N,

Fes INFORMATION
;’ﬁﬁ SCIENCES
ELSEVIER Information Sciences 137 (2001) 189-210

www.elsevier.com/locate/ins

Optimal Gray-code labeling and recognition
algorithms for hypercubes

Stavros D. Nikolopoulos

Department of Computer Science, University of loannina, P.O. Box 1186, GR-45110 loannina,
Greece

Received 2 January 2000; received in revised form 27 November 2000; accepted 18 March 2001

Abstract

We present an optimal greedy algorithm which returns a Gray-code labeling of the
nodes of an n-dimensional hypercube; that is, a labeling of the nodes with binary strings
of length » for which the Hamming distance between two nodes is 1 if and only if these
are adjacent in the hypercube. The proposed algorithm is very simple; it uses breadth-
first search to guide the greedy choice of nodes and computes the Gray-code label of a
node u by performing the logical disjunction of the Gray-code labels of two nodes
adjacent to node u. It takes as input a hypercube Q, with N = 2" nodes and runs in
O(NlogN) time. Based on the labeling algorithm we propose a recognition algorithm
for hypercubes which runs in O(N logN) time. Thus, in view of the fact that O, has
n2"~! edges, this behaviour is optimal. Both labeling and recognition algorithms in-
corporate such algorithmic features that they can be optimally implemented in a PRAM
model of computation. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Hypercube; Gray-code labeling; Recognition; Graph partition; Parallel
algorithms; Complexity

1. Introduction

With the advances in VLSI technology, it has become feasible to build
computing machines with hundreds or even thousands of processors cooper-
ating in solving a given problem. These machines differ along various dimen-

E-mail address: stavros@cs.uoi.gr (S.D. Nikolopoulos).

0020-0255/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.
PII: S0020-0255(01)00120-7

190 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

sions such as control mechanism, address-space organization, interconnection
network, and granularity of processors. Shared memory and non-shared
memory (message-passing) parallel machines can be constructed by connecting
processors and memory units using a variety of interconnection networks.

Several topologies have been proposed for interconnecting the processors of
a non-shared memory parallel computing system. Among them, due to its
topological richness, the hypercube topology (also known as n-cube, Cosmic
cube, Boolean cube) is extremely pervasive in the literature as it provides a
structural model for parallel computer architectures; it offers a large band-
width, logarithmic diameter, and a high degree of fault tolerance [1,16]. Both
research and commercial systems have been build using the hypercube inter-
connection scheme, and significant research effort has been devoted to hyper-
cube architectures [11,13,18].

We assume that a hypercube interconnection scheme is represented by its
underlying graph, and let N and n be two integers such that N =2". An n-
dimensional hypercube Q, = (V,,E,) is an N-node graph which is defined re-
cursively as the iterated Cartesian product of the smallest non-trivial complete
graph K, consisting of two nodes and one edge joining them:

() Q1 =K, and

(i) 0, =K, x Q,_1 forn =2,
where x is the Cartesian product of two graphs [7]. Examples of Q;, 0, O3 and
Q4 are shown in Fig. 1. It is convenient to say that Oy = K.

Characterizations and topological properties of hypercubes have been ex-
tensively studied and interesting results have been reported in the literature
[5,10,16,17]. In the following, we describe some of the most important

1 01 11 0011 1011
°
0001
®
0 00 10
011 111
101
1010
0100
Lo
000 100 0000 1000

Fig. 1. The first four hypercubes Q;, 0>, Qs and Q,.

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 191

characterizations and topological properties of an n-dimensional hypercube Q,
relating to sparsity, diameter, existence of node disjoint parallel paths, and
existence of odd and even cycles.

It is well-known that a characterization of a family & of graphs gives a
necessary and sufficient condition for a given graph G to be in % . For example,
G is bipartite if and only if every cycle of G has even length [7]. We next list
characterizations for a given graph G to be a hypercube Q, [5,6,8,12]. In
principle, each of these conditions contains enough information to enable the
logical deduction that G is indeed an n-cube graph or n-dimensional hypercube
(we shall only list these criteria and include a reference for each, where the
details may be found). The first condition was given by Foldes [5] (see criterion
C1). A similar but different condition (see criterion C2) was derived by Garey
and Graham [6] in their study of “squashed cubes”. Combining their results
with the Merger’s Theorem [7, p. 47, Theorem 5.9], we easily conclude that the
number of node-disjoint u—v paths in a Q, is d. The third condition is due to
Laborde and Hebbare [12].

(C1) A connected graph G is a hypercube if and only if G is bipartite
and the number of geodesics between any two nodes at distance d
is d!.

(2 Graph G is some Q, if and only if G is connected and bipartite and
for any two nodes u, v at distance d, the connectivity »(u,v) = d.

(C3) A connected graph G with n nodes and minimum degree 0 is a
hypercube if and only if every pair of adjacent edges lie in a
unique 4-cycle and n = 2°.

Let us now focus on the topological properties of a hypercube Q,. Some of
them can be easily proved or can be immediately derived from characteriza-
tions C1-C3. The property P4 is the most important.

PD 0, 1s a connected bipartite graph.

(P2) 0, has n2""! edges.

(P3) The diameter of Q, is n = logN.

(P4) Each node in a Q, can be uniquely represented by an n-bit label in
such a way that two nodes are adjacent if and only if their labels
differ in exactly one bit.

For convenience, we will number the bits in a label of a node of O, from
right to left as 0 to n — 1. That is, a binary string b of length n will be written
as b, 1b, »---b1by, where b, | is the most significant bit and b, is the least
significant bit. The ith bit (or bit i) of b is b; for 0 <i<n— 1. Fig. 1 shows
the hypercubes Q;, 0, O3 and O, with a binary labeling of their nodes. If two
adjacent nodes differ in their ith bit, then they are said to be in direction i
with respect to each other. For example, the node u with label 1011 is said to
be in direction 2 of a Q4 with respect to node v with label 1111 and vice

192 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

versa. It is clear from this definition that there are n distinct directions in a
hypercube Q,.

We now consider the labels s and ¢ of two nodes in a Q,. The total number of
bit positions at which these two labels differ is called the Hamming distance
between them [7,11]. For example, the Hamming distance between nodes la-
beled 011 and 101 in a 3-dimensional hypercube Qs is 2. Based on the Ham-
ming distance, it is easy to see that the n-dimensional hypercubes have the
property that two nodes are adjacent if and only if their Hamming distance is 1.
Furthermore, taking the property P4 into account we can define the hypercube
0, = (V,,E,) as a graph, where ¥, is the set of all 2" binary n-strings and E,, is
precisely those pairs of n-strings whose labels vary in exactly one binary digit
(see Fig. 2). This presentation is immediately seen to be equivalent (as it must!)
to presentation in terms of Cartesian products.

