
Information Processing Letters 74 (2000) 129–139

Recognizing cographs and threshold graphs
through a classification of their edges

Stavros D. Nikolopoulos1

Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

Received 24 September 1999; received in revised form 17 February 2000
Communicated by K. Iwama

Abstract

In this work, we attempt to establish recognition properties and characterization for two classes of perfect graphs, namely
cographs and threshold graphs, leading to constant-time parallel recognition algorithms. We classify the edges of an undirected
graph as either free, semi-free or actual, and define the class of A-free graphs as the class containing all the graphs with no
actual edges. Then, we define the actual subgraphGa of a non-A-free graphG as the subgraph containing all the actual edges
of G. We show properties and characterizations for the class of A-free graphs and the actual subgraphGa of a cographG,
and use them to derive structural and recognition properties for cographs and threshold graphs. These properties imply parallel
recognition algorithms which run in O(1) time using O(nm) processors. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Cographs; Threshold graphs; Edge classification; Graph partition; Recognition; Parallel algorithms; Complexity

1. Introduction

Cographs (also called complement reducible
graphs) are defined as the graphs which can be reduced
to single vertices by recursively complementing all
connected subgraphs. More precisely, the class of co-
graphs can be defined recursively as follows:
(i) a single-vertex graph is a cograph;
(ii) the disjoint union of a cograph is a cograph;
(iii) the complement of a cograph is a cograph.
Cographs have arisen in many disparate areas of math-
ematics and computer science and have been indepen-
dently rediscovered by various researchers under var-
ious names such asD∗-graphs,P4 restricted graphs,
2-parity graphs and HD-graphs or Hereditary Dacey
graphs. Cographs themselves were introduced in the

1 Email: stavros@cs.uoi.gr.

early 1970s by Lerchs [12] who studied their struc-
tural and algorithmic properties. Lerchs has shown,
among other properties (see [1,5,6,13]), the following
two very nice algorithmic properties:
(P1) cographs are exactly theP4 restricted graphs,

and
(P2) cographs have a unique tree representation called

cotree.
Threshold graphs, a well-known class of perfect

graphs, are defined as those graphs where stable sub-
sets of their vertex sets can be distinguished by us-
ing a single linear inequality. Equivalently, a graph
G= (V ,E) is threshold if there exists a threshold as-
signment[α, t] consisting of a labelingα of the ver-
tices by non-negative integers and an integer threshold
t such that:
(i) S is a stable set if and only ifα(v1)+α(v2)+· · ·+

α(vp)6 t ,

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00041-7

130 S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139

wherevi ∈ S, 16 i 6 p, andS ⊆ V . Threshold graphs
were introduced in 1973 by Chvátal and Hammer [4].

There are several recognition algorithms for the
class of threshold graphs which run in linear sequen-
tial time. On the other hand, the class of cographs
is known to have logarithmic-time parallel recogni-
tion algorithms. For the class of cographs, Adhar and
Peng [1] presented a parallel recognition algorithm
which requires O(log2n) time and uses O(nm) proces-
sors on a CRCW PRAM model of computation, where
n andm are the number of vertices and edges in the
graph, respectively. Dahlhaus [7] proposed a nearly
optimal parallel recognition algorithm which runs in
O(log2n) time with O(n+m) processors on a CREW
PRAM model. Recently, He [10] published a cograph
recognition algorithm working in O(log2n) time with
O(n + m) processors on a CREW PRAM model. It
is worth noting that all previously known parallel al-
gorithms use the fact that cographs can be represented
by a unique tree (so-called cotree). This representation
forms the base for the logarithmic time parallel recog-
nition [5,7,10]. As far as threshold graphs are con-
cerned, De Agostino and Petreschi [2] presented a par-
allel algorithm derived from a characterization based
on degrees that runs in O(logn) time with O(n/ logn)
processors on a EREW PRAM. The main technique
used for recognizing threshold graphs is the degree
partition of the vertex set [8]. (We note that the degree
partition of the vertex setV of a graphG= (V ,E) is
given byV =D0+D1+ · · ·+Dk whereDi is the set
of all the vertices of degreeδi, 06 i 6 k.)

