
Discrete Applied Mathematics 120 (2002) 165–195

Coloring permutation graphs in parallel

Stavros D. Nikolopoulos
Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

Received 1 May 2000; received in revised form 8 April 2001; accepted 3 June 2001

Abstract

A coloring of a graph G is an assignment of colors to its vertices so that no two adjacent
vertices have the same color. We study the problem of coloring permutation graphs using certain
properties of the lattice representation of a permutation and relationships between permutations,
directed acyclic graphs and rooted trees having speci/c key properties. We propose an e0cient
parallel algorithm which colors an n-node permutation graph in O(log2 n) time using O(n2=log n)
processors on the CREW PRAM model. Speci/cally, given a permutation � we construct a tree
T∗[�], which we call coloring-permutation tree, using certain combinatorial properties of �. We
show that the problem of coloring a permutation graph is equivalent to /nding vertex levels in
the coloring-permutation tree. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Permutation graphs; Perfect graphs; Coloring problem; Parallel algorithms; Trees;
Complexity; PRAM models

1. Introduction

Let � = (�1; �2; : : : ; �n) be a permutation over the set Nn = {1; 2; : : : ; n}. The n-node
graph G[�] = (V; E) is de/ned as follows: V =Nn and an edge (i; j)∈E if and only
if (i− j)(�−1

i −�−1
j )¡ 0, for all i; j∈V where �−1

i is the index of the element i in �.
A graph G is a permutation graph if there exists a permutation � on Nn such that G
is isomorphism to G[�]. The graph G[�] is also known as the inversion graph of �.
We, therefore, assume in this paper that a permutation graph G[�] is represented by
the corresponding permutation �; see [6].

Many researchers have devoted their work to the study of permutation graphs. They
have proposed sequential and=or parallel algorithms for recognizing permutation graphs
and solving combinatorial and optimization problems on them. For a sequential envi-
ronment, Pnueli et al. [14] gave an O(n3) time algorithm for recognizing permutation
graphs using the transitive orientable graph test. Later, Spinrad [17] improved their

E-mail address: stavros@cs.uoi.gr (S.D. Nikolopoulos).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0 1 6 6 -218X(01)00289 -X



166 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

results by designing an O(n2) time algorithm for the same problem. In the same paper,
Spinrad also proposed an algorithm that determines whether or not two permutation
graphs are isomorphic in O(n2) time. In [18], Spinrad et al. proved that a bipartite
permutation graph can be recognized in linear time by using some good algorithmic
properties of such a graph. They also studied other combinatorial and optimization
problems on permutation graphs. Supowit [19] solved the coloring problem, the max-
imum clique problem, the clique cover problem and the maximum independent set
problem, all in O(n log n) sequential time. Moreover, Farber and Keil [5] solved the
weighted domination problem and the weighted independent domination problem in
O(n3) time, using dynamic programming techniques. Later, Brandstadt and Kratsch [4]
published an O(n2) time algorithm for the weighted independent domination problem.
Atallah et al. [2] solved the independent domination set problem in O(n log2 n) time,
while Tsai and Hsu [20] solved the domination problem and the weighted domination
problem in O(n log2 n) time and O(n2 log2 n) time, respectively. Tsukiyama et al. [21]
proposed an algorithm that generates all maximal independent sets of a general graph
in O(nma) time, where a is the number of the generated maximal independent sets of
the graph. Leung [11] gave algorithms for generating all maximal independent sets of
interval, circular-arc and triangulated (or chordal) graphs. His algorithm takes O(n2 +k)
time for interval and circular-arc graphs, and O((n+m)a) time for triangulated graphs,
where k is the number of vertices generated. In [23], Yu and Chen showed that all
the maximal independent sets can be obtained in O(n log n + k) time using O(n log n)
space. Recently, Nikolopoulos et al. [13] studied the behaviour of the on-line coloring
algorithm First-Fit (FF) on the class of permutation graphs and proved that this class
of graphs is not FF �-bounded.

Although many sequential algorithms have been proposed for permutation graphs,
few parallel algorithms have appeared in the literature. Due to the work of Helmbold
and Mayr [7] and Kozen et al. [10], the problem of recognizing permutation graphs
was shown to be in the NC class. Helmbold and Mayr presented a parallel algorithm
that recognizes a permutation graph in O(log3 n) time using O(n4) processors on the
CRCW PRAM model. They also solved the weighted clique problem and the coloring
problem in O(log3 n) time using O(n4) processors on the same model of computation.
Moreover, given a permutation graph, their algorithm can construct the permutation
that represents the permutation graph. For descriptions of various PRAM models of
computation, see [3,8,15].

Our objective is to study the coloring problem on permutation graphs. Yu and Chen
[22] proposed a technique that transfers the coloring problem into the largest-weight
path problem. Their algorithm solves the coloring problem in O(log2 n) time with
O(n3=log n) processors on the CREW PRAM, or in O(log n) time with O(n3) proces-
sors on the CRCW PRAM model. They also proposed parallel algorithms that solve the
weighted clique problem, the weighted independent set problem, the clique cover prob-
lem, and the maximal layers problem with the same time and processor complexity.
Recently, using a similar transformation technique Andreou and Nikolopoulos [1] de-
signed a parallel algorithm which solves the problem of coloring a permutation graph of



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 167

size n in O(log2 n) time using O(n3=log3 n) processors on the CREW PRAM model of
computation. Moreover, they showed that the coloring problem on permutation graphs
can be solved in O(log n log log n) time in the average-case with O(n2) processors.

In this paper, we present a parallel algorithm for the problem of coloring a permu-
tation graph, which runs in O(log2 n) time with O(n2=log n) processors on the CREW
PRAM model. Our algorithm uses a strategy to transform a permutation graph G into
a rooted tree T and solves the coloring problem on G by computing the vertex-level
function on T . We design our algorithm using certain combinatorial properties of the
lattice representation of a permutation [16] and relationships between permutations, di-
rected acyclic graphs and rooted trees having speci/c key properties. Speci/cally, given
a permutation � (or its corresponding graph G[�]), we /rst construct a rooted tree T [�]
by exploiting the inversion and d-inversion relations of the element of � and, then, from
the tree T [�] we construct a rooted tree T ∗[�] which we call coloring-permutation tree
or cp-tree for short. We prove that the problem of coloring a permutation graph G[�]
is equivalent to the problem of /nding the level of each node of the cp-tree T ∗[�].
We show that the cp-tree of a permutation can be constructed in O(log2 n) time with
O(n2=log n) processors on the CREW PRAM model. Since the level of each vertex
of a tree can be computed in O(log n) time with O(n=log n) processors on the EREW
PRAM model using the well-known Euler-tour technique [8], it follows that the color-
ing problem on permutation graphs can be solved in O(log2 n) time with O(n2=log n)
processors on the CREW PRAM model.

The paper is organized as follows. In Section 2, we establish the notation and ter-
minology we shall use throughout the paper. In Section 3, we describe the method
that transforms a given permutation � into a rooted tree, that is, the cp-tree, and we
prove that coloring the permutation graph G[�] is equivalent to the problem of /nding
the level of each node of its cp-tree. In Section 4, we present a parallel algorithm
for the construction of the cp-tree, while in Section 5 we prove the correctness of the
construction algorithm. In Section 6, we compute the time and processor complexity
of the coloring algorithm. Finally, Section 7 concludes the paper.

2. De�nitions

A coloring of a graph G = (V; E) is an assignment of colors to its vertices so that no
two adjacent vertices have the same colour. The set of all vertices with any one color
is independent and is called a color class. To distinguish the color classes we use a
set of colors C, and the division into color classes is given by a coloring ’ :V → C,
where ’(x) �=’(y) for all (x; y)∈E. If C has cardinality k, then ’ is a k-coloring.
The coloring problem is to color a graph G with k color where k is the minimum
cardinal k for which G has a k-coloring (minimum number of colors). The number k
is called the chromatic number of G are denoted by �(G) [7,9].

Let � be a permutation over the set Nn. An inversion is a pair i¡ j with �i ¿�j.
We say that an element �i inverts �j, or �j is inverted by �i, if i¡ j and �i ¿�j.



168 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 1. Lattice representation of the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1) and its d-inversion relation of each
pair of elements of �.

An element �i directly inverts �j, or �j is directly inverted by �i, if �i inverts �j and
there exists no element �k such that �i inverts �k and �k inverts �j. For example, in
the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1), the elements 2, 5, 4 and 1 are inverted by
6, while the elements 2 and 5 are directly inverted by 6. We shall use, hereafter, the
notation d-inverts and d-inverted for the terms directly inverts and directly inverted,
respectively; see Chapter 6 in [16]; also in [2,4,5].

The inversion set (resp. d-inversion set) of an element �i is de/ned to be the set
which contains all the elements of � that invert (resp. d-invert) �i, 16 i6 n. We shall
denote the inversion and d-inversion sets of an element �i by inversion-set(�i) and
d-inversion-set(�i), respectively. In our example, these two sets of the element �7 = 5
are the following: inversion-set(5) = (7; 9; 6; 8) and d-inversion-set(5) = (6; 8). Fig 1
shows a two-dimensional representation of a permutation that is useful for showing
the inversion and d-inversion sets of its elements. The permutation (�1; �2; : : : ; �n) is
represented by labelling the cell at row i and column �i with the element �i for each
i. There is one label in each row and in each column, so each cell in the lattice
corresponds to a unique pair of labels. If one member of the pair is below and the
other to the right, then that pair is an inversion in the permutation. Based on this
property we can easily show the inversion and d-inversion relations of every pair of
elements. For example, let �i; �j be a pair of elements of the permutation �. If �i is
below and �j to the right, then �j inverts �i or, equivalently, �i is inverted by �j. In
Fig. 1 (left lattice), this relation is indicated by a bullet in the corresponding cell, that
is, in row j and column �i. The d-inversion relation of each pair of elements of � is
indicated in a similar way in the right lattice of the same /gure.

