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Abstract

In this paper we propose a limit characterization of the behaviour of classes of graphs with respect to their number of
spanning trees. L€iG,} be a sequence of graplig, G1, Go, ... that belong to a particular class. We consider graphs of the
form K,, — G, that result from the complete grag), after removing a set of edges that sgan We study the spanning tree
behaviour of the sequend&,, — G,} whenn — oo and the number of edges Gf, scales according te. More specifically,
we define thespanning tree indicator «({G,}), a quantity that characterizes the spanning tree behavio(k pf- G, }. We
derive closed formulas for the spanning tree indicators for certain well-known classes of graphs. Finally, we demonstrate that
the indicator can be used to compare the spanning tree behaviour of different classes of graphs (even when their members neve
happen to have the same number of edges).
00 2004 Elsevier B.V. All rights reserved.
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1. Introduction Let K, — G be the graph that results from the
complete graplk, after removing a set of edges that
There exist many interesting and difficult problems spanG. A well-known problem in graph theory is
in graph theory that are related to counting the num- that of calculating the number of spanning trees of
ber of spanning trees of graphs. The solution of such the graphk, — G. Many cases have been examined
problems appears to have a direct impact in certain ar- depending on the choice af. For example, there
eas of Computer Science. For example, it appears thatexist closed formulas for the cases whafeis a
in order to build a reliable communication network, a pairwise disjoint set of edges [11], when it is a chain
good choice would be to select a graph topology that of edges [6], a cycle [5], a star [10], a multistar [8,12],
maximizes the number of spanning trees (see [2,4,7]). a complete graph [1], a multi-complete/star graph [3],
a quasi-threshold graph [9], and so on (see Berge [1]
msponding author. for an expositior_\ of the mair_1 results).
E-mail addresses: stavros@cs.uoi.gr (S.D. Nikolopoulos), . We are see_kmg _alternaeva_pproaches that \_NOUId
cnomikos@cs.uoi.gr (C. Nomikos), prondo@di.uoa.gr give a more direct interpretation of the spanning tree
(P. Rondogiannis). behaviour of a class. The basic idea is to compare
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the number of spanning trees &f, — G with those Obviously, for every sequence of graplts,}, we
of K,. It would be convenient if the comparison gave have: 0< ¢ ({G,}) < 1.
a quantity that is independent of For this purpose, The spanning tree indicator is useful for comparing

let {G,} be a sequence of graphs that belong to a sequences of graphs whose corresponding elements
particular class of graphs. We study the spanning have “almost” the same number of edges. Such se-
tree behaviour of the sequences of graphs of the quences will be calledomparable and are defined as
form {K, — G,}, whenn — oo and the number of  follows:

edges ofG,, scales according te. More specifically,

we define thespanning tree indicator «({G,}), a Definition 2.2. Let G and F be two classes of graphs,
quantity that characterizes the spanning tree behaviourand let{G,} and {F,} be two sequences of graphs
of {K, — G,}. We derive the spanning tree indicators from the corresponding classes. Then, the sequences
for certain well-known classes of graphs. We show {Gx} and{F,} will be calledcomparable if

that the indicator can be used to compare different = edges(G,) . edges(F,)

classes of graphs in terms of their number of spanning anoo . n"_>moo .
trees even in the case in which the members of the

two classes never happen to have the same number of Given a sequencéG,}, lim,_ % is de-

=p>0.

edges. noted byy ({G,}).
The paper is organized as follows. In Section 2 we  |n particular, we are interested in those classes of
define the notion ofpanning tree indicator and ex-  graphs whose spanning tree indicator is immune to

amine its properties. Section 3 contains the derivations “small changes”. The following definition formalizes
of the spanning tree indicators for certain well-known this issue:

classes of graphs. Section 4 presents an example com-

parison of the spanning tree behaviour of two given Definition 2.3. Let G be a class of graphg is
classes of graphs. Finally, Section 5 concludes the pa-called g-stable if for all sequenceqG,} and {G}}

per by discussing possible future extensions. from G with y ({G,}) =y ({G,,)}) = B, itisa({G,}) =
a({Gy D).
2 Thelimit characterization For sequences of graphs that are comparable, we

use their indicators in order to compare their limit be-
haviour (“how good they are”) in terms of spanning
trees. This is expressed by the following, easily deriv-
able, proposition:

In this section we define the main concepts for
characterizing the limit spanning tree behaviour of
classes of graphs.