Many research questions that have arisen in the study of binary strings may
be stated in terms of hypercube graphs. Perhaps the best known example is that
of generating “Gray codes”. We define a Gray-code as a sequence of 2" binary
n-strings where successive strings are distinct in exactly one binary digit. Thus,
a Gray-code is simply a Hamiltonian cycle on a hypercube and, hence, the
number of Gray-codes is the number of Hamiltonian cycles on Q,.

A Gray-code labeling of a hypercube is a node labeling for which the
Hamming distance between two nodes is 1 if and only if these are adjacent in
the hypercube. Gray-code labeling is a fundamental issue of both theoretical
and practical importance. Its most important application is related to the
portability of algorithms across various parallel architectures. Specifically, with
the widespread availability of parallel architectures based on the hypercube

0000

111 1111

;

1

! 1100 1110

! ; :
1 1

N(,0) N(v, 1) N©,2) N, 3) N(u, 0) N(u, 1) N(u, 2) N(u, 3) N, 4)
Fig. 2. Partition of the hypercubes Q5 and Q,, where v = 000 and u» = 0000.

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 193

interconnection scheme, there is an interest in the portability of algorithms
developed for architectures based on other topologies, such as linear arrays,
rings, 2-dimensional meshes, and complete binary trees, into the hypercube.
This question of portability reduces to one of embedding the above intercon-
nection schemes into the hypercube. Gray-codes (binary reflected Gray-codes)
have been extensively used in embedding arrays, rings, meshes and trees into
the hypercube.

Our objective is to study the Gray-code labeling and recognition of an
n-dimensional hypercube and propose optimal sequential and/or parallel
algorithms for these problems. Many researchers have extensively studied
hypercubes and proposed algorithms for many important problems among
which the Gray-code labeling and recognition problems. Recently, Bhagavathi
et al. [2] proposed a greedy hypercube-labeling algorithm for Hypercubes on
N = 2" nodes, which runs in O(NlogN) time being, therefore, optimal. The
main feature of their algorithm is that it uses depth-first search to guide the
greedy choice of labels.

In this paper we first present a simple and optimal algorithm for Gray-code
labeling of the nodes of an n-dimensional hypercube. Specifically, given a hy-
percube O, on N = 2" nodes, our labeling algorithm visits the nodes of the
hypercube by using the breadth-first search and computes the Gray-code label
of a node u by performing the logical disjunction of the Gray-code labels of
two nodes adjacent to node u. It runs in O(N log N) time and, therefore, in view
of the fact that O, has n2"~! edges, this behaviour is optimal. Based on the
labeling algorithm we describe an optimal algorithm which recognizes whether
a given graph on N = 2" nodes is indeed an n-dimensional hypercube. Our
recognition algorithm runs in O(N log N) time being, therefore, optimal.

Moreover, since our algorithms are based on the breadth-first search, they
can be efficiently implemented in a PRAM model of computation. More pre-
cisely, we present optimal parallel algorithms for the Gray-code labeling and
recognition problems. Our main technique is based on the notion of parti-
tioning the vertex set of a hypercube, with respect to a vertex s, into a set of
(mutually disjoint) adjacency-level sets. We propose two parallel algorithms for
Gray-code labeling of a hypercube Q,; the first algorithm runs in O(log N) time
using a total of O(N logN) operations on a CRCW PRAM or in O(log’ N)
time using a total of O(NlogN) operations on a CREW PRAM, while the
second one is executed on a CREW PRAM in O(1) time using O(N logN)
operations, provided that the distance matrix of O, is given. We also present a
parallel algorithm for the recognition problem which runs in O(logN) time
using O(N log N) operations on a CRCW PRAM model or in O(log” N) time
using a total of O(N log N) operations on a CREW PRAM model.

The paper is structured as follows. Section 2 presents the main technical
results and the key ideas that are at the heart of our optimal hypercube-labeling
and recognition algorithms. The labeling and recognition algorithms and their

194 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

complexity analysis are presented in Sections 3 and 4, respectively. Parallel
hypercube-labeling and recognition algorithms are described in Section 5.
Finally, Section 6 summarizes our results.

2. The main results

Given a connected graph G = (V,E) and a vertex v € V, we define a par-
tition Z(G,v) of the vertex set V (we shall frequently use the term partition of
the graph G), with respect to the vertex v as follows:

ZL(G,v)={N:(v)|veV, 0<i<L,, 0L, <|V|},

where N;(v), 0<i<L,, are the adjacency-level sets, or simply the adjacency-
levels, and L, is the length of the partition .#(G, v) [14]. The adjacency-level sets
of the partition #(G,v) of the graph G, are formally defined as follows:

Ni(v)={ueV|d,u) =i, 0<i<|V|},

where d(v,u) denotes the distance between vertices v and u in G. We point out
that d(v,u) = 0, and d(v,u) = 0 when v = u, for every v,u € V. (In the case
where G is a disconnected graph, d(v,u) = oo when v and u do not belong to
the same connected component.) Obviously, L, = max{d(v,u)| €V},
No(v) = {v} and N;(v) = N(v). In Fig. 2 we illustrate the partitions of the
graphs Q; and Q4, with respect to the vertices v and u, respectively, where
v =000 and u = 0000.

Let G = (V,E) be a graph with n nodes and m edges. It is easy to see that,
the adjacency-level sets N;(v), 0<i<L,, of a partition #(G,v) can be com-
puted in O(n + m) time using breadth-first search [4]. Moreover, the adjacency-
level sets of the partition #(G, v) can easily be computed recursively as follows:

Ni(v) = {v](x,3) € E and x € Ny (v)) — (Nt (0) UNia(1)}, 2 <L,

(We note that, these sets can also be computed by considering first the distance
matrix of the graph G and then extracting all set information that is necessary.
This computation can be done by using matrix multiplication; see [3].)

In the rest of the paper we shall denote the adjacency-level sets
No(v),Ni(v),...,N;(v) of a partition Z(G,v) as N(v,0),N(v,1),...,N(v,i),
0<i<L,

Lemma 2.1. Let Q, = (V,,E,) be an n-dimensional hypercube on N = 2" nodes,
and let N(v,0),N(v,1),...,N(v,n) be the adjacency-level sets of the partition
&L (O, v), where v € V,. Then, the subgraph induced by the vertex set N (v,i) is a
mK, graph, where m = |N(v,i)| and 0 <i<n.

