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Abstract

In this work, we attempt to establish recognition properties and characterization for two classes of perfect graphs, namely
cographs and threshold graphs, leading to constant-time parallel recognition algorithms. We classify the edges of an undirectec
graph as either free, semi-free or actual, and define the class of A-free graphs as the class containing all the graphs with nc
actual edges. Then, we define the actual subgépbf a non-A-free graplG as the subgraph containing all the actual edges
of G. We show properties and characterizations for the class of A-free graphs and the actual sthgadph cographG,
and use them to derive structural and recognition properties for cographs and threshold graphs. These properties imply paralle
recognition algorithms which run in @) time using @nm) processors 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction early 1970s by Lerchs [12] who studied their struc-
tural and algorithmic properties. Lerchs has shown,
Cographs (also called complement reducible among other properties (see [1,5,6,13]), the following
graphs) are defined as the graphs which can be reducedwo very nice algorithmic properties:
to single vertices by recursively complementing all (P1) cographs are exactly the, restricted graphs,

connected subgraphs. More precisely, the class of co- and

graphs can be defined recursively as follows: (P2) cographs have a unique tree representation called
(i) a single-vertex graph is a cograph; cotree.

(ii) the disjoint union of a cograph is a cograph; Threshold graphsa well-known class of perfect

(i) the complement of a cograph is a cograph. graphs, are defined as those graphs where stable sub-

Cographs have arisen in many disparate areas of math-sets of their vertex sets can be distinguished by us-
ematics and computer science and have been indepening a single linear inequality. Equivalently, a graph
dently rediscovered by various researchers under var-G = (V, E) is threshold if there exists a threshold as-
ious names such a8*-graphs, P4 restricted graphs,  signmentfa, 1] consisting of a labeling of the ver-
2-parity graphs and HD-graphs or Hereditary Dacey tices by non-negative integers and an integer threshold
graphs. Cographs themselves were introduced in the; sych that:

(i) Sisastablesetifandonlyif(vy) +a(v2)+---+

1 Email: stavros@cs.uoi.gr. a(vy) <t,
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wherev; € S, 1<i < p,andS € V. Thresholdgraphs their edges and obtain the actual subgraphwhich
were introduced in 1973 by Chvatal and Hammer [4]. is the subgraph o& containing all the actual edges.
There are several recognition algorithms for the Based on this classification, we define the clasa-of
class of threshold graphs which run in linear sequen- free graphs as the class containing all the undirected
tial time. On the other hand, the class of cographs graphs with no actual edges. Consequently, we prove
is known to have logarithmic-time parallel recogni- that any A-free graph does not contafia or C4 as
tion algorithms. For the class of cographs, Adhar and induced subgraphs. This implies that
Peng [1] presented a parallel recognition algorithm (i) A-free graphs are a special kind of cographs, and
which requires @og? n) time and uses Qum) proces- (i) a graph is threshold if and only if it is an A-free
sors on a CRCW PRAM model of computation, where graph and has no induced subgraphs isomorphic
n andm are the number of vertices and edges in the to 2K>.
graph, respectively. Dahlhaus [7] proposed a nearly We show thaiG has no induced subgraph isomorphic
optimal parallel recognition algorithm which runs in to 2K» if and only if the complementG* of G is
O(log? n) time with O(n +m) processors on a CREW  an A-free graph. Moreover, we show certain proper-
PRAM model. Recently, He [10] published a cograph ties and characterizations for the actual subgr@ph
recognition algorithm working in Qog? ) time with of a cographG. Based on these results, we propose
O(n + m) processors on a CREW PRAM model. It O(1)-time algorithms for recognizing A-free graphs,
is worth noting that all previously known parallel al- cographs and threshold graphs usin@:) proces-
gorithms use the fact that cographs can be representedsors on a CRCW PRAM.
by a unique tree (so-called cotree). This representation Throughoutthe paper logdenotes logarithm to the
forms the base for the logarithmic time parallel recog- base two,n denotes the number of vertices amd
nition [5,7,10]. As far as threshold graphs are con- denotes the number of edges in a graph.
cerned, De Agostino and Petreschi [2] presented a par-
allel algorithm derived from a characterization based
on degrees that runs in(@gn) time with O(n/ logn) 2. Edge classification and graph partition
processors on a EREW PRAM. The main technique _ _ )
used for recognizing threshold graphs is the degree LetG = (V. E) be an undirected simple graph with
partition of the vertex set [8]. (We note that the degree 7 Vertices andn edges. Following the notation and