We conclude this section with some graph-theoretic notation employed in this paper.
A tree T = (V; E) is a graph with a unique path between each pair of vertices. A rooted
tree has a distinguished vertex called the root. A directed tree is a rooted tree with
directed edges. A (directed) forest is a collection of (directed) trees. Throughout the
paper, all trees will be directed.

We shall consider the directed trees to be leveled; that is, the root r will constitute
level 0, the neighbours of r will constitute level 1, the neighbours of the node on level



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 169

1 that have not yet placed in a level will constitute level 2, etc. It is well-known that
with this structure, if u is on level h then the children of u are on level h + 1 and
the parent of u is on level h− 1. Throughout the text, we shall refer to the level of u
as level(u). It is easy to see that level(u) is simply the length of the path (number of
edges) from the root r to node u. The height of a node u is the number of edges in
the longest path from the node u to a leaf. Finally, we de/ne the height of a tree to
be the height of its root.

3. The color-mapping strategy

We have referred to the problem of coloring a graph as one of trying to assign
particular colors to its vertices so that no two adjacent vertices have the same color.
Moreover, the number of colors used must be as few as possible. The key to the
solution is to /nd the color classes of the graph; that is, the classes of vertices that can
be colored with the same color. To this end, one can think of transforming the graph
into another combinatorial object (e.g., tree, directed graph, etc.) and, then, solving
a particular problem on this object (e.g., vertices lying in the same level of the tree,
vertices having the same distance from a particular vertex, etc.) which gives the solution
to the coloring problem.

In this work, we use a strategy to transform a permutation graph G[�] into a rooted
tree T ∗[�] which we call coloring-permutation tree or cp-tree for short. Then, we
solve the coloring problem on G[�] by computing the vertex-level function on T ∗[�].
More precisely, given a permutation � (or its corresponding graph), we construct a
coloring-permutation tree T ∗[�] by exploiting the inversion and d-inversion relations
and we show that the color class Ci of graph G[�] consists of those nodes of the tree
T ∗[�] whose distance from the root of the tree equals i¿ 1. That is, Ci contains all
the nodes u of T ∗[�] such that level(u) = i; 16 i6 k, where k = �(G[�]).

Towards the construction of a coloring-permutation tree T ∗[�], we /rst construct a
rooted tree T [�] in the following manner:

(i) Construct a directed acyclic graph (dag) G = (V; E) such that V = {�1; �2; : : : ; �n}
and 〈�i; �j〉 ∈E iL �i d-inverts �j (see Fig. 2: leftmost /gure).

(ii) Given the dag G, construct a (directed) forest F as follows: Remove the edge
〈�j; �k〉 from G iL there exists edge 〈�i; �k〉 such that �i ¡�j. The node �p(i)

with indegree(�p(i) ) = 0 in G is the root of the tree Ti in F (see Fig. 2: middle
/gure).

(iii) Let T1; T2; : : : ; Tm (m¿ 1) be the trees in F, and let �p(1) ; �p(2) ; : : : ; �p(m) be the
roots of those trees, respectively. Let r be a new node such that r = n + 1. Then,
construct a rooted tree T [�] consisting of the nodes and edges of T1; T2; : : : ; Tm,
the new node r, and the new edges 〈r; �p(1)〉; 〈r; �p(2)〉; : : : ; 〈r; �p(m)〉. The root of
T [�] is r, and T1; T2; : : : ; Tm are the subtrees of T [�] (see Fig. 2; rightmost /gure).

The tree T [�] constructed by the above procedure has the property that every
path from the root r to a node �i forms a decreasing sequence P = (r; �p; : : : ; �q).



170 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 2. The construction of the tree T [�] of the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1).

Fig. 3. The ds-tree T [�] and a cp-tree T∗[�] of the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1).

Moreover, if �i and �j are two elements of P such that �i ¿�j and p6 i; j6 q, then
�−1
i ¡�−1

j in �. Based on this property we shall refer, hereafter, to the tree T [�] as
the decreasing-subsequence tree, or the ds-tree for short.

Let � be a permutation over the set Nn. We de/ne a coloring-permutation tree
T ∗[�] = (V ∗; E∗) to be a rooted tree having the following properties:

(i) V ∗ = {r; �1; : : : ; �n}, where r is the root of the tree; r = n + 1;
(ii) if 〈�i; �j〉 ∈E∗, then �i inverts �j in �;

(iii) there is no pair of nodes �i; �j such that level(�i)¿ level(�j) and �i inverts �j

in �.
It is easy to see that the ds-tree T [�] of a permutation � is a coloring-permutation
tree T ∗[�], or cp-tree for short, if there are no nodes �i; �j in T [�] such that
level(�i)¿ level(�j) and �i inverts �j in �. Fig. 3 shows the ds-tree T [�] and a
cp-tree T ∗[�] of the sample permutation �. In the same /gure, T [�] is not a cp-tree
because there exists a pair of nodes (4; 1) such that level(4)¿ level(1) and 4
inverts 1 in �.



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 171

Having constructed the ds-tree T [�] of a permutation �, let us now show the way
we can construct the cp-tree T ∗[�].

We /rst de/ne a tree operation which is useful for showing the construction of
a cp-tree T ∗[�] form the ds-tree T [�]. Let �i; �j be two nodes of T [�] such that
level(�i)¿ level(�j) and �i inverts �j in �, and let p(�j) be the parent of the node
�j. Then, we de/ne an operation which makes the subtree of node p(�j) rooted at �j

to be a subtree of node �i. We call this operation inversion-move operation and we
formally de/ne it as follows:

Inversion-move operation: Let �i; �j be two nodes of the tree T [�]. Delete the edge
〈p(�j); �j〉 from and add a new edge 〈�i; �j〉 to T [�] if level(�i)¿ level(�j) in T [�]
and �i inverts �j in �; this operation is denoted by i-move(�j; �i).

Let T ′ be the resulting tree after applying the operation i-move(�j; �i) on T [�]. In
T ′ the nodes �i and �j have the following properties: (i) 〈�i; �j〉 is an edge, (ii) �i

inverts �j, and (iii) level(�i)¡level(�j) in T ′. Thus, we can construct a cp-tree T ∗[�]
by applying inversion-move operations on the tree T [�] until no pair of nodes (�i; �j)
remains in T [�] such that level(�i)¿ level(�j) and �i inverts �j in �.

For example, let T [�] be the ds-tree of the sample permutation � used throughout
the paper (see Fig. 3; leftmost tree). In this tree, 4 inverts 1 and level(4) = level(1)
in T [�]. It is easy to see that we can construct a cp-tree T ∗[�] by applying the
inversion-move operation i-move(1; 4) on the ds-tree T [�] (see Fig. 3; rightmost
tree).

By de/nition, the ds-tree T [�] has the following structural property: the parent of
a node �p in T [�] is the minimum �q such that (a) �q is inverted by r, and (b) �q

d-inverts �p. We note that after applying an inversion-move operation on the ds-tree
T [�], this property no longer holds.

Remark 3.1. Let G[�] be a permutation graph and let T ∗[�] be a cp-tree of G[�]
rooted at r. Based on the way we construct the graph G[�] from the permutation
� and the way we construct the cp-tree T ∗[�] from the ds-tree T [�], we conclude
that if P = (�i; : : : ; �j) is a path in T ∗[�], then the subgraph of G[�] induced by the
set {�i; : : : ; �j} is an m-node complete graph, where m is the number of elements
in P.

Remark 3.2. Let T ∗[�] be a cp-tree of G[�] rooted at r and let P = (r; �i; : : : ; �j) be
a path from r to a node �j. It is clear that the inversion-move operation has respect
for the properties of the ds-tree T [�]. Thus, by construction, P forms a decreasing
sequence (r; �i; : : : ; �j).

We now show that there is a one-to-one correspondence between the length (num-
ber of edges) in the path from r to a node �i in T ∗[�] and the color of vertex �i in
G[�]. More precisely, we prove that the nodes of the ith level of the cp-tree T ∗[�]
form the color class Ci of the permutation graph G[�], where 16 i6 k. Recall that
k = �(G[�]).



172 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Lemma 3.1. Let � be a permutation over the set Nn. The following numbers are
equal:
(i) the chromatic number of G[�];

(ii) the length of a longest decreasing subsequence of �;

Proof. Corollary 7:4 in [6].

Lemma 3.2. Let T ∗[�] be a cp-tree of a permutation � rooted at r. Every path from
r to a node �i forms a decreasing subsequence of �.

Proof. By de/nition, if 〈�i; �j〉 ∈E∗, then �i inverts �j in �. It follows that i¿ j and
�i ¿�j in �. (see also Remark 3.2).

Lemma 3.3. Let T ∗[�] be a cp-tree of a permutation � rooted at r and let k be the
height of T ∗[�]. Then k = �(G[�]).

Proof. Lemma 3.2 tell us that every path from r to a node �i of T ∗[�] forms a
decreasing subsequence of �. This result coupled with the result of Lemma 3.1 implies
that k6 �(G[�]). (Note that the length of a subsequence S of � is the number of
elements in S, while the length of a path P of T ∗[�] is the number of edges in P.)
Suppose that k ¡�(G[�]). Let S = (�p; : : : ; �q) be the longest decreasing subsequence
of �. Since the length of S equals �(G[�]) and k ¡�(G[�]), it follows that there are
�i and �j in S such that �i ¿�j and level(�i)¿ level(�j) in T ∗[�]. Moreover, since
S is a subsequence of �, it follows that �−1

i ¡�−1
j in �. Thus, T ∗[�] is not a cp-tree;

a contradiction.