Proof. Immediately from criterion C1 (or criterion C2). [

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 195

Lemma 2.2. Let Q, = (V,,E,) be an n-dimensional hypercube on N = 2" nodes,
and let N(v,0),N(v,1),...,N(v,n) be the adjacency-level sets of the partition
&L (O,), where v € V,. Let u, w be distinct vertices in N(v,i),1 <i<n— 1. The
following statements must be satisfied.

(a) Nodes u, w have at most one common neighbour in N(v,i+ 1).

(b) Nodes u, w have a common neighbour in N(v,i + 1) if and only if they have

a common neighbour in N(v,i — 1).

Proof. Both statements follow from criterion C3. O

2.1. Construction properties of a hypercube

Let K, and O, be two hypercubes with 2 and N = 2" nodes, respectively, n > 1.
Let {v;, v, } be the node set of K, and let {u;,uy, ..., uy} be the node set of Q,. By
definition, O, = K, x Q, is a hypercube with 2N = 2"*! nodes. The node set
V(Q,+1) and the edge set E(Q,,1) of the hypercube O, are the following:

(1) V(Qn-H) = {x17x27 sy XN V1 V2 7yN}’ where x; = (Ulvui) and Yi=

(v2,1;), 1 <IN,

(i) (xx, %) € E(Qus1) for 1 <i< N, and (x;,x;), (0, ;) € E(Qp+1) if and only

of (u;,u;) € E(Q,) for 1 <i,j<N and i # ;.

Let H, and F, be two subgraphs of the graph O, induced by {x,x5,...,xy}
and {y,»,..., v}, respectively, where x; = (vy,%;) and y; = (v2,;), 1 <i<N.
Let £(H,,x) and Z(F,,») be two partitions of H, and F,, respectively, and let

N(xl,O),N(xl, 1),...,N(X1,I’l>
and
N(ylvo)vN(yla 1)7~~~7N(y17n)

be the adjacency-level sets of these partitions. Moreover, let £(Q,.1,s)
be a partition of Q,,; with respect to node s=ux;, and let N(s,0),
N(s,1),...,N(s,n+ 1) be the adjacency-level sets of #(Q,.1,s). Then, the
following hold:

(i) N(5,0) =N(x1,0),N(s,n+1)=N(y,n), and N(s,i) =N (x1,i) UN(y,i — 1),

1<i<n.

(i) There is one and only one edge (xx,3) € E(Q,.1) such that x, € V(H,)

and y; € V(F,), 1 <k<N (see criterion C3). Moreover, if node x; € N(s,i)

then node y, € N(s,i + 1), where 0 <i < n.

Next, we describe a Gray-code labeling method which, as we shall see later,
will be used as a basis for the proposed Gray-code labeling algorithm. For
simplicity, hereafter, we shall say that a hypercube is Gray-code labeled or
G-labeled if the n-bit labels of its nodes satisfy the property P4. Moreover, we
shall refer to the Gray-code label of a node u as G-label(u).

196 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

2.2. Gray-code labeling of a hypercube

Let K, and Q, be two hypercubes and let {v;,v,} and {u;, us, ..., uy} be the
node sets of K, and Q,, respectively, where N = 2" and n > 1. We assume that
both hypercubes K, and Q, are G-labeled. That is, if G-label(x) denotes the
Gray-code label of the node u, then we have:

(i) G-label(v,) =0,

(ii) G-label(v;) = 1, and

(iii) G-label(u;) = b,_1b,_> - - - b1by, Where b,_1b,_, - - - biby be an n-bit string

such that the Hamming distance between two nodes is 1 if and only if the

nodes are adjacent in the hypercube Q,.

Let X = b, 1b,_»---b1by be a binary string of length n, where b, ;| is the
most significant bit and b, is the least significant bit. Then, 0(X) (resp. 1(X))
denotes the binary string b,b,_1b,_, - - - b1 by of length n 4+ 1, where b, = 0 (resp.
b, =1).

We have seen that Q,.1 =Ky x Q, and V(Q.1) = {x1,%2, ..., Xn, 11,
Yoy ..}, wWhere x; = (vr,u;) and y; = (v2,u;), 1 <i<N. We label the nodes of
the hypercube Q, ., as follows:

(1) label(x;) = 0(X)

(it) label(y;) = 1(X), where X = G-label(u;),] <i<N.

It is easy to see that the assignment of labels which is performed by the above
hypercube-labeling method forms a Gray-code labeling of the hypercube Q, .
We call this hypercube-labeling method GL-method and a hypercube labeled by
the GL-method GL-labeled hypercube.

Let V(Q,11) = {ui1,uy, . .. ,usy} be the node set of the hypercube Q,,; and let
H, and F;, be two subgraphs of 0, induced be the sets V' (H,) and V' (F,), where
V(H,) (resp. V(F;,)) contains all the nodes u of Q,;; whose the most significant
bit of G-label(u) is 0 (resp. 1). It is easy to see that H, and F, are two
n-dimensional hypercubes on N = 2" nodes. It is also easy to see that if we
assign a new label to each node u of the hypercubes H, and F, by deleting the
most significant bit of the G-label(u), then both hypercubes H, and F, are
G-labeled. Hereafter, the hypercubes H, and F, will be referred to as upper
hypercube and lower hypercube of the hypercube Q,,, respectively.

The main properties of the construction and G-labeling of a hypercube are
summarized in the following lemma.

Lemma 2.3. Let O, be a GL-labeled hypercube with N = 2"*! nodes and let G-
label(u) be the Gray-code label of the node u, where u € V(Q,,1). We partition
the hypercube Q,,1 with respect to node s, where G-label(s) = 00---0, and let
N(s,0),N(s,1),...,N(s,n+ 1) be the adjacency-level sets of Q... Then, the
following hold:
(1) V(Qu) =V (H,) UV(F,), where H, and F, are the upper and lower
n-dimensional hypercubes of QO,. .

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 197

(ii) The most significant bit of the G-label(u) of a node u € V(Q,.1) is 0 (resp.
1) if and only if u € V(H,) (resp. u € V(F,)).

(iii) Every node v of the set V(H,) is joined by an edge with one and only one
node u of the set V(F,) (see criterion C3). Moreover, if G-label(v) = 0(X) then
G-label(u) = 1(X), where X is a binary string of length n.