In this paper we attempt to establish recognition
properties and characterization for two classes of per-
fect graphs, namely cographs and threshold graphs,
leading to efficient O(1)-time parallel recognition al-
gorithms. Most of the previously proposed recognition
algorithms for cographs are based on a unique tree rep-
resentation, while recognition algorithms for thresh-
old graphs are based on a degree partition. Here, we
take a different approach relying on a classification
of the edges of an undirected graph and on the fact
that cographs contain no induced subgraph isomorphic
to P4 (see Lerchs [12]) and threshold graphs contain
no induced subgraphs isomorphic to 2K2, P4, or C4
(see Chvátal and Hammer [4]). To this end, we clas-
sify the edges of a graphG as eitherfree, semi-free
or actual, according to the relationship of the closed
neighborhoods of the endpoints (or end-vertices) of

their edges and obtain the actual subgraphGa which
is the subgraph ofG containing all the actual edges.
Based on this classification, we define the class ofA-
free graphs as the class containing all the undirected
graphs with no actual edges. Consequently, we prove
that any A-free graph does not containP4 or C4 as
induced subgraphs. This implies that
(i) A-free graphs are a special kind of cographs, and
(ii) a graph is threshold if and only if it is an A-free

graph and has no induced subgraphs isomorphic
to 2K2.

We show thatG has no induced subgraph isomorphic
to 2K2 if and only if the complementGc of G is
an A-free graph. Moreover, we show certain proper-
ties and characterizations for the actual subgraphGa
of a cographG. Based on these results, we propose
O(1)-time algorithms for recognizing A-free graphs,
cographs and threshold graphs using O(nm) proces-
sors on a CRCW PRAM.

Throughout the paper logn denotes logarithm to the
base two,n denotes the number of vertices andm
denotes the number of edges in a graph.

2. Edge classification and graph partition

LetG= (V ,E) be an undirected simple graph with
n vertices andm edges. Following the notation and
terminology in [9], theneighbourhoodof a vertexu of
G is the setN(u)=NG(u) consisting of all verticesv
which are adjacent withu. Theclosed neighbourhood
is N[u] = NG[u] := {u} ∪ N(u). The subgraph of
G induced by a subsetS ⊆ V is denoted byG[S].
We shall use the notationNG[S](u) (respectively
NG[S][u]) to denote the neighbourhood (respectively
closed neighbourhood) of a vertexu of the graph
G[S].

Given a graphG= (V ,E), we define three classes
of edges inG, denoted byAE, FE andSEaccording
to relationship of the closed neighborhoods of the
endpoints of its edges [14]. Letx = (u, v) be an edge
of G. Then,

(u, v) ∈ FE if N[u] =N[v],
(u, v) ∈ SE if N[u] ⊂N[v],
(u, v) ∈ AE if N[u] −N[v] 6= ∅ and

N[v] −N[u] 6= ∅.

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139 131

Fig. 1. Three undirected graphs. Free, semi-free and actual edges are denoted by f, s and a, respectively.

Obviously the edge setE of G can be partitioned into
the three subsets of free edges, semi-free edges and of
actual edges, respectively; that is,E = FE+SE+AE.
We illustrate with three graphsG, H andI shown in
Fig. 1.

Having classified the edges of a graphG = (V ,E)
as either free, semi-free or actual, let us now define the
class ofA-freegraphs as follows:

Definition 1. An undirected graphG = (V ,E) is
calledA-freeif every edge ofG is either free or semi-
free edge.

By definition, a graphG is an A-free graph if and
only if for every edge(x, y) of G, we haveN[x] ⊆
N[y] or N[x] ⊇ N[y]. The graphG in Fig. 1 is an
A-free graph, while the graphsH andI in the same
figure are not A-free graphs.

Let G = (V ,E) be a graph which contains actual
edges; that is,G is not an A-free graph. We define
theactual subgraphGa = (Va,Ea) of the graphG as
follows:

Definition 2. The graphGa = (Va,Ea) is called
actual subgraph ofa graphG = (V ,E) if Ea = AE
andVa = {v ∈ V | v is an endpoint of some edge of
Ea}, whereAE is the set of the actual edges ofG and
AE 6= ∅.

The actual subgraphGa = (Va,Ea) of the graphH
of Fig. 1 is aC5 (chordless cycle on 5 vertices), while
the actual subgraph of the graphI of the same figure
is aK3 (complete graph on 3 vertices).

We now extend the notion of the neighbourhood
N(v) of a vertex v so that for any vertexu we
define thei-distance neighbourhood ofu denoted by
N(v, i), i > 1. The setN(v, i), i > 1, contains all the

verticesu such that the length of the shortest path from
v to u is equal toi.