partition of the vertex se¥ of a graphG = (V, E) is ter.minologyin [9], thmeighbou_rhpod)faverte@ of
given byV = Do+ D1 + - - - + Dy whereD; is the set G is the setV (1) = Ng (1) consisting of all vertices
of all the vertices of degre®, 0<i < k.) which are adjacent with. Theclosed neighbourhood

In this paper we attempt to establish recognition 18 Nlul = Ng[u] := {u} U N(u). The subgraph of
properties and characterization for two classes of per- G induced by a subsef C V' is denoted byG[S].
fect graphs, namely cographs and threshold graphs,We shall use the notationVg(s)(u) (respectively
leading to efficient @L)-time parallel recognition al-  Naisilu]) to denote the neighbourhood (respectively
gorithms. Most of the previously proposed recognition closed neighbourhood) of a vertex of the graph
algorithms for cographs are based on a unique tree rep-G[S1- _
resentation, while recognition algorithms for thresh- ~ Given a graptG = (V, E), we define three classes
old graphs are based on a degree partition. Here, we°f €dges inG, denoted byAE, FE and SE according
take a different approach relying on a classification 0 relationship of the closed neighborhoods of the
of the edges of an undirected graph and on the fact €ndpoints of its edges [14]. Let= (. v) be an edge
that cographs contain no induced subgraph isomorphic ©f G- Then,
to P4 (see Lerchs [12]) and threshold graphs contain .
no induced subgraphs isomorphic t&2 Pa, or C4 (u,v) € FE f Nul = N[vl,
(see Chvatal and Hammer [4]). To this end, we clas- (4, v) € SE if N[u] C N[v],
sify the edges of a grapty as eitherfree, semi-free .
or actual according to the relationship of the closed (u,v) € AE if Nu] = Nlv #/ and
neighborhoods of the endpoints (or end-vertices) of N[v] — N[u] #9.
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Fig. 1. Three undirected graphs. Free, semi-free and actual edges are denoted by f, s and a, respectively.

Obviously the edge sdt of G can be partitioned into

verticesu such that the length of the shortest path from

the three subsets of free edges, semi-free edges and ob to « is equal tai.

actual edges, respectively; thati5= FE + SE+ AE.
We illustrate with three graphG, H andl shown in
Fig. 1.

Having classified the edges of a gragh= (V, E)

as either free, semi-free or actual, let us now define the

class ofA-freegraphs as follows:

Definition 1. An undirected graphG = (V, E) is
calledA-freeif every edge ofG is either free or semi-
free edge.

By definition, a graphG is an A-free graph if and
only if for every edge(x, y) of G, we haveN|[x] C
N[y] or N[x] 2 N[y]. The graphG in Fig. 1 is an
A-free graph, while the graphd and in the same
figure are not A-free graphs.

Let G = (V, E) be a graph which contains actual
edges; that is(G is not an A-free graph. We define
theactual subgraplG, = (V,, E,) of the graphG as
follows:

Definition 2. The graphG, = (V,, E;) is called
actual subgraph ofa graphG = (V, E) if E, = AE
andV, = {v € V | v is an endpoint of some edge of
E,}, whereAE is the set of the actual edges@fand
AE +#£ (.

The actual subgrap@, = (V,, E,) of the graphH
of Fig. 1 is aCs (chordless cycle on 5 vertices), while
the actual subgraph of the graptof the same figure
is a K3 (complete graph on 3 vertices).

