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Abstract

In this paper we propose a limit characterization of the behaviour of classes of graphs with respect to their nu
spanning trees. Let{Gn} be a sequence of graphsG0,G1,G2, . . . that belong to a particular class. We consider graphs o
form Kn − Gn that result from the complete graphKn after removing a set of edges that spanGn. We study the spanning tre
behaviour of the sequence{Kn − Gn} whenn → ∞ and the number of edges ofGn scales according ton. More specifically,
we define thespanning tree indicator α({Gn}), a quantity that characterizes the spanning tree behaviour of{Kn − Gn}. We
derive closed formulas for the spanning tree indicators for certain well-known classes of graphs. Finally, we demons
the indicator can be used to compare the spanning tree behaviour of different classes of graphs (even when their mem
happen to have the same number of edges).
 2004 Elsevier B.V. All rights reserved.
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There exist many interesting and difficult problem
in graph theory that are related to counting the nu
ber of spanning trees of graphs. The solution of s
problems appears to have a direct impact in certain
eas of Computer Science. For example, it appears
in order to build a reliable communication network
good choice would be to select a graph topology t
maximizes the number of spanning trees (see [2,4
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spanG. A well-known problem in graph theory i
that of calculating the number of spanning trees
the graphKn − G. Many cases have been examin
depending on the choice ofG. For example, there
exist closed formulas for the cases whereG is a
pairwise disjoint set of edges [11], when it is a cha
of edges [6], a cycle [5], a star [10], a multistar [8,1
a complete graph [1], a multi-complete/star graph
a quasi-threshold graph [9], and so on (see Berge
for an exposition of the main results).

We are seeking alternative approaches that wou
give a more direct interpretation of the spanning t
behaviour of a class. The basic idea is to comp

.
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the number of spanning trees ofKn − G with those
of Kn. It would be convenient if the comparison gave
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Obviously, for every sequence of graphs{Gn}, we
have: 0� α({Gn}) � 1.
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a quantity that is independent ofn. For this purpose
let {Gn} be a sequence of graphs that belong t
particular class of graphs. We study the spann
tree behaviour of the sequences of graphs of
form {Kn − Gn}, whenn → ∞ and the number o
edges ofGn scales according ton. More specifically,
we define thespanning tree indicator α({Gn}), a
quantity that characterizes the spanning tree behav
of {Kn − Gn}. We derive the spanning tree indicato
for certain well-known classes of graphs. We sh
that the indicator can be used to compare differ
classes of graphs in terms of their number of spann
trees even in the case in which the members of
two classes never happen to have the same numb
edges.

The paper is organized as follows. In Section 2
define the notion ofspanning tree indicator and ex-
amine its properties. Section 3 contains the derivat
of the spanning tree indicators for certain well-kno
classes of graphs. Section 4 presents an example
parison of the spanning tree behaviour of two giv
classes of graphs. Finally, Section 5 concludes the
per by discussing possible future extensions.

2. The limit characterization

In this section we define the main concepts
characterizing the limit spanning tree behaviour
classes of graphs.

A class G of graphs is a set of graphs sharing cert
common properties. For example, the class of co
plete graphs is the set{K0,K1, . . . ,Ki, . . .} of all com-
plete graphs. Given a classG, we write{Gn} to denote
a sequence G0,G1, . . . ,Gi, . . . of graphs, where eac
Gi belongs toG. For example,K1,K1,K2,K2, . . . is
a sequence consisting of complete graphs. Throug
the paper, the number of edges of a given graphG is
denoted byedges(G) and the number of vertices b
vrt(G). The number of spanning trees of a given gra
G is denoted byN(G).