Given a connected graphG = (V ,E) and a vertex
v ∈ V , we define a partitionL(G,v) of the vertex set
V (we shall frequently use the termpartition of the
graphG), with respect to the vertexv as follows:

L(G,v)= {N(v, i) | v ∈ V, 06 i 6 Lv,
16 Lv < |V |

}
,

whereN(v, i), 0 6 i 6 Lv , are theadjacency-level
sets, or simply theadjacency-levels, and Lv is the
lengthof the partitionL(G,v) [15]. The adjacency-
level sets of the partitionL(G,v) of the graphG, are
formally defined as follows:

N(v, i)= {u ∈ V | d(v,u)= i},
whered(v,u) denotes thedistancebetween vertices
v and u in G. We point out thatd(v,u) > 0, and
d(v,u) = 0 whenv = u, for everyv,u ∈ V . (In the
case whereG is a disconnected graph,d(v,u) =∞
whenv andw do not belong to the same connected
component.) Obviously,

Lv =max
{
d(v,u) | u ∈ V },

N(v,0)= {v} and N(v,1)=N(v).
The adjacency-level setsN(v, i), 0 6 i 6 Lv , of
partitionL(G,v), can easily be computed recursively
as follows:

N(v, i)= {u | (x,u) ∈E andx ∈N(v, i − 1)
}

− {N(v, i − 1)∪N(v, i − 2)
}
,

26 i 6 Lv < n.
We note that, these sets can also be computed by
considering first the distance matrix of the graph
G and then extracting all set information that is
necessary. This computation can be efficiently done by
using matrix multiplication; see [3].

132 S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139

Fig. 2. The typical structure of an A-free graph. A line between nodesVi andVj indicates that each vertex of nodeVi is adjacent to each vertex
of nodeVj .

3. Structural properties of A-free graphs

The following results provide algorithmic proper-
ties for the class of A-free graphs—that is, the class of
all the undirected graphs with no actual edges. A typi-
cal structure of an A-free graph is shown in Fig. 2.

Let P4 andC4 denote the chordless path and the
chordless cycle on four vertices, respectively. Based
on the definition of the actual edges of a graph, we
can easily show that the A-free graphs are exactly the
graphs not having aP4 or C4 as an induced subgraph.
Thus, the following lemma holds.

Lemma 3.1. A graphG = (V ,E) is an A-free graph
if and only if it contains no induced subgraph isomor-
phic toP4 or C4.

Let G = (V ,E) be a connected A-free graph. For
convenience, we here denote byV (G) andE(G) the
setsV andE, respectively, and define

cent(G)= {x ∈ V (G) |N[x] = V (G)}.
Theorem 1 (see [11]).The following two statements
hold.

(i) A graphG is an A-free if and only ifG− cent(G)
is an A-free graph.

(ii) LetG be a connected A-free graph. Then
cent(G) 6= ∅. Moreover, ifG− cent(G) 6= ∅, then
G− cent(G) contains at least two components.

ThenV1 := cent(G) is not an empty set. PutG1 =
G, andG− V1=G2 ∪G3 ∪ · · · ∪Gr , where eachGi
is a component ofG− V1 andr > 3. Then since each
Gi is an induced subgraph ofG, Gi is also an A-free
graph, and so letVi := cent(Gi) 6= ∅ for 16 i 6 r.
Since each componentGj of Gi − cent(Gi) is also
an A-free graph, we can continue this procedure until
we get an empty graph. Then we finally obtain the
following partition ofV (G).

V (G)= V1+ V2+ · · · + Vk,
where Vi = cent(Gi). Moreover we can define a
partial order6 on {V1,V2, . . . , Vk} as follows:

Vi 6 Vj if Vi = cent(Gi) andVj ⊆ V (Gi).
It is easy to see that this partition possesses has the
following properties.

Theorem 2 (see [11]). Let G be a connected A-
free graph, and letV (G) = V1 + V2 + · · · + Vk

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139 133

be the partition defined above, in particular,V1 :=
cent(G). Then this partition and the partially ordered
set({Vi},6) have the following properties:
(P1) If Vi 6 Vj , then every vertex ofVi and every

vertex ofVj are joined by an edge ofG.
(P2) For everyVi , cent(G[{⋃Vi | Vj > Vi}])= Vi .
(P3) For every twoVs and Vt such thatVs 6 Vt ,

G[{⋃Vi | Vs 6 Vi 6 Vt }] is a complete graph.
Moreover, for every maximal elementVt of
({Vi},6), G[{⋃Vi | V1 6 Vi 6 Vt }] is a maxi-
mal complete subgraph ofG.

(P4) Every edge with both endpoints inVi is a free
edge.

(P5) Every edge with one endpoint inVi and the other
endpoint inVj , whereVi 6= Vj , is a semi-free
edge.