We now extend the notion of the neighbourhood
N(v) of a vertexv so that for any vertex: we
define thei-distance neighbourhood af denoted by
N(v,i), i >1.ThesetN(v,i), i > 1, contains all the

Given a connected grapi = (V, E) and a vertex
v € V, we define a partitior (G, v) of the vertex set
V (we shall frequently use the terpartition of the
graphG), with respect to the vertexas follows:

LG, v)={N@,i)|veV, 0<i< Ly,
1< Ly <|VI},

where N(v,i), 0<i < L,, are theadjacency-level
sets or simply theadjacency-levelsand L, is the
length of the partition£(G, v) [15]. The adjacency-
level sets of the partitio (G, v) of the graphG, are
formally defined as follows:

N, i)={ueV|dwv,u) =i},

whered (v, u) denotes thalistancebetween vertices
v andu in G. We point out thatd(v,u) > 0, and
d(v,u) = 0 whenv = u, for everyv,u € V. (In the
case wheres is a disconnected graph(v, u) = oo

whenv andw do not belong to the same connected
component.) Obviously,

Ly=max{d(v,u) |ueV},

N@w,0)={v} and N(v,1)=N(®).

The adjacency-level set®(v,i), 0 < i < Ly, of

partition £(G, v), can easily be computed recursively

as follows:

N(v,i)={u| (x,u) € Eandx € N(v,i — 1)}

—{N@,i-DUN@,i -2},

2<i<L,<n.

We note that, these sets can also be computed by

considering first the distance matrix of the graph

G and then extracting all set information that is

necessary. This computation can be efficiently done by
using matrix multiplication; see [3].
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Fig. 2. The typical structure of an A-free graph. A line between ndgesndV; indicates that each vertex of nodfgis adjacent to each vertex
of nodeV;.
J

3. Structural properties of A-free graphs (i) AgraphG is an A-freeif and only it — cen{(G)
is an A-free graph.

The following results provide algorithmic proper- (i) LetG be a connected A-free graph. Then
ties for the class of A-free graphs—that s, the class of ~ cent(G) # ¥. Moreover, ifG — cen{(G) # @, then
all the undirected graphs with no actual edges. A typi- G — cen(G) contains at least two components.
cal structure of an A-free graph is shown in Fig. 2. _

Let P4 and C4 denote the chordless path and the ~ ThenVi:=cen{(G) is not an empty set. Pui; =
chordless cycle on four vertices, respectively. Based G andG —V1=G2UG3U--- UGy, Wherg eaclt;
on the definition of the actual edges of a graph, we IS & componento€ — Vi andr > 3. Then since each
can easily show that the A-free graphs are exactly the Ci iS an induced subgraph @, G; is also an A-free

graphs not having &, or C4 as an induced subgraph. gr_aph, and so lev; := cen(G;) # ¢ for 1 <i<r.
Thus, the following lemma holds. Since each componeu; of G; — cen(G;) is also

an A-free graph, we can continue this procedure until
we get an empty graph. Then we finally obtain the

Lemma 3.1. A graphG = (V, E) is an A-free graph following partition of V (G).

if and only if it contains no induced subgraph isomor-

phic to P4 or Cj. VG)=Vi+ Vot + W,
where V; = cen{G;). Moreover we can define a
Let G = (V. E) be a connected A-free graph. For partial order< on{Vi, Va, ..., Vi} as follows:

convenience, we here denote ByG) and E(G) the .
. . <V, = : ; ).
setsV andE, respectively, and define VisVj it Vi=cen(Gy) andV; € V(Gi)

It is easy to see that this partition possesses has the
cen(G) = {x € V(G) | NIx] = V(G }. following properties.

Theorem 1 (see [11]).The following two statements Theorem 2 (see [11]).Let G be a connected A-
hold. free graph, and letV(G) = V1 + Vo + -+ + V4
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be the partition defined above, in particuldr :=

centG). Then this partition and the partially ordered

set({V;}, <) have the following properties

(P1) If v; < V;, then every vertex of; and every
vertex ofV; are joined by an edge @.