Next, we present the main theorem of this paper which provides the justi-
fication for an algorithm which assigns G-labels to a hypercube Q,.

Theorem 2.1. Let Q, = (V,, E,) be an n-dimensional hypercube on N = 2" nodes,
and let N(s,0),N(s,1),...,N(s,n) be the adjacency-level sets of the partition
L (On,s), where s € V,,. Let u, v be distinct nodes in N (s, i) and let w be a node in
N(s,i+ 1) such that (w,u) € E, and (w,v) € E,,1 <i<n — 1. Then, G-label(w)
= G-label(u) Vv G-label(v) is a Gray-code label of the node w.

Proof. We shall prove the theorem by induction on the dimension n of the
hypercube Q,. Let K, and Q; be two hypercubes and let V' (K;) = {s,u} and
V(01) = {v,w} be their node sets. Let O, = K, x Q;. Thus, V(Q,) = {s,u,v, w}
and let {s,u} and {v, w} be the node sets of the upper and lower hypercubes of
0,, respectively. We assign the label 00 to the node s, that is, G-label(s) = 00.
Then, G-label(x) =01 and G-label(v) =10. Obviously, G-label(w) =
G-label(u) vV G-label(v) = 11 and w € N(s,2). Therefore, in the base case n = 2
the induction hypothesis holds.

Assume that the induction hypothesis holds for a hypercube Q, ; on
N =2""! nodes, n>2. We shall show that it also holds for Q,. Let
0,= (V,,E,) be an n-dimensional hypercube on N =2" nodes, and let
N(s,0),N(s,1),...,N(s,n) be the adjacency-level sets of the partition

L (O,), where s 6 V.. Moreover, let H, and F, be the upper and lower
hypercubes of Q,. Then, H, and F, are two hypercubes each on N = 2""!
nodes.

Suppose that we have labeled the nodes of the levels N(s,0),

N(s,1),...,N(s,i) of the partition Z(Q,,s), by using the given condition. Let w
be a node in N(s,i+1) and let we V(F,). Let w be a node such that
w e V(F,),w € N(s,i),(w,w) € E, and G-label(w') = 0(X V Y); see Fig. 3. We
shall prove that G-label(w) = 1(X V Y).

It is easy to see that all the labeled neighbours of the node w' belong to the
upper hypercube. Thus, by the induction hypothesis we have 0(X VY) =--.- =
0XVvZ)=---=0(Y VZ). We distinguish four cases:

Case TI: label(w) = label(u) OR label(v) = (1VI1)(X VY)=1(X VY).

Case 1II: label(w) = label(u) OR label(g) = (1V1)(XVZ)=1(X VY).

Case II: label(w) = label(u) OR label(w)=(1VO)(XV(XVY)) =

I(XVY).

198 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

0Z) ‘
Upper H
Hypercube ' !

0(X) oxXvy) !

0(Y) ‘
Lower)
Hypercube

N(s, i-1) N(s, i) N(s, i+1)

Fig. 3. Three consecutive adjacency-levels of the partition £ (Q,,s).

Case 1V:
label(w) =1label(g) OR label(w') = (1V0)(ZV(XVY))=1((ZVX)VY)
=1((XVY)VY)=1(XVY).

So indeed label(w) is a G-label of the node w of the hypercube Q,. Thus, the
theorem follows for all values of n. [

3. The Gray-code labeling algorithm

We now present an optimal algorithm for Gray-code labeling of the nodes of
an n-dimensional hypercube. The basic idea of the algorithm is motivated by the
characterizations provided by Theorem 2.1. The algorithm is very simple and
uses breadth-first search and logical disjunction on 7-bit strings; it visits the nodes
of the hypercube by using the breadth-first search and computes the G-label of a
node u by performing the logical disjunction of the G-labels of two nodes adjacent
to node u. More precisely, the algorithm takes as input the adjacency list of an n-
dimensional hypercube O, = (V,, E,) with N = 2" nodes and operates as follows:

(1) Select an arbitrary node s € ¥, and label node s and its adjacent nodes

properly; obviously, this process computes the G-labels of all the nodes of

the sets N(s,0) and N(s, 1).

(2) Determine the next non-G-labeled node u of the set N(s,i) by using

breadth-first search, 2 <i< logN.

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 199

(3) Select two arbitrary nodes a and b of the set N(s,i — 1) which are adja-
cent to u, and compute the G-label of u by performing the logical disjunction
of G-label(a) and G-label(d).
From the above described Gray-code labeling method, it is clear that the G-
label of a node u is the binary representation of G-label(a) V G-label(b), where
V is the logical OR operation and a, b are two Gray-code labeled nodes which
are adjacent to node u.

The nodes of the hypercube O, are visited in the order in which they are
selected in stage (2) of the algorithm. This visiting process fixes the G-labels of
the nodes of Q,. According to the process of visiting the nodes of Q,, the la-
beling of the nodes of the adjacency-level set N(s,i) cannot start, unless all
nodes of set N(s,i — 1) are labeled. Thus, the two nodes a and b, which are
arbitrarily selected of the set N(s,i — 1) in stage (3), are always G-labeled. The
correctness of the algorithm is established through the Theorem 2.1. Its proof
relies on the results of Section 2 (see Lemmas 2.1-2.3).

Having described the Gray-code labeling algorithm and proved its cor-
rectness, we are now in a position to estimate its time complexity. In doing so
we give a more formal listing of the algorithm (see Fig. 4).

Let us first comment on some important features of the algorithm. For
each node u of O, we maintain four variables: G-label(x), Color(u), A(u) and
B(u). The variable Color(u) takes the colors White, Gray or Black, and the
variables A(u) and B(u) maintain the predecessors of the node u from the
previous adjacency levels. To keep track of progress, first the algorithm
colors each node White (unprocessed), then Gray (in queue) and finally
Black (processed); actually, the coloring process is due to breadth-first
search.

Initially, Color(u) is White for every node u of Q,; it becomes Black, after
the computation of the G-label of a node w. Consequently, the algorithm de-
termines the node u which is adjacent to w and has White or Gray color. Then,
it assigns the node w to 4A(u), if A(u) = u (if a node ' # u has been assigned to
A(u), then the algorithm assigns the node w to B(u), again if B(u) = u). Ifuis a
White node, then u is inserted into the queue Q (enqueue operation) and is
colored Gray. Later, the algorithm determines the Gray node u at the head of
the queue Q, computes the G-label(u) of the node u by performing the logical
disjunction of G-label(4(u)) and G-label(B(u)), deletes u from the queue Q
(dequeue operation) and colors it Black. Since, the algorithm inserts only
White nodes into the queue Q and then colors them Gray, we easily conclude
that each node of the hypercube is enqueued at most once, and hence dequeued
at most once. For simplicity, the n-bit string consisting of all zeros will be
denoted by 0.