A class§G of graphsis a set of graphs sharing certain
common properties. For example, the class of com-
plete graphsis the séKy, K1, ..., K;, ...} ofallcom-
plete graphs. Given a clags we write{G, } to denote
asequence Go, Gy, ..., G;, ... of graphs, where each
G, belongs tag. For exampleK 1, K1, K2, K2, ... is its
a sequence consisting of complete graphs. Throughout
the paper, the number of edges of a given grapis We would like to demonstrate that the above
denoted byedges(G) and the number of vertices by  resylt does not only hold when the elements of
vrt(G). The number of spanning trees of a given graph {G.} happen to have a larger number of edges than
G is denoted byV(G). the corresponding elements ¢f,}. The following

proposition resolves this issue.

Proposition 2.1. If {G, } and { F,,} are comparableand
a({G,}) < a({F,}) then there exists ng € N such that
for every n > no, N(K,, — G,) < N(K, — Fy,).

Proof. Straightforward, using the definition of lim-

Definition 2.1. Let G be a class of graphs afd,} be
a sequence of graphsg¢h Thespanning tree indicator Theorem 2.1. Let G and F be two S-stable classes

a({G,}) of {G,} is defined as linL, o % of graphs and let {G,,} and {F,} be two comparable
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sequences of graphs from the corresponding classes
having the properties y ({G,}) = y({F,}) = g and
a({Gn)) < a({F,}). Thenthere exists a sequence { F, }
of the class F that is comparable to {G,}, such that
edges(G,) < edges(F;) and a({G,}) < a({F;}).

Proof. Let i(n) be the minimum index: > n such
thatedges(G,) < edges(Fy,); i(n) always exists since
lim,,_, o €dges(F,) = co. We defineF, = F,,. We
show thaf F,} is comparable t§G, }, thatisy ({F,}) =
y({Gn}) = B, and thate({F,,}) = a({Fy}).

Since y {G,}) = y({F,}) = B, for everye > 0
there exists, such that for every > k. andm > k.,
the following are true:

(B—e)-n<edges(G,) < (B+¢e)-n
and
(B —¢)-m < edges(F,) < (B+¢)-m.

Now for everye > 0, we define the following
function,:

- +¢e +e&
le(n) = {ﬁ—g nJ +1> ?—e
Forn > k., we have
edges(Fi, () = (B —¢) -le(n) > (B+¢€) - n
> edges(Gy).
Sincei(n) is the minimum indexn > n such that

edges(G,,) < edges(F,,) we have thal(n) < i.(n) for
n > k.. Consequently we have:

lim @g lim ZS(—n)

n—oo n n—oo n

% ‘n+1 _B+e

=5

This should hold for arbitrary positive, which
implies

< lim

n—o00 n

lim @—1
n—oo n -
Then,
edges(F,) _ edges(Fy)) _ edges(Fi)) i(n)
n o n B i(n) n
Thus,
edges(F; 7
y((F)) = tim SOw) iy K0 g

n— 00 t(n) n—oo n

which implies that the sequencés,} and {G,} are
comparable.

SinceF is ag-stable class and

y({F)) =v({F)) =8,
we havex({F,}) = a({F,}). Thus,

a({Gn}) <a({F}}). O

3. Indicatorsfor well-known classes of graphs

In the following, we derive the spanning tree
indicators for sequences whose members belong to
certain well-known classes of graphs. We give a
complete proof for the case of the complete graphs;
the other cases follow in a similar way.

3.1. Complete graphs

Let K, be the complete graph on vertices.
Consider now the clags§ = {K1, Ko, ..., K;, ...} and
let{G,} be a sequence of graphs belongingisuch
that':

lim

n—o0

@:ﬁe(o,l).

The number of spanning trees &f, — K, is given by

[1]:

r—1
N(K, — K,) =n""2. (1— f) .
n

Using the above equation, we get that:

wrt(G,)—1
o((Ga) :nleoo(l_ vrt(nGn)>
_ im (1_ vrt(Gy) - (vrt(G,) — 1)
2n
2 vrt(Gp)—1
X e —
Vrt(Gn) - l)

n—o0

SinceG, is a complete graph, we have that:

im vrt(G,) - (vrt(G,) — 1) — lim edges(G,) _
n—o00 n n—00 n

B.