(P2) ForeveryV;, celG{U Vi | V; = Vi}D) = Vi.

(P3) For every twoV, and V, such thatV, < V;,
G[{UVi| Vs <V; < V;}]is a complete graph.
Moreover, for every maximal elemenf of
{Vi}, <), GI{UVi | Vi < Vi < V;}] is a maxi-
mal complete subgraph of.

(P4) Every edge with both endpoints In is a free
edge.

(P5) Every edge with one endpointif and the other
endpoint inV;, whereV; # V;, is a semi-free
edge.

We shall refer to the structure which meets the
properties of Theorem 2 a®nt-treeT, (G). We shall
call nodesthe elements of a cent-trég(G); that is,
the vertex set¥1, Vo, ..., Vi of the partition ofV (G)
of an A-free graplG. Fig. 2 shows theent-treel,.(G)
of an A-free graptG; all edges in &; are free edges,
while all edges between nodes are semi-free edges.

The cent-tree is a rooted tree with rodt; every
nodeV; of T.(G) is either a leaf or has at least two
children. MoreoverV, < V; if and only if V; is an
ancestor ofV;.

If V; andV; are disjoint vertex sets of an A-free
graphG, we say thatV; and V; are clique-adjacent
and denote/; = V; if V; <V;orV; <V,.

We point out that the property (P3) of Theorem 2
ensures that all the edges with both endpoints in a
vertex setV; are free edges, 4 i < k. A consequence
of this property is that the vertex s& U V; is not
always a maximal clique. We can easily see tigt)

V; is not a maximal clique if there exists a vertex set
V; suchthatV; ~ V;, 2< j <k.

4. Recognition properties of cographs

Based on the definition of cographs we can easily
see that they can be obtained from a single vertex
by performing a finite number of operations involving
union and complementation (the definition is given in
the introduction). Next, we present the fundamental
theorem on cographs.
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Theorem 3 (see [6]).Let G = (V, E) be an undi-
rected graph. Then, the following statements are
equivalent

(i) G isacograph

(i) G does not contairP4 as a subgraph.

By Theorem 3, a grapty is a cograph oD*-graph
if for every path inG with edges(v1, v2), (v2, v3),
(vs, v4) the graph also contains the edges, v3) or
(v2,v4) OF (v1,v4) [5]. A strict subset of cographs
form the class ofliagonal graph®r D-graphs(a strict
subset of cographs) [16]. It is important to point out
that Wolk [16] showed that th®-graphs are precisely
the comparability graphs of rooted trees. This result
was later quoted incorrectly as “A graph without
induced subgraph isomorphic Ra, that is, a cograph,
is the comparability graph of rooted trees” [2]. The
graphCy is a counter-example to this statement.

A graph is adiagonal graphor D-graph if for every
path in G with edges(v1, v2), (v2, v3), (v3, va), the
graph also contains the edges, v3) or (vz, va) (See
also [6]). Thus, the following result directly follows
from Lemma 3.1 and Theorem 3.

Theorem 4.1.Let G = (V, E) be an A-free graph.
Then,G is a cograph.

Let us now consider the case where the gréph
contains actual edges. Based on certain properties of
the actual subgraply, = (V,, E;), we show some
characterizations of cographs leading to an efficient
(constant-time) parallel recognition algorithm. Here-
after, the adjacency-level sets of the partitixiG,,, x)
of the graphG,, are denoted bw, (x,i), x € V, and
i >0.

The following theorem addresses a characterization
of cographs which is at the heart of our parallel
recognition algorithm.

Lemma4.l. LetG = (V, E) beagraphandleG, =

(Va, Eo) be the actual subgraph @f. The graphG is

a cograph if and only if

0] Uo@.gz N,(x,i)=V,,and

(i) there exists no actual edde, z) € E, such that
v,z € Ny(x,2), and

(iii) there exists no semi-free edge, y) € SE such
thaty ¢ V,, for every vertex € V,.
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Fig. 3. The vertical dashed lines indicate the adjacency-levels. Free and semi-free edges are denoted by f and s, respectively; all the other edge

are actual edges.