We shall refer to the structure which meets the
properties of Theorem 2 ascent-treeTc(G). We shall
call nodesthe elements of a cent-treeTc(G); that is,
the vertex setsV1,V2, . . . , Vk of the partition ofV (G)
of an A-free graphG. Fig. 2 shows thecent-treeTc(G)
of an A-free graphG; all edges in aVi are free edges,
while all edges between nodes are semi-free edges.

The cent-tree is a rooted tree with rootV1; every
nodeVi of Tc(G) is either a leaf or has at least two
children. Moreover,Vs 6 Vt if and only if Vs is an
ancestor ofVt .

If Vi andVj are disjoint vertex sets of an A-free
graphG, we say thatVi andVj areclique-adjacent
and denoteVi ≈ Vj if Vi 6 Vj or Vj 6 Vi .

We point out that the property (P3) of Theorem 2
ensures that all the edges with both endpoints in a
vertex setVi are free edges, 16 i 6 k. A consequence
of this property is that the vertex setV1 ∪ Vi is not
always a maximal clique. We can easily see thatV1 ∪
Vi is not a maximal clique if there exists a vertex set
Vj such thatVi ≈ Vj , 26 j 6 k.

4. Recognition properties of cographs

Based on the definition of cographs we can easily
see that they can be obtained from a single vertex
by performing a finite number of operations involving
union and complementation (the definition is given in
the introduction). Next, we present the fundamental
theorem on cographs.

Theorem 3 (see [6]).Let G = (V ,E) be an undi-
rected graph. Then, the following statements are
equivalent:
(i) G is a cograph;
(ii) G does not containP4 as a subgraph.

By Theorem 3, a graphG is a cograph orD∗-graph
if for every path inG with edges(v1, v2), (v2, v3),
(v3, v4) the graph also contains the edges(v1, v3) or
(v2, v4) or (v1, v4) [5]. A strict subset of cographs
form the class ofdiagonal graphsorD-graphs(a strict
subset of cographs) [16]. It is important to point out
that Wolk [16] showed that theD-graphs are precisely
the comparability graphs of rooted trees. This result
was later quoted incorrectly as “A graph without
induced subgraph isomorphic toP4, that is, a cograph,
is the comparability graph of rooted trees” [2]. The
graphC4 is a counter-example to this statement.

A graph is adiagonal graphorD-graph if for every
path inG with edges(v1, v2), (v2, v3), (v3, v4), the
graph also contains the edges(v1, v3) or (v2, v4) (see
also [6]). Thus, the following result directly follows
from Lemma 3.1 and Theorem 3.

Theorem 4.1. Let G = (V ,E) be an A-free graph.
Then,G is a cograph.

Let us now consider the case where the graphG

contains actual edges. Based on certain properties of
the actual subgraphGa = (Va,Ea), we show some
characterizations of cographs leading to an efficient
(constant-time) parallel recognition algorithm. Here-
after, the adjacency-level sets of the partitionL(Ga, x)
of the graphGa are denoted byNa(x, i), x ∈ Va and
i > 0.

The following theorem addresses a characterization
of cographs which is at the heart of our parallel
recognition algorithm.

Lemma 4.1. LetG= (V ,E) be a graph and letGa =
(Va,Ea) be the actual subgraph ofG. The graphG is
a cograph if and only if
(i)

⋃
06i62Na(x, i)= Va , and

(ii) there exists no actual edge(y, z) ∈ Ea such that
y, z ∈Na(x,2), and

(iii) there exists no semi-free edge(x, y) ∈ SE such
thaty /∈ Va , for every vertexx ∈ Va .

134 S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139

Fig. 3. The vertical dashed lines indicate the adjacency-levels. Free and semi-free edges are denoted by f and s, respectively; all the other edges
are actual edges.

Proof. (⇒) Let G = (V ,E) be a cograph. Suppose
thatVa 6= ∅; otherwiseG is an A-free graph and, thus,
G is a cograph (Theorem 4.1).

(i) By Theorem 2,G does not containP4 as
a subgraph. Obviously thenN(x,3) = ∅ for every
x ∈ V . SinceGa is a subgraph ofG, Na(x,3) =
∅ for every x ∈ Va . This implies,{x} ∪ Na(x,1) ∪
Na(x,2)= Va for everyx ∈ Va .

(ii) Suppose that there exists an actual edge(y, z) ∈
Ea such thaty, z ∈Na(x,2). Then, there exist vertices
y ′, z′ ∈ Na(x,2) such that(y, y ′) ∈ Ea , (z, z′) ∈ Ea .
There are three cases to consider.