1 As it will be shown in Section 4, such a sequence exists for
class K (this can also be easily established for all other classes
considered in this paper).
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This implies that for ang > 0 there exists ang such
that for everyn > no:

wrt(Gp) - (vrt(G,) — 1)
P 2n
Using the above inequalities we can obtain lower and
upper bounds for the indicator §6,,}. For arbitrarily

smalle:
2. vrt(G,)—1
iim (1— 2P +e)
=00 vrt(G,) — 1
. 2. (,3 _ 8) vrt(G,)—1
<ae({Gp)) < lim{l— —— )
«((Gn}) n*oo( VIt(Gp) — 1
which implies:
e_z‘(ﬁ“‘g) < (X({Gn}) g e_z'(ﬂ_é‘)'
Since the above inequalities hold for arbitrarily small
g, we conclude that:
a({Gn)) =€ 2P,
Notice that the above limit only depends grand not

on any other characteristic ¢&,} and therefore the
corresponding class f$-stable.

—e<

X

<PB+e.

3.2. Sar graphs

Let S = {So, S1,...,S;,...} be the class of star
graphs, wheres, is the star graph on + 1 vertices.
Let {G,} be a sequence a$i such that:

im €99es(Gn) _
n—oo n

It is well known [1] that the number of spanning trees
of K,, — S, is given by the following formula:

() ()
N(Kn,—S)=n"2.{1-= 1-=).
n n

The spanning tree indicator for the sequefiGg} can
be derived by the following limit:

1 ajgeS(Gn)_l
e(tGal) = Jm (1)

( edgeS(Gn)+1)
X 1—7 .

Be(0,1).

It can be easily shown that the above limit exists and
is equal to:

a({G}) =€ (1-p).
Notice that for everys, the indicator for this class of
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3.3. Digoint copiesof K>

Let D; be the graph consisting ofdisjoint copies
of K2 (that is,i pairwise disjoint edges), and It =
{Do, D1, ..., D;,...} be the class of such graphs. Let
{G,} be a sequence di such that:

edges(G,,) (0 g)
=

im ——— =8¢
n—o00 n

It is also well known [1] that the number of spanning
trees ofK,, — D, is given by the following formula:

2 r
N(K, — Dy) =n""2. (1— —> :
n

The spanning tree indicator for the sequefiGg} can
be derived by the following limit:

2 &9e(Gy)
«((Gn) :n'Lmoo<1— ;> .

This can be easily shown to be equal to:
O[({Gn}) =e?p,

Observe that the indicator in this case is identical to
the one corresponding to the class of complete graphs.

3.4. Complete bipartite graphs

Let K,, - be the complete bipartite graph en+ r
vertices. We consider now the cla8s= {K,, 1, Kn 2,
s Km.i,...}. Let{G,} be a sequence of graphs from
such that:

edges(G,)
SO _

B

lim

n—00

Be,1).

In order to calculate the spanning tree indicator for
{G,} we need to know the formula giving the number
of spanning trees of the gragy, — K, ». We prove
the following theorem:

Theorem 3.1. The number of spanning trees of K, —
K r isequal to

-1 -1
nn—2.<1_£>m '<l_ﬂ)r .<l_m+r
n n n

Proof. Using the Complement Spanning-Tree Matrix
Theorem [1] and a calculation technique very similar

graphs s less than that of the class of complete graphs.to the one presented in [8].0
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The spanning tree indicator fdiG,} can be cal- Notice thatedges(K,;2) # edges(K;) for every
culated if we take into consideration the fact that i, j > 0, since:
edges(G,) =m - r. Therefore, itis: 2. (2 -1
1 edges(K2) = : (21 )=2i2—i<2i2
o edges(G,) \"~
O{({Gn }) = n“_)moo <1 — v = edgeS(KZiZ)
edges(Gn) _ 4 and
m m
1—-— 2i+1)-2i
X( n) edgeS(K2i+l)=%=2i2+i > 2i2
x (1 _m+ edgeri(cn) ) = edges(K ;2)

n (that is,edges(K ;2) is @ number between the number
The above limit is easily shown to be equal to: of edges of two consecutive complete graphs).

m We next show that for everg we can construct
a({Gn}) = —B . (1 — E) . sequences$F,} of graphs inkC and{G,} of graphs in

n B such thaty ({F,.}) = y {G.}) = B.
Notice that, form = 1 we get the spanning tree  Let F, = K,,, wherem satisfies the following
indicator for the star graph case. inequalities:
(m—l)-z(m—Z) “Bon< m.(n;—l)

4, Comparing classesof graphsthrough indicators (that is, F, is the minimum complete graph with no

. . i ) less tharB - n edges).
In this section we provide an example of using the oW foralln > 4, itis wrt(F,) > 4. In that case:
proposed approach in order to compare two different p

classes of graphs. The two classes we consider haveeoI es(F,) VIt(Fy) - (Vit(F,) — 1)
been appropriately chosen so as that their members gestin) = 2
never happen to have the same size. 2-(Wt(F,) —2) - (vrt(F,) — 1)
<
Assume now that we want to compare these two = 2
classes with respect to their number of spanning trees. <2-B-n.

