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Abstract

We consider two problems pertaining t#®y-comparability graphs, namely, the problem of
recognizing whether a simple undirected graph i8sacomparability graph and the problem of
producing an acyclicPs-transitive orientation of such a graph. Sequential algorithms for these
problems have been presented by Hoang and Reddvery recently by Raschle and Simon, and
by Nikolopoulos and Palios. In this paper, we establish propertie®,efomparability graphs
which allow us to describe parallel algorithms for the recognition and orientation problems on this
class of graphs; for a graph envertices andn edges, our algorithms run i@ (log?») time and
require O (nm/logn) processors on the CREW PRAM model. Since the currently fastest sequential
algorithms for these problems run ®(nm) time, our algorithms are cost-efficient; moreover, to
the best of our knowledge, this is the first attempt to introduce parallelization in problems involving
P4-comparability graphs. Our approach relies on the parallel computation and proper orientation of
the P4-components of the input graph.
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1. Introduction

Let G = (V, E) be a simple non-trivial undirected graph. Arientationof the graph
G is an antisymmetric direetl graph obtained fronw by assigning a direction to each
edge ofG. An orientationU = (V, F) of G is calledtransitiveif U satisfies the following
condition: if abc is a chordless path on 3 verticesh thenU containsab and b, or
ab andb¢, where byt or u we denote an edge directed franto v. The relationF is
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(a) (b) (c)

Fig. 1. (a) A comparability graph, (b) B4-comparability graph, (c) a graph which is nég-comparability.

called atransitive orientatiorof E or equivalently of the graply [14]. An orientationU

of a graphG is called P4-transitiveif the orientation of every chordless path on 4 vertices
of G is transitive; an orientation of such a paithcd is transitive if and only it2b, be and

cd, orab, be andcd. The term borrows from the fact that a chordless path on 4 vertices is
denoted byP;.

A graph which admits an acyclic transitive orientation is callesbeparability graph
[12,14]; Fig. 1(a) depicts a comparability graph. A graph iBjacomparability graphif
it admits an acyclicPs-transitive orientation [15,16]. In light of these definitions, every
comparability graph is &4-comparability graph. Moreover, there exif-comparability
graphs which are not comparability; Fig. 1(b) depicts such a graph, which is often referred
to as a pyramid. The graph shown in Fig. 1(c) is néyacomparability graph.

In the early 1980s, Chvéatal introduced the claspafectly orderableyraphs [5]. This
is a very important class of graphs, since a number of problems, which are NP-complete
in general, can be solved in polynomial time on its members [3,5]; unfortunately, it is
NP-complete to decide whether a graph is perfectly orderable [23]. Chvatal showed that the
class of perfectly orderable graphs contains the comparability and the chordal graphs [5];
thus, it also contains important subclasses of comparability and chordal graphs, such as
the bipartite graphs, permutation graphs, interval graphs, split graphs, cographs, threshold
graphs [14]. Later, Hoang and Reed introduced the classes dftitcemparability, the
Ps-indifference, thePs-simplicial and the Raspail (also known as bipolarizable) graphs,
and proved that they are all perfectly orderable [16]. Moreover, the class of perfectly
orderable graphs also includes a number oéotitasses of graphs which are characterized
by important algorithmic and structural properties; we mention the classes of brittle, co-
chordal, HHD-free, Meynieh co-Meyniel, P4-sparse, ptolemaic [14]. We note that the
class of perfectly orderable graphs is a subclass of the well-known class of perfect graphs.

Many researchers have devoted their work to the study of perfectly orderable
graphs. They have proposed both sequential parallel algorithms for many different
problems on subclasses of perfectly orderable graphs, such as, recognition as well as
problems pertaining to finding maximum cliques, maximum weighted cliques, maximum
independent sets, optimal coloring, breadtitfsearch trees and depth-first search trees,
hamiltonian paths and cycles, and testing graphs for isomorphism [1,3,6-13,15,16,18-22,
24-29,31].

The comparability graphs in particular have been the focus of much research in recent
years which culminated into efficient recognition and orientation algorithms. Golumbic
presented algorithms for recognizing and assigiiansitive orientations on comparability
graphs inO(dm) time and O(n + m) space, where:,m, and d are the number of



S.D. Nikolopoulos, L. Palios / Journal of Algorithms 51 (2004) 77-104 79

vertices, the number of edges, and the maximum degree of the input graph respectively
[13,14]. Due to the work of McConnell and Spinrad [21,22], the modular decomposition
and transitive orientation problems for comparability graphs can be solvédrint- m)

time. This gives linear time bounds for maximum clique and minimum vertex coloring on
comparability graphs, as well as other combinatorial problems on comparability graphs
and their complements. Recently, Morvan afidnnot [24] presented parallel algorithms

for the recognition and the computation of a transitive orientation of comparability graphs;
their algorithms run irO (logn) time and require (dm) processors on the CRCW PRAM
model. They also presented a modular deposition parallel algorithm which runs in

O (logn) time with O (n®) processors on the same model of parallel computation.

On the other hand, th&;-comparability graphs have not received as much attention,
despite the fact that the definitions of the comparability andRlxeomparability graphs
rely on the same principles [11,15,16,28,29pang and Reed addressed the problems of
recognition and acycli@s-transitive orientation on the class &f-comparability graphs
and they described polynomial time algorithfastheir solution [15,16]. Their recognition
and orientation algorithms requir@ (n*) and O (n°) time respectively, where is the
number of vertices of;. Newer results on these problems were provided by Raschle and
Simon [29]; their algorithms for either problem rundn + m?), wherem is the number
of edges ofG. Different O (n + m?)-time recognition and acycli®;-transitive orientation
algorithms for P4-comparability graphs were preded by Nikolopoulos and Palios [27],
while recently the same authors impeal their algorithms achieving af (nm)-time and
O (n + m)-space complexity [28].

In this paper, we present parallel algorithms for the recognition and the acyclic
Ps-transitive orientation problems aPy-comparability graphs and analyze their time and
processor complexity on the PRAM model of computation [2,17,30]. Both algorithms run
in O (log?n) time using a total o) (nm/logn) processors on the CREW PRAM model,
wheren andm are the number of vertices and edges of the input graph. They rely on
structural properties oP4-comparability graphs, and on efficient parallel algorithms for
the computation an#ts-transitive orientation of th&4-components of the input graph. Our
algorithms are cost efficient and, to the best of our knowledge, they are the first parallel
algorithms for problems involvings-comparability graphs.

The paper is structured as follows. Ie@&ion 2 we review the terminology that we
will be using throughout the paper and we state some useful lemmas. We describe and
analyze the recognition and acychg-transitive orientation algorithms in Sections 3 and 4,
respectively, while in Section 5 we conclude with a summary of our results, extensions and
open problems.

2. Theoretical framework

We consider simple non-trivial graphs. L@&tbe such a graph; we denote the vertex set
and edge set off by V(G) and E(G) respectively. Apathin G is a sequence of vertices
vov1 ... Such thatv;_1v; € E(G) fori =1, 2,...,k; we say that this is a path fromg
to vx and that itdengthis k. The path is undirected or directed depending on whather
is an undirected or a directed graphdisectedpathvpv: ... v, is a path such thaipvi,
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V105, ..., Ur_1v;. A path is calledsimpleif none of its vertices occurs more than once; it
is calledtrivial if its length is equal to 0. A path (simple patbyv; . . . v is called acycle
(simple cyclgof lengthk + 1 if vovr € E(G). A simple path (cycleyovs . .. vy is chordless
if v;v; ¢ E(G) for any two non-consecutive vertices v; in the path (cycle). Throughout
the paper, the chordless patih¢edless cycle, respectively) anvertices is denoted by,
(Cn, respectively). In particular, ehordless path on 4 vertices is denotedfay

Let abcd be a P4 of a graphG. The verticesh and ¢ are calledmidpointsand the
verticesa andd endpointsof the P4 abcd. The edge connecting the midpoints ofPa
is called therib; the other two edges (which are incident upon the endpoints) are called
wings For example, the edge: is the rib and the edgesh andcd are the wings of the
P4 abed. Two Py4s are calledadjacentif they have an edge in common. The transitive
closure of the adjacency relation is an equivalence relation on the #gs aff a graplG;
the subgraphs of; spanned by the edges of tiRs in the equivalence classes are the
Ps-component®f G. Clearly, eachPs-component is connected and for any twWgs p
andp’” which belong to the samB;-component, there exists a sequence of adjacBig
in C from p to p’. With a slight abuse of terminology, we consider that an edge which
does not belong to anys belongs to aPs-component by itself; such a component is
calledtrivial. A P4-component which is not trivial is calledon-trivial; clearly a non-
trivial P4-component contains at least ofa. If the set of midpoints and the set of
endpoints of thePss of a non-trivial P4-component partition the vertex se¥ (C), then
the P4-component is calledseparable

The definition of aP4-comparability graph requires that such a graph admit an acyclic
P4-transitive orientation. However, Hoang and Reed [16] showed that in order to determine
whether a graph is &4-comparability graph one can restrict one’s attention to the
Ps-components of the graph. In particular, what they proved [16, Theorem 3.1] can be
paraphrased in terms of tig-components as follows.