We shall assume a generic one-processor Random Access Machine (RAM)
model of computation as our implementation technology. In this model, the
operations of enqueuing and dequeuing take O(1) time, while both logical OR

200 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

Algorithm G-labeling;
begin
1. For each u € V, do Color(z) < White; A(u) < B(u) « u;
2 Choose an arbitrary node s € Vy; G-label(s) < 0"; Color(s) « Black;
3. G-label(u;) < 01, for every node u; € adj(s), 0 <i<n-1;
4 For each node u; € adj(s), 0 <i<n-1, do
4.1 update G-label(u;) by toggling its i-th bit, and then
assign Color(u;) < Black;
4.2 for each node v € adj(u;) do
if A(v)=v then A(v) « y;
elseif B(v) =v then B(v) « u;;
if Color(v) = White then Enqueue(Q, v); Color(v) < Gray;
5. While Q # & do
5.1 u < head(Q);
5.2 G-label(u) « G-label(A(u)) OR G-label(B(u));
5.3 for each node v € adj(u) do
if Color(v) # Black then
if Aw)=v then A(v) « u
elseif B(v) =v then B(v) « u;
if Color(v) = White then Enqueue(Q, v); Color(v) < Gray;
5.4 Dequeue(Q); Color(u) « Black;
end;

Fig. 4. The Gray-code labeling algorithm for n-dimensional hypercubes.

operation x V y and assignment operation x < y take O(log N) time in the case
where x and y are binary n-strings.

Let us now analyze the computational complexity of the algorithm. We shall
obtain its overall complexity by computing the complexity of each step sepa-
rately. The complexity of the algorithm is analyzed as follows: Step 1. Clearly,
this initialization step takes O(N) time, where N = 2". Step 2. Since G-label is a
binary n-string, the main operation of this step requires O(log N) time. Step 3.
Based on the operation of step 2, it follows that this step requires O(log” N)
time. Step 4. The for loop of this step is executed & times, 0 < k <n — 1. Thus,
steps 4.1 and 4.2 are executed exactly log N times. It is easy to see that step 4.1
requires O(log N) time. The for loop of step 4.2 is executed in O(log N) time.
In total, step 4 is executed in O(log® N) time. Step 5. The while loop of this
step iterates as long as there remain White nodes in the hypercube. Since each
node of the hypercube is enqueued at most once, and hence dequeued at most
once, steps 5.1-5.4 are executed exactly N times. It is easy to verify that steps
5.1 and 5.4 take O(1) time, while steps 5.2 and 5.3 take O(logN) time. Thus,
step 5 is executed in O(N log N) time.

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 201

Taking into consideration the time complexity of each step of the algorithm,
we conclude that the total running time of the algorithm is bounded by
O(NlogN). In view of the fact that a hypercube Q, has n2""! edges, this be-
haviour is optimal. The results of this section can be summarized in the fol-
lowing theorem.

Theorem 3.1. Given an n-dimensional hypercube Q, on N =2" nodes, the al-
gorithm G-labeling correctly produces a Gray-code labeling of Q, in
O(NlogN) time.

4. The recognition algorithm

In this section, we present an optimal algorithm for the problem of recog-
nizing n-dimensional hypercubes. Our hypercube labeling algorithm G-la-
beling is used as a basis for the proposed recognition algorithm.

Let #(Q,,s) be a partition of an n-dimensional hypercube 0,=(V,,E,),

with respect to node s € V,, and let N(s,0),N(s,1),...,N(s,n) be the adja-
cency-levels of #(Q,,s). The following properties hold
(P5) The adjacency-levels N(s,0),N(s,1),...,N(s,n) are independent

sets (see Lemma 2.1).
(P6) The adjacency-level set N (s, p) has n!/(p!(n — p)!) nodes, 0 < p< n.
(P7) Each node of the set N (s, p) has p adjacent nodes in N(s,p — 1)
and n — p adjacent nodes in N(s,p+ 1), 1<p<n— L.

Next, we show the relationship between the G-label of a node of the level
N(s,p) and its distance of the nodes of the level N(s, 1), 2 < p <n. We prove the
following result.

Lemma 4.1. Let O, = (V,,E,) be an n-dimensional hypercube on N = 2" nodes,
and let N(s,0),N(s,1),...,N(s,n) be the adjacency-level sets of the partition
L(Op,s), where s € V,. Let u and v, be nodes of the sets N(s,1) and N(s,p),
respectively, 2 < p<n, and let G-label(u) =0---1---0, where 1 holds the ith
position, 0 <i < n — 1. Then, the G-label (v,) has 1 in the ith position if and only

if d(u,v,) =p—1.

Proof. It follows directly from Theorem 2.1, since all the nodes of a path
[u,v2,...,v,] have | in the ith position of their G-labels, where u € N(s, 1) and
v; € N(s,j), 2<j<p (see Fig. 2 or Fig. 5(a)). O

Given an n-dimensional hypercube O, and the adjacency-level sets
N(s,0),N(s,1),...,N(s,n) of the partition £(Q,,s), we can easily show the
following propertles.

202 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

0000

(a) (b)
Fig. 5. (a) The hypercube Qy; (b) A graph Q on N = 24 nodes; Q is not a hypercube.

(P8) For every node v in the set N(s, p), 2 < p < n, there exist exactly p
nodes u in the set N(s, 1) such that d(u,v) = p — 1, (see criterion
C2 and property P6).

(P9) The G-label of every node v of the set N(s,p) has exactly p 1’s
and, hence, n-p 0’s (see Lemma 4.1 and Theorem 2.1).

(P10) The G-labels of every pair of nodes u, v of the set N(s, p) differ in
exactly two bits if u, v have a common neighbour in the set
N(v,p—1),1<p<n—1; otherwise, their G-labels differ in at
least four bits, n > 4 (see Lemma 2.1 and Theorem 2.1).

We are now in a position to prove the following theorem which gives a nec-
essary and sufficient condition for a given graph on N = 2" nodes to be an n-
dimensional hypercube. Hereafter, we shall refer to the integer representation
of the G-label of a node u as IG-label(u).

