRAM model.

Our results from Section 3 imply the following corollary.

Corollary 3.2. It can be decided whether a connected simple graph onn vertices andm
edges is aP4-comparability graph inO(log2 n) time usingO(nm/ logn) processors on
the CREW PRAM model.

3.5. The case of a disconnected input graph

If the input graph is disconnected, we compute its connected components
apply Procedure REC_P4G on each one of them. The connected components can
computed on the EREW PRAM model inO(logn) time usingO(n + m) processors [4]
or in O(log2 n) time using O((n + m)/ logn) processors (see also [19]). Ifni and
mi are the numbers of vertices and edges of theith connected component, then
processing requiresO(log2 ni) time usingO(nimi/ logni) processors on the CREW
PRAM model (Corollary 3.2). Ifmi �

√
n, then logmi = Θ(logn); the connectivity

of the component implies that logni = Θ(logmi), and consequentlyO(nimi/ logni) =
O(nimi/ logmi) = O(nimi/ logn). Moreover, log2 ni = O(log2 n). If mi <

√
n, then we

can batch log2 n/ log2 ni tasks of unit time duration and assign them to a single proce
in this way the needed processors are reduced by a factor of log2 n/ log2 ni , while at the
same time the time increases by the same factor. In particular, the time needed becom
O(log2 n), while the number of processors becomesO(nimi/ logn), since logni � logn.



100 S.D. Nikolopoulos, L. Palios / Journal of Algorithms 51 (2004) 77–104

M

fore,

of
and

ed in
e
g

th

of the
ces

ges,
nt upon

ro-

t

f

ese
a
w

In summary, no matter how small or largemi is, we can process theith connected
component inO(log2 n) time usingO(nimi/ logn) processors on the CREW PRA
model. Thus, we can process all the connected components inO(log2 n) time using a
total of O(nm/ logn) processors on the same model of parallel computation. There
we have the following theorem.

Theorem 3.5. It can be decided whether a simple graph onn vertices andm edges is a
P4-comparability graph inO(log2 n) time usingO(nm/ logn) processors on the CREW
PRAM model.

4. Acyclic P4-transitive orientation

The orientation algorithm that we describe here takes advantage of the orientation
the graphG〈−−−→

EC,F 〉 produced by the recognition algorithm of the previous section
assigns the final orientations to the remaining edges of the input graphG—these are the
trivial edges which are not forced (see Fig. 5(b))—so that no directed cycle is form
G〈−−−−→

E(G)〉. (Note that these edges have received an arbitrary orientation in step 2 of th
recognition algorithm REC_P4G, which we ignore.) The algorithm relies on the followin
two lemmas.

Lemma 4.1. In the directed graphG〈−−−→
EC,F 〉, the length of the shortest directed pa

between any pair of vertices does not exceed2.

Proof. Suppose for contradiction that there are two vertices such that the length
shortest directed path from the one to the other exceeds 2. Then, there exist two verti
u andv such that the length of the shortest path fromu to v is equal to 3; letuabv be
that path. Since this path cannot be aP4 because of the orientations assigned to its ed
then there must be an edge which has not yet received an orientation and is incide
at least one of the following pairs of vertices:u andb, u andv, a andv. But, in each of
these three cases, this edge is forced and must have been assigned an orientation by P
cedure DDC_P4C. In fact, this orientation should be fromu to b, from u to v, and froma

to v respectively (Lemma 3.3), which contradicts the fact that the pathuabv is the shortes
directed path fromu to v, thus establishing the lemma.�
Lemma 4.2. Let

−→
ab be a(directed) edge of the transitive closureG∗〈−−−→

EC,F 〉 of the acyclic
directed graphG〈−−−→

EC,F 〉. Then, the indegree of the vertexb is larger than the indegree o
the vertexa.

Proof. The transitive closure implies that the indegree of a vertexv of G∗〈−−−→
EC,F 〉 is equal

to the number of vertices ofG〈−−−→
EC,F 〉 such that there is a directed path from each of th

vertices tov. Let P(a) andP(b) be the sets of vertices ofG〈−−−→
EC,F 〉 such that there is

directed path from each of these vertices toa andb respectively. Then, we need to sho
that |P(a)| < |P(b)|. It is not difficult to see thatP(a) ⊂ P(b): every vertex inP(a) also
belongs toP(b), since due to the edge

−→
ab, a directed path from a vertex toa implies that
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there is a directed path from that vertex tob; additionally, because there are no direc
cycles inG〈−−−→

EC,F 〉, a /∈ P(a) whereasa ∈ P(b). �
Our orientation algorithm involves the following algorithmic steps.

Procedure ATRO_P4G ( for the acyclicP4-transitive orientation of the graphG).

1. Apply the recognition procedure that we described in the previous section.
input graphG is not aP4-comparability graph, then the algorithm stops and pr
the corresponding diagnostic message; otherwise, the recognition procedure compu
the directed graphG〈−−−→

EC,F 〉.
2. Compute the transitive closureG∗〈−−−→

EC,F 〉 of the graphG〈−−−→
EC,F 〉.

3. Compute the indegree(v) of each vertexv of the graphG∗〈−−−→
EC,F 〉; set the indegree o

every vertex ofG which is not a vertex ofG∗〈−−−→
EC,F 〉 equal to 0.

4. For each (trivial) edgexy of G not inG〈−−−→
EC,F 〉, do in parallel

if indegree(x) < indegree(y), then−→xy;
if indegree(x) > indegree(y), then←−xy;
if indegree(x) = indegree(y)

then if the index number ofx is less than the index number ofy

then−→xy else←−xy.