Lemma 2.1[16]. Let G be a graph such that each of iy-components admits an acyclic
P4-transitive orientation. Thei is a P4-comparalility graph.

Although determining that each of thi-components of a graph admits an acydlie
transitive orientation suffices to establish that the grapfyisomparability, the directed
graph produced by placing the orientBg.components together may contain cycles. How-
ever, an acyclid’s-transitive orientation of the entire graph can be obtained after inversion
of the orientations of some of the;-components. Therefore, if one wishes to compute an
acyclic P4-transitive orientation of &4-comparability graph, one needs to detect directed
cycles (if they exist) formed by edges from more than éaecomponent and appropri-
ately invert the orientation of one or more of thedgcomponents. Fortunately, one does
not need to consider arbitrarily long cycles as shown in the following lemma [16].

Lemma 2.2[16, Lemma 3.5]If a proper orientation of an interesting graph is cyclic, then
it contains a directed trianglé.

1 An orientation isproperif the orientation of everyP, is transitive. A graph isnterestingif the orientation
of every P4-component is acyclic.
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For a non-trivialP4-component, the set of vertice¥ (G) — V(C) can be partitioned
into three sets: the s& contains the vertices df (G) — V (C) which are adjacent to some
(but not all) of the vertices itV (C), the setP contains the vertices of (G) — V(C) which
are adjacentto all the vertices¥(C), and the seQ contains the vertices &f (G) — V(C)
which are not adjacent to any of the verticed/iC). The adjacency relation is considered
in terms of the input grapty.

In [29], Raschle and Simon showed that, for a non-trivigicomponent and a vertex
v ¢ V(C), if vis adjacent to the midpoints of &, of C and is not adjacent to its endpoints,
then so isv with respect to every, in C (that is,v is adjacent to the midpoints and not
adjacent to the endpoints of evePy in C). This implies that any vertex af, which does
not belong taC and is adjacent to at least one but not all the verticdg(f), is adjacent
to the midpoints of all theP4s inC. Based on that, Raschle and Simon showed that:

Lemma 2.3[29, Corollary 3.3]LetC be a non-trivialPs.-componentan® # @. Then( is
separable and every vertex Ris Vi-universal andv,-null.2 Moreover, no edge between
R and Q exists.

The setV; is the set of the midpoints of all theys inC, whereas the sét; is the set of
endpoints. Figure 2 shows the partition of the vertices of a graph with respect to a separable
P4-component; the dashed segments betwgeand R, and P and Q indicate that there
may be edges between pairs of vertices in the corresponding sets. Thewijth at least
one but not all its vertices i (C) must be aP4 of one of the following types:

type (1) vpqig2, wherev € V(C), p € P, q1,q2 € O,
type (2) pivp2q, wherepi € P,ve V(C), p2€ P,q € O,
type (3) p1vapor, wherepi € P,vp€ Vo, pp€ P, r € R,
type (4) voprire, wherevo € Vo, p€ P, r1,r2 € R,

type (5) rvipg, wherer e R,v1€ V1, pe P,q € Q,
type (6) rvipuvz, wherer e R, v1 € Vi, p € P, v2 € V>,
type (7) rvivavy, wherer € R, v1 € Vi, v2, v € V2,

type (8) U;/LVUlUZ, wherer € R, vg, Uﬁ_ € V1, v2 € Vo

2 For a setA of vertices, we say that a vertexs A-universal ifv is adjacent to every element 4f a vertexv
is A-null if v is adjacent to no element df.
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Raschle and Simon proved that neithePsabc with a € V1 andb, ¢ € V> nor a P3 abe
with a, b € V1 andc € V; exists [29, Lemma 3.4], which implies that:

Lemma 2.4 [29]. LetC be a non-trivial P4-component of a grapty. Then, noPss of type
(7) or (8) with respect ta’ exist.

Let us consider a non-triviagts-component of the graphG such thatV (C) c V(G),
and letS¢ be the set of non-triviaP4-components of; which have a vertex belonging to
V(C) as well as a vertex not it (C). Then, each of th&s-components iz contains a
P4 of type (1)—(8) with respect t6. Additionally, if we take Lemma 2.4 into account, we
can partition the elements 6§ into two sets as follows.

e Ps-components of typ@): the P4 components, each of which contains at least Bne
of type (1)—(5) with respect t6;

e P4-components of typéB): the Ps-components which contain onl§ss of type (6)
with respect t.

Let B be a P4-component which is of type (B) with respect toPa-componentC.
Then, the general form of &, of type (6) with respect t@ implies that every edge of
B has exactly one endpoint i¥i(C), that if an edge oB is oriented towards its endpoint
that belongs toV(C), then so are all the edges 8f and that the edges @& incident
upon the same vertex are all oriented either towardsor away from it. The following
lemma is the heart of our algorithm for computing an acy&ljetransitive orientation of a
P4-comparability graph (for the proof, see [28]).

Lemma 2.5. LetCy1,Co, ..., C; be the non-trivialP4-components of a grapty ordered

by increasing vertex number and suppose that each component has received an acyclic
Ps-transitive orientation. Consider the se = {C; | j < i and(; is of type (B) with
respecttaC;}. If the edges of eacRs-componen€; such thatS; # ¢ get oriented towards

their endpoint which belongs ¥ (C;), wherei = min{;j | C; € S;}, then the resulting
directed subgraph o&; spanned by the edges of tles (1 < i < ¢£) does not contain a
directed cycle.

Notation. Let G be a simple graph. Hereafter, the subgraptGoinduced by a vertex
subsetS C V(G) is denoted byG[S] and the subgraph spanned by an edge sullvset
E(G) is denoted byG(W). In the case that all the edges Wi have been assigned an
orientation, the directed subgraph spanned by the oriented edges is dendteﬁby

Additionally, we will be assuming that the input graghhask P4-components, among
which ¢ are non-trivial (1< ¢ < k). Without loss of generality, we assume that theon-
trivial P4-components arés, Ca, ..., C, in order of increasing vertex number, while the
trivial ones areC, 41, . . ., Ck.

Finally, with a slight abuse of notation, we will be using vertices or edges to index
arrays.
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3. P4-comparability graph recognition

We will assume for the time being that the input graph is connected; the case of a
disconnected input graph is addressed in Section 3.5. S@; k¢ a connected simple
graph om: vertices andn edges. Them = O (m) and logn = ® (logn).

Let Ec andE7 be the sets of the edges of all the non-trivial and triglcomponents
of G respectively; because the edgedtiyn span trivial P4-components, we will refer to
these edges dsvial edges Since an edge belongs to exactly ahecomponent, it follows
that E(G) is equal to the disjoint union afc andE 7.

Our parallel P4-comparability graph recognitionlgorithm involves the following
algorithmic steps.

Algorithm REC_P4G (for the recognition of aP4-comparability graphG).

Phase |. Compute theP,-components of the grapi and a P4-transitive orientation(if
one existsof each one of them.

1. Compute thePss that participate irP4s in G: compute the BFS-trees (up to the 3rd
level) of the complemen® of the graphG rooted at each ofi's vertices and extract
from them the soughPss.

2. Compute andP-transitively orient theP;,-components of5: construct an auxiliary
graph@ which has 2 vertices (two vertices,, andi,, for each edgery of G),
and O (nm) edges recording information on thigs of G which participate inPss;
two verticesii,, andii,, (respectivelyi,, andi,;) are adjacent irG iff xyzisa
Pz in G participating in aP4 in G. Then, the connected components@fyield
the Ps-components ofG while the subscripts of the vertices in these connected
components yield thé,-transitive orientations of th&,-components.

LetCy,Co, ..., C, be the non-trivialPs-components of the input graghand letE, E2,
..., E¢ be their edge sets.

Phase I1. Check for directed cycles in the orient@gd-components.

3. Combine the oriented non-trivi#s-components: compute appropriate inversions (if
needed) of thePs-transitive orientationﬁ;(ﬁ), G(FE), R G(Ez) of the non-trivial
P4-componentsCy, Ca, ..., Cy, SO that the directed grapﬁ(E_é), spanned by the
directed edges ifé =E1UE>U---UEy,is acyclic if eachPs-transitive orientation
G(E) is acyclic.