Definition 2.1. Let G be a class of graphs and{Gn} be
a sequence of graphs inG. Thespanning tree indicator
α({Gn}) of {Gn} is defined as limn→∞ N(Kn−Gn)

N(Kn)
.

f

-

t

The spanning tree indicator is useful for compar
sequences of graphs whose corresponding elem
have “almost” the same number of edges. Such
quences will be calledcomparable and are defined a
follows:

Definition 2.2. Let G andF be two classes of graph
and let {Gn} and {Fn} be two sequences of grap
from the corresponding classes. Then, the seque
{Gn} and{Fn} will be calledcomparable if

lim
n→∞

edges(Gn)

n
= lim

n→∞
edges(Fn)

n
= β > 0.

Given a sequence{Gn}, limn→∞ edges(Gn)
n

is de-
noted byγ ({Gn}).

In particular, we are interested in those classe
graphs whose spanning tree indicator is immune
“small changes”. The following definition formalize
this issue:

Definition 2.3. Let G be a class of graphs.G is
called β-stable if for all sequences{Gn} and {G′

n}
from G with γ ({Gn}) = γ ({G′

n}) = β , it is α({Gn}) =
α({G′

n}).

For sequences of graphs that are comparable
use their indicators in order to compare their limit b
haviour (“how good they are”) in terms of spanni
trees. This is expressed by the following, easily de
able, proposition:

Proposition 2.1. If {Gn} and {Fn} are comparable and
α({Gn}) < α({Fn}) then there exists n0 ∈ N such that
for every n > n0, N(Kn − Gn) < N(Kn − Fn).

Proof. Straightforward, using the definition of lim
its. �

We would like to demonstrate that the abo
result does not only hold when the elements
{Gn} happen to have a larger number of edges t
the corresponding elements of{Fn}. The following
proposition resolves this issue.

Theorem 2.1. Let G and F be two β-stable classes
of graphs and let {Gn} and {Fn} be two comparable
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sequences of graphs from the corresponding classes
having the properties γ ({Gn}) = γ ({Fn}) = β and

SinceF is aβ-stable class and( ) ( )

e
g to

a
hs;

for
ses
α({Gn}) < α({Fn}). Then there exists a sequence {F ′
n}

of the class F that is comparable to {Gn}, such that
edges(Gn) < edges(F ′

n) and α({Gn}) < α({F ′
n}).

Proof. Let ι̂(n) be the minimum indexm � n such
thatedges(Gn) < edges(Fm); ι̂(n) always exists since
limn→∞ edges(Fn) = ∞. We defineF ′

n = Fι̂(n). We
show that{F ′

n} is comparable to{Gn}, that isγ ({F ′
n}) =

γ ({Gn}) = β , and thatα({F ′
n}) = α({Fn}).

Since γ ({Gn}) = γ ({Fn}) = β , for every ε > 0
there existskε such that for everyn � kε andm � kε,
the following are true:

(β − ε) · n � edges(Gn) � (β + ε) · n
and

(β − ε) · m � edges(Fm) � (β + ε) · m.

Now for every ε > 0, we define the following
function ι̃ε:

ι̃ε(n) =
⌊

β + ε

β − ε
· n

⌋
+ 1 >

β + ε

β − ε
· n.

Forn � kε, we have

edges(Fι̃ε(n)) � (β − ε) · ι̃ε(n) > (β + ε) · n
� edges(Gn).

Since ι̂(n) is the minimum indexm � n such that
edges(Gn) < edges(Fm) we have that̂ι(n) � ι̃ε(n) for
n � kε. Consequently we have:

lim
n→∞

ι̂(n)

n
� lim

n→∞
ι̃ε(n)

n
� lim

n→∞

β+ε
β−ε

· n + 1

n
= β + ε

β − ε
.

This should hold for arbitrary positiveε, which
implies

lim
n→∞

ι̂(n)

n
= 1.

Then,

edges(F ′
n)

n
= edges(Fι̂(n))

n
= edges(Fι̂(n))

ι̂(n)
· ι̂(n)

n
.