Theorem 4.1. Let Q = (V,E) be a graph on N = 2" nodes which satisfies the
properties P5S—P7, and let 1G-label(v;) be the integer representation of the G-label
of the node v; € V,0<i<N — 1. Then, Q is an n-dimensional hypercube if and
only if for every w € V the adjacent nodes uy,u,, ..., u,_1 of w can be ordered
such that |IG-label(w) — IG-label(u)| = 25,0 <k<n— 1.

Proof. (=) Since Q is a hypercube on N = 2" nodes, each node w in Q can be
uniquely represented by an n-bit string using the algorithm G-labeling; that
is, G-label(w). Thus, this implication follows directly from the properties P4
and P9 (see Fig. 5(a)).

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 203

(<) Suppose now that @ is not a hypercube, and let
N(s,0),N(s,1),...,N(s,n) be the adjacency-level sets of the partition ¥ (Q,s),
where s € V. Since Q satisfies the properties P5-P7, it follows that there exists a
pair of adjacent edges which do not form a 4-cycle in Q. Therefore, there exists
a node w in N(s,p) and two neighbours u, v of w in N(s,p — 1) such that the
pair of adjacent edges (u, w) and (w, v) do not form a 4-cycle in Q; that is, nodes
u, v do not have a common neighbour in N(s,p — 2) (see Fig. 5(b); p = 3).
Suppose that N (s, p) is the first adjacency-level set which contains such a node
w. There are two cases to consider:

Case 1. G-label(w) = G-label(v) vV G-label(x), where nodes v, x have a
common neighbour in N(s, p — 2); clearly, x # u. The G-labels of the nodes v, x
differ in exactly two bits (see property P10) and, thus, G-label(w) and G-label(v)
differ in exactly one bit. Since u, v do not have a common neighbour in
N(s,p —2), it follows that G-label(x) and G-label(v) differ in at least four bits.
Thus, G-label(v) and G-label(w) differ in at least two bits.

Case 11: G-label(w) = G-label(u) vV G-label(v). Since G-label(x) and G-la-
bel(v) differ in at least four bits, it follows that G-label(z) and G-label(w) differ
in at least two bits.

In both cases, we conclude that there exists a neighbour u of w such that
G-label(u) and G-label(w) differ in more than one bit and, thus,
|[G-label(w) — IG-label(u)| # 2%, 0<k<n—1. O

Based on the conditions provided by Theorem 4.1, we next develop a rec-
ognition algorithm for Hypercubes. Obviously, these conditions contain en-
ough information to enable the logical deduction that a given graph Q = (V,E)
on N = 2" nodes is indeed an n-dimensional hypercube. We call the recognition
algorithm G-recognition and give its formal listing in Fig. 6.

Let us now analyze the computational complexity of the recognition algo-
rithm. We shall follow a step-by-step analysis. Step 1. We have proved that the
time complexity of the algorithm G-labeling is O(NlogN); see Theorem
3.1. Moreover, we have seen that this algorithm computes the adjacency-level
sets of the input graph. Within the recognition algorithm, we can easily modify
the labeling algorithm G-labeling so that it computes the adjacency-levels
of any graph Q in O(N log N) time; the algorithm terminates in the case where
Q is not an n-dimensional hypercube. Step 2. Since an n-dimensional hypercube
has N nodes and N logN edges, it is easy to see that for any graph Q we can
decide whether the properties P5—P7 hold in O(N log N) time. Step 3. Given the
G-labels of the nodes of O, we can easily compute the corresponding integer
labels of Q in O(N log N) time. Step 4. Obviously, it takes O(N) time. Step 5.
The for loop of this step is executed for every node w € V. Each of the for
loops of steps 5.1-5.3 is executed exactly log N times. Thus, the total compu-
tational time of step 5is O(N log N). Step 6. This step returns the message “Q is
a hypercube”; hence, it takes O(1) time.

204 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

Algorithm G-recognition;

begin

1. G-label the input graph Q = (V, E) using the algorithm G-labeling;

2. If one of the properties P5 - P7 is not satisfied then Q is not a hypercube; exit;
3. Compute the integer-label /G-label(v), for each node v € V;

4. Initialize the Boolean array D[1..N] « F;

5. For each node w e V do

5.1 for each node u € adj(w) do
compute k = |IG-label(w) - IG-label(u) | ;
set D[k] « T,
52 fork=2i,i=0,1,2,..,n-1,do
if D[k] = F then Q is not a hypercube; exit;
53 fork=2ii=0,1,2,..n-1,doset Dk] « F;
6. Return: Q is a hypercube;
end;

Fig. 6. The recognition algorithm for n-dimensional hypercubes.

Taking into consideration the time complexity of each step of the algorithm,
we conclude that the algorithm runs in O(N log N) time being, therefore, op-
timal. Recall that a hypercube O, has n2"~! edges. Thus, we have proved the
following result.

Theorem 4.2. Given a graph Q with N = 2" nodes and n2"~" edges, the algorithm
G-recognition recognizes whether Q is an n-dimensional hypercube in
O(NlogN) time.

5. Parallel implementation

In this section, we present optimal parallel Gray-code labeling and recog-
nition algorithms for n-dimensional hypercubes. We present two labeling al-
gorithms; the first algorithm is a parallel implementation of the sequential
algorithm G-labeling described in Section 3, while the basic idea of the
second one is motivated by the characterizations provided by Lemma 4.1.

For the design and analysis purposes we shall use the Parallel Random
Access Machine (PRAM) as a model of parallel computation [9,15]. Our no-
tion of optimality is based on the Work—Time (WT) framework [9]. The work is
defined to be the total number of operations used by a parallel algorithm (it has
nothing to do with the number of processors available), while the time is de-
fined to be the total number of time units required by a parallel algorithm
(during each time unit a number of concurrent operations can take place).

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 205

Within the WT framework, a parallel algorithm for solving a given compu-
tational problem will be called optimal if the work W (n) required by the al-
gorithm is asymptotically the same as the sequential complexity of the
problem, regardless of the running time 7'(n) of the parallel algorithm.

5.1. Parallel labeling algorithms

We next describe the parallel algorithm PG-1abeling-A which is a parallel
implementation of the optimal sequential algorithm G-labeling in Fig. 7.

The correctness of the algorithm PG-labeling-A is established through
the correctness of the sequential algorithm G-1abeling. Next, we analyze the
computational complexity of the algorithm on a CRCW PRAM model.

We follow a step-by-step analysis.