Lemma 3.4. Let �i and �j be two nodes of the tree T ∗[�]. If (�i; �j) is an edge in
G[�]; then level(�i) �= level(�j) in T ∗[�].

Proof. Suppose that level(�i) = level(�j). Since �i and �j are adjacent in G[�], it
follows that �i inverts �j in �. Thus, there is a pair of nodes (�i; �j) in T ∗[�] such
that level(�i)¿ level(�j) and �i inverts �j in �, contradicting the properties of a
cp-tree.

Having shown the relation between the coloring problem on a permutation graph
G[�] and the problem of /nding the level of each node of the cp-tree T ∗[�], we are in
a position to formulate an algorithm for solving the coloring problem on permutation
graphs. The algorithm proceeds as follows:

Algorithm Coloring:
Input: A permutation � and its corresponding graph G[�] = (V; E);
Output: The color of each vertex �i ∈V; i = 1; 2; : : : ; n;



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 173

begin
1. Construct a coloring-permutation tree T ∗[�] rooted at r, where r = �0;
2. Compute the level level(�i) of each node �i of the tree T ∗[�], 16 i6 n;
3. Set color(�i)← level(�i), i = 1; 2; : : : ; n;
end;

In Step 3, the algorithm colors the vertices of graph G[�] with k colors, where
k is the height of the color tree T ∗[�], k6 n. Vertices �i and �j are colored with
the same color if and only if the nodes �i and �j have the same distance in T ∗[�]
or, equivalently, level(�i) = level(�j). The correctness of the algorithm is established
through Theorem 3.1. Its proof relies on the results of Lemmas 3.3 and 3.4. Hence,
we obtain the following result.

Theorem 3.1. Let � be a permutation over the set Nn. Algorithm Coloring correctly
solves the coloring problem on the permutation graph G[�].

4. Construction of the coloring-permutation tree

We have de/ned the coloring-permutation tree T ∗[�] of a given permutation � and
we have shown the one-to-one correspondence between the coloring problem on G[�]
and the problem of computing the level of each vertex of T ∗[�]. It is well-known
that we can optimally compute the level of each vertex of T ∗[�] using the Euler-tour
technique on rooted trees. Thus, we focus on the design of a parallel algorithm for
constructing a coloring-permutation tree T ∗[�].

4.1. The decreasing-subsequence trees

As stated previously, the ds-tree T [�] is constructed by exploiting the d-inversion
relation on the permutation �. Obviously, the d-inversion set of an element is a subset
of its inversion set. We can easily see that the inversion set inversion-set(�i) of an
element �i of a permutation � is simply the set which contains all the elements that
are greater than �i and lie on the left of the element �i in �; see the de/nition of the
inversion set in Section 2; see also [2,4,5,16]. Thus, we can compute the d-inversion-set
of an element �i by computing the su0x minima (�i1; �i2; : : : ; �i(i−1)) of the sequence
(�1; �2; : : : ; �i−1), where �k =∞ if �k �∈ inversion-set(�i), 16 k6 i − 1; that is, the
element �ij is the minimum element among {�j; �j+1; : : : ; �i−1}, 16 j6 i − 1; see
Fig. 4(a).

Having computed the d-inversion-set of each element �i of a permutation � (16 i
6 n), we can easily compute the d-inversion matrix D of �; D is an n×n matrix con-
taining all the necessary information for the d-inversion relation of the permutation �.

Let (�i1; : : : ; �i(i−1)) be the su0x minima of (�1; : : : ; �i−1), 16 i6 n. Then, the
elements D(i; j) of matrix D, 16 i; j6 n, have the following values:

D(i; j) = �ij if i¿ j; D(i; i) = �i and D(i; j) = 0 if i¡ j:



174 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 4. (a) The computation of the seventh row of the d-inversion matrix of the permutation
� = (7; 9; 3; 6; 2; 8; 5; 4; 1); (b) The d-inversion matrix D of �, (c) The ds-tree T [�].

The computation of the seventh row of the d-inversion matrix D of the sample permu-
tation � is illustrated in Fig. 4(a); the entered d-inversion matrix D is shown in Fig.
4(b).

Let E(T [�]) be the edge set of the ds-tree T [�] rooted at r. Since r inverts ev-
ery element of �, it follows that 〈r; D(1; 1)〉 ∈E(T [�]). From the d-inversion matrix
D we obtain that 〈r; D(i; i)〉 ∈E(T [�]) if D(i; 1) =∞ and 〈D(i; 1); D(i; i)〉 ∈E(T [�])
otherwise, 26 i6 n; see Fig. 4(c).

Sometimes, hereafter, we shall denote by T [�0] the ds-tree T [�] rooted at r = �0.
Thus, the d-inversion matrix of a permutation � contains all the necessary information
for constructing the ds-tree T [�0]; T [�1]; : : : ; T [�n].

We shall call D-inversion-matrix the above procedure for the computation of the
d-inversion matrix of a permutation � of length n. The correctness of the algorithm is
based on the previous discussion and is established through the following lemma.

Lemma 4.1. Algorithm D-inversion matrix correctly computes the d-inversion ma-
trix of a permutation � over the set Nn.

Let � = (r; �1; �2; : : : ; �n) be a permutation such that r = n + 1. We have seen that
the ds-tree T [�] is a tree rooted at r such that: {r; �1; �2; : : : ; �n} is its vertex set and
〈�k ; �i〉 is an edge if and only if �k = min{�j |�j ∈d-inversion-set(�i)} (16 i6 n).
Recall that the ds-tree T [�] is also denoted by T [�0], where r = �0.

Next, we de/ne the ds-trees T [�1]; T [�2]; : : : ; T [�n] of a permutation � = (r; �1; �2; : : : ;
�n). The ds-tree T [�i] (16 i6 n) is de/ned to be a rooted tree such that:

(i) �i is the root of the tree;
(ii) �p is a node iL �i ¿�p and �p in (�i+1; �i+2; : : : ; �n); that is, i + 16p6 n;

(iii) 〈�k ; �p〉 is an edge iL �k = min{�j |�j ∈d-inversion-set(�p)}.
Fig. 5 illustrates the way we can construct the ds-trees T [7]; T [9] and T [3] of the
permutation �, where � is the same permutation used in this paper.

Let T [�i] be the ith ds-tree of a permutation �, 16 i6 n. By de/nition, �i is the
root of the tree and �j is a node if and only if �j ¡�i and i + 16 j6 n. We can



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 175

Fig. 5. The ds-trees T [�1]; T [�2] and T [�3] of the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1); that is, the ds-trees
T [7]; T [9] and T [3].

therefore compute the edge set of T [�j] using the d-inversion matrix D of � as follows:
Set 〈D(k; i); �k〉 to be an edge of T [�i] if �k ¡�i and i + 16 k6 n.

Thus, the d-inversion matrix of a permutation � contains all the necessary informa-
tion for constructing the ds-trees T [�0]; T [�1]; : : : ; T [�n]. Sometimes, hereafter, we shall
denote by T [�0] the ds-tree T [�] rooted at r = �0. We construct the ds-tree T [�i] rooted
at �i by computing the parent function, p(�k), for each node �k such that �k ¡�i and
i + 16 k6 n. Next, we list the parallel construction algorithm.

Algorithm ds-Trees (Decreasing-Subsequence-Trees):
Input: A permutation � over the set Nn;
Output: The decreasing-subsequence trees T [�i]; 06 i6 n;

begin
1. Compute the d-inversion matrix D of �;
2. Set �0 to be the root of the tree T [�0] and �1 to be a child of the

root �0; that is, p(�1) = �0;
3. For every �k , 26 k6 n, do in parallel

if D(k; 1) =∞ then set �k to be a child of the root �0; that is, p(�k) = �0

else set �k to be a child of the node D(k; 1) �=∞; that is, p(�k) =D(k; 1);
4. For every i; 16 i6 n, do in parallel
4.1 Set �i to be the root of the tree T [�i];
4.2 For every �k ; i + 16 k6 n, do in parallel
if �k ¡�i then set �k to be a child of the node D(k; i); that is, p(�k) =D(k; i);
end;

In Fig. 6, we show the ds-trees T [�0]; T [�1]; : : : ; T [�9] of the permutation � =
(7; 9; 3; 6; 2; 8; 5; 4; 1), where r = �0 and �0 = 10.

4.2. The link and active-link nodes of a ds-tree

Towards the construction of the cp-tree T ∗[�], we de/ne for each ds-tree T [�0]; T
[�1]; : : : ; T [�n] two sets of nodes having speci/c properties. These properties are



176 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 6. The ds-trees T [�0]; T [�1]; : : : ; T [�9] of the permutation � = (7; 9; 3; 6; 2; 8; 5; 4; 1). Here, r = �0 = 10.

important and play a key role in the cp-tree construction process. For the ds-tree
T [�i]; 06 i6 n, these two sets are de/ned as follows:

link-nodes(T [�i]): It contains all the nodes x of T [�i] having the following property:
there exists a node y in T [�i] such that:

(i) level(y) = level(x),
(ii) y is inverted by x.
active-link-nodes(T [�i]): it contains all the nodes w of link-nodes(T [�i]) having the
property: there exists no node x in link-nodes(T [�i]) such that x inverts w.

In this paper, we assume that the sets of link and active-link nodes are ordered sets;
that is, the elements in each set are arranged in the same order as they appear in �. For
example, the sets of the link and active link nodes of the ds-tree T [�1] of Fig. 7(b)
are the following: link-nodes(T [�1]) = (8; 9; 3) and active-link-nodes(T [�1]) = (8; 9).