4. Detect directed cycles in thes-transitive orientations of the non-trivigts-compo-
nents: locate all those trivial edges of the grapFor which the directed grapG(FC))
contains a directed path from one of their endpoints to the other, and orient them so
that no cycle is formed (i.e., the orientation matches the direction of the path). Add
the oriented edges IG(E_C»)) producingG(E). This has the effect that any directed
cyclesinG (E‘é) giverise to a directed triangl€g) or a directed”4 in G (ﬁ). Then,
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G is a P4-comparability graph if and only i (E¢ r) does not contain a directetk
or a directed’4.

Steps 1 and 2 compute and orient tRecomponents of the input graph; note that
step 2 detects if &4-component cannot admit Bs-transitive orientation (for example,
if the graph contains &s), in which case, the algorithm reports that is not a
P4-comparability graph and terminates. Step 3 computes appropriate orientation inversions
of the non-trivial P4-components based on Lemma 2.5, which guarantees tldaidsfa
P4-comparability graph then the resulting directed graﬂIE‘é) spanned by the edges of
the non-trivial P4-components has an acyclia-transitive orientation.

Remark 3.1. We note that in order to determineGf is a P4-comparability graph, it would
suffice to check whether thes-transitive orientation of eacBs-component (after step 2)

is acyclic (Lemma 2.1). Finding a cycle in the directed graplE;) correspondirg to

the P4-componentC; can be done either by computing the transitive closur& ¢f;)

or by the method employed in step 4 above. The former approach turns out to be rather
expensive in the number of processors; recall thatRirxeomponents share vertices and
that the computation of the transitive closure of a graphorertices takesD (log?n)

time using O (M (n)/logn) processors on the CREW PRAM, wheké(n) ~ n2376 js

the best-known sequential bound for the multiplication of twox n)-size arrays [17].

The latter approach also proves to be expensive; in order to be immune to orientation
conflicts on the trivial edges arising from the fact that edbcomponent is assigned

an orientation independently from the orientations of the remairtggomponents,

one needs to maintain separate orientatassignments for the trivial edges for each
non-trivial P4-component. As there may exi& (m) trivial edges and2 (m) non-trivial
P4-components, one needs to be able to prog&gs?) amount of information which may

very well exceed the desire@ (nm logn) cost. Therefore, both of the above approaches
exhibit high computational cost.

In the following paragraphs, we presentgéel implementations for each step of the
proposed algorithm.

3.1. Computing the&’ss that participate inP4s in the graphG

The P3s that participate inP4s in G are computed by means of the BFS-trees of the
complement of the graphG rooted at each of’s vertices. The approach is the one used
in [28]; we give next the basic ideas. It is important to observe thabdtl is a P4 of G
then its complement is the; bdac and it belongs t@. If we consider the BFS treE (b)
of G rooted ath, then the vertices, d, anda have to belong to the 0th, 1st, and 2nd level
respectively; the vertex may belong to the 2nd or 3rd level, but not to the 1st level since
c is not adjacenttd in G (see Fig. 3).

In particular, aP3 abc of the graphG participates in aP4 in G if and only if in the
BFS-treeT(b) rooted ath either exactly one of:, c belongs to the 2nd level and the
other one to the 3rd level (see Fig. 3, case on the left) or bathdc belong to the 2nd
level and there exists at least one vertexhia 1st level which is adjacent to exactly one
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Fig. 3. The two placements of they bdac in the treeTz (b).

of them (see Fig. 3, case on the right). From a complexity point of view, working with the
complement of G has the important benefit that the vertices in the 2nd and 3rd level of
the BFS-tree o6 rooted at a vertex are all adjacent to in G, and thus their total number
does not exceed the degreevah G.

Next, we present a formal description of the construction procedure. The procedure uses
a(2m x n)-size arrayM [ |, whose entries are denoted k4 (a, b), c]wherea, b, c € V(G)
anda, b are adjacent irG.

Procedure COMPUTE_P3s (for the computation of thess that participate inPss in
the graphG).

1. Initialize to O all the entries of the array[].
2. For each vertex of the graphG do in parallel
2.1 compute the sefs; (v), L2(v), andLz(v) of vertices in the 1st, 2nd, and 3rd level
of the BFS tred/z (v) of the complemenG rooted atv;
2.2 partition the seL(v) into subsets of vertices so that two vertices belong to the
same subset iff they have (@) the same neighbors ib; (v);
2.3 for each vertex € La(v) do in parallel
2.3.1 for each vertex € L3(v) do in parallel
if x, y are not adjacent it/
thenM[(v, x), y] < 1 {P3 xvy participates in &4 in G};
M[(v,y),x] < 1;
2.3.2 for each vertex € Lo(v) do in parallel
if x, y are not adjacent ir andx, y belong to different partition sets
of La(v), thenM[(v, x), y] < 1 {P3 xvy participates in &4 in G}.

The correctness of Procedure COMPUTE_P3s follows from the fact that/stiof
each P, of the graphG are taken into account: for &4 abcd of G, the P3 abc will
be reported by the algorithm while processing the BFS-tre6 oboted ath, while the
P3 bed will be reported while processing the BFS-tree rooted. &iote that for the case
on the left in Fig. 3, theP3 abc will be reported by means of substep 2.3.1; the case on the
right in Fig. 3 is covered by substep 2.3.2.
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3.1.1. Time and processor complexity

We shall use a step-by-step analysis for computing the time and processor complexities
of each step of Procedure COMPUTE_P3s.

1. The initialization of the(2m x n)-size arrayM[] can be carried out i (1) time
usingO (nm) processors, or i (logn) time usingO (nm/logn) processors on the EREW
PRAM model.

2. This step is executed for each vertex V(G) and consists of two substeps. In
substep 2.1 we compute the sétg(v), L2(v), andL3(v) of the vertices of the 1st, 2nd,
and 3rd level respectively of the BFS trég(v) of the complemenG rooted aw. For this
computation, we work as follows.

Computation of all the vertices of tlst, 2nd and3rd levels of7z (v):

(i) compute the vertex sef¢(v) andV (G) — N (v) of the graphG;
Li(v) <~ V(G) — N(v);
(i) La(v) <9,
for each vertex; € N(v) doin parallel
compute the number; of neighbors ofx; (in G) which belong toL1(v);
if n; <|L1(v)| then addx; to Lo(v);
(i) Ls(v) < 0;
for each vertex; € N(v) — L2(v) doin parallel
compute the number; of neighbors ofx; (in G) which belong toLa(v);
if n; <|L2(v)| then addy; to L3(v).

(i) We use an auxiliary arrayi,[] of lengthn and setA,[i] < 1, for 1<i <n. Then,
for each vertex; adjacent to vertex, we setA,[u;] < 0. Using parallel prefix and array
packing computations oA,[], we can compute the vertices of the $8iG) — N (v), i.e.,
the vertices of the sdt; (v), in O(logn) time usingO (n/logn) processors on the EREW
PRAM model.

(i) Initially, we set A,[i] < 0, for 1< i < n. Then, for each vertex; € N(v), we
compute the number; of neighbors ofy; which belong toL(v); this computation takes
O (log(degx;))r) time and require® (degx;)) processors on the CREW PRAM model.
Next, we setd,[x;] < 1 if n; < |L1(v)[; this assignment operation takég1) sequential
time. Note that the numbet1(v)| is computed inO(logr) time using O (n/logn)
processors on the EREW PRAM model. Thus, the whole step t@kkgyk) = O (logn)
time and requireS)(Zl‘.Z(l”)' degx;)r) = O(m) processors on the CREW PRAM model,
wherek = MaXi<i <IN )| degx;) = O(n).

(iii) This step is executed ithin the same time and processor bounds as step (ii).

Complexity of substep.1. Since substep 2.1 is executed for each vertexV (G), it
requires in totalo (logn) time with O (nm) processors on the CREW PRAM model.

In substep 2.2 we partition the sEb(v) into subsets of vertices so that two vertices
belong to the same subset if and only if they have@nthe same neighbors i1 (v).
Let x1,x2, ..., xx(y) be the vertices of the sétx(v); clearly, k(v) < degwv) since all the
vertices inLy(v) are adjacentte in G. Moreover, letV, [] be an array of size such that
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N,[yl=1if y € L1(v) andy is a neighbor of in G and N,[y] = 0 otherwise (note that
two vertices of the sdlt(v) have the same neighborsiin (v) in the graphG if and only if
they have the same neighborsglin(v) in the graphG). It is then obvious that two vertices
xi,xj € La(v) have (inG) the same neighbors by (v) if and only if Ny;[1= Ny, [, that
iS, Ny, [pl = Ny;[p] forp=1,2,...,n. Thus, we compute an array[] of sizek(v) such
that, forx;, x; € La(v), Sy[x;] = Sulx;]ifand only ifx;, x; have (inG) the same neighbors
in L1(v).