Thus,

γ
({F ′

n}
) = lim

n→∞
edges(Fι̂(n))

ι̂(n)
· lim
n→∞

ι̂(n)

n
= β,

which implies that the sequences{F ′
n} and {Gn} are

comparable.
γ {Fn} = γ {F ′
n} = β,

we haveα({Fn}) = α({F ′
n}). Thus,

α
({Gn}

)
< α

({F ′
n}

)
. �

3. Indicators for well-known classes of graphs

In the following, we derive the spanning tre
indicators for sequences whose members belon
certain well-known classes of graphs. We give
complete proof for the case of the complete grap
the other cases follow in a similar way.

3.1. Complete graphs

Let Kn be the complete graph onn vertices.
Consider now the classK = {K1,K2, . . . ,Ki, . . .} and
let {Gn} be a sequence of graphs belonging toK such
that1:

lim
n→∞

edges(Gn)

n
= β ∈ (0,1).

The number of spanning trees ofKn − Kr is given by
[1]:

N(Kn − Kr) = nn−2 ·
(

1− r

n

)r−1

.

Using the above equation, we get that:

α
({Gn}

) = lim
n→∞

(
1− vrt(Gn)

n

)vrt(Gn)−1

= lim
n→∞

(
1− vrt(Gn) · (vrt(Gn) − 1)

2n

× 2

vrt(Gn) − 1

)vrt(Gn)−1

.

SinceGn is a complete graph, we have that:

lim
n→∞

vrt(Gn) · (vrt(Gn) − 1)

2n
= lim

n→∞
edges(Gn)

n
= β.

1 As it will be shown in Section 4, such a sequence exists
classK (this can also be easily established for all other clas
considered in this paper).
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This implies that for anyε > 0 there exists ann0 such
that for everyn � n0:

nd

all
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3.3. Disjoint copies of K2
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β − ε � vrt(Gn) · (vrt(Gn) − 1)

2n
� β + ε.

Using the above inequalities we can obtain lower a
upper bounds for the indicator of{Gn}. For arbitrarily
smallε:

lim
n→∞

(
1− 2 · (β + ε)

vrt(Gn) − 1

)vrt(Gn)−1

� α
({Gn}

)
� lim

n→∞

(
1− 2 · (β − ε)

vrt(Gn) − 1

)vrt(Gn)−1

,

which implies:

e−2·(β+ε) � α
({Gn}

)
� e−2·(β−ε).

Since the above inequalities hold for arbitrarily sm
ε, we conclude that:

α
({Gn}

) = e−2·β.

Notice that the above limit only depends onβ and not
on any other characteristic of{Gn} and therefore the
corresponding class isβ-stable.

3.2. Star graphs

Let S = {S0, S1, . . . , Si , . . .} be the class of sta
graphs, whereSr is the star graph onr + 1 vertices.
Let {Gn} be a sequence onS such that:

lim
n→∞

edges(Gn)

n
= β ∈ (0,1).

It is well known [1] that the number of spanning tre
of Kn − Sr is given by the following formula:

N(Kn − Sr) = nn−2 ·
(

1− 1

n

)r−2

·
(

1− r

n

)
.

The spanning tree indicator for the sequence{Gn} can
be derived by the following limit:

α
({Gn}

) = lim
n→∞

(
1− 1

n

)edges(Gn)−1

×
(

1− edges(Gn) + 1

n

)
.

It can be easily shown that the above limit exists a
is equal to:

α
({Gn}

) = e−β · (1− β).

Notice that for everyβ , the indicator for this class o
graphs is less than that of the class of complete gra
 .

Let Di be the graph consisting ofi disjoint copies
of K2 (that is,i pairwise disjoint edges), and letD =
{D0,D1, . . . ,Di, . . .} be the class of such graphs. L
{Gn} be a sequence onD such that:

lim
n→∞

edges(Gn)

n
= β ∈

(
0,

1

2

)
.

It is also well known [1] that the number of spanni
trees ofKn − Dr is given by the following formula:

N(Kn − Dr) = nn−2 ·
(

1− 2

n

)r

.