Case I: (y, z′) /∈ E and (z, y ′) /∈ E. Then, there
exists aP4 path[z, y, y ′, x]; a contradiction.

CaseII: (y, z′) /∈ E and(z, y ′) ∈ E (see Fig. 3(a)).
Since(y, z) is an actual edge, there exists a semi-free
or actual edge(y,p) such that(p, z) /∈E. Then, there
exists aP4 path[p,y, z, z′]; a contradiction.

CaseIII: (y, z′) ∈E and(z, y ′) ∈E (see Fig. 3(b)).
Since (y, z) is an actual edge, there exist semi-
free or actual edges(y,p1) and (z, q1) such that
(p1, z) /∈ E and (q1, y) /∈ E. Moreover, since(y, y ′)
and (z, z′) are actual edges, there exist semi-free or
actual edges(y,p2) and (z, q2) such that(p2, y

′) /∈
E and (q2, z

′) /∈ E. Without loss of generality, we
assume thatp = p1 = p2 and q = q1 = q2. If
(x,p) /∈ E then there exists aP4 path [p,y, y ′, x]; a
contradiction. If(x,p) ∈E then there exists aP4 path
[z, y,p, x]; a contradiction. The cases where(x, q) /∈
E and(x, q) ∈E follow similarly.

(iii) Suppose that there exists a semi-free edge
(x, y) ∈ SE such thaty /∈ Va . Let (x, z) be an actual

edge. Then, there exists a vertexz′ such that(z, z′) ∈E
and(x, z′) /∈E. There are two cases to consider.

CaseI: There is no vertexx ′ such that(x ′, x) ∈ E
and(x ′, z) /∈E (see Fig. 4(a)). Since(x, z) is an actual
edge, we have(y, z) /∈E. Obviously,(y, z′) /∈E; oth-
erwiseC4 = G[{y, x, z, z′}] and, thus,y ∈ Va . Then,
there exists aP4 path[y, x, z, z′]; a contradiction.

CaseII: There is a vertexx ′ such that(x, x ′) ∈ E
and(x ′, z) /∈ E (see Fig. 4(b)). Verticesx ′ andz′ are
connected by an edge; otherwise,[x ′, x, z, z′] forms
a P4. Verticesy, z′ are not connected by an edge;
otherwise,y ∈ Va . If both (y, z) and(y, x ′) are edges,
theny ∈ Va . Therefore, we have that either[y, x, z, z′]
or [y, x, x ′, z′] forms aP4; a contradiction.

(⇐) Suppose thatG = (V ,E) is not a cograph.
By Theorem 3G contains aP4 = [v1, v2, v3, v4].
Therefore(v2, v3) is an actual edge, and(v1, v3) /∈E,
(v2, v4) /∈ E and(v1, v4) /∈ E. There are two cases to
consider.

CaseI: At least one of the edges(v1, v2), (v3, v4)

is a semi-free edge. Let(v1, v2) ∈ SE. In this case,
there exists a semi-free edge(v2, v1) = (x, y) ∈ SE
such thaty /∈ Va (see Fig. 5(a)).

CaseII: Both (v1, v2) and(v3, v4) are actual edges.
Then, there are verticesv0 andv5 such that(v1, v0) ∈
E, (v4, v5) ∈ E, (v0, v2) /∈ E and (v5, v3) /∈ E. We
distinguish two alternatives:
(A1) v0 6= v5 (see Fig. 5(b)). SinceP4 = [v1, v2, v3,

v4], it is easy to see thatv3 ∈Na(x,2) andv4 /∈
Na(x,1), wherex = v1. It follows that exactly
one of the following alternatives holds:
(i) v3, v4 ∈Na(x,2),
(ii) v4 ∈Na(x,3).

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139 135

Fig. 4. Semi-free and actual edges are denoted by s and a, respectively.

Fig. 5. Semi-free and actual edges are denoted by s and a, respectively.

If (i) holds then there exists an actual edge
(v3, v4) ∈ Ea such thatv3, v4 ∈ Na(x,2). If (ii)
holds then{x} ∪Na(x,1)∪Na(x,2) 6= Va .