Step 1. Clearly, this initialization step can be executed in O(1) time using

O(N) operations, where N = 2",

Step 2. This step can be completed in O(1) time using O(log N) operations,

since the length of the binary n-string G-label is n = log N.

Step 3. The for loop is executed concurrently for each node u in the adja-

cency set adj(s); the set adj(s) contains log N nodes. It is easy to see that,

both steps 3.1 and 3.2 are executed in O(1) time using O(log N) and O(1) op-

erations, respectively. The for loop of step 3.3 is executed in O(1) parallel

time using O(log N) operations. Thus, overall, step 3 is executed in O(1) time

using O(log” N) operations.

Step 4. The for loop of this step is executed O(log N) times. In its ith iter-

ation, the number of the Gray nodes selected in step 4.1 are exactly

Algorithm PG-labeling-2
begin
1. For each u € V, do in parallel Color(x) — White;
2. Choose an arbitrary node s € ¥,; G-label(s) < 0"; Color(s) « Black;

3. For every node ; € adj(s), 0<i<n— 1, do in parallel
3.1. G-label(y;) < 0--- 1---0; (update the label of #; by toggling its ith
bit)

3.2. Color(u;) < Black;
3.3. for every node v € adj(u;) — {s}, 0<j<n— 1, do in parallel
Color(v) «— Gray;
4. Fori=23,...,n do
4.4. for every node u € ¥, such that Color(«) = Gray do in parallel
4.4.1. choose two arbitrary nodes x and y from the set adj(u)
such that Color(x) = Color(y) = Black;
442, G-label(i) — G-label(x) OR G-label(y); Color(x) — Black;
4.4.3. for cvery node v € adj(u) such that Color(x) = Black do
in parallel
Color(v) — Gray;
end;

Fig. 7. The parallel Gray-code algorithm PG-labeling-A.

206 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

ki =|N(s,i)|, i=2,3,...,n. It is easy to verify that, all the statements of

step 4.1 can be executed in O(1) time using O(log N) operations. Thus, step

4 is executed in O(log N) time using k, log N + k3 logN + - - - + k, log N oper-

ations. Since k, + k3 + - + k, = N — (log N + 1), the total number of oper-

ations used by step 4 is O(N logN).

The time complexity of each step of the algorithm, as well as the number of
operations used by each step, imply the following result.

Theorem 5.1. Given an n-dimensional hypercube O, on N = 2" nodes, the parallel
algorithm PG-labeling-A correctly produces a Gray-code labeling of Q, in
O(logN) time using a total of O(N logN) operations on a CRCW PRAM.

Algorithm PG-labeling-A requires a concurrent write of the same value
capability to run in O(logN) time; see, statement Color(v) < Gray in steps
3.3 and 4.1.3. This follows from the fact that each node v is adjacent to more
that one node with black color. Since our analysis is based on this as-
sumption, our O(log N) time parallel algorithm requires the common CRCW
PRAM model. Our algorithm is optimal because its total number of opera-
tions is asymptotically the same as the complexity of the optimal sequential
labeling algorithm.

However, it is easy to see that simultaneous memory access to an entry
Color(v) for the purpose of writing can be avoided by executing steps 3.3 and
4.1.3 sequentially. This modification yields an O(log’ N) time parallel algo-
rithm which can be executed on the CREW PRAM model using a total of
O(NlogN) operations. Thus, we also have a parallel labeling algorithm which
is optimal for the CREW PRAM model.

Moreover, we can easily modify Algorithm PG-labeling-A so that it
computes the adjacency-level sets of the partition #(Q,, v); this can be done by
adding in step 4.1.1 the statement [evel(u) < level(x)+ 1, or
level(u) <« level(y) + 1. Thus, we have the following results:

Theorem 5.2. A Gray-code labeling of an n-dimensional hypercube Q, on N = 2"
nodes can be optimally produced in O(log> N) time using a total of O(N logN)
operations on the CREW PRAM.

Corollary 5.1. Let Q, be an n-dimensional hypercube on N = 2" nodes and let v
be an arbitrary node. The adjacency-level sets N(v,0),N(v,1),...,N(v,n) can be
computed in O(log N) time using O(N log N) operations on a CRCW PRAM or
in O(log” N) time using O(N log N) operations on the CREW PRAM.

Next we describe a parallel labeling algorithm which is mainly based on the
relationship between the G-label of a node of level N (s, p) and its distance from
the nodes of level N(s, 1). Recall that the G-label of a node v of the set N(s, p)

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 207

Algorithm PG-labeling-B
begin
1. Set G-label(v) « 0" for every v € V};
2. For every node u; € N(s,1) do in parallel
2.1. G-label(u;) «— 0---1---0; (update the label of u; by toggling its ith
bit)
3. For every node v € ¥V — {N(s,0) UN(s, 1)} do in parallel
3.2. for every node u; € N(s,1) do in parallel
3.2.1. ifd(v,s) = d(v,u;) + 1 then update the G-label(v) by tog-
gling its ith bit;
end;

Fig. 8. The parallel Gray-code algorithm PG-labeling-B.

has 1 in the ith position if and only if there exists a node u in the set N (s, 1) such
that d(u,v) =p —1 and G-label(x) has 1 in the ith position, 2 < p<n; see
Theorem 4.1. Thus, if the distance matrix of hypercube Q, is given, we can
compute a Gray-code labeling of Q, using the following algorithm given in
Fig. 8.
The complexity of the PG-1abeling-B algorithm is analyzed in a step-by-
step fashion as follows:
Step 1. Obviously, this step takes O(1) time using O(N log N) operations.
Step 2. The adjacency-level set N(s, 1) contains log N nodes and, thus, this
step is executed in O(1) time with O(log N) operations.
Step 3. The number of nodes in the sets ¥ — {N(s,0) UN(s,1)} and N(s, 1)
are N — (logN +1) and logN, respectively. The operation of testing
whether the ith bit of the G-label of a node needs to be updated can be se-
quentially executed in O(1) time. Therefore, step 3 is completed in O(1) time
using O(N log N) operations.
Thus, from the above analysis, we obtain the overall computational complexity
of the algorithm; it runs in O(1) time and uses a total of O(N log N) operations.
It is easy to see that steps 1 and 2 of the algorithm can be executed on the
EREW PRAM model. However, step 3 requires a concurrent read of the same
value u; € N(s, 1) and, thus, the whole algorithm requires the CREW PRAM
model. Thus, the following theorem holds.