Proof. (=) Let G = (V, E) be a cograph. Suppose
thatV, # ¢J; otherwiseG is an A-free graph and, thus,
G is a cograph (Theorem 4.1).

(i) By Theorem 2,G does not containPs as
a subgraph. Obviously thew(x,3) = ¢ for every
x € V. Since G, is a subgraph ofG, N,(x,3) =
@ for every x € V,. This implies, {x} U Ny(x,1) U
Ny(x,2) =V, for everyx € V.

(il) Suppose that there exists an actual edge)

E, suchthaty, z € N,(x, 2). Then, there exist vertices
v,z € Ny(x,2) such that(y, y") € E,, (z,7) € E,.
There are three cases to consider.

Casel: (y,7') ¢ E and (z,y’) ¢ E. Then, there
exists aP4 path([z, y, y’, x]; a contradiction.

Casell: (y,7') ¢ E and(z,y') € E (see Fig. 3(a)).
Since(y, z) is an actual edge, there exists a semi-free
or actual edgé€y, p) such thatp, z) ¢ E. Then, there
exists aP4 path[p, y, z, z’]; a contradiction.

Caselll: (y,z') € E and(z, y’) € E (see Fig. 3(b)).
Since (y,z) is an actual edge, there exist semi-
free or actual edgesy, p1) and (z,¢1) such that
(p1,2) ¢ E and (g1, y) ¢ E. Moreover, sincgy, y')
and (z,z’) are actual edges, there exist semi-free or
actual edgesy, p2) and (z, g2) such that(pz, y’) ¢
E and (¢2,7') ¢ E. Without loss of generality, we
assume thatp = p1 = p2 and g = g1 = g2. |If
(x, p) ¢ E then there exists &, path[p, y, ', x]; a
contradiction. If(x, p) € E then there exists &4 path
[z, v, p, x]; a contradiction. The cases where ¢) ¢
E and(x, ¢) € E follow similarly.

(iif) Suppose that there exists a semi-free edge
(x,y) € SEsuch thaty ¢ V,. Let (x, z) be an actual

edge. Then, there exists a vertésuch thatz, z’) € E
and(x, 7') ¢ E. There are two cases to consider.

Casel: There is no vertex’ such that(x’, x) € E
and(x’, z) ¢ E (see Fig. 4(a)). Sincé, z) is an actual
edge, we havey, 7) ¢ E. Obviously,(y, 7') ¢ E; oth-
erwiseC4 = G[{y, x, z, Z/}] and, thus,y € V,. Then,
there exists &4 path[y, x, z, z’]; a contradiction.

Casell: There is a vertexc’ such that(x, x") € E
and(x’, z) ¢ E (see Fig. 4(b)). Vertices’ andz’ are
connected by an edge; otherwisge/, x, z, z'] forms
a P4. Verticesy, 7/ are not connected by an edge;
otherwisey € V,. If both (v, z) and(y, x") are edges,
theny € V,. Therefore, we have that eithlgr, x, z, ']
or[y, x, x’, 7] forms aPs; a contradiction.

(<) Suppose thatG = (V, E) is not a cograph.
By Theorem 3G contains aPs = [v1, v2, v3, v4].
Therefore(vy, v3) is an actual edge, ana@1, v3) ¢ E,
(v2,v4) ¢ E and (v1, v4) ¢ E. There are two cases to
consider.

Casel: At least one of the edge@1, v2), (v3, v4)
is a semi-free edge. Ldi1, v2) € SE In this case,
there exists a semi-free edd@ey, v1) = (x,y) € SE
such thaty ¢ V, (see Fig. 5(a)).