(A2) v0= v5 (see Fig. 5(c)). In this case, both(v1, v0)

and (v0, v4) are actual edges, and(v0, v2) /∈ E
and (v0, v3) /∈ E (see (A1) in the case where
either(v0, v2) ∈ E or (v0, v3) ∈ E). Thus, there
exists an actual edge(v2, v3)= (y, z) ∈Ea such
thaty, z ∈Na(x,2), wherex = v0. 2

5. Recognizing threshold graphs

As stated in Section 1, there exists a sequential
recognition algorithm for threshold graphs running
in O(n) time. The algorithm is based on the degree
partition of an undirected graph and on some impor-
tant characterizations of threshold graphs presented by
Chvátal and Hammer [4]. The main idea of the recog-
nition algorithm can be summarized as follows: Given
an undirected graphG = (V ,E), first, it brings to-
gether all the vertices with the same degree. That is,
the vertex setV of the graph is partitioned intok dis-

joint vertex setsV =D0+D1+· · ·+Dk satisfying the
propertyv ∈Di if and only if δ(v) = i, wherev ∈ V
and 16 i 6 k. Then, it uses the following result:G is
a threshold graph if and only if the recursions below
are satisfied:

δi+1= δi + |Dk−i | (i = 0,1, . . . , bk/2c− 1),

δi = δi+1− |Dk−i | (i = k, k − 1, . . . , bk/2c + 1).

The approach used in this paper is different from
the previous algorithm(s). Specifically, since our main
objective is to achieve constant-time complexity for
the recognition problem, we focus on forbidden sub-
graphs. In other words, we focus on the problem of
recognizing induced subgraphs which are forbidden
for threshold graphs. Chvátal and Hammer [4] have
proved the following:

Theorem 4 (see [4]).LetG= (V ,E) be a undirected
graph. Then, the following statements are equivalent:
(i) G is a threshold graph.
(ii) G has no induced subgraph isomorphic to2K2,

P4, or C4.

136 S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139

Fig. 6. The typical structure of an A-free graph which contains no induced subgraph isomorphic to 2K2. NodesVi,j with j = 1 contain only
one vertex.

We have proved that an A-free graph contains
no induced subgraph isomorphic toP4 or C4 (see
Lemma 3.1). By combining these results with the re-
sults of Theorem 4, we obtain the following theorem.

Theorem 5.1. The threshold graphs are precisely
those A-free graphs containing no induced subgraph
isomorphic to2K2.

The following lemma gives us the conditions un-
der which an A-free graphG contains no induced sub-
graph isomorphic to 2K2. We shall useVh,k to denote
thekth node of the cent-treeTc(G) at levelh> 0;V0,1
denotes the root ofTc(G) (see Fig. 6).

Lemma 5.1. LetG= (V ,E) be an A-free graph. The
following statements are equivalent:
(i) G has no induced subgraph isomorphic to2K2.
(ii) The complementGc of the graphG is an A-free

graph.

Proof. (i) ⇒ (ii) Let G be an A-free graph and
let Tc(G) be the cent-tree ofG rooted atV0,1 :=
cent(G). Then, level(x) = 0 for everyx ∈ V0,1. Let
V1,1,V1,2, . . . , V1,k1 be the children of the nodeV0,1.
SinceG contains no induced subgraph isomorphic to
2K2, there exists at least one child ofV0,1 which may
contain more that one node. LetV1,1 be such a child;

that is |V1,1| > 1. If the subgraph induced byV1,1 is
an A-free graph (or equivalentlyV1,1 is not a clique)
then there exists at least one child ofV1,1 which may
contain more that one node. LetV2,1 be such a child.
We continue in this way until all the children of the
nodeVh−1,1 are cliques (an isolate vertex is a clique);
see Fig. 6. By construction, the cent-treeTc(G) of an
A-free graphG has the following properties:
• The vertex setK = V0,1 ∪ V1,1 ∪ · · · ∪ Vh,1 is a

clique.
• The vertex setS = V − {V0,1∪ V1,1∪ · · · ∪ Vh,1} is

an independent set.
• For every pair of nodesx, y ∈ S such thatlevel(x) <

level(y),N(x)⊆N(y).
LetGc = (V ,Ec) be the complement of the graphG.
Then,K is an independent set andS is a clique inGc.
Let (x, y) be an arbitrary edge ofGc .

CaseI. The edge(x, y) ∈ Ec has one endpoint in
the setK and the other endpoint in the setS. Then
(x, y) is a semi-free edge.

CaseII. The edge(x, y) ∈ Ec has both endpoints
in the setS. SinceN(x) ⊆ N(y) in G, we have that
N[y] ⊆ N[x]. This implies that every edge inGc is
either free or semi-free. Thus,Gc is an A-free graph.

(ii) ⇒ (i) Suppose thatG contains an induced
subgraph isomorphic to 2K2. Then,Gc contains an
induced subgraph isomorphic toC4; a contradic-
tion. 2

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139 137

From the preceding Lemma 5.1 and Theorem 5.1
we may state the following characterization of thresh-
old graphs.