The spanning tree indicator for the sequence{Gn} can
be derived by the following limit:

α
({Gn}

) = lim
n→∞

(
1− 2

n

)edges(Gn)

.

This can be easily shown to be equal to:

α
({Gn}

) = e−2·β.

Observe that the indicator in this case is identica
the one corresponding to the class of complete gra

3.4. Complete bipartite graphs

Let Km,r be the complete bipartite graph onm + r

vertices. We consider now the classB = {Km,1,Km,2,

. . . ,Km,i , . . .}. Let {Gn} be a sequence of graphs fro
B such that:

lim
n→∞

edges(Gn)

n
= β ∈ (0,1).

In order to calculate the spanning tree indicator
{Gn} we need to know the formula giving the numb
of spanning trees of the graphKn − Km,r . We prove
the following theorem:

Theorem 3.1. The number of spanning trees of Kn −
Km,r is equal to

nn−2 ·
(

1− r

n

)m−1

·
(

1− m

n

)r−1

·
(

1− m + r

n

)
.

Proof. Using the Complement Spanning-Tree Mat
Theorem [1] and a calculation technique very sim
to the one presented in [8].�
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The spanning tree indicator for{Gn} can be cal-
culated if we take into consideration the fact that
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Notice that edges(K2,i2) �= edges(Kj ) for every
i, j � 0, since:
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edges(Gn) = m · r. Therefore, it is:

α
({Gn}

) = lim
n→∞

(
1− edges(Gn)

m · n
)m−1

×
(

1− m

n

) edges(Gn)
m −1

×
(

1− m + edges(Gn)
m

n

)
.

The above limit is easily shown to be equal to:

α
({Gn}

) = e−β ·
(

1− β

m

)m

.

Notice that, for m = 1 we get the spanning tre
indicator for the star graph case.

4. Comparing classes of graphs through indicators

In this section we provide an example of using
proposed approach in order to compare two differ
classes of graphs. The two classes we consider
been appropriately chosen so as that their mem
never happen to have the same size.

Assume now that we want to compare these
classes with respect to their number of spanning tr
One possible solution would be to select spec
members from the two classes and calculate
number of spanning trees analytically. However, t
cannot be performed in a straightforward way sin
there are no members of the two classes that h
the same number of edges. In other words, we
not directly compare the two classes because we
not know which elements from the two classes
select in order to perform the comparison. On
other hand, using the proposed technique, we
construct pairs of comparable sequences from
two classes and then compare the classes throug
indicators. Consequently, the limit approach is sho
to be effective even when the graphs being conside
are not equal in size.

Consider the classK of all complete graphs an
the classB which is a subclass of the comple
bipartite graphs; letK = {K1,K2, . . . ,Ki, . . .} and
B = {K2,1,K2,4, . . . ,K2,i2, . . .}.
edges(K2i ) = 2i · (2i − 1)

2
= 2i2 − i < 2i2

= edges(K2,i2)

and

edges(K2i+1) = (2i + 1) · 2i

2
= 2i2 + i > 2i2

= edges(K2,i2)

(that is,edges(K2,i2) is a number between the numb
of edges of two consecutive complete graphs).

We next show that for everyβ we can construc
sequences{Fn} of graphs inK and{Gn} of graphs in
B such thatγ ({Fn}) = γ ({Gn}) = β .

Let Fn = Km, where m satisfies the following
inequalities:

(m − 1) · (m − 2)

2
< β · n � m · (m − 1)

2
(that is,Fn is the minimum complete graph with n
less thanβ · n edges).

Now, for all n � 4
β

, it is vrt(Fn) � 4. In that case:

edges(Fn) = vrt(Fn) · (vrt(Fn) − 1)

2

� 2 · (vrt(Fn) − 2) · (vrt(Fn) − 1)

2
< 2 · β · n.