Computation of the array,[]:

(iv) Aul]l < [x1,x2,..., xk], thatis,Ay[i] < x; fori =1,2,..., k(v);
(v) for each vertex; € Lo(v) doin parallel
for each vertew € V(G) do in parallel
if y € L1(v) andx; is adjacent toy in G thenNy,[y] <— 1 elseNy, [y] < 0;

(vi) sortthe verticesy, xo, ..., Xk inthe arrayA, [] according to their neighbors in the
setL1(v), i.e.,x; < xj, iff the contents ofV,, [] form a string of Os and 1s which is
lexicographically smaller or equal to the corresponding striny.of];

(vii) construct an auxiliary graplff having vertex seV (H) = {x1, x2, ..., Xk} and
edge sefF (H) =0,
(viii) foreachi =2,3,...,k(v) doin parallel
u < Ayli], w < Ayli —1];
if N,[]1= Ny[]then add the edgew to E(H);

(ix) compute the connected components of the gripland letC,[] be the output array
of lengthk(v) such thatC,[x;] = Cy[x;] iff x;, x; belong to the same connected
component of the grapH;
copy the contents af,[] to S, [].

(iv) The auxiliary arrayA,[] of lengthk(v) < degv) can be computed i@ (1) time
using O (degv)) processors on the EREW PRAM model.

(v) The vertexy belongs toL1 (v) if and only if the vertices, y are not adjacent i .
Since the sef.>(v) containsO(dedqv)) vertices and the adjacency in the gra@hcan
be checked ir0 (1) sequential time (using afr x n)-size array), the array,,[] can be
computed inO (1) time usingO (n degv)) processors on the CREW PRAM model.

(vi) It is well known that the sorting problem an elements has an optimal solution
which takesO (logn) time and requireg) (n) processors on the EREW PRAM model
[2,17]. Moreover, we can check whether the contentsNgf[] form a string which
is lexicographically smaller or equal to that of,[] in O(logn) using O(n/logn)
processors on the EREW PRAM model. Thus, this step can be executeddg? n)
time using O (ndegqv)/logn) processors on the EREW PRAM model; recall that the
array Ny, [] is of lengthn, 1 <i <k(v).

(vii) Sincek(v) < degv), we can copy the verticeg, xo, ..., xky) Of L2(v) in the set
V(H) in O(1) time with O (degv)) processors on the EREW PRAM model.

(viii) It is easy to see that, for each valueigfthe condition of the if-statement can be
checked inO (logn) time usingO (n/ logn) processors on the EREW PRAM model. Thus,
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the whole step can be executeddr{logn) time usingO (n deqv)/logn) processors on
the same model of computation.

(iX) By construction, the graptH has O(degqv)) vertices and less thak(v), i.e.,
O (degv)), edges. Thus, the connected components of the gkaghAn be computed in
O (logn) time using a total of) (deqgv)) processors on the EREW PRAM model [4] (for a
graphG onn vertices andr edges, the parallel connectivity algorithm in [4] computes the
connected components 6f in O (logn) time usingO (n + m) processors on the EREW
PRAM). Finally, copyingC,[] in S,[] takesO (1) time andO (deqv)) processors on the
EREW PRAM model.

Complexity of substep2. Since substep 2.2 is executed for each vertexV (G), it re-
quires in totaIO(Iogzn) time with O((}_, ndegv))/lognr) = O (nm/logn) processors
on the CREW PRAM model.

In substep 2.3, we compute thigm x n)-size arrayM[] such thatM[(v, x), y] =1
if and only if xvy is a P3 of the graphG which participates in aPs in G. Since
Lo(v) N L3(v) =¥ andL>(v), L3(v) € N(v), substep 2.3 can be carried outi{(1) time
usingO (ded/(v)) processors on the CREW PRAM model; it is assumed that the adjacency
in G is checked in constant time using @nx n)-size array.

Complexity of substep3. This substep is executed for each vertex V (G) and, thus,
in total, it requiresO (1) time with O (3, ded(v)r) = O (nm) processors on the CREW
PRAM model.

Taking into consideration the time ammtocessor complexity of each step of the
procedure COMPUTE_P3s, we conclude that it is executed {fog?n) time with
O (nm/logn) processors on the CREW PRAM model. Thus, we have proved the following
result.

Theorem 3.1. Let G be a connected simple graph on vertices andm edges.
ProcedureCOMPUTE_P3somputes all thePss of the graphG that participate in aP,
in O (log?n) time usingO (nm/ logn) processors on the CREW PRAM model.

3.2. Computing and orienting th®-components of the grapt

The algorithm uses an auxiliary grapﬁ which serves as a constructive tool
for computing the P4-components of the grapléy and for deciding whether each
Ps-component admits @4-transitive orientation; if so, the algorithm produces such an
orientation for eachPs-component.

The graph@ has 2n vertices andO (nm) edges, and records all thBss which
participate inP4s in G. In particular,

v(@) = {ﬁxy, Hyy | xy € E(G)}
and

-~

E(G) = {iixylizy, yxily; | xyzisaPzinaPsin G}.
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Fig. 4. If G is the pyramid, the grapﬁ has 6 connected components.

That is,G has two vert|ces say., andi,,, for each edgey of G, and for eachP3 xyz
participating in aP4 in G, G has an edge connecting the vertiges andii;, and another
edge connecting the verticéis, andi,. It is important to note the subscripts of the
vertices incident upon an edge 6f the two edges corresponding to eahin a P4 of
G connect vertices off whose subscripts correspond to the two transitive orientations of
the P3; in this way, from the twoPss of a P4 of G, G will contain two pairs of incident
edges which correspond to the twig-transitive orientations of th&,. Figure 4 gives an
example of the construction; it depicts the grapwhen the grapl@ is the pyramid.

The definition of the graply implies thatG has the following important properties:

(A1) The edges of5 corresponding to the vertices of each connected componeﬁt of
span aP4-component ofG.

(A2) Each of thePs-components of the grapfi admits aPs-transitive orientation if and
only if for no pair of verticesx, y € V(G) bothi,, andi,, belong to the same
connected component 6.

(A3) If each of thePs-components of the graphi admits aPs-transitive orientation, then
the connected components(afcan be partitioned into pi of “twin” components,
i.e., for each vertes,, belonging to the one componentin such a pair, the vergx
belongs to the other component in the pair. If we select one component from each
such pair, then, for each edge of G, we will pick exactly one of the vertices,,
andi,,; then, we obtain &4-transitive orientation of eacks-component oiG by
orienting the edge in accordeswith the ordering of theubscripts of the selected
vertices, i.e., if the vertex,;, is selected then the edge 6fconnectingz andb is
oriented fromu to b.

Property (A3) relies on the following lemma.

Lemma 3.1. Let G be a simple graph and la¥ be the corresponding graph obtained as
descrlbed in thls section. Addltlonally, Iét (1<i<p) be the connected components
of G If tigp € C, andiip, € C,, then, for every vertex,; C,, the vertexi,; belongs
to C.,
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Proof. Sinceu,, andiy, both belgng to(A?,-, there exists a path fror,, to i,;. Then,
by thg construction of the grap&, there exists also a path frody, to ;. Thus,
ﬁts (S C] O

The following procedure takes advantage of the propertie%ioforder to compute and
P4-transitively orient theP4-components of the input graggh.

Procedure COMPUTE_TRO_P4C (for computing and P4-transitive orienting the
P4-components of the grapt).

1. Construct a grap@ having vertex seV(@) = {ilxy, Uyx | xy € E(G)} and edge set
E(G)=
2. For eachPs; xyz reported by Procedure COMPUTE_P3s, add the edgses.,
andiiyiiy; to the setE(@), where byiu,, andi,, we denote the vertices o
corresponding to the edge of G.
3. Compute the connected componmﬂs@z, .. Cp of the graprG
IetC[] be the output array of lengthw2such thaC[u”] C[uzw] iff fixy, i1z, belong
to the same connected componentulgltyl, Uxpyys - - -+ Ux,y, DE the representatives of
the connected componerts, Cz, .. Cp respectlvely.
4. For each representatm@,), € C, do in parallel
if C[ux yi1 = Clily,x; 1, thenAlx; ;1 <— 1 {A[]is an array of size:2 initialized to O}.
5. Check if all the 2: entries of the arrayA[] have values equal to 0;
if this is not the case then the grapghis not a P4-comparability graph; exit
{if the procedure does not exit here, then e@ghcomponent of the grapi admits
a Ps-transitive orientatiof.
6. Seleck = p/2 connected components frofh, Co, .. Cp as follows:
for each representativg, ,, € C,, 1<i<p,doin parallel
find the representativé,;,; of the connected compone@y; that contains the
vertexiy, ; ;
if the index number ofi,,, is less than the index number &f;

jYi
then select the connected compor@nt
7. LetCy, Co, ..., Cy be the connected components selected in step 6;
for each vertexiy, € C;, 1<i <k, doin parallel
orient the edgey of G fromx to y.