The index number of a vertex referred to in step 4 is a number which distinguishe
vertex ofG from another; it may be the index of the entry that the vertex occupies i
array of vertices ofG. Additionally, note that, in light of Lemma 4.1, the computation
the transitive closureG∗〈−−−→

EC,F 〉 in step 2 can be done by adding a directed edge−→uv for each
directedP3

−−−→uwv. Therefore, for each directed edge
−→
ab of G〈−−−→

EC,F 〉, we go through eac
vertexc of G adjacent tob and check whether the pathabc is a directedP3 of G〈−−−→

EC,F 〉; if
it is so, then the directed edge−→ac needs to be added. To avoid concurrent writes, for e
vertexv we use an arrayHv[x, vy] of sizen × deg(v), wherex andy are vertices ofG
andy is adjacent tov. If the edge

−→
ab and the vertexc form a directedP3 abc, then we

record the fact that a directed edge−→ac needs to be added by setting the entryHa[c, ab]
to 1; the entryHa[c, ab] uniquely corresponds to the pathabc. In the end, the transitiv
closure is produced by adding toG〈−−−→

EC,F 〉 the edges−→uv for which there is a 1 in the
subarrayHu[v,∗]; this can be found inO(logn) time withO(nm/ logn) processors usin
standard interval prefix computations on the EREW PRAM model [2] (note that the
size of all theH arrays is

∑
v(deg(v))2 = O(nm)).

The correctness of the algorithm follows from the following lemma.

Lemma 4.3. For a P4-comparability graphG, ProcedureATRO_P4Gcompletes all the
steps of its description and produces an acyclicP4-transitive orientation ofG.

Proof. Since the input graphG is a P4-comparability graph, then step 1 is comple
successfully, and so are the remaining steps of the algorithm. Clearly all the ed
G are assigned an orientation. Furthermore,according to the discussion in the previo
section, the orientation of the directed graphG〈−−−→

EC,F 〉 is P4-transitive and therefore s
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is the resulting orientation; note that during the execution of Procedure ATRO_P4G
trivial edges (in particular, those that are not forced) receive an orientation. Additio
since step 1 of Procedure ATRO_P4G is completed successfully, then the orienta
G〈−−−→

EC,F 〉 is also acyclic.
Therefore, we need to show that the edges that were oriented in step 4 did not cause t

formation of a directed cycle. Consider an ordering of the vertices ofG from left to right in
increasing order of their indegree inG∗〈−−−→

EC,F 〉 (see step 3) and, in case of ties, in increas
order of their index number. Then, according to Lemma 4.2, all the edges ofG∗〈−−−→

EC,F 〉,
and hence ofG〈−−−→

EC,F 〉, are directed from left to right. Additionally, step 4 guarantees
the edges ofG not in G〈−−−→

EC,F 〉 are also directed from left to right. Therefore, no direc
cycle exists. �
4.1. Time and processor complexity

We assume that the input graphG is connected; thus,n = O(m). Step 1 takes
O(log2 n) time using a total ofO(nm/ logn) processors on the CREW PRAM model (Th
orem 3.5). As described above, the process of computing the transitive closureG∗〈−−−→

EC,F 〉
is based on the processing of all pairs of an edge and a vertex; thus, it can be carr
in O(logn) time using a total ofO(nm/ logn) processors on the CREW PRAM mod
The graphG∗〈−−−→

EC,F 〉 hasn vertices andO(n2) edges; therefore, the computation of t
indegrees of its vertices can be done inO(logn) time with O(n2/ logn) = O(nm/ logn)

processors on the EREW PRAM model. Obviously, step 4 takesO(1) time and requires
O(m) processors on the CREW PRAM model. If the graphG is disconnected, then w
compute its connected components and weapply Procedure ATRO_P4G on each one
them; similarly to the analysis in Section 3.5, we obtain that for a disconnected graph
n vertices andm edges, Procedure ATRO_P4G takesO(log2 n) time usingO(nm/ logn)

processors on the CREW PRAM model. In summary, we have the following result.

Theorem 4.1. An acyclicP4-transitive orientation of a simple graphG on n vertices and
m edges can be produced inO(log2 n) time usingO(nm/ logn) processors on the CREW
PRAM model.

It is worth noting that only step 1 of Procedure ATRO_P4G necessitatesO(log2 n)

time; the remaining steps can all be executed inO(logn) time. Hence, the invention of a
algorithm which computes the directed graphG〈−−−→

EC,F 〉 in O(logn) time would imply the
computation of the acyclicP4-transitive orientation of a graph inO(logn) time.

5. Concluding remarks

In this paper we present efficient parallel algorithms for recognizingP4-comparability
graphs and for computing an acyclicP4-transitive orientation on them. Both algorithm
run in O(log2 n) time using a total ofO(nm/ logn) processors on the CREW PRA
model, wheren and m are the number of vertices and edges of the input graph.
algorithms rely on certain algorithmic and structural properties of theP4-components o
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a graph. To the best of our knowledge, they are the first parallel algorithms for
lems involvingP4-comparability graphs; they are cost-efficient, since the currently
sequential algorithms for these problems takeO(nm) time [28].

The obvious open question is whether we can design cost-optimal parallel algo
for the above problems on the CREW PRAM model. Moreover, cost-optimal or at
cost-efficient algorithms are needed for other well-known and important combinatori
and optimization problems onP4-comparability graphs, such as the coloring problem,
maximum clique problem, the maximal clique and the clique cover problem, etc. We
that, due to the work of Chvátal [5], the coloring problem and the maximum clique pro
can be solved in linear sequential time if an acyclicP4-transitive orientation of the inpu
graph is given.
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