Casell: Both (v1, v2) and(vs, v4) are actual edges.
Then, there are verticag andvs such that(vy, vg) €
E, (v4,vs5) € E, (vo,v2) ¢ E and (vs,v3) ¢ E. We
distinguish two alternatives:

(A1) v # vs (see Fig. 5(b)). Sincé; = [v1, v2, v3,
v4], it is easy to see thai € N, (x, 2) andvg ¢
Ny (x, 1), wherex = v1. It follows that exactly
one of the following alternatives holds:
(i) v3,va€e Ny(x,2),
(i) vg € Ny(x,3).
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5. Recognizing threshold graphs

vo = us (see Fig. 5(c)). In this case, bathy, vo)
and (vg, v4) are actual edges, andp, v2) ¢ E are satisfied:

and (vg, v3) ¢ E (see (Al) in the case where )

either (vo, v2) € E or (vg, v3) € E). Thus, there Sit1 =208 + D] (=0,1,....1k/2] = 1),
exists an actual edgeo, v3) = (y, z) € E, such 8 =8it1— |Di—il (=kk—1,..., k/2]+1).
thaty,z € N, (x, 2), wherex =vg. O
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Fig. 4. Semi-free and actual edges are denoted by s and a, respectively.

a

v2 v3 V2 a V3 V2 V3
S S
V1 vy v V4 V1 V4
W Vs W
(a) ®) (©)

Fig. 5. Semi-free and actual edges are denoted by s and a, respectively.

If (i) holds then there exists an actual edge jointvertexsety’ = Do+ D1+ ---+ Dy satisfying the
(v3, va) € E, such thatvs, vq € N, (x, 2). If (i) propertyv € D; if and only if §(v) =i, wherev € V
holds then{x} U N, (x, 1) U N, (x,2) # V,. and 1< i < k. Then, it uses the following resuli is
a threshold graph if and only if the recursions below

The approach used in this paper is different from
the previous algorithm(s). Specifically, since our main
objective is to achieve constant-time complexity for
the recognition problem, we focus on forbidden sub-

As stated in Section 1, there exists a sequential graphs. In other words, we focus on the problem of
recognition algorithm for threshold graphs running recognizing induced subgraphs which are forbidden
in O(n) time. The algorithm is based on the degree for threshold graphs. Chvatal and Hammer [4] have

partition of an undirected graph and on some impor- proved the following:

tant characterizations of threshold graphs presented by

Chvatal and Hammer [4]. The main idea of the recog- Theorem 4 (see [4]).LetG = (V, E) be a undirected
nition algorithm can be summarized as follows: Given graph. Then, the following statements are equivalent
an undirected grapl = (V, E), first, it brings to- () G isathreshold graph.

gether all the vertices with the same degree. That is, (i) G has no induced subgraph isomorphic2&>,
the vertex seV of the graph is partitioned intb dis- Pa, or Ca.
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Fig. 6. The typical structure of an A-free graph which contains no induced subgraph isomorpkig.th@esV; ; with j =1 contain only

one vertex.

We have proved that an A-free graph contains thatis|Vy 1| > 1. If the subgraph induced by 1 is

no induced subgraph isomorphic ® or C4 (see

Lemma 3.1). By combining these results with the re-

sults of Theorem 4, we obtain the following theorem.

Theorem 5.1. The threshold graphs are precisely

those A-free graphs containing no induced subgraph

isomorphic to2K».

The following lemma gives us the conditions un-
der which an A-free grap&r contains no induced sub-
graph isomorphic to B,. We shall uséV, ; to denote
thekth node of the cent-treE.(G) atlevelh > 0; Vo1
denotes the root df.(G) (see Fig. 6).

Lemmab5.1. LetG = (V, E) be an A-free graph. The

following statements are equivalent

() G has no induced subgraph isomorphic&,.

(i) The complement“ of the graphG is an A-free
graph.

Proof. () = (ii) Let G be an A-free graph and
let 7.(G) be the cent-tree of; rooted atVp :=
cent{G). Then,levelx) = 0 for everyx € Vo 1. Let
V1.1, V1.2, ..., V111 be the children of the nodg ;.