Observe that in step 6 exactly one component from each pair of “twin” connected
components will be selected. K1, E», ..., E; are the edge sets corresponding to the
vertex sets of the selected componefitsCo, ..., Ci respectively, then the gragh hask
P4-components with edge sefg, Eo, ..., Ej.

Additionally, all the edges of; get oriented in step 7; for each edge of G, the
graphG contains two verticesi,, andii,,, exactly one of which belongs to one of the
Cis, 1< i < k. The correctness of the algorithm follows from the stated properties of
the graph(A} the correctness of step 4 relies on Lemma 3.1, which implies that if a pair
of vertlceSth), ityx belong to the _same connected compor(é,ntthen for every vertex
Uah € C,, the vertexi,, belongs toC, as well.
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3.2.1. Time and processor complexity

We now compute the time and processor complexities of each step of Procedure COM-
PUTE_TRO_PA4C.

1. The 2n vertices of the graphﬁ can be easily computed from the adjacency list
of the input graphG. Let v1, vy, ..., v, be the vertices of;. We use an array[] of
length 2n for the implementation of the vertex s@t(@): for each edgev;v; of G,
we setP[kij] < iy, and Plk;ji] < iy, Wherek;; = >j_7degve) + rank(v;, v)),
kji = Zé;i degve) + rankv;, v;), and rankv, u) denotes the rank of the vertexin
the adjacency list of the vertex Furthermore, we establish pointers from each of the
two verticesit,,,; andii,;,, to the other. It is easy to seedththis step can be completed
in O(logn) time with O (m/logn) processors on the EREW PRAM model, using prefix
sums and list ranking computations [2,17].

2. The procedure COMPUTE_P3s computes all Bge that participate inPss in the
graphG, and stores this information in the arraf{] of size (2m x n) (see Section 3.1);
recall thatM[(v, x), y] = 1 if and only if xvy is a P3 participating in aPs in G. Since
the size ofM[] is O (nm), the computation of the edge sBtG) of the grath can be
completed |n0(1) time usingO (nm) processors on the EREW PRAM model.

3. The grath has 2n vertices andO (nm) edges. Thus, the connected components
C1,Co, .. Cp of the grath can be computed i® (logm) time using a total oD (nm)
processors on the EREW PRAM model [4]. Cleapy 2m.

4. Step 3 computes the connected components of the gﬁamrat is, an arraﬁ[] of
length 2n such thaC[ux)] C[uzw] if and only if ity i, belong to the same connected
component. Thus, thanks to the pairg between each pair of vertrcescot:orrespondrng
to the same edge df, the arrayA[] can be easily computed i@ (1) time usingO (m)
processors on the EREW PRAM model.

5. The decision whether the arrayf] contains at least one entry with value equal to 1
can be done ir0 (logm) time with O (m/logm) processors on the EREW PRAM model
(it can be done by simply finding the maximum elemen#gf).

6. Step 5 guarantees that for noy € V(G) the verticesiy, andi,, both belong to
the same connected componem(l < i < p). Then, from property (A3) of the graph
the p connected componen&y, . Cp form k = p/2 pairs of “twin” components. In
this step, we have to select one component femoh such pair, obtaining a collection of
component€y, Co, ..., Ck, which implies that ifi,, € C; theni,, ¢ C;, for 1< j <k.
The vertices of the connected componafisCo, ..., Cx can be computed as follows:

Computation of the vertices of the connected compor@ntso, ..., Ci:

(i) for each representative,,, of Ci, 1<i < p,doin parallel
ﬁx].yj <~ (A?[ﬁy,.x,.] {representative of component containiihg,, }
if the index number ofi,,, is greater than the index numberibf,
thenC[ux, vl <0 {mark the representative OEf h

(i) for each vertexiy, € V(G) do in parallel
if C[ux)] =0 orC[C[ux) =0{the representative is marked
thenDliixy,] < (0, ityy) elseDlii,] < (C[ux)] lxy);
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(iii) Sortthe arrayD[] and, then, delete the pai(8, i),
the vertices of the selected connectednponent are in consecutive positiongJfi;
assign them to setsy, Co, ..., Cy.

(i) In order to ensure that the body of tterfloop will be executed exactly once for each
representativé,,,,, 1 <i < p, we make a copy of the arrzfy[], sort it, and then execute
the for-loop for each entry of the sorted arralieh differs from the entry preceding it in
the array. The if-statement can be execute®ifl) sequential time for each vertéx,,;,
1<i < p. Sincep < 2m andn elements can be optimally sorted ih(logr) time with
O (n) processors on the EREW PRAM model [2,17], the whole step takésgm) time
and used® (m) processors on the EREW PRAM model.

(ii) It is easy to see that both steps are executed () time with O (m) processors on
the CREW PRAM model.

(iii) This step is executed i® (logm) time with O (m) processors on the EREW PRAM
model.

Thus, the above described procedure computes the vertices of the connected compo-
nentsCi, Co,...,Cr in O(logm) time using O (m) processors on the EREW PRAM
model.

7. The vertices of the connected compone@isCa, ..., Cy computed in step 6
correspond to edges of the graghThus, having computed the vertices of each connected
componentCy, Co, ..., Ct, the orientation assignment can be executed () time using
O (m) processors on the EREW PRAM model.

Taking into consideration the time ammtocessor complexity of each step of the
procedure COMPUTE_TRO_P4C and the fact thatlog ® (logn) because the graph
is connected, we conclude that:

Theorem 3.2. ProcedureCOMPUTE_TRO_P4Quns in O(lognr) time using O (nm)
processors on the CREW PRAM model.

Corollary 3.1. Let G be a connected simple graph ervertices andn edges. Then, the
P4-components of the graph can be computed angy-transitively oriented in0 (log? )
time usingO (nm/logn) processors on the CREW PRAM model.

In the following, we will be processing the non-trivigh-components. These can be
easily located as they contain at least 3 edgé®reas the trivial ones contain exactly one
edge.

3.3. Combining the oriented non-trivids-components

The procedure for combining the oriented non-triviBl-components relies on
Lemma 2.5: ifC1, Co, ..., C, are the non-trivialP4-components of a grap&i ordered by
increasing vertex number, then the edges of eBgliomponent’; which is of type (B)
with respect to anothePs-component’; with j < i are oriented towards their endpoint
which belongs toV (C;), wherei = min{j | C; is of type (B) with respect td’;}. If the
P4-component; is not of type (B) with respect to angs-component; with j < i, then
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C; may be assigned anfy-transitive orientation; in particular, the orientation assigned by
Procedure COMPUTE_TRO_P4C in Section 3.2 will do. Lemma 2.5 implies that if none
of the oriented (non-trivialPs-components contains a directed cycle, the resulting directed
graph (spanned by their edges) will be acyclic. Conversely, if the resulting directed graph
contains a directed cycle, then it must be the case tlPat@mponent contains a directed
cycle, implying that the input grap@i is not aP4-comparability graph.

The procedure also takes advantage of the following observation, which is a direct
consequence of the definition of thig-components of type (B) and of the form of the
Py4s of type (6):

Observation 3.1. LetC andC’ be two non-trivialP4-components of a graph such thtis
of type(B) with respect ta’. Then, for any edgey of C’, exactly one of, y belongs taC.

This observation has two very important consequences. First, it implies that a
P4-component’’ is of type (B) with respect to ®#4-component if and only if exactly
one endpoint of each edge 6f belongs toC; note that each edge of Ay of types
(1)—(5) with respect t@ has at most one endpoint i while at least one edge of such
a P4 has none of its endpoints if\. This yields an efficient way to determine whether
a P4-component is of type (B) with respect to anotiiarcomponent. Second, if we are
given aP4-component’ and we are interested in finding ti-componentg such that
C’ is of type (B) with respect t@, then we only need to pick an arbitrary edgeCofand
look at the P4-components that contain the edges incident upon the endpoiatstas is
directly implied by Observation 3.1, since exactly one of the endpoints of the arbitrarily
chosen edge daf’ belong to any suctP4-component’. This enables us to determine for
each P4-component ofG the P;,-components with respect to which it is of type (B) by
checkingO (nf) = O (nm) pairs of P4-components instead of the (¢2) = 0 (m?) pairs
that the brute-force approach would necessitate.