Before we describe the algorithmic way we can compute the link and active-link
nodes of a ds-tree T [�i]; 06 i6 n, we show some properties of the link nodes of T [�i]
and describe the structure of speci/c subtrees which contain link nodes. Moreover, we
show properties of the link nodes of the trees T [�i] and T [�j], in the case where the
root �j of the tree T [�j] is an active-link node of T [�i]; i ¡ j6 n.

Let (y; x) be a pair of nodes in the tree T [�i]; 06 i6 n. The pair (y; x) is called
link-pair if y is inverted by x and level(y) = level(x) in T [�i]. By de/nition, the node
x in a link-pair (y; x) is a link-node of the tree T [�i].



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 177

Fig. 7. The link relationship of the link-pair (y; x) and the triplet (y′; x′; r′); (b) The ds-tree T [�1] of the
permutation � = (12; 7; 11; 8; 6; 10; 9; 5; 2; 4; 3; 1).

Let (y; x) be a link-pair in the tree T [�i]; 06 i6 n. Let x′ and y′ be the parents
of x and y in T [�i], respectively, and let r′ be the lowest common ancestor lca(y; x)
of the link-pair (y; x); see Fig. 7(a). Then, the link-pair (y; x) and the triplet (y′; x′; r′)
satisfy the following property:
Link-property I.

y¡y′ ¡x¡x′ ¡r′;

�−1(r′)¡�−1(y′)¡�−1(x′)¡�−1(x)¡�−1(y);

where, by �−1(x) we denote, hereafter, the index of the element x in �; that is
�−1(x) = �−1

x (we use the same notation for the nodes y; y′; x′ and r′).
In Fig. 7(b), the pairs of nodes (6; 8); (5; 9) and (1; 3) are link-pairs in the tree

T [�1]. It is easy to see that each link-pair satis/es the link property. For example, for
the link-pair (1; 3) and the triplet (2; 4; 5) we have: �−1(5)¡�−1(2)¡�−1(4)¡�−1

(3)¡�−1(1).
Let (y; x) be a link-pair in the tree T [�i]; 06 i6 n. We call link-subtree of (y; x)

the subtree of T [�i] rooted at r′ = lca(y; x); we denote it by link-subtree(�i;y; x). In
Fig. 7(b), link-subtree(�1; 1; 3) is the subtree of T [�1] rooted at 5, while link-subtree
(�1; 5; 9) is the subtree of T [�1] rooted at 12. Note that link-subtree(�1; 6; 8) is also
the subtree of T [�1] rooted at 12.

Next, we show some important properties of the link-pairs and the link-subtrees
of a tree T [�i]; 06 i6 n. These properties are useful for understanding the cp-tree
construction algorithm and showing its correctness (see Section 5).

We /rst show an important property concerning the appearance of the link-subtree
(�i;y; x) in another tree T [�j]; j �= i. Let r be the root of link-subtree(�i;y; x). Then,
link-subtree(�i;y; x) is also a subtree of T [�j] if r is inverted by �j and �−1(�j)



178 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

¡�−1(r). It implies that (y; x) is a link-pair in some trees T [�j] with j¡ i and (y; x)
is not a link-pair in any tree T [�j] with j¿ i. In Fig. 7(b), the pair (1; 3) is a link-pair
in the trees T [12]; T [7]; T [11]; T [8]; T [6]; T [10] and T [9], while it is not a link-pair
in the trees T [2]; T [4]; T [3] and T [1].

The next property concerns the link-pairs of a tree T [�i]. We point out that a tree
T [�i] might contain more than one link-pairs (y1; x); (y2; x); : : : ; (yk ; x) with the same
link-node x. For example, let � = (9; 3; 8; 2; 5; 7; 6; 4; 1). It is easy to see that 6 is a
link-node and the pairs (1; 6) and (4; 6) are link-pairs in �. Let r1 and r2 be the roots
of the subtrees link-subtree(�i;y1; x) and link-subtree(�i;y2; x), respectively. Based on
the properties of the lowest common ancestor of a pair of nodes, we can easily show
that r1 (r2) is an ancestor of r2 (r1).

The following algorithmic schemes describe the computations of the node sets link-
nodes(T [�i]) and active-link-nodes(T [�i]); 06 i6 n.

Computation of the set link-nodes (T [�i]); 06 i6 n: Let Lh be an array containing
the nodes of the hth level of the tree T [�i] and let ILh be an array containing the
corresponding indices of the nodes of Lh in the permutation �. We assume that the
nodes in Lh are arranged in the same order as they appear (from left to right) in the
hth level of T [�i].

The computation of the set link-nodes(T [�i]) of the ds-tree T [�i]; 06 i6 n, can be
implemented as follows:

for every level h of T [�i]; 16 i6 n, do in parallel
1.Compute the array ILh having the property: the kth element of ILh is the index of

the kth element of Lh in the permutation �, where Lh is an array containing the
nodes of the tree at level h.

2.Compute the pre/x maxima pref-max-ILh of the array ILh;
3.For every node u in Lh, do in parallel

if u is the kth element of Lh then
if ILh(k) �=pref-max-ILh(k) then link-nodes(T [�i])← u;
end;

end;

We shall refer to the above algorithmic scheme as Scheme-A. Let T [�i] be a
ds-tree and let link-nodes(Lh) be the set of the link nodes of the hth level, where
h¿ 1. Fig. 8 shows the computation of the set link-nodes(Lh) using the algorithmic
Scheme-A.

Computation of the set active-link-nodes (T [�i]); 06 i6 n: By de/nition,
the vertex set active-link-nodes(T [�i]) contain no pair of elements — say u and v,
such that u inverts v (or v inverts u) in �. Thus, we simply have to remove
all the elements v of the set link-nodes(T [�i]) that are inverted by an element u∈
link-nodes(T [�i]). This computation can be done using a similar technique
as in the computation of the set link-nodes(T [�i]). Speci/cally, it can be done
using pre/x maxima on the elements of the set link-nodes(T [�i]); We shall



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 179

Fig. 8. The computation of the set link-nodes(Lh) of a tree T [�i] with h-level nodes Lh = (4; 1; 2; 8; 7; 9).

refer to the algorithmic scheme that computes the active-link nodes of a ds-tree as
Scheme-B.

4.3. The coloring-permutation tree T ∗[�]

We are now in a position to develop a parallel algorithm for constructing a coloring-
permutation tree T ∗[�]. In particular, given a permutation � = (�1; : : : ; �n), we formulate
an algorithm that constructs a cp-tree T ∗[�] using the ds-trees T [�0]; T [�1]; : : : ; T [�n].

Let us /rst de/ne some tree operations involved in the cp-tree construction algorithm
and give some additional tree notation employed in the rest of the paper.

Let T [v1] be a tree with n nodes v1; v2; : : : ; vn rooted at v1 and let preord(vi) and
info(vi) be the preorder number and the information of the node vi, respectively. We
de/ne the following operations:
(a) Copy the tree T [v1] is de/ned to be the operation that constructs a tree T [u1] with

n nodes u1; u2; : : : ; un such that (i) preord(ui) =preord(vi), and (ii) info(ui) =
info(vi), for i = 1; 2; : : : ; n. Let T [v] and T [u] be two trees rooted at v and u,
respectively, and let u be a node of T [v].

(b) Replace the subtree T ′ rooted at u of the tree T [v] with the tree T [u] is de/ned
to be the operation that makes the parent of the node u of T [v] to point to the
root of the tree T [u].

(c) Remove a subtree T ′ of a tree T [v] is de/ned to be the operation that makes the
subtree T ′ to be an empty tree.

Let T [�i] be the ith ds-tree of a permutation � and let u be an internal node of
T [�i]; 06 i6 n. By subtree(�i; u) we denote the subtree of T [�i] rooted at u.

Let subtree(�i; u), subtree(�j; u) be subtrees of the ds-trees T [�i] and T [�j], re-
spectively. We say that these two subtrees are equal, denoted here as subtree(�i; u) =
subtree(�j; u), if one of the subtrees is a copy of the other.

Let level-order(�i) be a sequence of the nodes of the tree T [�i], which is obtained
by visiting the nodes of T [�i] in the level order (or breadth-/rst order), 06 i6 n.
By level-order−1(�i; u) we denote the index of the node u in level-order(�i). Note
that level-order−1(�i; �i) = 1. For the sake of consistency, we shall use, hereafter, the
notation level(�i; u) to denote the level level(u) of a node u of the tree T [�i]; recall
that level(�i; �i) = 0.



180 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

We next give a formal listing of a parallel algorithm for constructing the coloring-
permutation tree T ∗[�0]. The algorithm proceeds as follows:

Algorithm cp-Tree (Coloring-Permutation-Tree):
Input: A permutation � over the set Nn;
Output: The coloring-permutation tree T ∗[�0];

begin
1. Construct the ds-trees T [�0]; T [�1]; : : : ; T [�n];

make all of them to be active trees and paint their nodes white;
2. For every active tree T [�i]; 06 i6 n; do in parallel

2.1 Compute the level level(�i; u) of each node u of T [�i];
2.2 Compute the set link-nodes(T [�i]);
2.3 Compute the set active-link-nodes(T [�i]);
2.4 If active-link-nodes(T [�i]) = ∅, then make T [�i] to be inactive tree;

3. If T [�0] is an inactive tree, then return(T [�0]);
4. Compute the set active-nodes← ⋃

06i6n active-link-nodes(T [�i]);
5. For every node u �∈ active-nodes

⋃{�0}, do in parallel
Make the ds-tree T [u] to be inactive tree;

6. For every active tree T [�i] and
every u∈ active-link-nodes(T [�i]); 06 i6 n, do in parallel
if there exists no u′ ∈ active-link-nodes(T [�j]) such that u′ = u and j¡ i, then
6.1 Copy the tree T [u], and

set copy-active-nodes(T [�i])← active-link-nodes(T [u]);
6.2 Replace the subtree of T [�i] rooted at u with the copy of T [u];
6.3 Remove the subtree of T [�i] rooted at y, if (y; u) is a link-pair;

7. For every active tree (T [�i]); 06 i6 n, do in parallel
7.1 For every node u∈ copy-active-nodes(T [�i]), do in parallel

Find all the nodes u1; u2; : : : ; up of T [�i] such that u1 = u2 = · · ·= up = u and
level-order−1(�i; u1)¡level-order−1(�i; u2)¡ · · ·¡level-order−1(�i; up);
Make the children of the node ui; 16 i6p− 1, to be children of the node
up;

7.2 For every node u∈T [�i], do in parallel
Paint the node u black if there exists a node u′ in T [�i] such that
u= u′ and level-order−1(�i; u)¡level-order−1(�i; u′);

7.3 Remove the black nodes of the tree T [�i]; note that, the root of the
tree T [�i] is always a white node;

8. Make the sets of link-nodes, active-link-nodes and copy-active-nodes to be
empty sets for every active tree T [�i]; 06 i6 n, go to step 2;

end;

Before we prove the correctness of the algorithm, let us comment on Steps 6 and 7.