One possible solution would be to select specific
members from the two classes and calculate the
number of spanning trees analytically. However, this egeq ) — VIt(Fy) - (rit(Fy) — 1)
cannot be performed in a straightforward way since 2

Moreover, since

’

there are no members of the two classes that haveye get forn > %:

the same number of edges. In other words, we can

not directly compare the two classes because we do 1+ ./1+ 8- edges(F,)
not know which elements from the two classes to VIt(Fy) = 2

select in order to perform the comparison. On the 1+I+16-B-n
other hand, using the proposed technique, we can < 2 :
construct pairs of comparable sequences from the Furthermore,

two classes and then compare the classes through the
indicators. Consequently, the limit approach is shown edges(F,) — B n = VIt(Fy) - (rit(Fy) —1) B

to be effective even when the graphs being considered 2

are not equal in size. _ Wt(F) - (rt(F) — 1)
Consider the clas& of all complete graphs and 2

the classB which is a subclass of the complete (Vrt(Fy) — 1) - (vrt(Fp) — 2)

bipartite graphs; letC = {K1, K2, ..., K;,...} and h 2

B={K21,K24,..., K2, .. .. =VWrt(F,) — 1 < vrt(F,).
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Consequently, fon > ﬁ, we have

0< edges(F,) — B -n <Vrt(Fn)
n n

1+VI¥16-Bn
< .
2n

Since

.1+ 41 -B-
lim + +16-8-n
n—00 2n
we conclude that

edges(F,) —B-n

:0,

lim =0

n— 00 n

which is equivalent toy ({ F,,}) = 8.
Similarly let G, = K, ,,2, wherem satisfies the
following inequalities:

2-m?><B-n<2 -(m+1)>?

(that is,G, is the maximum graph i with no more
thang - n edges). Then,

B -n—edges(G,)
=B-n—2m><2-(m+1>-2-m?
=4-m+2<6m

\/edgec(cw \/ﬁ n

Consequently, we have

0< B -n — edges(G,) - 6_m < 6- ,3’7/2
n n n

Since

lim 67 VB -n/2 =0,

n—o00 n

we conclude that

lim B-n— edgeS(Gn) -0

n—o00 n

which is equivalent tov ({G,.}) = 8.
We finally observe that althougldges(F,) >
edges(G,) the following holds:

a(lF))=e?P>eP.1-p/2?=a({G,)}).

Thus, we conclude that the claksbehaves better
that the classB, with respect to the number of
spanning trees.
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The above example illustrates that classes that do
not contain graphs of the same size, can be proved
to have different behaviour with respect to number
of spanning trees by a simple comparison of their
indicators. Similarly, comparison of classes through
indicators can be used in cases in which two classes of
graphs intuitively appear to have a common behaviour
with respect to their number of spanning trees, but
this fact cannot be established by considering specific
elements of the two classes.

For example consider the classk€s and IC, of
complete graphs with even and odd number of ver-
tices, respectively. Intuitively, these two classes have
the same behaviour with respect to the number of
spanning trees, that is one expects that the number of
the spanning trees &, — K,, depends om because
of its size and not because of its parity. But comparing
specific elements of the two classes fails to separate
size from parity.

On the other hand, comparison through indicator
provides a mathematical formalism that can be used
to prove that the above two classes have actually the
same behaviour (since they have the same indicator).

5. Conclusions and futurework

In this paper we have introduced a characterization
of the limit behaviour of graphs with respect to their
number of spanning trees. More specifically, given
two classes of graphs whose members have the same
growing rate, one can use their indicators in order to
deduce which one of the classes has (asymptotically)
the best behaviour.

There are certain aspects of this work which we be-
lieve that deserve further investigation. The questions
we have faced are the following:

e Does there exist a structural description of those
classes of graphs that gfestable?

e Certain families of graphs appear to have the
same indicator. Does there exist a simple and
general criterion that one could use in order to
deduce that two classes of graphs have the same
indicator without actually computing analytically
the indicators themselves?

e Does there exist a more accurate criterion that
could be used to compare the limit spanning-tree
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behaviour of classes of graphs that have the same [5] B. Gilbert, W. Myrvold, Maximizing spanning trees in almost

spanning-tree indicator?

We believe that answers to such questions can offer a

significant insight on the spanning-tree behaviour of
graphs.
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