In more detail, the procedure for combining the oriented non-trifigtomponents
works as follows:

Procedure TRO_ALL_PAC (for combining the oriented non-trivigts-componenis

1. Sort the non-trivialPs-components of the grapty in order of increasing vertex
number; let them bé&4, C», ..., C; in that order.
2. For each non-triviaPs-component; (1< i < ¢), do in parallel
2.1 select an arbitrary edggy; of C;; initialize a setS; to the sefi};
2.2 for each vertex adjacent toy; in G do in parallel
find the P4-component; to which the edge; z belongs;
if j <i and exactly one endpoint of each edg&€pbelongs tC;
then addj to the setS; {C; is of type(B) w.r.t.C; and j < i},
2.3 repeat substep 2.2 for instead ofy;;
2.4 7 < minimum element of;;
if 7 #£ i then for each edgeof C; do in parallel
oriente towards its (exactly one) endpoint that belong€;to
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Note that, after substep 2.3, the sgtcontainsi and the index numbers of all the
non-trivial P4-components’; such thatj < i and(C; is of type (B) with respect te;.
Moreover, in substep 2.4, if = i, then the P,-component; is not of type (B) with
respect to any of th@;-componentg’; with j < i; in this case, nothing needs to be done
and the P,-componentC; retains the orientation assigned to it by Procedure COMPU-
TE_TRO_PA4C. Then, the correctness of the procedure follows from Lemma 2.5, while the
correctness of the orientation assignment follows from Observation 3.1.

3.3.1. Time and processor complexity

In order to be able to determine whether a vertex belongs to a non-Piviedmponent,
the procedure uses an auxilia@y x £)-size arrayA[], which records for each vertex of
the graphG the non-trivial P4.-components to which it belongs: if vertexis a vertex of
the P4-component; (1< i < ¢£), then the entryA[v, ] is equal to 1, otherwise it is 0.
Initializing all the entries of the arras[] to 0 is done inO (1) time usingO (nf) = O (nm)
processors on the EREW PRAM model. We set the appropriate entried]ofo 1
as follows: for each verteX,, € C;, we assignA[x,i] < 1 and A[y,i] < 1, where
C1, Ca,...Cy are the selected connected components of the gf?aph Section 3.2 (see
steps 6 and 7 of Procedure COMPUTE_TRO_P4C). Assigning 1 to the appropriate entries
of A[] takesO (1) time usingO (m) processors on the EREW PRAM.

Below we give a step-by-step analysis of the time and processor complexity of the
procedure TRO_ALL_P4C. Recall that m.

1. Itis well known that: elements can be sorted (logn) time with O (n) processors
on the EREW PRAM model [2,17]. Thus, this step is executeditogm) time with
O (m) processors on the EREW PRAM model.

2. Substep 2.1 can be carried outdn(l) time on the EREW PRAM usin@ (m)
processors. In substep 2.2, findifig is done inO(1) time using an array that indicates
for each edge o6 the P4-component to which it belongs; sin@(zlgig degx;)r) =
O (nm), this part of substep 2.2 can be carried outifll) time usingO (nm) processors
on the CREW PRAM.

The setS; is implemented by means of an x |C;|)-size arrayB;[] (note that the
arraysB;[], 1<i < ¢, can all be placed in a sing(e x m)-array if the edges are re-indexed
so that the edges of eadPy-component are assigned consecutive index numbers; this
can be easily achieved by sorting ilogm) time with O (m) processors on the EREW
PRAM). The entries of each arra[] are initialized toi (in this way, invalid entries do
not affect the subsequent minimum computations); the initialization of these arrays for all
i=1,2,...,¢takesO (1) time with O (nm) processors on the EREW PRAM. Then, for
each vertex adjacent to; and for each edgeof C; we check ifj < i and ife has exactly
one endpointirC;, and, if this is true, we set the entB{[z, e] equal to; otherwise, we
setitto 0. Next, for each rowof the arrayB;[], we compute the minimum over the entries
in the rowr; let it be p,. Then, if p, = 0 (meaning that an edge 6f has failed the test) or
pr =i (meaning that the vertex corresponding to the ras/not adjacent ta;), we set the
entry B;[r, 1] equal toi; otherwise (i.e.p, < i andC; is of type (B) with respect tG,,) we
setB;[r, 1] equal top,. In this way, the minimum element 6f among those contributed in
substep 2.2 can be computed as the minimum over the eBtfiesl] in the first column of
the arrayB;[]. The above description implies that managing the Seterall i =1, ...,¢
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in substep 2.2 take® (logn) time usingO (nm/logn) processors on the EREW PRAM.
In total, substep 2.2 runs i@ (logn) time usingO (nm/logn) processors on the CREW
PRAM. In a similar fashion, substep 2.3 takeglogn) time andO (nm/logn) processors
on the CREW PRAM model.

As suggested, the computation ofor C; in substep 2.4 is achieved by means of a
minimum computation over the entries of two arrays of sizdor all i =1,..., ¢, this
takesO (logn) time usingO (nm/logn) processors on the EREW PRAM. Thanks to the
array A[], the rest of substep 2.4 is completed forid@th O (1) time andO (m) processors
on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.3. Given a Ps-transitive orientation of eachPs-component of a connected
simple graphG, ProcedureTRO_ALL_P4Cproduces aPs-transitive orientation of the
graphG(E¢) in O(logn) time usingO (nm/logn) processors on the CREW PRAM model.
The resulting orientation is acyclic if and only if th-transitive orientation of each of
the P4-components is acyclic.

3.4. Detecting directed cycles in the non-trivizgd-components

Recall that if the input graphG is a P;;—comparabilitygraph, then Procedure
TRO_ALL_P4C produces an acyclis-transitive orientatiorG (E¢) of the graphG (E¢)
spanned by the edges of the non-triviaj-component<1, Co, ..., C; of G; note that
Ec=E1UE2U---UEy, whereE; is the set of edges of they-component;, 1 <i < ¢.

If G is not aP4-comparability graph then a non-trivi&h-component of5 either cannot
admit a Ps-transitive orientation or contains arected cycle. Whether each non-trivial
P4-component admits ®4-transitive orientation hasden checked during the execution
of Procedure COMPUTE_TRO_P4C (see Section 3.2); if not, the procedure stops and
reports that the input graph is notRa-comparability gaph. Therefore, the recognition
will be complete after we check whethghere exists a directed cycle in tiR-transitive
orientationG(E;) of the non-trivial P4-component;, 1 <i < L.

In order to do this, we use a procedure which orients the trivial edges whose endpoints
are connected by a directed path in the gr@glfé); we call these edgderced because
their orientation is constrained to match the direction of the path, otherwise a directed cycle
is formed (see Fig. 5(a)). The procedure assigns to the forced trivial edges the appropriate

a a /.\
b e b e
= =
c d c d
(a) (b)

Fig. 5. (a) the edgec is a forced trivial edge; (b) the edges andae are trivial but they are not forced.
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orientation by means of an iterative procedure, which keeps short-cutting directed paths
(respectively cycles) until they beconaé length at most 2 (respectively 4). At each
iteration, it also checks for the exéstce of directed triangles, i.€3s, 0rC4s wh|ch proves

to be sufficient for ensuring the detamn of dlrected cycles of any len length rﬁ(Ec) The
oriented forced trivial edges are added to the&eproducmg a seEC,F. The procedure

uses an auxiliary arraR[] of sizen x n; for any two verticesc andy of G, R[x, y] is set

equal to 1 if a directeds from x to y has been found in the current iteration.

Procedure DDC_PAC (for detecting directed cycles in th-components of7).

1. E/C) <~ ;0 « E_C)
2. whileQ # @ do
— — . . . .
2.1 E; < E; U Q; O < @;initialize all the entries of arrag[] to 0;
2.2 for every vertex of G do in parallel
for every vertex # x do in parallel
for every verteXy adjacent to botl andz do in parallel
if both x3 € E’ andyz e E’

then ifzx ¢ E’C
then there exists a directed cycle; exit;
elseR[x,z] < 1;
2.3 for every pair of vertices, z of G do in parallel
2.3.1 ifR[x,z]=1andR[z,x]=1
then there exists a directed cycle; exit;
2.3.2 ifR[x,z]=1andx, z are adja_c)ent i
then if the edge z belongs toE,
thenif it is oriented frony to x
then there exists a directed cycle; exit;
else addvz to Q;
2.3.3 ifR[z,x]=1andx, z are adjg:)ent i
then if the edge z belongs toE,
then if it is oriented fronmx to z
then there exists a directed cycle; exit;
else addx to Q;
2.4 for every edgey of G which does not belong tEC do in parallel
for every vertelz) of G adjacent tor do in parallel
[2.4.1]if Xz € E/; andR[z, y] = 1 then addky to Q;

[2.4.2]if 2% € E, andR[y, 2] = 1 then add 1o 0;
2.5 if there exists an edgey of G such that botlxy, yx € Q
then there exists a directed cycle; exit.