SinceG contains no induced subgraph isomorphic to

2K, there exists at least one child & 1 which may
contain more that one node. L®f{ 1 be such a child,;

an A-free graph (or equivalently; 1 is not a clique)

then there exists at least one childaf1 which may

contain more that one node. L&} 1 be such a child.

We continue in this way until all the children of the

nodeV;_1 1 are cliques (an isolate vertex is a clique);

see Fig. 6. By construction, the cent-trE€G) of an

A-free graphG has the following properties:

e The vertex setk = Vo1 U Vi1 U---UV,1is a
clique.

e Thevertexse§ =V —{Vo1UV11U---UVj1}is
an independent set.

e Forevery pair of nodes, y € S such thatevelx) <

levely), N(x) S N(y).

Let G = (V, E°) be the complement of the grajgh
Then,K is an independent set aisds a clique inG¢.
Let (x, y) be an arbitrary edge a@¥°.

Casel. The edge(x, y) € E€ has one endpoint in
the setk and the other endpoint in the s&t Then
(x, y) is a semi-free edge.

Casell. The edge(x, y) € E¢ has both endpoints
in the setS. SinceN(x) € N(y) in G, we have that
N[y] € N[x]. This implies that every edge iG° is
either free or semi-free. Thug is an A-free graph.

(i) = (i) Suppose thatG contains an induced
subgraph isomorphic toR. Then, G¢ contains an
induced subgraph isomorphic t64; a contradic-
tion. O
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From the preceding Lemma 5.1 and Theorem 5.1 6.2. Cographs
we may state the following characterization of thresh-
old graphs. We now present a parallel algorithm for recognizing
cographs. The algorithm is based on the results of
Theorem 5.2. An undirected graptG = (V, E) is a Theorem 4.1 and Lemma 4.1. Lét= (V, E) be an
threshold graph if and only itz and its complement  undirected graph. By Theorem 4.1, we obtain tGat
G¢ are A-free graphs. isacographifitis an A-free graph. Therefore, we have
to test whether or not the edge #€ is empty. If so,
The above theorem enables us to design a constantthenG is a cograph. The case whegds not an A-free
time parallel recognition algorithm for threshold graphis handle by Lemma 4.1.
graphs. Next, we give a more formal listing of the recogni-
tion algorithm.

6. Recognition algorithms Step 1. Computethe edge setSE, SEandAE.
Step 2.1f AE +# ¢ then compute the actual subgraph
Based on the results of the previous sections, G, = (V4, Ey) Of G,
we present here parallel recognition algorithms for otherwise, G is A-free and, thus,G is a
A-free graphs, cographs and threshold graphs. The cographgxit.
models of parallel computation used for analyzing Step 3.For every vertexx € V,, doin parallel
the computational complexity of each algorithm are (3.1) compute the adjacency-level sets
the well-known Concurrent-Read, Concurrent-Write Ny(x, 1) andN,(x, 2);
PRAM (CRCW PRAM). Step 4. For every vertexx € V, doin parallel
(4.1) if {x} U Ny(x,1) U N,(x,2) # V, then
6.1. Free graphs C, <« false;
(4.2) if there exists an actual edge, z) €
It is easy to formulate and analyze a parallel Eq: v,z € Nu(x, 2) thenC, < false;
algorithm for computing the classes of free, semi-free (4.3) if there exists a semi-free edge z) €
and actual edges of a graph and, therefore, recognizing SE y ¢ V,, thenC, < false;
whether or nota undirected graphis an A-freegraph  step 5.1f ¢, = true, for all vertices: € V, then G is
or a D-graph. We present the following results. a cograph;

otherwise it is not;
Theorem 6.1. The free, semi-free and actual edges of

an undirected graplG with n vertices andn edges Let us now compute the time-processor complexity
can be computed iO(1) time on a CRCW PRAM  of the proposed parallel algorithm for recognizing
USingO(nm) processors. Cographs_