Remark 4.1. In Step 6 some active trees T [u] are copied and moved in the tree T [�i]
(Steps 6.1 and 6.2) and some subtrees of the tree T [�i] are removed from it (Step



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 181

6.3). Since the levels of each node x of T [�i] and each node y of T [u] are known
(Step 2), it follows that the new level of the node y in the tree T [�i] is also known.
Thus, there is no need for computing the level order of the tree T [�i] before the
execution of Step 7.

Remark 4.2. From the properties of the link and active-link nodes shown in Section
4.2, we have that a tree T [�i] might contain more than one link-pairs (y1; u); (y2; u); : : : ;
(yk ; u) with the same active-link node u. Moreover, it is also possible to have two
link-pairs (y1; u1) and (y2; u2) in T [�i] such that y1 is an ancestor of y2 and the
nodes u1; u2 are active-link nodes. In both cases, after executing Step 6, a subtree
of T [�i] might appear twice in T [�i]; see link-subtree(�1; 1; 3) in Fig. 7(b). In this
example, the subtree link-subtree(�1; 1; 3) appears twice in T [�i] since neither node
8 nor node 9 is an active-link node in a tree T [i], where �−1(i)¡�−1(12); that is,
both active trees T [8] and T [9] are copied and moved in the active tree T [12]. Step
7 removes all the duplicate nodes from a tree T [�i] using the level order of the nodes
of T [�i].

Remark 4.3. The node set copy-active-nodes(T [�i]), which is computed in Step 6.1,
contains the active nodes of all the active trees T [u] which are copied and moved
in the tree T [�i]; 06 i6 n, during an iteration of Steps 2–7 of the algorithm. In the
example of Fig. 7(b), copy-active-nodes(T [12]) = (3) (we assume that the set of the
copy-active nodes is an ordered set). Let u1; u2; : : : ; up be the active-link nodes of the
tree T [�i] during an iteraction of Steps 2–7. It is easy to see that, if no active tree
T [u1]; T [u2]; : : : ; T [up] is copied and moved in T [�i] (Step 6), then the tree T [�i] con-
tains the same active nodes u1; u2; : : : ; up in the next iteration. On the other hand if all
the active trees T [u1]; T [u2]; : : : ; T [up] are copied and moved in T [�i] during an iter-
ation, then active-link-nodes(T [�j]) ⊆ copy-active-nodes(T [�i]) in the next iteration;
see Lemma 5.4.

Remark 4.4. It is easy to see that Step 6.3 can be replaced by the following statement:
“Paint the nodes of the subtree(�i;y) of the tree T [�i] black if (y; u) is a link-pair in
T [�i]”. In this case, Step 7.3 removes all the nodes of the subtree subtree(�i;y).

5. Correctness

In this section we prove the correctness of algorithm cp-Tree. We /rst show some
properties of the ds-trees T [�0]; T [�1]; : : : ; T [�n] of a permutation � over the set Nn.
Recall that, throughout the paper, we use the notation �−1(i) to denote the index of
the element i in �; that is, �−1

i = �−1(i).

Lemma 5.1. Let T [�i] be the ith ds-tree of a permutation �; and let z be a link-node
of T [�i] at level h. Let y be a node at level h−k such that z inverts y; 06 k6 h−1.



182 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 9. (a) The tree T [�i] and the inversion relationship of the nodes z; x and y; (b) The tree T [x] in the
case where there exists a node z in subtree(�i; x) such that z inverts y; (c) The tree T [x] in the case where
either there exists no node z in subtree(�i; x) such that z inverts y or subtree(�i; x) is empty.

Then; there exists a node x in the path from the root �i to node z having the following
properties:
(i) level(�i; x) = level(�i;y).

(ii) x inverts y.

Proof. Let z; y be nodes of the tree T [�i] such that level(�i; z) = h; level(�i;y) = h−k
and z inverts y. Let P = (�i; : : : ; z) be the path from the root �i to node z. Then, there
exists a node x in P such that level(�i; x) = h− k; see Fig. 9(a). Since z inverts y, it
follows that y is not a node of P; z¿y and �−1(z)¡�−1(y). Moreover, x¿ z and
�−1(x)¡�−1(z). Hence, x¿y and �−1(x)¡�−1(y). Thus, x inverts y.

Lemma 5.2. Let z be a link-node of the tree T [�i] at level h and let y be a node at
level h− k such that z inverts y; 06 k6 h− 1. Let x be the ancestor of z at level
h− k that inverts y. Then; subtree(�i;y) = subtree(x;y).

Proof. Since x inverts y, it follows that x¿y and �−1(x)¡�−1(y). Moreover, the
parent y′ of the node y is such that y′ ¿y and �−1(y′)¡�−1(x)¡�−1(y). It is easy
to see that y′ ¡x; speci/cally, y′ is the smallest element in the range �−1(1) · · · �−1(x)
that is larger than y. Let w be an arbitrary node of the subtree(�i;y). Obviously, w¡y
and �−1(w)¿�−1(y). We shall prove that w is also a node of the subtree(x;y).
Suppose the contrary. Then, there exists a node y′′ in the range �−1(x) · · · �−1(y),
such that y′′ ¡y and y′′ ¿w. In this case, both nodes y′′ and y have the same parent
y′ in the tree T [�i]. Since y′′ ¿w, it follows that y′′ is an ancestor w. Thus, w is not
a node of the subtree(�i;y); a contradiction.

Lemma 5.3. Let z be a link-node of the tree T [�i] at level h and let y be a node at
level h− k such that z inverts y; 06 k6 h− 1. Let x be the ancestor of z at level



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 183

h− k that inverts y. Then; the following properties hold:
(i) if w∈ subtree(�i;y) then w∈T [x];

(ii) level(�i;w)6 level(�i; x) + level(x;w).

Proof. It follows immediately from Lemma 5.2.

Lemma 5.4. Let x∈ active-link-nodes(T [�i]) and w∈ active-link-nodes(T [x]). If there
exists no node x′ ∈ active-link-nodes(T [�j]) such that x′ = x and j¡ i, then w becomes
an active-link node of T [�i] after executing Step 7 of algorithm cp-Tree.

Proof. It follows immediately from the operations performed in Steps 6 and 7 of the
algorithm.

Lemma 5.5. Let w be a node of a tree T [�i]; 06 i6 n; and let w �∈ active-nodes
after the kth iteration of Step 7 of algorithm cp-Tree. Then; w �∈ active-nodes after
the (k + 1)th iteration.

Proof. Suppose that w∈ active-nodes after the (k + 1)th iteration of Step 7, and let
w∈ active-link-nodes(T [�i]); 06 i6 n. Since w is a link node of T [�i], it follows that
there exists a node u in T [�i] such that u is inverted by w and level(�i; u) = level(�i;w);
that is, (u; w) is a link-pair in T [�i]. Let w′ and u′ be the parents of w and u
in the tree T [�i], respectively, and let s′ be the lowest common ancestor of the
nodes w and u; that is, s′ is the root of the link-subtree link-subtree(�i; u; w); see
Fig. 10(a). Since w �∈ active-nodes after the kth iteration of Step 7, we have that
w �∈ active-link-nodes(T [�i]). We distinguish two alternatives; see Fig. 10(b).

Fig. 10. (a) The structure of the link-subtree(�i; u; w); (b) The link relationship of the link-subtree(�i; u; w)
and link-pair (y; x).



184 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Case I: There exists no node x∈ active-link-nodes(T [�i]) such that x inverts s′.
Since w∈ active-link-nodes(T [�i]) and link-subtree(�i; u; w) is the link-subtree rooted
at s′, it follows that w is an active-link node in T [s′]. Thus, w∈ active-nodes; a
contradiction.

Case II: There exists a node x∈ active-link-nodes(T [�i]) such that x inverts s′.
Without loss of generality, we suppose that level(�i; s′) = level(�i; x); otherwise, there
exists a node x′ in the path from the root �i to node x having this property (see
Lemma 5.1). Thus, (s′; x) is a link-pair in T [�i]. It follows that, the link-subtree
link-subtree(�i; u; w) is also a link-subtree of T [x] and, therefore, w is an active-link
node in T [x]. Thus, w∈ active-nodes; a contradiction.

Remark 5.1. The main operations performed by Step 7 of Algorithm cp-Tree are (i)
the movement of each subtree subtree(�i; ui) of the active tree T [�i], where ui ∈ active-
link-nodes(T [�i]), so that each node u of the subtree(�i; ui) has the greater possible
distance from the root �i, and (ii) the removal of all the duplicate nodes from the active
tree T [�i]; 06 i6 n. Recall that, we can e0ciently handle the removal operation of
subtrees of Step 6.3 using Step 7.3 (see Remark 4.4). Based on these two operations
of Step 7 and the copy, replace and remove operations of Step 6, it is easy to see that
Lemmas 5.4 and 5.5 also hold at the end of each execution of Step 6.