The cases handled by substeps 2.3.2, 2.4.1 and 2.4.2 are shown in Fig. 6. In each
iteration, the procedure orients all tfeeced edges that short-cut directBgs and directed
P4sin G(E¢') and have not yet received an orientation. The case of an edge short-cutting
a directedPs is handled in substep 2.3.2 or substep 2.3.3; because of substep 2.3.1, at most
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Y z > z <

T z T y x Yy

Fig. 6. The cases handled by substeps 2.3.2, 2.4.1 and 2.4.2 of Procedure DDC_PA4C.

one of substeps 2.3.2 and 2.3.3 will be executed during each iteration. For anddfe
G short-cutting a directe®s abcd of G(E‘é/), both R[a, c] and R[b, d] will be set equal
to 1 in substep 2.2. Then, no matter whether the edge connectindd is considered as
the edge:d or da, it will be oriented froma to d in substeps 2.4.1 and 2.4.2 respectively.
Additionally, it is important to observe that, in each iteration of the while-loop of step 2,
Procedure DDC_P4C detects all directégs and directed’ss: the former are detected in
substep 2.2; the latter in substep 2.3.1 (for_g dire@gdbcd, both R[a, c] and R[c,a]
are set to 1), which also implies tha& ¢ E/, in substep 2.4.1, and tha® ¢ E_ in
substep 2.4.2.
The following lemma is crucial for the operation of the procedure.

Lemma 3.2. For every chordless directed paghof the grath(E’C)) whose length is at
least4, one iteration of the while-loop of Procedub®C_P4Cproduces another directed
path on edges of the grapfi with the same endpoints asand whose length does not
exceed/6 of p’s length.

Proof. Let the length of the patl bek; thenk > 4. We seep as the concatenation of
Lk/3] directed P4s of G(Fé), followed by at most two additional edges. Since none of
these directed,s is aPy4 of the input graphG (because of the orientations of their edges),
each such directefly has a chord, which is a trivial edgéhe edge may span two or three
edges of the directed,; in either case, this edge will be assigned an orientation at the
execution of the while-loop (see substeps 2.3.2, 2.3.3 and 2.4.1, 2.4.2). In this way, there
is a directed edge “short-cutting” two or three edges for every one of these dieed
Thus, a new directed path of length at mbst |k/3] = [2k/3] with the same endpoints

asp is produced. Sinc€2k /3] < (2k 4+ 2)/3 < 5k/6 for k > 4, the lemma follows. O

The correctness of the procedure is established by the following two lemmas.

Lemma 3.3. Uponigmpletion, Procedu®@DC_P4Chas oriented every trivial edge for
which the graphG (E¢) contains a directed path from one endpoint of the edge to the other.

Proof. Consider a trivial edge'y such that there exists a directed path frento y in

the grath(E/) Then, there is a chordless such patrG(E/) For as long as the new
chordless path has length at least equal to 4, new short- cuttlng directed edges will be added
to G(E’C). When the length of the resulting chordless path eventually becomes equal to 2
or 3, then substeps 2.3.2-3 and 2.4.1-2 will assign to the egg@a orientation fronx

toy. O
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Lemma 3.4. ProcedureDDC_P4Ccorrectly identifies whether the grapm(E‘é) contains
a directed cycle.

Proof. If G(F)c) contains a cycle, then the procedure will shrink it as described in
Lemma 3.2, eventually yielding a directét or a directedCs, which will be detected

by the procedure and the input graph will correctly be characterized as not being a
P4-comparability graph. On the other hand, it is not difficult to see that whenever the
procedure reports the existence of a directed cycle, it has found two vertices asaiy,

such that there exists a directed path freno v and another formv to u. Since the edges

of these paths either belongeckchEc or were oriented because there was a directed path
in G(EC) leading from one of their endpoints to the other, it is clear maEC> contains

a directed cycle, and thus the procedure responded correctly.

3.4.1. Time and processor complexity

The setsE’C and Q of oriented edges are maintained as arrays of sizend 2n
respectively: for the sek, we maintain one entry per edge 6f where it is recorded
whether the corresponding edge belongs to the set and the assigned orientation; for the
setQ, we maintain two entries per edge corresponding to the two opposite orientations of
the edge. In this way, testing the membership édlirected) edge in either of these sets or
finding its orientation can be done in constant time.

Moreover, Lemma 3.2 implies that the number of iterations of the while-loop is
O (logm) = O(logn): the length of the longest directed path (or cyclepign), and at
every iteration each directed path is “short-cut” by a directed path of length which is at
most a constant factor (less than 1) of the length of the previous path.

1. Itis easy to see that this step can be execute&(ih) time with O (m) processors on
the EREW PRAM model.

2. Letus consider a single iteration of the while-loop. Then, substep 2.1 takes constant
time usingO (m) processors on the EREW PRAM model in light of the way theEgtand
Q are maintained. substep 2.5 can also be executed in constant timeéxsingrocessors
on the EREW PRAM model.

In substep 2.2, for each pair of verticex, of the graphG, we haveO (degx) +dedz))
processors, each associated with a neighberafz; each such processor checks whether
the associated vertex is adjacent to betland z and whether the conditions in the if-
statement are satisfied, and prods a 1 if it finds that the value a?[x, z] should be
set to 1, and a 0 otherwise. TheR[x, z] is indeed set to 1 if the maximum of the
produced values is 1. With the help of an adjacency matrig othe computation of each
processor take® (1) time on the CREW PRAM; next, the computation of the maximum
can be done irD (logn) time usingO ((degx) + dedz))/lognr) processors on the EREW
PRAM. Thus, the execution of substep 2.2 can be complete@ ({ingn) time using
0((3_, > .(degx)+dedz))r)/lognr) = O(nm/logn) processors on the CREW PRAM
model.

Substep 2.3 take® (1) time using O (n2) processors on the CREW PRAM: for each
pair of verticesx, z, the computation take® (1) time. It is important to observe that no
concurrent write occurs as the passor associated with the paijr; is the only one to add
Xz orzxto Q.
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Similarly to substep 2.2, substep 2.4 takedlogn) times using O(nm/logn)
processors on the CREW PRAM: for each edgeof G not in E/,, we haveO (deqx))
processors, each associated with a neighbar, @ach processor checks if the conditions
in the if-statements of substeps 2.4.1 and 2.4.2 hold and produces a 1 if the condition in
substep 2.4.1 is true; 1 if the condition in substep 2.4.2 is true, and 0 otherwise (note that
sinceR[y, z] and R[z, y] cannot both be equal to 1 due to substep 2.3.1, at most one of
these two conditions will hold). Then, the minimum and maximum of the produced values
are computed: if the maximum is 1, th&h is added toQ; if the minimum is—1, thenyx
is added toQ. The computation of each processor takgd) time on the CREW PRAM,
while the computation of the minimum and maximum can be dor@(ognr) time using
O (degx)/logn) processors onthe EREW PRAM. This implies that, for all such edges
substep 2.4 taked (logn) time usingO(ny degx)/lognr) = O(nm/logn) processors
on the CREW PRAM model.

Taking into account the time and processor complexities of substeps 2.1-2.5, we have
that the execution of one iteration of the while-loop can be complete@(lngn) using
O (nm/logn) processors on the CREW PRAM model. Since the number of iterations is
0 (logn), this implies that the entire step 2 tak@slog® n) usingO (nm/ logn) processors
on the CREW PRAM model.

Thus, we have the following result.

Theorem 3.4. It can be decided whether they-transitive orientations of th&s-compo-
nents of a connected simple graph mivertices andn edges contain directed cycles in
0 (log? n) time usingO (nm / logn) processors on the CREW PRAM model.

Our results from Section 3 imply the following corollary.

Corollary 3.2. It can be decided whether a connected simple graph @ertices andn
edges is aP4-comparability graph inO (log? n) time usingO (nm/logn) processors on
the CREW PRAM model.

3.5. The case of a disconnected input graph

If the input graph is disconnected, we compute its connected components, and
apply Procedure REC_P4G on each one anth The connected components can be
computed on the EREW PRAM model x(logn) time usingO (n + m) processors [4],
or in O(log?n) time using O((n + m)/logn) processors (see also [19]). # and
m; are the numbers of vertices and edges of tie connected component, then its
processing requireﬁ)(logzni) time using O (n;m;/logn;) processors on the CREW
PRAM model (Corollary 3.2). Ifm; > /n, then logn; = ®(logn); the connectivity
of the component implies that lag = © (logm;), and consequentl® (n;m;/logn;) =
O (n;ym;/logm;) = O (n;m;/logn). Moreover, logn; = O(log?n). If m; < /n, then we
can batch lon/ log? n; tasks of unit time duration and assign them to a single processor;
in this way the needed processors are reduced by a factor of Jdgg?® n;, while at the
same time the time increases by the sameofatt particular, the time needed becomes
0 (log? n), while the number of processors beconte@;m;/ logn), since log:; < logn.
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In summary, no matter how small or large; is, we can process thah connected
component inO(Iogzn) time using O (n;m;/logn) processors on the CREW PRAM
model. Thus, we can process all the connected componer@glog?») time using a
total of O (nm/logn) processors on the same model of parallel computation. Therefore,
we have the following theorem.