Theorem 5.3. Given an n-dimensional hypercube Q, on N = 2" nodes and its
distance matrix, a Gray-code labeling of Q, can be produced in O(1) time using a
total of O(N logN) operations on a CREW PRAM model.

Remark 5.1. It is well-known that the N x N distance matrix of a graph can be
computed using matrix multiplication (matrix powers) [9]. Thus, the matrix D
of a hypercube Q, can be computed in O(logNlog log N) time using
O(M(N)log log N) operations on the CREW PRAM model, where M (N) is the
best known sequential bound for multiplying two N x N matrices.

208 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

5.2. Parallel recognition of hypercubes

In this section we show that the problem of recognizing whether a given
graph Q on N = 2" nodes is an n-dimensional hypercube can be optimally
solved in parallel. We present an optimal parallel recognition algorithm which
is based on the conditions given by Theorem 4.1; it is a parallel implementation
of the sequential algorithm G-recognition described in Section 4.

Obviously, the step 1 of the algorithm G-recognition can be imple-
mented using the parallel algorithm PG-labeling-A. Moreover, we can
easily show that steps 3 through 6 of the same algorithm can be implemented in
O(logN) time using a total of O(NlogN) operations on a CREW PRAM
model.

Let us now focus on the parallel implementation of step 2 of the sequential
algorithm G-recognition. Given the adjacency-levels N(s,0),
N(s,1),...,N(s,n) of the partition £(0,s), we can decided whether each of
these sets is an independent set in O(1) time using a total of O(N logN) op-
erations on a CRCW PRAM model. It is easy to see that, we can count the
elements of the sets N(s,0),N(s,1),...,N(s,n) in O(logN) time using O(N)
operations on the EREW PRAM model. Moreover, we can test whether a node
u of the set N (s, p) has p adjacent nodes in the set N(s,p — 1) and n—p adjacent
nodes in the set N(s,p + 1) in O(log N) time using O(N log N) operations on a
CREW PRAM model, 1 <p<n—1.

Taking into consideration the above analysis, as well as the computational
complexity of the parallel labeling algorithms, we state the following theorem.

Theorem 5.4. Let Q = (V,E) be a graph on N =2" nodes. The problem of
recognizing whether Q is an n-dimensional hypercube can be solved in O(logN)
time using a total of O(NlogN) operations on a CRCW PRAM model or in
O(log’ N) time using a total of O(NlogN) operations on a CREW PRAM
model.

6. Conclusions

In this paper we presented an optimal greedy algorithm for Gray-code la-
beling and recognizing n-dimensional hypercubes. Our labeling algorithm uses
breadth-first search to guide the greedy choice of nodes and computes the
Gray-code label of a node u by performing the logical disjunction of the Gray-
code labels of two nodes adjacent to node u. The algorithm is very simple and
runs in O(N logN) time, where N = 2" is the number of nodes in the hyper-
cube.

The idea of our algorithm is motivated by the work performed by Bhag-
avathi et al. [2]. They presented an optimal algorithm which takes as input an

S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210 209

n-dimensional hypercube Q, and returns a Gray-code labeling of the nodes of
the hypercube Q,. The main feature of their algorithm is that it visits the nodes
of the hypercube by using depth-first search. Based on the labeling algorithm
we proposed an optimal recognition algorithm for hypercubes; that is, our
algorithm recognizes whether a given graph on N = 2" nodes is indeed an
n-dimensional hypercube and runs in O(N logN) time.

It is well-known that the depth-first search is a hardly parallelisable prob-
lem; it is a P-complete problem. On the other hand, it is also well-known that
the breadth-first search can be efficiently implemented in parallel using many
techniques, such as matrix multiplication, vertex collapse, etc [9,15].

Based on these facts, as well as on the properties of the GL-method, we
proposed an O(logN) time CRCW PRAM and an O(log’ N) time CREW
PRAM optimal parallel algorithms for the Gray-code labeling problem.
Moreover, we proposed another labeling parallel algorithm; it takes advantage
of certain topological properties of a hypercube O, and runs in O(1) time using
O(Nlog N) operations on a CREW PRAM, provided that the distance matrix
of 0, is given. We also show that a graph on N = 2" nodes can be recognized
whether it is an n-dimensional hypercube in O(logN) time using a total of
O(N log N) operations on a CRCW PRAM model or in O(log” N) time using a
total of O(NlogN) operations on a CREW PRAM model.

References

[1] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computations: Numerical Compu-
tations, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[2] D. Bhagavathi, C.E. Grosch, S. Olariu, A greedy hypercube-labeling algorithm, Comput. J. 37
(1994) 124-128.
[3] A. Coppesmith, S. Winogrand, Matrix multiplication via arithmetic progression in STOC’87,
J. Symbolic Comput. 9 (1990) 251-280.
[4] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press/McGraw-Hill,
Cambridge, MA/New York, 1991.
[5] S. Foldes, A characterization of hypercubes, Discrete Math. 17 (1977) 155-159.
[6] M.R. Garey, R.L. Graham, On cubical graphs, J. Combin. Theory B 16 (1975) 84-95.
[71 F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[8] F. Harary, J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981) 185-190.
[9] J.JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[10] S.L. Johnsson, C.-T. Ho, Optimal broadcasting and personalized communications in
hypercube, IEEE Trans. Comput. C 38 (1989) 1249-1268.
[11] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms, Benjamin/Cummings, Menlo Park, CA, 1994.
[12] J.M. Laborde, S.P.R. Hebbare, Another characterization of hypercubes, Discrete Math. 39
(1982) 161-166.
[13] S. Lakshmivarahan, S.K. Dhall, Analysis and Design of Parallel Algorithms, McGraw-Hill,
New York, 1990.
[14] S.D. Nikolopoulos, S.D. Danielopoulos, Parallel computation of perfect elimination schemes
using partition techniques on triangulated graphs, Comput. Math. Appl. 29 (1995) 47-57.

210 S.D. Nikolopoulos | Information Sciences 137 (2001) 189-210

[15] J. Reif (Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann, San Mateo, CA, 1993.

[16] Y. Saad, M.H. Schultz, Topological properties of hypercube, IEEE Trans. Comput. C 37
(1988) 867-872.

[17] D.S. Scott, J. Brandenburg, Minimal mesh embedding in binary hypercubes, IEEE Trans.
Comput. C 37 (1988) 1284-1288.

[18] A.Y. Wu, Embeddings of tree networks into hypercubes, J. Parallel Distributed Comput. 2
(1985) 238-249.