Theorem 5.2. An undirected graphG = (V ,E) is a
threshold graph if and only ifG and its complement
Gc are A-free graphs.

The above theorem enables us to design a constant-
time parallel recognition algorithm for threshold
graphs.

6. Recognition algorithms

Based on the results of the previous sections,
we present here parallel recognition algorithms for
A-free graphs, cographs and threshold graphs. The
models of parallel computation used for analyzing
the computational complexity of each algorithm are
the well-known Concurrent-Read, Concurrent-Write
PRAM (CRCW PRAM).

6.1. Free graphs

It is easy to formulate and analyze a parallel
algorithm for computing the classes of free, semi-free
and actual edges of a graph and, therefore, recognizing
whether or not a undirected graphG is an A-free graph
or aD-graph. We present the following results.

Theorem 6.1. The free, semi-free and actual edges of
an undirected graphG with n vertices andm edges
can be computed inO(1) time on a CRCW PRAM
usingO(nm) processors.

Corollary 6.1. A-free graphs andD-graphs can be
recognized inO(1) time withO(nm) processors on a
CRCW PRAM model.

Remark 6.1. We assume that the input graph is
connected. Otherwise, the processor complexity of the
CRCW implementation of the algorithm is O(n2 +
nm). It is obvious that if the input graph is represented
by the adjacency matrix, the constant-time recognition
of free graphs andD-graphs (also, cographs and
threshold graphs) requires at least�(n2) processors,
regardless of how many edges the graphs contain.

6.2. Cographs

We now present a parallel algorithm for recognizing
cographs. The algorithm is based on the results of
Theorem 4.1 and Lemma 4.1. LetG = (V ,E) be an
undirected graph. By Theorem 4.1, we obtain thatG

is a cograph if it is an A-free graph. Therefore, we have
to test whether or not the edge setAE is empty. If so,
thenG is a cograph. The case whereG is not an A-free
graph is handle by Lemma 4.1.

Next, we give a more formal listing of the recogni-
tion algorithm.

Step 1.Compute the edge setsFE, SEandAE.
Step 2. If AE 6= ∅ then compute the actual subgraph

Ga = (Va,Ea) of G;
otherwise,G is A-free and, thus,G is a
cograph;exit.

Step 3.For every vertexx ∈ Va , do in parallel
(3.1) compute the adjacency-level sets

Na(x,1) andNa(x,2);
Step 4.For every vertexx ∈ Va do in parallel

(4.1) if {x} ∪ Na(x,1) ∪ Na(x,2) 6= Va then
Cx← false;

(4.2) if there exists an actual edge(y, z) ∈
Ea : y, z ∈Na(x,2) thenCx← false;

(4.3) if there exists a semi-free edge(y, z) ∈
SE: y /∈ Va , thenCx← false;

Step 5. If Cx = true, for all verticesx ∈ Va thenG is
a cograph;
otherwise it is not;

Let us now compute the time-processor complexity
of the proposed parallel algorithm for recognizing
cographs.

We shall use a step-by-step analysis.
Steps1, 2: These steps are executed in O(1) time

with O(nm) processors on a CRCW PRAM (see
Theorem 6.1).

Step3: Let G be the input graph. We recall that
the adjacency-level setN(v, i) of G can be computed
in O(1) time, if the setN(v, i − 1) is given, 0<
i 6 Lv . For the computation ofN(v,2), δv sets of
lengthδ are needed, whereδ =max{δu | u ∈ N(v,1)
andv ∈ V }. Therefore, the adjacency-level setN(v,2)
is computed in O(1) time by using δ

∑
v∈V δv =

O(nm) processors. SinceGa is a subgraph ofG,
the adjacency-level setsNa(x,1) and Na(x,2) are

138 S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139

computed within the same time and processor bounds,
for all x ∈ Va .

Step 4: This step consists of substeps 4.1, 4.2
and 4.3.

Substep4.1: Obviously, this substep can be exe-
cuted in constant time withn processors.

Substep4.2: The operation of testing whether an
edge is an actual edge is executed in constant time with
one processor. Here,m′ 6 m edges are tested, where
m′ is the number of actual edges ofG.

Substep4.3: In this substepm′′ 6 m edges are
tested, wherem′′ is the number of semi-free edges
of G.

In total, Step 4 is executed in constant time with
O(nm) processors (see Remark 6.1).

Step5: Here, the logical AND of O(n) Boolean
variables (bits) is computed. This computation takes
constant time with O(n) processors.