Theorem 3.5. It can be decided whether a simple graphorertices andn edges is a
P4-comparability graph inO (log? n) time usingO (nm/ logn) processors on the CREW
PRAM model.

4. Acyclic P4-transtiveorientation

The orientation algorithm that we describeré takes advantage of the orientation of
the graphc(m) produced by the recognition algorithm of the previous section and
assigns the final orientations to the remaining edges of the input @raptihese are the
trivial edges which are not forced (see Fig. 5(b))—so that no directed cycle is formed in
G(H@). (Note that these edges have received dnitrary orientation in step 2 of the
recognition algorithm REC_P4G, which wgniore.) The algorithm relies on the following
two lemmas.

Lemma 4.1. In the directed graphG(Ec r), the length of the shortest directed path
between any pair of vertices does not exced

Proof. Suppose for contradiction that there are two vertices such that the length of the
shortest directed path from the one to theestbxceeds 2. Then, there exist two vertices

u andv such that the length of the shortest path freno v is equal to 3; letzabv be

that path. Since this path cannot b&@abecause of the orientations assigned to its edges,
then there must be an edge which has not yet received an orientation and is incident upon
at least one of the following pairs of verticesandb, u andv, a andv. But, in each of

these three cases, this edge is forced and image been assigned an orientation by Pro-
cedure DDC_PA4C. In fact, this orientation should be fioio b, from u to v, and froma

to v respectively (Lemma 3.3), whictootradicts the fact that the patlbv is the shortest
directed path fronx to v, thus establishing the lemman

Lemma 4.2. Leta_fy be a(directed edge of the transitive cIosu(é*(Ec r) of the acyclic
directed grath(EC r). Then, the indegree of the vertexs larger than the indegree of
the vertexa.

Proof. The transitive closure |mpl|es that the indegree of a vevtekG*(Ec F) is equal

to the number of vertices cﬁ(Ec F) such that there is a dlrected path from each of these
vertices tov. Let P(a) and P(b) be the sets of vertices aif(Ec r) such that there is a
directed path from each of these verticesitandb respectively. Then, we need to show
that|P(a)| < |P(b)]. Itis not difficult to see thaP (a) C P(b): every vertex inP(a) also
belongs toP (b), since due to the edgE, a directed path from a vertex toimplies that
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there is a directed path from that vertexipadditionally, because there are no directed
cycles inG(E¢ r), a ¢ P(a) whereas: € P(b). O

Our orientation algorithm involves the following algorithmic steps.
Procedure ATRO_P4AG (for the acyclicPs-transitive orientation of the grapty).

1. Apply the recognition procedure that we described in the previous section. If the
input graphG is not a P4-comparability graph, then the algorithm stops and prints
the corresponding diagnostic message; atfise, the recognition procedure computes
the directed grapls (E¢ 7).

2. Compute the transitive cIosuﬂa*(Ec r) of the graprG(EC F).

3. Compute the indegrée) of each vertex of the grapm*(m) set the indegree of
every vertex ofG which is not a vertex oG*(Ec F) equalto 0.

4. For each (trivial) edgey of G not mG(EC F), doin parallel

if indegredx) < indegreéy), thenxy;

if indegredx) > indegreéy), thenxy;

if indegredx) = indegreé¢y)

then if the index number of is less than the index number of
thenxy elsexy.

The index number of a vertex referred to in step 4 is a number which distinguishes one
vertex of G from another; it may be the index of the entry that the vertex occupies in the
array of vertices of5. Add|t|onally, note that, in light of Lemma 4.1, the computation of
the transitive closur&™ (EC F) in step 2 can be done by addlng a directed efiglor each
directedP3 uwv. Therefore, for each directed edEé of G(E¢, F) we go through each
vertexc of G adjacent td and check whether the padthc is a directedpPs of G(EC ) if
it is so, then the directed edg@é needs to be added. To avoid concurrent writes, for each
vertexv we use an array,[x, vy] of sizen x degv), wherex andy are vertices ofG
andy is adjacent to. If the edgea? and the vertex form a directedPs abc, then we
record the fact that a directed edgée needs to be added by setting the enthy{c, ab]
to 1; the entryH,[c, ab] uniquely corresponds to the patlc. In the end, the transitive
closure is produced by adding @(Hj) the edgesiv for which there is a 1 in the
subarrayH, [v, *]; this can be found ir0 (logn) time with O (nm/logn) processors using
standard interval prefix computations on the EREW PRAM model [2] (note that the total
size of all theH arrays isy_, (degv))? = O (nm)).

The correctness of the algorithm follows from the following lemma.

Lemma 4.3. For a P4-comparability graphG, ProcedureATRO_P4Gcompletes all the
steps of its description and produces an acyélietransitive orientation ofs.

Proof. Since the input graplt; is a P4-comparability graph, then step 1 is completed
successfully, and so are the remaining steps of the algorithm. Clearly all the edges of
G are assigned an orientation. Furtherm@egording to the discussion in the previous
section, the orientation of the directed gra@hﬁ) is Ps-transitive and therefore so
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is the resulting orientation; note that during the execution of Procedure ATRO_P4G only
trivial edges (in particular, those that are not forced) receive an orientation. Additionally,
since step 1 of Procedure ATRO_P4G is completed successfully, then the orientation of
G(Ec r) is also acyclic.

Therefore, we need to show that the edgeswee oriented in step 4 did not cause the
formation of a directed cycle. Coider an orderlng of the vertices 6f from left to right in
increasing order of their mdegreedﬁ(Ec r) (see step 3) and, in case of ties, in mcreasmg
order of their |ndex number. Then, acding to Lemma 4.2, all the edges ﬁ*(EC F)
and hence oG(Ec F) aredi directed from left to right. Additionally, step 4 guarantees that
the edges of; not in G(EC F) are also directed from left to right. Therefore, no directed
cycle exists. O

4.1. Time and processor complexity

We assume that the input gragh is connected; thus; = O(m). Step 1 takes
0 (log? n) time using a total ob (nm / logn) processors on the CREW PRAM model (The-
orem 3.5). As described above, the process of computing the transitive C@?@)
is based on the processing of all pairs of an edge and a vertex; thus, it can be carried out
in O(logn) time usmg a total of0 (nm/logn) processors on the CREW PRAM model.
The grath*(Ec ) hasn vertices and0 (n?) edges; therefore, the computation of the
indegrees of its vertices can be donediilogn) time with O (n2/logn) = O (nm/logn)
processors on the EREW PRAM model. Obviously, step 4 takély time and requires
O (m) processors on the CREW PRAM model. If the graphs disconnected, then we
compute its connected components andapply Procedure ATRO_P4G on each one of
them; similarly to the analysis in Section 3we obtain that for a disconnected graph on
n vertices andn edges, Procedure ATRO_PA4G tak@dog? ) time usingO (nm/ logn)
processors on the CREW PRAM model. In summary, we have the following result.

Theorem 4.1. An acyclic Ps-transitive orientation of a simple grapti onn vertices and
m edges can be produced i(log? n) time usingO (nm/ logn) processors on the CREW
PRAM model.

It is worth noting that only step 1 of Procedure ATRO_P4G necessitaésg? n)
time; the remaining steps can all be execute@itognr) time. Hence, the invention of an
algorithm which computes the directed gra@hEc ¢) in O(logn) time would imply the
computation of the acycli®s-transitive orientation of a graph i@ (logn) time.

5. Concluding remarks

In this paper we present efficient parallel algorithms for recogniZipgomparability
graphs and for computing an acyclia-transitive orientation on them. Both algorithms
run in O (log?n) time using a total of0 (nm/logn) processors on the CREW PRAM
model, wheren andm are the number of vertices and edges of the input graph. Our
algorithms rely on certain algorithmic and structural properties offfteomponents of
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a graph. To the best of our knowledge, they are the first parallel algorithms for prob-
lems involving Ps-comparability graphs; they are cost-efficient, since the currently best
sequential algorithms for these problems ték@m) time [28].

The obvious open question is whether we can design cost-optimal parallel algorithm
for the above problems on the CREW PRAM model. Moreover, cost-optimal or at least
cost-efficient algorithms are needed for ettwell-known and important combinatorial
and optimization problems oRs-comparability graphs, such as the coloring problem, the
maximum clique problem, the maximal clique and the clique cover problem, etc. We note
that, due to the work of Chvatal [5], the coloring problem and the maximum clique problem
can be solved in linear sequential time if an acydlictransitive orientation of the input
graph is given.
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