Let x; y; z be nodes of a ds-tree. Hereafter, x inverts y inverts z = (x inverts y) and
(y inverts z). Fig. 11 shows a ds-tree T [�i], in which the link nodes x1; x2; : : : ; xk have
the property that x1 inverts x2 inverts : : : inverts xk . In this case we say that the
tree T [�i] has single link nodes. More precisely, we say that a ds-tree has single link
nodes, if it has only one active-link node in each iteration of Steps 2–8 of algorithm
cp-Tree.

Suppose that the ds-trees T [�0]; T [�1]; : : : ; T [�n] of a permutation � have single link
nodes. Based on the results of Lemmas 5.1–5.5, it is easy to see that there exists a
sequence T0 = (T [�0]; T [�p(1)]; T [�p(2)]; : : : ; T [�p(k)]) of length k having the following
property:
Link-property II.

�p(1) ∈ active-link-nodes (T [�0]); and

�p(i) ∈ active-link-nodes (T [�p(i−1)]); i = 2; 3; : : : ; k:

Consider now the following algorithmic scheme:
for i = 1; 2; : : : ; k do

1. Copy the tree T [�p(i)];
2. Replace the subtree of T [�0] rooted at �p(i) with the copy of T [�p(i)];
3. Remove the subtree subtree(�0;y), where y is a node such that �p(i) inverts y and

level(�0;y) = level(�0; �p(i));
end;

The above algorithmic scheme constructs the tree T ∗[�0]. We shall refer to this
scheme as Scheme-C; It is easy to see that the parallel implementation of Scheme-C



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 185

Fig. 11. The structure of the link-nodes of a ds-tree T [�i] of a permutation �, having single link-nodes.
Subtrees T [y] and T [z] have no link-nodes.

corresponds to Step 6 of algorithm cp-Tree. Note that if a tree T [�i] has single link
nodes, then it contains no black nodes after executing Step 7.2.

The next lemma summarizes two important properties of the active-link nodes of
the ds-trees T [�0]; T [�1]; : : : ; T [�n] in the case where all the ds-trees have single link
nodes. These properties, along with the property provided by Lemma 5.5, allow us to
estimate the total number of iterations of Steps 2–8 of algorithm cp-Tree.

Lemma 5.6. Let x be an active-link node of the tree T [�i] and let w be an active-link
node of the tree T [x]. Let level(�i; x) = level(x;w) = h. Then; after executing Step 7
of algorithm cp-Tree, we have:

(i) x �∈ active-link-nodes(T [�i]);
(ii) w∈ active-link-nodes(T [�i]) and level(�i;w) = 2h.

Proof. It follows immediately from Lemmas 5.3 and 5.4, and the tree operations per-
formed in Steps 6 and 7 of algorithm cp-Tree.

Lemma 5.6 says that each active-link node of an active tree T [�i] duplicates its
level (or, equivalently, halves its height) after each execution of Step 7 of algorithm
cp-Tree. Moreover, by Lemma 5.5 we have that if a node x is not an active-link node



186 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

Fig. 12. The structure of the link-nodes of a ds-tree T [�i] of a permutation � having multiple link nodes.

at the end of an iteration of Step 7, then it is not an active-link node at the end of
the next iteration of Step 7. Note that these results also hold at the end of Step 6; see
Remark 5.1.

From the above discussion and Lemma 5.6, we conclude that the tree T [�0] con-
tains no active-link node after executing O(log k) times Steps 2 through 8 of algo-
rithm cp-Tree, where k is the length of the sequence T0 = (T [�0]; T [�p(1)]; T [�p(2)]; : : : ;
T [�p(k)]). Thus, we have the following result.

Lemma 5.7. If the ds-trees T [�0]; T [�1]; : : : ; T [�n] of a permutation � over the set Nn

have single link nodes; then the cp-tree T ∗[�] is computed after O(log n) iterations
of Steps 2–8 of algorithm cp-Tree.

Let T [�i] be a ds-tree, and let subtree(�i;y) and subtree(�i; z) be two subtrees such
that y¡z. It is also possible that (i) no node in subtree(�i; z) inverts a node in
subtree(�i;y), and that (ii) there exist link nodes y1 ∈ subtree(�i;y) and z1 ∈ subtree
(�i; z) such that no node in T [�i] inverts nodes y1 and z1. Then, y1 and z1 are two
active-link nodes in the tree T [�i]. In this case we say that T [�i] has multiple link
nodes. The structure of a ds-tree having multiple link nodes is shown in Fig. 12.

Let us now compute the total number of iterations of Steps 2–8 of algorithm
cp-Tree for the construction of the cp-tree T ∗[�] in the case where the ds-trees



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 187

T [�0]; T [�1]; : : : ; T [�n] of the given permutation have multiple link nodes. Let

L0 = (�01);

L1 = (�11; �12; : : : ; �1b1 );

L2 = (�21; �22; : : : ; �2b2 );

...

Lk = (�k1; �k2; : : : ; �kbk )

be k + 1 ordered node sets which contain the active-link nodes of all the active trees
during an iteration. Set L1 contains the active-link nodes of the active tree T [�01],
where �01 = �0; set L2 contains the active-link nodes �21; �22; : : : ; �2b2 of the active
trees T [�1]; T [�12]; : : : ; T [�1b2 ] such that �2i is not a link node in T [�1j], where i �= j
and 16 i; j6 b2, and so forth. In fact, the sequences L1; L2; : : : ; Lk are the layers of
the active-link nodes of the tree T [�01]. Thus, it follows that �−1(�ij)¡�−1(�1p), for
i6 l. Moreover, b1 +b2 + · · ·+bk ¡n (see, link-property II) and the active tree T [�ij]
contains no more than n + 1 − (b1 + b2 + · · · + bi−1) nodes, 16 i6 k. We consider
the following two alternatives: Multiple case I, and Multiple case II.

Multiple case I: The sets of active-link nodes of the active trees T [�i1]; T [�i2]; : : : ; T
[�ibi ] (16 i6 k − 1) are pairwise disjoint.

Let T [�i] be an active tree and let �i1; �i2; : : : ; �ip be the active-link nodes T [�i]; 16
p6 bi. Since the active trees T [�i1]; T [�i2]; : : : ; T [�ip] contain distinct active-link nodes,
it is easy to see that any operation performed in Steps 6 and 7 of the algorithm on the
nodes of subtree(�i; �ij); 16 j6p, does not aLect the link-node relationship of the
nodes of any other subtree subtree(�i; �ij′), where j �= j′ and 16 j; j′6p.

Based on the results of this section, we can easily conclude that the multiple case I
is identical, with respect to the link-node relationship, to the case where all the active
ds-trees have single link nodes. Thus, after executing O(log n) times Steps 2–8 of
algorithm cp-Tree there exists no tree T [�i] with active-link nodes, 06 i6 n; that
is, T [�0] =T ∗[�].

Multiple case II: There exists a node that is active-link node in more than one of
the active trees T [�i1]; T [�i2]; : : : ; T [�ibi ] (16 i6 k − 1).

We consider the worst-case scenario where each of the active trees T [�i1]; T [�i2]; : : : ;
T [�ibi ] contains all the bi+1 active-link nodes of the set Li+1 (16 i6 k − 1).

Let T [�i] be an active tree and let �i1; �i2; : : : ; �ibi be the active-link nodes of T [�i]
during the ith iteration of Steps 2–8 of the algorithm. Let h be the length of the
minimum path (number of edges) from the root �i to an active-link node �ij; that is,
level(�i; �ij)¿ h, for every j, where 16 j6 bi. Since �i1; �i2; : : : ; �ibi are active-link
nodes of the tree T [�i], it follows that the ds-trees T [�i1]; T [�i2]; : : : ; T [�ibi ] are active
during the ith iteration. Let �j1; �j2; : : : ; �jbj be the active-link nodes of the /rst ds-tree
T [�i1]. From the structure of the worst-case scenario we have that, during the ith
iteration, the length of the minimum path from the root �i1 of the ds-tree T [�i1] to an
active-link node �jp; 16p6 bj, is equal to h; that is, level(�i1; �jp)¿ h, for every



188 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

p, where 16p6 bj. On the other hand, during the same iteration, for the other trees
T [�i2]; : : : ; T [�ibi ] we have that the nodes �j1; �j2; : : : ; �jbj are link nodes in all these
trees T [�i2]; : : : ; T [�ibi ] and level(�it ; �jp)6 h, where 26 t6 bi and 16p6 bj.

We consider now the (i + 1)th iteration of Steps 2–8. In this iteration, the active
trees T [�i1]; T [�i2]; : : : ; T [�ibi ] are copied and moved in the tree T [�i]. We have that
(i) the active-link nodes �j1; �j2; : : : ; �jbj of the tree T [�i1] have level greater than or
equal to h in T [�i1], (ii) the active-link nodes of the tree T [�i1] are link nodes in
each tree T [�i2]; : : : ; T [�ibi ], and (iii) each of the active-link nodes �s1; �s2; : : : ; �sbs of
the tree T [�it]; 26 t6 bi, that is not an active-link node of the tree T [�i1], is an
ancestor of some of the active-link nodes �j1; �j2 : : : ; �jbj of the tree T [�i1]. Since Step
7.1 performs only link operations on the nodes of the tree T [�i] which are active-link
nodes in the trees T [�i1]; T [�i2]; : : : ; T [�ibi ] (in fact, Step 7.1 change the parent relation
of the nodes of T [�i] according to max level-order), it follows that after executing
Steps 7.2 and 7.3 the active-link nodes of the tree T [�i], if there exist such nodes,
have level greater than or equal to 2h. Thus, after executing O(log n) times Steps 2–8
of algorithm cp-Tree there exists no tree T [�i] with active-link nodes, 06 i6 n; that
is, T [�0] =T ∗[�].