From the previous step-by-step analysis, we con-
clude that the algorithm runs in O(1) time with O(nm)
processors. Thus, we have the following result.

Theorem 6.2. Cographs can be recognized inO(1)
time by usingO(nm) processors on a CRCW PRAM
model.

6.3. Threshold graphs

From Theorem 5.2 it is clear that we can obtain
a constant-time recognition algorithm for threshold
graphs. This theorem tells us that a graphG is a thresh-
old graph if and only ifG and its complementGc

are A-free graphs. Therefore, we obtain the following
recognition algorithm:

Step 1.Compute the complementGc of the input
graphG;

Step 2.Testwhether or not bothG andGc are A-free
graphs; if so,G is a threshold graph.

The complement of a graphG with n vertices can
be computed in constant time withn2 processors. We
have shown that the decision whether or not a graph
G is an A-free graph can be made in constant time
with O(nm) processors on a CRCW PRAM model
(see Corollary 6.1). Thus, we can present the following
result.

Theorem 6.3. Threshold graphs can be recognized in
O(1) time by usingO(nm) processors on a CRCW
PRAM model.

Remark 6.1. It is easy to see that all the pro-
posed recognition algorithms can also be executed in
O(logn) time by using O(nm/ logn) processors on
a Concurrent-Read, Exclusive-Write PRAM (CREW
PRAM) model.

7. Conclusions

We have presented parallel recognition algorithms
for the classes of perfect graphs known as cographs
and threshold graphs. For both classes we have pro-
posed O(1)-time recognition algorithms working with
O(nm) processors on a CRCW PRAM model. This
result implies that the following classes of perfect
graphs have now constant-time parallel recognition al-
gorithms:
• split graphs [14];
• D-graphs and A-free graphs (this paper, see also

[14]);
• cographs (this paper);
• threshold graphs (this paper).
We point out that all the above O(1)-time recognition
algorithms are executed with O(nm) processors. We
are currently studying other graph recognition proper-
ties and characterizations, still using the edge classifi-
cation proposed in this paper (see also [14]). We hope
our study will enable us to further extend classes of
perfect graphs whose members can be recognized in
O(1) parallel time.

References

[1] G.S. Adhar, S. Peng, Parallel algorithms for cographs and
parity graphs with applications, J. Algorithms 11 (1990) 252–
284.

[2] S. De Agostino, R. Petreschi, Parallel recognition algorithms
for graphs with restricted neighborhoods, Internat. J. Found.
Comput. Sci. 1 (1990) 123–130.

[3] A. Coppersmith, S. Winogrand, Matrix multiplication via
arithmetic progression, J. Symbolic Comput. 9 (1990) 251–
280.

[4] V. Chvátal, P.L. Hammer, Set-patching and threshold graphs,
Res. Report CORR-73-21, University of Waterloo, 1973.

[5] D.G. Corneil, H. Lerchs, L. Burlingham, Complement re-
ducible graphs, Discrete Appl. Math. 3 (1981) 163–174.

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129–139 139

[6] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition
algorithm for cographs, SIAM J. Comput. 14 (1985) 926–934.

[7] E. Dahlhaus, Efficient parallel recognition algorithms of
cographs and distance hereditary graphs, Discrete Appl.
Math. 57 (1995) 29–44.

[8] M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press, Inc., New York, 1980.

[9] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
1969.

[10] X. He, Parallel algorithms for cographs with applications, in:
O. Nurmi, E. Ukkonen (Eds.), Algorithm Theory—SWAT ’92,
Lecture Notes in Comput. Sci., Vol. 621, Springer, Berlin,
1992, pp. 94–105.

[11] M. Kano, S.D. Nikolopoulos, On the structure of A-free
graphs. Part II, TR-25-99, Department of Computer Science,
University of Ioannina, 1999.

[12] H. Lerchs, On cliques and kernels, Department of Computer
Science, Universtity of Toronto, March 1971.

[13] R. Lin, S. Olariu, An NC recognition algorithm for cographs,
J. Parallel Distrib. Comput. 13 (1991) 76–90.

[14] S.D. Nikolopoulos, Constant-time parallel recognition of split
graphs, Inform. Process. Lett. 54 (1995) 1–8.

[15] S.D. Nikolopoulos, S.D. Danielopoulos, Parallel computation
of perfect elimination schemes using partition techniques on
triangulated graphs, Comput. Math. Appl. 29 (1995) 47–57.

[16] E.S. Wolk, The comparability graph of a tree, Proc. Amer.
Math. Soc. 13 (1965) 789–795.