Moreover, since

edges(Fn) = vrt(Fn) · (vrt(Fn) − 1)

2
,

we get forn � 4
β

:

vrt(Fn) = 1+ √
1+ 8 · edges(Fn)

2

<
1+ √

1+ 16· β · n
2

.

Furthermore,

edges(Fn) − β · n = vrt(Fn) · (vrt(Fn) − 1)

2
− β · n

<
vrt(Fn) · (vrt(Fn) − 1)

2

− (vrt(Fn) − 1) · (vrt(Fn) − 2)

2
= vrt(Fn) − 1 < vrt(Fn).
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Consequently, forn � 4
β

, we have

r
f

The above example illustrates that classes that do
not contain graphs of the same size, can be proved
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0 � edges(Fn) − β · n
n

<
vrt(Fn)

n

<
1+ √

1+ 16· β · n
2n

.

Since

lim
n→∞

1+ √
1+ 16 · β · n

2n
= 0,

we conclude that

lim
n→∞

edges(Fn) − β · n
n

= 0

which is equivalent toγ ({Fn}) = β .
Similarly let Gn = K2,m2, wherem satisfies the

following inequalities:

2 · m2 � β · n < 2 · (m + 1)2

(that is,Gn is the maximum graph inB with no more
thanβ · n edges). Then,

β · n − edges(Gn)

= β · n − 2 · m2 < 2 · (m + 1)2 − 2 · m2

= 4 · m + 2 � 6m

and

m =
√

edges(Gn)

2
�

√
β · n

2
.

Consequently, we have

0 � β · n − edges(Gn)

n
<

6m

n
� 6 · √β · n/2

n
.

Since

lim
n→∞

6 · √β · n/2

n
= 0,

we conclude that

lim
n→∞

β · n − edges(Gn)

n
= 0

which is equivalent toγ ({Gn}) = β .
We finally observe that althoughedges(Fn) �

edges(Gn) the following holds:

α
({Fn}

) = e−2·β > e−β · (1− β/2)2 = α
({Gn}

)
.

Thus, we conclude that the classK behaves bette
that the classB, with respect to the number o
spanning trees.
to have different behaviour with respect to numb
of spanning trees by a simple comparison of th
indicators. Similarly, comparison of classes throu
indicators can be used in cases in which two classe
graphs intuitively appear to have a common behav
with respect to their number of spanning trees,
this fact cannot be established by considering spe
elements of the two classes.

For example consider the classesKe and Ko of
complete graphs with even and odd number of v
tices, respectively. Intuitively, these two classes h
the same behaviour with respect to the numbe
spanning trees, that is one expects that the numb
the spanning trees ofKn − Km depends onm because
of its size and not because of its parity. But compar
specific elements of the two classes fails to sepa
size from parity.

On the other hand, comparison through indica
provides a mathematical formalism that can be u
to prove that the above two classes have actually
same behaviour (since they have the same indicat

5. Conclusions and future work

In this paper we have introduced a characteriza
of the limit behaviour of graphs with respect to th
number of spanning trees. More specifically, giv
two classes of graphs whose members have the s
growing rate, one can use their indicators in orde
deduce which one of the classes has (asymptotic
the best behaviour.

There are certain aspects of this work which we
lieve that deserve further investigation. The questi
we have faced are the following:

• Does there exist a structural description of tho
classes of graphs that areβ-stable?

• Certain families of graphs appear to have
same indicator. Does there exist a simple a
general criterion that one could use in order
deduce that two classes of graphs have the s
indicator without actually computing analytical
the indicators themselves?

• Does there exist a more accurate criterion t
could be used to compare the limit spanning-t
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behaviour of classes of graphs that have the same
spanning-tree indicator?
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in a
sign
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. 76
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[5] B. Gilbert, W. Myrvold, Maximizing spanning trees in almost
complete graphs, Networks 30 (1997) 23–30.

.),
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91)
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t. 65
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58)
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We believe that answers to such questions can off
significant insight on the spanning-tree behaviour
graphs.
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