From Lemma 5.7 and the cases Multiple cases I and II we have that after execut-
ing O(log n) times Steps 2–8 of algorithm cp-Tree there exists no tree T [�i] with
active-link nodes, 06 i6 n. Thus, the results of this section can be summarized in the
following theorem.

Theorem 5.1. Given a permutation � over the set Nn, algorithm cp-Tree constructs
the cp-tree T ∗[�] after O(log n) iterations of Steps 2–8.

6. Resource requirements

To establish the time and processor complexity of the algorithms we developed
so far we shall use the well-known Concurrent-Read. Exclusive-Write PRAM model
of parallel computation (CREW PRAM). In this model, the operations of union (∪),
intersection (∩) and subtraction (−) on n elements are executed in O(log n) time with
O(n=log n) processors. The pre/x sums of n elements can also be computed within
the same time and processor complexity. Moreover, in this model, the computation of
the postorder, preorder, inorder and level order of a tree (binary tree for inorder), as
well as the level of each node of a tree can be done in O(log n) time with O(n=log n)
processors using the well-known Euler-tour technique (actually, all the above operations
are computed on the EREW PRAM model within the same time-processor complexity);
see [8,15].

6.1. The D-inversion-matrix algorithm

We /rst show the time and processor complexity of the algorithm for the computation
of the d-inversion matrix of a permutation �. It is well-known that the su0x minima



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 189

of n elements can be computed in O(log n) time using O(n=log n) processors on the
EREW PRAM model; note that the su0x minima problem is based on the computation
of the pre/x-sums of n elements [8,15]. Thus, the following theorem holds.

Theorem 6.1. Let � be a permutation over the set Nn. The d-inversion matrix of �
can be computed in O(log n) time using O(n2=log n) processors on the CREW PRAM
model.

6.2. The ds-trees algorithm

Let us now compute the overall complexity of algorithm ds-Trees which constructs
the n + 1 ds-trees T [�0]; T [�1]; : : : ; T [�n] of a permutation � of length n.

The algorithm consists of four steps:
Step 1: By Theorem 6.1, the computation of the d-inversion matrix of a permutation

� on n elements can be done in O(log n) time using O(n2=log n) processors.
Step 2: Obviously, it takes O(1) sequential time.
Step 3: Having computed the d-inversion matrix, this step requires O(1) time and

O(n) processors or O(log n) time and O(n=log n) processors.
Step 4: The time and processor requirement of Steps 4.1 and 4.2 are the same as

that required for Steps 2 and 3, respectively. Both substeps are executed for every
i; 16 i6 n, in parallel. Therefore, Step 4 requires O(1) time and O(n2) processors or
O(log n) time and O(n2=log n) processors.

Taking into consideration the time and processor complexity of each step of the
algorithm, we present the following result.

Theorem 6.2. Given a permutation � over the set Nn, the ds-trees of � can be con-
structed in O(log n) time using O(n2=log n) processors on the CREW PRAM model.

6.3. The cp-tree algorithm

Next, we compute the time and processor complexity of algorithm cp-Tree. We shall
obtain the overall complexity by computing the complexity of each step separately. Let
us /rst compute the time and processor complexity of some operations used by the
algorithm.

We have mentioned that the level of each node of a tree can be computed in O(log n)
time using O(n=log n) processors on the EREW PRAM model [8,15]. We next compute
the complexity for the computation of the link nodes of a ds-tree (see Scheme-A). In
this scheme, the array Lh stores the nodes of the level h of a ds-tree as they appear
in the tree from left to right. It is easy to see that the array ILh which contains the
indices of the nodes of Lh in the permutation � can be computed in O(log n) time using
O(nh=log n) processors on the EREW PRAM model, where nh is the number of nodes
of level h. The pre/x minima of n elements can be computed in O(log n) time using
O(nh=log n) processors on the EREW PRAM model [8,15]. Therefore, the execution



190 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

of Scheme-A requires O(log n) time and O(n=log n) processors on the EREW PRAM
model.

In a similar way we can show that Scheme-B, which computes the active-link nodes
of a ds-tree, is executed in O(log n) time using O(n=log n) processors on the EREW
PRAM model. Thus, the following lemma holds.

Lemma 6.1. The sets of link and active-link nodes and the level of each node of a
ds-tree with n nodes can be computed in O(log n) time using O(n=log n) processors
on the EREW PRAM model.

The preceding lemma gives us the time and processor complexity of Step 2 of
algorithm cp-Tree. We focus now on Steps 6 and 7, which are the crucial steps for
the processor complexity of the algorithm. Obviously, an active tree T [u] with n nodes
can be copied in O(log n) time using a total of O(n=log n) processors on the EREW
PRAM model. The copy tree T [u] is moved in an active tree T [�i] by simply making
the copy tree T [u] subtree of the tree T [�i]; in fact, we make the parent p(u) of the
node u in T [�i] to be the parent of the root u of the copy tree T [u]. This operation
takes O(1) sequential time. Next, we prove the following lemmas.

Lemma 6.2. Each iteration of Steps 6 of algorithm cp-Tree takes O(log n) time and
requires O(n2=log n) processors on the CREW PRAM model.

Proof. Let T [�0]; T [�1]; : : : ; T [�n] be the ds-trees of a permutation � over the set Nn.
Suppose that in each iteration of the algorithm some active trees contain single link
nodes and some trees contain multiple link nodes. In any case, we have that no more
that n active trees are copied and moved in some other active trees. Since the active
trees T [xij] (16 i6 k and 16 j6 bi) contain no more than n+1−(b1+b2+· · ·+bi−1)
nodes, it follows that O(n2) nodes are copied and moved during an iteration of Steps
6.1 and 6.2.

Using standard parallel algorithmic techniques, we can copy and move O(n2) nodes
in O(log n) time with O(n2=log n) processors on the CREW PRAM model.

We next compute the time and processor complexity for the removal of all the
subtrees subtree(�i;y) of an active tree T [�i] which contain a link-pair (y; w), where
w is an active node, 06 i6 n; this operation is performed in Step 6.3. To this end,
we need to determine for each active-link node w of T [�i] all the nodes y of T [�i]
such that (y; w) is a link-pair, 06 i6 n. This computation can be done in O(log n)
time with O(n=log n) processors using the well-known interval broadcasting and array
packing parallel techniques on the array level-order(�i). Recall that the node sequence
level-order(�i) is obtained by visiting the nodes of T [�i] in the level order; in a parallel
setting, it is computed using the Euler-tour technique [8,15]. Since the remove operation
is executed in O(1) sequential time and the interval broadcasting, array packing and
Euler-tour techniques do not require simultaneous memory access, we conclude that
Step 6:3 is executed in O(log n) time with O(n2=log n) processors on the EREW PRAM



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 191

model. Thus, the whole step is executed in O(log n) time with O(n2=log n) processors
on the CREW PRAM model, and, thus, the lemma holds.

Lemma 6.3. Each iteration of Steps 7 of algorithm cp-Tree takes O(log n) time and
requires O(n2=log n) processors on the CREW PRAM model.

Proof. We consider now the operations performed in Step 7 of the algorithm. Let
us /rst focus on Step 7.1 and show how we can /nd for every node u of the set
copy-active-nodes(T [�i]); 06 i6 n, all the nodes u1; u2; : : : ; up of the tree T [�i] such
that u1 = u2 = · · ·= up = u, and, then, /nd among them the node w with the max index
in the order level-order(�i).

We have shown that after executing Step 6 the total number of nodes of the active
trees is in O(n2); see Lemma 6.2. Let �i1; �i2; : : : ; �ibi be the active-link nodes of the
active tree T [�i]; 06 i6 n. For the active tree T [�i] we de/ne the matrix Bi(0::bi; 1::n),
where bi is the number of the active-link nodes in T [�i], and set Bi(�ij; u):=level-
order−1(�i; u) if u is a node of the copy tree T [�ij]; 16 j6 bi. This operation needs
O(log n) time and O(bi(n=log n)) processors on the CREW PRAM, since the level order
of a tree is computed in O(log n) time with O(n=log n) processors on the same model
of computation; see [8,15].

Let u1; u2; : : : ; up denote the node u of the corresponding copy trees, say, T [�i1];
T [�i2]; : : : ; T [�ip]; which are moved in the tree T [�i]; 06p6 bi. Note that, u∈ active-
link-nodes(T [�i]): Let um be the node u with the max index in the order level-order(�i)
among the nodes u1; u2; : : : ; up. The computation of /nding the node um can be done
in O(log n) sequential time if bi = c log n for same constant c, or in O(log bi) par-
allel time with O(bi=log bi) processors if bi = nci for 0¡ci ¡ 1. After /nding the
node um, we make the nodes u1; : : : ; um−1; um+1; : : : ; up to be children of the node um

in O(1) time using O(bi) processors. Note that, in the description of Step 7.1 of
the algorithm, we make the children of the nodes u1; : : : ; um−1; um+1; : : : ; up, instead
of the nodes u1; : : : ; um−1; um+1; : : : ; up, to be children of the node um. This does not
aLect the correctness of the algorithm since level(�i; um) = h and level(�i; uj) = h +
1 for every j, where j �=m and 16 j6p. Thus, the computation of /nding the
node um can be done in O(log n) time with O(nbi=log n + bi) processors, where
bi ¡n.