We shall use a step-by-step analysis.
Corollary 6.1. A-free graphs andD-graphs can be Stepsl, 2: These steps are executed iflOtime
recognized inO(1) time withO(nm) processors ona  with O(nm) processors on a CRCW PRAM (see
CRCW PRAM model. Theorem 61)

Step3: Let G be the input graph. We recall that
Remark 6.1. We assume that the input graph is the adjacency-level séf(v, i) of G can be computed
connected. Otherwise, the processor complexity of the jn O(1) time, if the setN(v,i — 1) is given, O<
CRCW implementation of the algorithm is(& + i < L,. For the computation oN (v, 2), 8, sets of
nm). Itis obvious that if the input graph is represented |engths are needed, whee= max(s, | u € N (v, 1)
by the adjacency matrix, the constant-time recognition andy e V}. Therefore, the adjacency-level $étv, 2)
of free graphs andD-graphs (also, cographs and s computed in @1) time by using s Yoy 8y =
threshold graphs) requires at leatn?) processors,  O(um) processors. Sinc&, is a subgraph ofG,
regardless of how many edges the graphs contain. the adjacency-level set®,(x,1) and N,(x,?2) are



138

S.D. Nikolopoulos / Information Processing Letters 74 (2000) 129-139

computed within the same time and processor bounds, Theorem 6.3. Threshold graphs can be recognized in

forall x € V,.

Step 4: This step consists of substeps 4.1, 4.2
and 4.3.

Substep4.1: Obviously, this substep can be exe-
cuted in constant time with processors.

Substep4.2: The operation of testing whether an

O(1) time by usingO(nm) processors on a CRCW
PRAM model.

Remark 6.1. It is easy to see that all the pro-
posed recognition algorithms can also be executed in
O(logn) time by using Qnm/logn) processors on

edge is an actual edge is executed in constant time witha Concurrent-Read, Exclusive-Write PRAM (CREW

one processor. Here;’ < m edges are tested, where
m’ is the number of actual edges Gf

Substep4.3: In this substepn” < m edges are
tested, wheren” is the number of semi-free edges
of G.

In total, Step 4 is executed in constant time with
O(nm) processors (see Remark 6.1).

Step5: Here, the logical AND of @) Boolean
variables (bits) is computed. This computation takes
constant time with @:) processors.

From the previous step-by-step analysis, we con-
clude that the algorithm runs in(@) time with O(nm)
processors. Thus, we have the following result.

Theorem 6.2. Cographs can be recognized (1)
time by usingO(nm) processors on a CRCW PRAM
model.

6.3. Threshold graphs

From Theorem 5.2 it is clear that we can obtain
a constant-time recognition algorithm for threshold
graphs. This theorem tells us that a gr&pis a thresh-
old graph if and only ifG and its complemen&®
are A-free graphs. Therefore, we obtain the following
recognition algorithm:

Step 1. Compute the complemeniG¢ of the input
graphgG;

Step 2. Testwhether or not botlt; andG¢ are A-free
graphs; if soG is a threshold graph.

The complement of a grapfi with n vertices can
be computed in constant time witf processors. We

have shown that the decision whether or not a graph

G is an A-free graph can be made in constant time
with O(nm) processors on a CRCW PRAM model
(see Corollary 6.1). Thus, we can present the following
result.

PRAM) model.

7. Conclusions

We have presented parallel recognition algorithms
for the classes of perfect graphs known as cographs
and threshold graphs. For both classes we have pro-
posed @1)-time recognition algorithms working with
O(nm) processors on a CRCW PRAM model. This
result implies that the following classes of perfect
graphs have now constant-time parallel recognition al-
gorithms:

e split graphs [14];
e D-graphs and A-free graphs (this paper, see also

[14]);

e cographs (this paper);

e threshold graphs (this paper).

We point out that all the above(®)-time recognition
algorithms are executed with(@n) processors. We
are currently studying other graph recognition proper-
ties and characterizations, still using the edge classifi-
cation proposed in this paper (see also [14]). We hope
our study will enable us to further extend classes of
perfect graphs whose members can be recognized in
O(1) parallel time.
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