Thus, the operations performed in Step 7.1 during an iteration of the algorithm are
executed in O(log n) time using a total of O(n(bi=log n) + nbi=log n + bi) processors,
where 06 i6 n and bi ¡n. Since (b1 + b2 + · · · + bk)¡n, where k ¡n (see single
and multiple link cases), we conclude that Step 7.1 is executed in O(log n) using a
total of O(n2=log n) processors on the CREW PRAM model.

Based on the analysis of the time and processor complexity of Step 7.1, it is easy
to see that we can paint black the appropriate nodes of all the active trees within the
same time and processor complexity, and, thus, Step 7.2 is executed in O(log n) using
a total of O(n2=log n) processors on the CREW PRAM model. (We should point out
that, in Step 7.1 the matrix Bi is of size (bi + 1) × bj, where bj is the number of



192 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

nodes in the set active-link-nodes(T [�i]), while in Step 7.2 the matrix Bi is of size
(bi + 1)× n:)

Let us now show how we can implement the removal operation performed in Step
7.3. Let T [�i] be an active tree and let u be a white node such that its parent p(u)
is a black node. Then, make the parent of the node u to be the node w, where w
is the white node such that w =p(u). This operation can be done in O(log n) with
O(n2=log n) processors on the CREW PRAM, for all the active trees T [�i]; 06 i6 n.
Consequently, /nd the black node u of the active tree T [�i], such that its parent
p(u) is a white node and remove the subtree of T [�i] rooted at u; 06 i6 n; this
subtree contains only black nodes. Thus, we can easily conclude that Step 7.2 is
executed in O(log n) using a total of O(n2=log n) processors on the CREW PRAM
model.

From the step-by-step analysis, we have that the whole step is executed in O(log n)
time using a total of O(n2=log n) processors of the CREW PRAM model. Thus, the
lemma holds.

We are now in a position to compute the time and processor complexity of algorithm
cp-Tree. The complexity of each step of the algorithm is analyzed as follows:

The algorithm consists of eight steps.
Step 1: By Theorem 6.2, the construction of the ds-trees of a permutation � over

the set Nn can be done in O(log n) time using O(n2=log n) processors on the CREW
PRAM model.

Step 2: This step incorporates operations whose time and processor complexity are
given by Lemma 6.1. Thus, it is executed in O(log n) time with O(n2=log n) processors
on the EREW PRAM model.

Step 3: Obviously, this step can be executed in O(1) sequential time.
Step 4: The union of n+ 1 sets, each of length O(n), is performed in O(log n) time

with O(n2=log n) processors on the EREW PRAM model.
Step 5: Obviously, this step is executed in O(log n) with O(n=log n) processors on

the CREW PRAM model.
Step 6: Lemma 6.2 provides us with the time and processor complexity of Step

6 of the algorithm. Thus, we have that this step is executed in O(log n) time with
O(n2=log n) processors on the CREW PRAM model.

Step 7: From Lemma 6.2 we have that Step 7 is executed in O(log n) time using a
total of O(n2=log n) processors on the CREW PRAM model.

Step 8: This step makes the link-nodes, active-link-nodes and copy-active-nodes
sets of all the active trees to be empty sets. Obviously, this initialization step can
be executed in O(log n) time with O(n2=log n) processors on the EREW PRAM
model.

From Theorem 5.1, we have that algorithm cp-Tree performs O(log n) iteration.
Thus, taking into consideration the time and processor complexity of each step of the
algorithm, we present the following result.



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 193

Theorem 6.3. Given a permutation � over the set Nn, the coloring-permutation tree
T ∗[�] can be constructed in O(log2 n) time using O(n2=log n) processors on the CREW
PRAM model.

6.4. The coloring algorithm

We can easily see that algorithm Coloring incorporates all the operations described
in the previous algorithms. More precisely, by Theorem 6.3 we have that Step 1 takes
O(log2 n) time and O(n2=log n) processors on the CREW PRAM model. The level
of each n-node tree is computed in O(log n) time with O(n=log n) processors on the
EREW PRAM model. Finally, Step 3 of the algorithm requires O(1) time and O(n)
processors. Thus, we obtain the following theorem.

Theorem 6.4. The problem of coloring a permutation graph can be solved in O(log2 n)
time using O(n2=log n) processors on the CREW PRAM model.

7. Conclusions

In this paper we study the problem of coloring permutation graphs using certain
properties of the lattice representation of a permutation and relationships between per-
mutations, directed acyclic graphs and rooted trees. Given a permutation � over the
set Nn, we propose an e0cient parallel algorithm which colors the n-node permutation
graph G[�] in O(log2 n) time using a total of O(n2=log n) processors on the CREW
PRAM model.

Our algorithm is motivated by the work of Yu and Chen [22]. They presented an
algorithm which solves the coloring problem on a permutation graph G[�] by trans-
forming the permutation � it into a set of planar points, constructing an acyclic directed
graph, and solving the largest-weight path problem on this acyclic digraph. Their algo-
rithm runs in O(log2 n) time with O(n3=log n) processors on the CREW PRAM model
of computation, or in O(log n) time with O(n3) processors on the CRCW PRAM. In
this paper we solve the same coloring problem by using a diLerent approach; our algo-
rithm constructs a rooted tree, known here as cp-tree T ∗[�], using certain combinatorial
properties of �, and then solves the coloring problem on G[�] by computing the level
function on the tree T ∗[�].

We should point out that, with slight modi/cations, our coloring algorithm can also
solve the weighted clique problem, the weighted independent set problem, the clique
cover problem, and the maximal layers problem within the same complexity bounds;
that is, in O(log2 n) time with O(n2=log n) processors; see [8,15,22].

It is worth noting that the problem of /nding out the longest common subsequence
of two words is a variant of the problem of /nding a maximum independent set on a
permutation graph; see [12]. Thus, Lu’s paper might be a good indicator how to solve
also coloring and other problems on permutation graphs.



194 S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195

In closing, we mention that many aspects of our coloring algorithm apply for com-
parability graphs [6,17]. One can de/ne as the ds-tree of a node x a tree T [x] with
root x and containing all the nodes u¡x (with respect to the partial order ¡); the
parent of any node y in T [x] is some successor of y in the transitive reduction over the
order ¡. The notion of link-nodes and active-link nodes applies also for comparability
graphs. Thus, one can formulate all steps of the coloring algorithm for comparability
graphs and, then, study the time and processor complexity.

Acknowledgements

The author would like to thank the anonymous referees for comments and suggestions
which improved the presentation of this paper.

References

[1] M. Andreou, S.D. Nikolopoulos, NC coloring algorithms for permutation graphs, Nordic J. Comput. 6
(1999) 422–445.

[2] M.J. Atallah, G.K. Manacher, J. Urrutia, Finding a minimum independent dominating set in a
permutation graph, Discrete Appl. Math. 21 (1988) 177–183.

[3] P. Beame, J. Hastad, Optimal bounds for decision problems on the CRCW PRAM, J. Assoc. Comput.
Mach. 36 (1989) 643–670.

[4] A. Brandstadt, D. Kratsch, On domination problems for permutation and other graphs, Theoret. Comput.
Sci. 54 (1987) 181–198.

[5] M. Farber, J.M. Keil, Domination in permutation graphs, J. Algorithms 6 (1985) 309–321.
[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980.
[7] D. Helmbold, E.W. Mayr, Applications of parallel algorithms to families of perfect graphs, Computing

7 (1990) 93–107.
[8] J. JSaJSa, An Introduction to Parallel Algorithms, Addison-Wesley, Inc., Reading, MA, 1992.
[9] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

[10] D. Kozen, U.V. Vazirani, V.V. Vazirani, NC Algorithms for Comparability Graphs, Interval Graphs,
and Testing for Unique Perfect Matching, Lecture Notes in Computer Science, Vol. 206, Springer,
Berlin, 1985, pp. 498–503.

[11] J.Y.-T. Leung, Fast algorithms for generating all maximal independent sets of interval, circular-arc and
chordal graphs, J. Algorithms 5 (1984) 22–35.

[12] M. Lu, Parallel computation of longest-common-subsequence, Advances in Computing and Information,
ICCI’90, Proceedings of International Conference, Niagara Falls, Canada, 1990, Lecture Notes in
Computer Science, Vol. 468, 1991, pp. 385–394.

[13] S.D. Nikolopoulos, Ch. Papadopoulos, On the performance of the /rst-/t coloring algorithm on
permutation graphs, Inform. Process. Lett. 75 (2000) 265–273.

[14] A. Pnueli, A. Lempel, S. Even, Transitive orientation of graphs and identi/cation of permutation graphs,
Canadian J. Math. 23 (1971) 160–175.

[15] J. Reif (Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, CA,
1993.

[16] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Inc.,
Reading, MA, 1996.

[17] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput. 14 (1985) 658–670.
[18] J. Spinrad, A. Brandstadt, L. Stewart, Bipartite permutation graphs, Discrete Appl. Math. 18 (1987)

279–292.
[19] K.J. Supowit, Decomposing a set of points into chains, with applications to permutation and circle

graphs, Inform. Process. Lett. 21 (1985) 249–252.



S.D. Nikolopoulos / Discrete Applied Mathematics 120 (2002) 165–195 195

[20] K.H. Tsai, W.L. Hsu, Fast algorithms for the dominating set problem on permutation graphs,
International Symposium SIGAL ’90, Tokyo, Japan, 1990, Lecture Notes in Computer Science, Vol.
450, Springer, Berlin, 1990, pp. 109–117.

[21] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all the maximal
independent sets, SIAM J. Comput. 6 (1977) 505–517.

[22] C.-W. Yu, G-H. Chen, Parallel algorithms for permutation graphs, BIT 33 (1993) 413–419.
[23] C.-W. Yu, G-H. Chen, Generate all maximal independent sets in permutation graphs, Internat. J.

Comput. Math. 47 (1993) 1–8.


